Up Main page

The transpose of an \(m \times n\) matrix \(A\), denoted by \(A^\mathsf{T}\), is the \(n \times m\) matrix such that the \((j,i)\)-entry is given by \(A_{i,j}\) for \(i = 1,\ldots,m\) and \(j= 1,\ldots, n\). In other words, column \(i\) of \(A^\mathsf{T}\) comes from row \(i\) of \(A\).

Example 1

Let \(A=\begin{bmatrix} 1 & 2 & 3\\4 & 5 &6\end{bmatrix}\). Then \(A^\mathsf{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5\\ 3 & 6\end{bmatrix}\).

Example 2

Let \(A = \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}\). Then \(A^\mathsf{T}=\begin{bmatrix} 7 & 8 & 9\end{bmatrix}\).

The following properties hold:

Quick Quiz

Exercises

  1. Express each of the following in the simplest possible form.
    1. \(\begin{bmatrix} 7 & 2 \end{bmatrix} -\begin{bmatrix} 3 \\ 4 \end{bmatrix}^\mathsf{T}\)  

    2. \(\left(\begin{bmatrix} 1 & 2 \\ 5 & 6 \end{bmatrix}^\mathsf{T} + 2\begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}\right)^\mathsf{T}\)