Does there exist a \(2\times 2\) matrix
\(B\) such that
\(B \begin{bmatrix} 1 & -2 \\ -2 & 4\end{bmatrix} = I_2\)?
The answer is “no”.
Let \(B = \begin{bmatrix} a & b \\ c & d\end{bmatrix}\).
Then
\(B \begin{bmatrix} 1 & -2 \\ -2 & 4\end{bmatrix} = I_2\) implies that
\[\begin{bmatrix}a-2b & -2a+4b \\ c-2d & -2c+4d\end{bmatrix} =
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.\]
Comparing the entries in the first row of both sides, we see that
\begin{eqnarray}
a - 2b & = & 1 \\
-2a + 4b & = & 0 \\
\end{eqnarray}
Adding two times the first equation to the second equation gives
\(0 = 2\), which is impossible.