Up Main

Questions

  1. Let \(A = \begin{bmatrix} 3 & 0 & 1\\ 2 & 2 & 2\\ 0 & 1 & -1\end{bmatrix}\). You are given that \(\begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix}\) is an eigenvector of \(A\) with eigenvalue \(\lambda\). What is \(\lambda\)?

  2. Let \(A = \begin{bmatrix} 1 & 0 & 1\\ 0 & 2 & -2\\ 0 & 1 & 1\end{bmatrix}\). How many eigenvalues of \(A\) are complex?