Show that \(u = \begin{bmatrix} 1\\ -2\end{bmatrix} \) is an eigenvector
of \(A =
\begin{bmatrix}
2 & 2 \\
6 & 1
\end{bmatrix}\).
We need to show that \(Au = \lambda u\) for some scalar \(\lambda\).
Note that
\[A u =
\begin{bmatrix}
2 & 2 \\
6 & 1
\end{bmatrix}
\begin{bmatrix} 1 \\ -2 \end{bmatrix}
= \begin{bmatrix} -2 \\ 4 \end{bmatrix}
= -2\begin{bmatrix} 1 \\ -2 \end{bmatrix}
= -2u.
\]
Hence, \(u\) is an eigenvector of \(A\) with eigenvalue value \(-2\).
Example 3
Let \(A =
\begin{bmatrix}
2 & 2 \\
1 & -1
\end{bmatrix}\).
For what values of \(a\) is
\(u = \begin{bmatrix} a\\ -1\end{bmatrix} \) is an eigenvector of \(A\)?
One can certainly first obtain all the eigenvalues of \(A\).
However, we will work directly with the definition of an eigenvector instead.
In particular, we want to obtain all values of \(a\) such
that \(Au = \lambda u\) for some scalar \(\lambda\).
Note that
\[A u =
\begin{bmatrix}
2a - 2 \\
a + 1
\end{bmatrix}.\]
Hence, we want
\[\begin{bmatrix}
2a - 2 \\
a + 1
\end{bmatrix} = \begin{bmatrix} \lambda a \\ -\lambda \end{bmatrix},\]
or equivalently,
\begin{align*}
2a - 2 & = \lambda a \\
a + 1 & = -\lambda
\end{align*}
From the second equation, \(\lambda = -a -1\). Substituting for
\(\lambda\) in the first equation gives
\[2a - 2 = (-a-1)a,\]
or equivalently,
\[a^2 + 3a - 2 = 0.\]
Using the quadratic formula, we obtain
\(a = \frac{-3\pm \sqrt{17}}{2}\).
One should now check that both values work. The details are omitted.
Example 4
You are given that \(2\) is an eigenvalue
of \(A = \begin{bmatrix}
2 & 0 & 0 \\
0 & 3 & -2 \\
0 & 1 & 0 \\
\end{bmatrix}\).
Determine its algebraic and geometric multiplicity.
We first determine the geometric multiplicity of the eigenvalue \(2\).
Note that
\(A - 2I = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 1 & -2\end{bmatrix}\).
Its RREF is
\(\begin{bmatrix} 0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{bmatrix}\).
Since there is only one pivot column (the second column), the dimension of
\(N(A-2I)\) is \(3-1= 2\). Hence, the geometric multiplicy is \(2\).
Hence, \(2\) appears as a root of \(p_A\) twice. So the algebraic
multiplicy is \(2\).
Example 5
Show that the eigenvalues of a triangular matrix are given by the
entries on the diagonal.
Let \(A\) be an \(n\times n\) triangular matrix.
Let \(a_i\) denote the \(i\)th entry on the diagonal of \(A\) for
\(i = 1,\ldots,n\).
The eigenvalues are precisely the roots of the characteristic
polynomial \(p_A = \det(A-\lambda I_n)\).
Since \(A\) is triangular, \(A-\lambda I_n\) is also triangular
and therefore has determinant \((a_1-\lambda)(a_2-\lambda)\cdots(a_n-\lambda)\).
Thus, the roots of \(p_A\) are precisely \(a_1,\ldots,a_n\).
Hence, the eigenvalues of \(A\) are the entries on the diagonal.
Example 6
Let \(A = \begin{bmatrix}
1 & 1 & -1 \\
0 & 3 & -2 \\
0 & 1 & 0
\end{bmatrix}.\)
You are given that \(1\) is an eigenvalue of \(A\).
Give a basis for the eigenspace of \(A\) of this eigenvalue.
We need to find a basis for the nullspace of
\(A - I = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 2 & -2 \\ 0 & 1 & -1\end{bmatrix}\).
Clearly, the RREF of \(A-I\) is
\(\begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{bmatrix}\).
Note that the first and third columns are nonpivot columns.
Hence, a basis for the nullspace is given by
\(\left\{\begin{bmatrix} 1 \\ 0 \\ 0\end{bmatrix},
\begin{bmatrix} 0 \\ 1 \\ 1\end{bmatrix}\right\}\).
Example 7
Let \(A = \begin{bmatrix}
1 & 4 \\
-1 & 1\end{bmatrix}.\)
Show that \(1+2i\) is eigenvalue of \(A\)
and give a basis for the eigenspace associated with this eigenvalue.
Let \(\lambda = 1+2i\).
Then
\begin{align*}
\det(A-\lambda I) &=
\begin{vmatrix} 1-\lambda & 4 \\ -1 & 1-\lambda\end{vmatrix} \\
&= (1-\lambda)^2-(-1)4 \\
&= (-2i)^2 +4 = 4i^2 + 4 = -4 + 4 = 0.
\end{align*}
Hence, \(\lambda\) is an eigenvalue of \(A\).
To obtain a basis for the eigenspace,
we find a basis for the nullspace of
\(A - (1+2i)I = \begin{bmatrix} -2i & 4 \\ -1 & -2i\end{bmatrix}\)
whose RREF is \(\begin{bmatrix} 1 & 2i \\ 0 & 0 \end{bmatrix}\).
Hence, a basis for the nullspace is given by
\(\left\{\begin{bmatrix} -2i \\ 1 \end{bmatrix}\right\}\).
Example 8
Let \(A = \left[ {\begin{array}{ccc}
1 & 1 & 0 \\
0 & 2 & 0 \\
0 & 2 & 1 \\
\end{array} } \right].\)
Diagonalize \(A\) by finding a matrix \(P\) and a diagonal matrix
\(D\) such that \(A = PDP^{-1}\).
We first find the eigenvalues of \(A\) by solving for \(\lambda\) in
\(\det(A - \lambda I) = 0.\)
That is
\[\left| \begin{array}{rrr}
1-\lambda & 1 & 0 \\
0 & 2-\lambda & 0 \\
0 & 2 & 1-\lambda \end{array}\right| = 0,\] or equivalently,
\[(1-\lambda)^2(2-\lambda) = 0.\]
Hence, the eigenvalues are \(1\) and \(2\).
Note that \(A - I = \begin{bmatrix}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 2 & 0 \end{bmatrix}\).
Its RREF is
\(\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \end{bmatrix}\).
Hence, a basis for the nullspace of \(A-I\)
is given by \(\left \{ \begin{bmatrix} 1 \\ 0 \\ 0\end{bmatrix},
\begin{bmatrix} 0 \\ 0 \\ 1\end{bmatrix} \right\}\).
Note that \(A - 2I = \begin{bmatrix}
-1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 2 & -1 \end{bmatrix}\). Its RREF is
\(\begin{bmatrix}
1 & 0 & -\frac{1}{2} \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 0 \end{bmatrix}\). Its RREF is
A basis for the nullspace of this matrix
is given by \(\left \{ \begin{bmatrix} \frac{1}{2} \\
\frac{1}{2} \\ 1\end{bmatrix} \right\}.\)
Let
\(A = \begin{bmatrix}
10 - 5a & -16 + 10a \\
5 - 3a & -8 + 6a
\end{bmatrix}.\)
Determine if there is a value for \(a\) so that \(A\) is
not diagonalizable.
As \(A\) is \(2\times 2\), if \(A\) has two distinct eigenvalues,
then \(A\) will be diagonalizable. So we must first determine all values of
\(a\) for which \(A\) has a unique eigenvalue.
The characteristic polynomial of \(A\) is
\begin{eqnarray*}
\left |
\begin{array}{ccc}
10 - 5a -\lambda & -16 + 10a \\
5 - 3a & -8 + 6a -\lambda
\end{array}
\right | & = & (10-5a -\lambda)(-8+6a-\lambda) - (-16+10a)(5-3a) \\
& = & -80 + 100a - 30a^2 - (2+a)\lambda + \lambda^2 + 80 - 98a + 30 a^2 \\
& = & 2a - (2+a)\lambda + \lambda^2\\
& = & (2-\lambda)(a-\lambda).
\end{eqnarray*}
Thus, for \(A\) to have a unique eigenvalue, we must have \(a = 2\).
Note that when \(a = 2\), \(A = \begin{bmatrix} 0 & 4 \\ -1 & 4 \end{bmatrix}\)
and \(2\) is the unique eigenvalue.
Now, \(A - 2I = \begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix}\).
It is clear that this matrix has rank 1 and therefore its nullity is
less than 2. Hence, the geometric multiplicity of the only eigenvalue 2 is
less than 2 and so \(A\) is not diagonalizable.
Hence, the answer is “yes”.
Example 11
Let \(A\) be an \(n\times n\) real matrix having \(n\) distinct eigenvalues.
Prove that \(\det(A)\) equals the product of the eigenvalues.
Since \(A\) has \(n\) distinct eigenvalues, \(A\) is diagonalizable.
Hence, there exist an invertible matrix \(P\) and a diagonal matrix
\(D\) such that \(A = PDP^{-1}\).
Thus \(\det(A) = \det(PDP^{-1}) = \det(P)\det(D)\det(P^{-1})
=\det(D)\). But \(D\) is a diagonal matrix. Hence,
\(\det(D)\) is the product of the diagonal entries which are
precisely the eigenvalues of \(A\).
Example 12
In diagonalizaling a given matrix \(A \in \mathbb{Z}^{2\times 2}\),
it is found that \(A = PDP^{-1}\) with
\(P = \begin{bmatrix} 1 & 1 \\ 3 & a\end{bmatrix}\) and
\(D = \begin{bmatrix} 1 & 0 \\ 0 & -1\end{bmatrix}\).
How many possible integer values are there for \(a\)?
(Hint: Use the fact that \(A\) has only integer entries and
use the inverse formula to obtain \(P^{-1}\).)
By the inverse formula,
\(P^{-1} = \frac{1}{\det(P)}\begin{bmatrix} a & -1 \\ -3 & 1 \end{bmatrix}.\)
(One can also compute \(P^{-1}\) directly.)
Multiplying out the matrices gives
\begin{eqnarray*}
PDP^{-1}
& = & \frac{1}{a-3} \begin{bmatrix} a+3 & -2 \\ 6a & -3-a\end{bmatrix}\\
\end{eqnarray*}
Since all the entries of \(A\) must be integers and \(a\) is an integer,
\(a-3\) must divide \(-2\), the top-right
entry in the matrix above.
Thus, the only possibilities for \(a\) are \(1,2,4,5\) because
the only integers that divide \(-2\) are \(-1,-2,1,2\).
One can check that all 4 values lead to integer matrices. Hence,
\(a = 2\) is a desired value.
Find all values of \(a\) such that \(\begin{bmatrix} a \\ 2\end{bmatrix}\)
is an eigenvector of \(A\).
We want to find all values of \(a\) so that
\(A\begin{bmatrix} a \\2 \end{bmatrix} =
\lambda \begin{bmatrix} a \\2 \end{bmatrix}\) for some \(\lambda\).
In other words, we solve for \(a\) in
\begin{align*}
-3a + 20 & = \lambda a \\
-2a + 12 & = 2\lambda.
\end{align*}
From the second equation, we have \(\lambda = -a + 6\).
Substituting for \(\lambda\) in the first equation gives
\(-3a + 20 = (-a+6)a\).
Solving this quadratic equation gives \(a = 5\) or \(a = 4\).
With \(a = 5\), we have \(\lambda = 1\). With
With \(a = 4\), we have \(\lambda = 2\).
Diagonalize \(A\).
Note that \(A\) is \(2\times 2\). From the previous part,
we have that \(\begin{bmatrix} 5 \\ 2\end{bmatrix}\)
and \(\begin{bmatrix} 4 \\ 2\end{bmatrix}\) are eigenvectors for the
eigenvalues \(1\) and \(2\), respectively.
Therefore, \(A = PDP^{-1}\) where \(P = \begin{bmatrix} 5 & 4 \\ 2 & 2
\end{bmatrix}\) and \(D = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}\).
Through computation, we obtain that
\(P^{-1} = \begin{bmatrix} 1 & -2 \\ -1 & \frac{5}{2}\end{bmatrix}\).
Let \({\cal S}_{n\times n}\) denote the set of \(n\times n\)
symmetric matrices with real entries.
Show that
\({\cal S}_{n\times n}\) form a subspace of \(\mathbb{R}^{n\times n}\).
As discusses
previously,
it suffices to show that
\({\cal S}_{n\times n}\) is closed under vector addition and
scalar multiplication as defined for \(\mathbb{R}^{n\times n}\).
Let \(A,B \in {\cal S}_{n\times n}\). Let \(\lambda \in \mathbb{R}\).
Then \(A^\mathsf{T} = A\) and \(B^\mathsf{T} = B\).
Let \(C = A + B\).
Then \(C^\mathsf{T} = (A+B)^\mathsf{T} = A^\mathsf{T} + B^\mathsf{T}
= A + B = C\). Hence, \(C \in {\cal S}_{n \times n}\).
Let \(D = \lambda A\).
Then \(D^\mathsf{T} = (\lambda A)^\mathsf{T} =
\lambda A^\mathsf{T} = \lambda A = D\).
Hence, \(D \in {\cal S}_{n\times n}\).