Let \(T\) be a linear transformation given by
\(T\left(\begin{bmatrix} u\\ v\\ w\end{bmatrix}\right)
= \begin{bmatrix} u + v - w \\ 2u + w\end{bmatrix}\).
Find a matrix \(A\) such that
\(T\left(\begin{bmatrix} u\\ v\\ w\end{bmatrix}\right) = A
\begin{bmatrix} u \\ v \\ w\end{bmatrix}\).
First note that \(T\) takes a \(3\)-tuple and outpus a \(2\)-tuple.
Thus \(A\) must be \(2 \times 3\).
We need the first column of \(A\) to contain the coefficients of
\(u\), the second column to contain the coefficients of \(v\),
and the third column to contain the coefficients of \(w\).
Thus \(A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & 0 & 1\end{bmatrix}\).
Example 2
Let \(T\) be a linear transformation given by
\(T\left(\begin{bmatrix} u\\ v\\ w\end{bmatrix}\right)
= \begin{bmatrix} u - v + w \\ 3u + v - w\end{bmatrix}\).
Let \(S\) be a linear transformation given by
\(S\left(\begin{bmatrix} x\\ y\end{bmatrix}\right)
= \begin{bmatrix} 2x + y \\ -x + 2y\end{bmatrix}\).
Find a matrix \(A\) such that
\(S\left(T\left(\begin{bmatrix} u\\ v\\ w\end{bmatrix}\right)\right) = A
\begin{bmatrix} u \\ v \\ w\end{bmatrix}\).
Note that
\begin{eqnarray*}
S\left(T\left(\begin{bmatrix} u\\ v\\ w\end{bmatrix}\right)\right)
& = &
S\left( \begin{bmatrix} u - v + w \\ 3u + v - w\end{bmatrix}\right) \\
& = &
\begin{bmatrix} 2(u - v + w)+ (3u + v - w) \\
-(u-v+w) + 2(3u + v- w)\end{bmatrix} \\
& = &
\begin{bmatrix} 5u - v + w \\ 5u+3v-3w\end{bmatrix} \\
& = &
\begin{bmatrix} 5 & -1 & 1\\ 5 & 3 & -3 \end{bmatrix}
\begin{bmatrix} u\\ v \\ w\end{bmatrix}
\end{eqnarray*}
Hence, the required matrix is
\(\begin{bmatrix} 5 & -1 & 1\\ 5 & 3 & -3 \end{bmatrix} \).
Remark.
Observe that one could obtain \(M\) by applying the same sequence
of elementary row operations to the \(3\times 3\) identity matrix.
The reason is that each multiplication (on the left) by an elementary
matrix is the same as performing the elementary row operation
associated with the matrix. Noting this can save some writing and
unnecessarily calculations when the number of elementary row operations
is large.
Example 5
Let \(A = \begin{bmatrix} 1 & 0 & 2\\ 1 & 3 & 3\\ 0 & 1 & 0\end{bmatrix}\).
Find all solutions to the systems \(Ax = e_i\) for \(i = 1,2,3\) where
\(e_i\) denotes the \(i\)th column of the \(3\times 3\) identity matrix.