Up Main

Example 1

Let \(T:\mathbb{R}^2\rightarrow \mathbb{R}^3\) be a linear transformation such that \(T\left(\begin{bmatrix} 2 \\ 1 \end{bmatrix}\right) = \begin{bmatrix} 1 \\ 0 \\ 1\end{bmatrix}\) and \(T\left(\begin{bmatrix} 1 \\ 1\end{bmatrix}\right) = \begin{bmatrix} 0 \\ -1 \\ 1\end{bmatrix}\). What is \(T\left(\begin{bmatrix} 0 \\ -1\end{bmatrix}\right)\)?

Example 2

Consider the linear transformation \(T:\mathbb{R}^4 \rightarrow \mathbb{R}^{2\times 2}\) given by \(T \left( \left[{\begin{array}{c} a \\ b \\ c \\ d\\ \end{array} } \right] \right) = \left[ \begin{array}{cc} 2a+b+c & a-d \\ a+b+c-d & 0 \\ \end{array} \right].\)

  1. Determine a basis for the range of \(T\).

  2. Give a basis for the kernel of \(T\).

  3. Is \(T\) surjective? Injective?

Example 3

Let \(\mathbb{F}\) denote the field \(GF(2)\). Let \(T:\mathbb{F}^4 \rightarrow \mathbb{F}^3\) be a linear transformation given by \(T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 + x_4 \\ x_1 + x_3 + x_4 \\ x_2 + x_3 + x_4 \end{bmatrix}\). Give a basis for the kernel of \(T\).

Example 4

Let \(T:\mathbb{R}^3\rightarrow \mathbb{R}^3\) be a linear transformation given by \(T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 + x_3 \\ -x_1 -x_2 + x_3 \\ x_2 - x_3\end{bmatrix}\). Determine if \(T\) is invertible.

Example 5

Let \(T:\mathbb{R}^3\rightarrow \mathbb{R}^2\) be a linear transformation given by \(T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ -x_1 -x_2 + x_3\end{bmatrix}\). Let \(\Gamma = \left (\begin{bmatrix} 1 \\ 0 \\ 0\end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 0\end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1\end{bmatrix} \right )\) be an ordered basis for \(\mathbb{R}^3\) and let \(\Omega = \left ( \begin{bmatrix} 1 \\ 1\end{bmatrix}, \begin{bmatrix} -1 \\ 1\end{bmatrix} \right )\) be an ordered basis for \(\mathbb{R}^2\). Find \([T]_\Gamma^\Omega\).

Example 6

Let \(P_2\) denote the vector space of polynomials in \(x\) with real coefficients having degree at most \(2\). Let \(T:P_2\rightarrow \mathbb{R}^3\) be a linear transformation given by \(T (ax^2 + bx + c) = \begin{bmatrix} 2a-b \\ b+2c \\ 0\end{bmatrix}\). Determine the dimension of the kernel of \(T\).

Example 7

Let \(P_1\) denote the vector space of polynomials in \(x\) with real coefficients having degree at most \(1\). Let \(\Gamma = (x-1, 1)\) and \(\Omega = (x+1, x-2)\) be ordered bases for \(P_1\). Let \(T:P_1\rightarrow P_1\) be a linear transformation such that \([T]_\Gamma^\Omega = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}\). What is \(T(ax + b)\)?