Back

Recession cone of a polyhedron

Let \(P \subseteq \mathbb{R}^n\) be a nonempty polyhedron. The recession cone (or characteristic cone) of \(P\), denoted by \(\operatorname{recc}(P)\), is the set \[\left\{ \mathbf{d} \in \mathbb{R}^n : \mathbf{x} + \lambda \mathbf{d} \in P \text{ for all } \mathbf{x} \in P \text{ and for all } \lambda \geq 0\right\}.\]

Proposition 10.4. Let \(P = \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \geq \mathbf{b} \right\}\) where \(\mathbf{A} \in \mathbb{R}^{m\times n}\) and \(\mathbf{b} \in \mathbb{R}^m\). Then \(\operatorname{recc}(P) = \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \geq \mathbf{0} \right\}\).

Proof. Let \(C\) denote \(\left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \geq \mathbf{0} \right\}\).

We first show that \(C \subseteq \operatorname{recc}(P)\). Let \(\mathbf{d} \in C\). Let \(\mathbf{x} \in P\). Let \(\lambda \geq 0\). Then \(\mathbf{A}(\mathbf{x} +\lambda \mathbf{d}) = \mathbf{A}\mathbf{x} + \lambda \mathbf{A}\mathbf{d} \geq \mathbf{b} + \mathbf{0} = \mathbf{b}\). Thus, \(\mathbf{d} \in \operatorname{recc}(P)\).

Suppose that there exists \(\mathbf{d} \in \operatorname{recc}(P)\setminus C\). Therefore, there exists \(i \in \{1,\ldots,m\}\) so that \({\mathbf{a}^{i}}^\mathsf{T}\mathbf{d} \lt 0\) where \({\mathbf{a}^{i}}^\mathsf{T}\) denotes the \(i\)th row of \(\mathbf{A}\). Let \(\mathbf{x} \in P\). Choose a sufficiently large \(\lambda \gt 0\) so that \(\mathbf{a}^\mathsf{T} \mathbf{x} + \lambda \mathbf{a}^\mathsf{T}\mathbf{d} \lt b_i\). Then \(\mathbf{a}^\mathsf{T}(\mathbf{x} + \lambda\mathbf{d}) \lt b_i\), implying that \(\mathbf{x} + \lambda\mathbf{d} \notin P\), contradicting that \(\mathbf{d} \in \operatorname{recc}(P)\).

Let \(P \subseteq \mathbb{R}^n\) be a nonempty polyhedron. A nonzero \(\mathbf{d} \in \mathbb{R}^n\) is called an extreme ray of \(P\) if \(\mathbf{d}\) is an extreme ray of \(\operatorname{recc}(P)\).

Theorem 10.5. Let \(P = \left\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \geq \mathbf{b} \right\}\) be nonempty and pointed. Let \(\mathbf{c} \in \mathbb{R}^n\). The linear programming problem \(\min\{ \mathbf{c}^\mathsf{T} \mathbf{x} : \mathbf{x} \in P\}\) is unbounded if and only if there exists an extreme ray \(\mathbf{d}\) of \(P\) such that \(\mathbf{c}^\mathsf{T}\mathbf{d} \lt 0\).

Proof. Sufficiencey is easy to see. For necessity, the unboundedness of \(\min\{ \mathbf{c}^\mathsf{T} \mathbf{x} : \mathbf{x} \in P\}\) implies that its dual problem \(\max\{ \mathbf{u}^\mathsf{T} \mathbf{b} : \mathbf{u}^\mathsf{T}\mathbf{A} = \mathbf{c}^\mathsf{T},\, \mathbf{u} \geq \mathbf{0}\}\) is infeasible. By Corollary 2.2, there exists \(\mathbf{d}\) such that \(\mathbf{d}^\mathsf{T}\mathbf{A}^\mathsf{T} \geq 0\) and \(\mathbf{d}^\mathsf{T}\mathbf{c} \lt 0\). Thus, \(Q = \left\{ \mathbf{d} \in \mathbb{R}^n : \mathbf{A}\mathbf{d} \geq \mathbf{0},\, \mathbf{c}^\mathsf{T} \mathbf{d} = -1\right\}\) is a nonempty polyhedron.

Since \(P\) is pointed, \(\operatorname{rank}(\mathbf{A}) = n\). Thus, \(Q\) cannot contain a line and so by Theorem 8.6, \(Q\) has at least one extreme point, say \(\mathbf{d}^*\). It follows from Proposition 8.4 that there exists a subsystem \(\mathbf{A}^=\mathbf{d} \geq \mathbf{0}\) of \(\mathbf{A}\mathbf{d} \geq \mathbf{0}\) such that \(\operatorname{rank}(\mathbf{A}^=) = n-1\) and \(\mathbf{A}^=\mathbf{d}^* = \mathbf{0}\). Thus, \(\mathbf{d}^*\) is an extreme ray of \(\left\{ \mathbf{d} \in \mathbb{R}^n : \mathbf{A}\mathbf{d} \geq \mathbf{0}\right\} = \operatorname{recc}(P)\) with \(\mathbf{c}^\mathsf{T}\mathbf{d}^* = -1\lt 0\).

Corollary 10.6. Let \(P\) be a pointed polyhedron. Let \(\mathbf{d}^1,\ldots, \mathbf{d}^k\) be a complete set of extreme rays of \(\operatorname{recc}(P)\). Then \(\operatorname{recc}(P) = \operatorname{cone}\left( \left\{\mathbf{d}^1,\ldots, \mathbf{d}^k \right\} \right)\).

The proof of this corollary is left as an exercise.

Note that the assumption that \(P\) be pointed cannot be dropped. For example, let \(P = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : x_1 \geq 0,~x_2\in \mathbb{R}\right\}\). Note that \(\operatorname{recc}(P) = P\). A complete set of extreme rays of \(\operatorname{recc}(P)\) is given by \(\mathbf{d}^1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\) and \(\mathbf{d}^2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}\). However, \(\operatorname{cone}\left(\left\{\mathbf{d}^1, \mathbf{d}^2 \right\}\right) = \left\{ \begin{bmatrix} 0 \\ x_2 \end{bmatrix} : x_2\in \mathbb{R}\right\} \neq \operatorname{recc}(P)\).

Worked examples

  1. Prove that for a polyhedron \(P\), \(\operatorname{recc}(P)\) is also given by \(\left\{ \mathbf{d} \in \mathbb{R}^n : \mathbf{x} + \mathbf{d} \in P \text{ for all } \mathbf{x} \in P\right\}.\)

  2. Show that if \(P\subseteq \mathbb{R}^n\) is a nonempty polytope, then \( \operatorname{recc}(P) = \{ \mathbf{0}\}.\)

  3. Prove Corollary 10.6.

  4. Let \(P\subseteq \mathbb{R}^n\) be a polyhedron. Show that \(P + \operatorname{recc}(P) = P\) where the sum denotes Minkowski addition; i.e. \(U+V = \{ \mathbf{x}+\mathbf{y} : \mathbf{x} \in U,\, \mathbf{y} \in V\}.\)