Up Main

Example 1

Find the inverse matrix of \(\begin{bmatrix} -i & 1 \\ 2 & 0\end{bmatrix}\).

Example 2

Let \(A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0\end{bmatrix}\) be defined over \(GF(2)\).

  1. Find \(A^{-1}\).

  2. Write \(A\) as a product of elementary matrices.

Example 3

Show that \(A = \begin{bmatrix} 4 & -1 & 2\\ -2 & 1 & 1\\ 2 & 0 & 3\end{bmatrix}\) is singular.

Example 4

Simplify the following matrix expression: \(\left(\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ 0 & 1\end{bmatrix}^3\right)^\mathsf{T}.\)

Example 5

Let \(A = \begin{bmatrix} a & b \\ c & d\end{bmatrix}\) be defined over the real numbers. Prove that \(A\) is invertible if and only if \(ad - bc \neq 0\).

Example 6

Let \(\mathbb{F}\) denote a field. Let \(A \in \mathbb{F}^{m\times n}\). Let \(\lambda \in \mathbb{F}\). Prove that \((\lambda A)^\mathsf{T} = \lambda A^\mathsf{T}\).

Example 7

Let \(A \in \mathbb{F}^{n\times n}\) where \(n\) is a positive integer and \(\mathbb{F}\) denotes a field. Prove that if \(A\) is nonsingular, then \(A\) is invertible.