Up Main

Example 1

Write \(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\) as a linear combination of \(\begin{bmatrix} 1 \\1 \end{bmatrix}\) and \(\begin{bmatrix} -1 \\1 \end{bmatrix}\).

Example 2

Show that \(\operatorname{span}\left(\left \{ \begin{bmatrix} i \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1-i \end{bmatrix} \right \}\right) = \mathbb{C}^2\).

Example 3

Is \(\begin{bmatrix} 1& 0 \\ 0 & 1\end{bmatrix}\) in the span of \(\left \{ \begin{bmatrix} 3 & 1 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \right \}\)? Assume that we are working over the real numbers.

Example 4

Let \(A,B,C \in \mathbb{R}^{2\times 2}\) be given by \(A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}\), \(B = \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix}\), and \(C = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\). Give a description of the span of \(\{A,B,C\}\) that is as simple as possible.

Example 5

Consider the polynomials \(x\) and \(x^2 - 1\) with coefficients from the set of real numbers. Show that the span of these vectors is a proper subspace of \(P_2\), the vector space of polynomials in \(x\) with real coefficients having degree at most \(2\).

Example 6

Determine if \(x^2 + 1\) is in the span of \(\{x^2 + x + 1, x+2\}\) where the scalars are the real numbers.

Example 7

Let \(W\) denote the span of \( \left\{ \begin{bmatrix} 1 \\ -1 \\ 2\end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1\end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -1\end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1\end{bmatrix}, \right\}\). Show that \(W\) is a proper subspace of \(\mathbb{R}^3\).

Example 8

Let \(W\) be a subspace of \(\mathbb{R}^2\).

  1. Show that if \(W\) contains two nonzero vectors that are not scalar multiples of each other, then \(W = \mathbb{R}^2\).

  2. Describe geometrically all the possibilities for \(W\).