Back

Dealing with changes in problem data

We consider LP problems in standard (equality) form: mincTx(P)     s.t.Ax=bx0. As before, ARm×n with rank(A)=m,, bRm, cRn, and x=[x1xn] is a tuple of variables.

In practice, the entries in any of A, b, and c might come from measurements and might be inexact. Sensitivity analysis deals with how much change in the problem data we can tolerate without changing the optimality of the current basis. In what follows, we consider a selection of such questions. The questions we consider are by no means exhaustive. Before we look at some such questions, we list a few definitions.

A basis B is called a feasible basis if determines a basic feasible solution.

A basis B is called a dual feasible basis if y satisfying yTAB=cBT is a feasible solution to the dual problem of (P). (Note that a dual feasible basis is not required to determine a basic feasible solution.)

A basis B is called an optimal basis if it is a feasible basis and a dual feasible basis. In this case, if x is the basic feasible solution determined by B and y satisfies yTAB=cBT, then it can be seen from the revised simplex method (or simply from complementary slackness) that x and y are optimal solutions to (P) and the dual of (P), respectively.

A sample of questions

Consider (P) with A=[211201112012001], b=[035], c=[42013]. It is known that B={1,2,3} is an optimal basis determining the basic feasible solution x=[12000]T. Let N={1,,5}B.

We consider various types of changes in the problem data.

Changes in c

Changes to cj when jB are the easiest to handle.

Suppose that c4 is changed from 1 to θ and c5 is changed from 3 to λ. For what values of θ and λ does B remain an optimal basis?

Note that x remains a basic feasible solution as A and b are not affected. Hence, B remains an optimal basis if and only if y satisfying yTAB=cBT remains a dual feasible solution after the changes.

Now, y=[111]T. So y remains a dual feasible solution after changing c4 to θ and c5 to λ if and only if yTAN[θλ]; or equivalently, 0θ,1λ. Hence, B remains an optimal basis for all θ and λ satisfying θ0,λ1.

Note that, if θ and λ do not satisfy these inequalities, B will no longer be an optimal basis. However, we do not need to solve the problem from scratch because B is still a feasible basis and so we can continue with the simplex method with the basis B.

Now, suppose that c2 is changed from 2 to θ. For what values of θ does B remain an optimal basis?

Again, x remains a basic feasible solution. As 2B, we need to solve for y in yTAB=cBT where c=[4θ013]: [y1, y2, y3][211111120]=[4, θ, 0].

Solving gives y1=y2=8θ6, y3=θ2. So B remains an optimal basis if and only if yTANcNT[8θ68θ6θ2][202001][1 3][0 θ2][1 3].θ6.

Changes in b

Suppose that b2 is changed from 3 to θ. For what values of θ does B remain an optimal basis?

Note that changes in b do not affect c. So y satisfying yTAB=cBT is a feasible solution to the dual problem after modifying b. Hence, B remains an optimal basis as long as it determines a feasible solution. Let b=[0θ5]. By definition, the basic solution x to Ax=b determined by B satisfies Ax=b, xj=0 for all jB; or equivalently, ABxB=b, xj=0 for all jB. So we need to solve [211111120][x1x2x3]=[0θ5]. We get x1=θ3, x2=θ6+52, x3=5θ6+52. So B determines an optimal basic feasible solution if and only if we have x10x20x30. In terms of θ, the system is θ30θ6+5205θ6+520 which simplifies to θ0θ15θ3. So the range of values of θ for which B remains an optimal basis is 0θ3.

If θ is changed to a value outside this range, B will no longer determine a basic feasible solution. However, B is still a dual feasible basis as y satisfying yTAB=cBT remains a feasible solution to the dual problem since the constraints in the dual problem are not affected by changes to b. Next, we introduce the dual simplex method that works with such bases.

Worked examples

  1. Consider the linear programming problem (P) with A=[121111], b=[43], and c=[001]. Let B denote the basis {1,2}.

    1. Show that B is an optimal basis.

    2. Suppose that the first entry of b is changed from 4 to θ. For what values of θ does B remain an optimal basis?

    3. Suppose that the entry in the second row and second column of A is changed from 1 to θ while keeping all the other problem data as originally given. For what values of θ does B remain an optimal basis?

  2. Suppose that B is an optimal basis with respect to (P) determining the basic feasible solution x. Prove that if xB>0, then the dual of (P) has a unique optimal solution.