Consider the following configuration coming from a \(3\times 3\) version of Lights Out.
We saw how we could play the game mathematically by first representing the configuration as a \(9\)-tuple, namely \(\begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}\), and the action of pressing the squares as \(9\)-tuples as shown in the following table \[\begin{array}{|c|cccccccccc|} \hline \text{Square} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\\hline \text{Tuple} & \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} & \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} & \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} & \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \\\hline \end{array}\] and then find a set of \(9\)-tuples from the table whose sum is identical to the \(9\)-tuple representing the configuration. We can formulate this question as a tuple equation: \[ x_1\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_2\begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_6\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} + x_7\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} + x_8\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} + x_9\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}\] where each \(x_i\) is \(0\) or \(1\) with \(1\) meaning that the corresponding square is chosen to be pressed.
Performing all the scalar multiplications and tuple additions gives \[ \begin{bmatrix} x_1 + x_2 + x_4 \\ x_1 + x_2 + x_3 + x_5 \\ x_2 + x_3 + x_6 \\ x_1 + x_4 + x_5 + x_7 \\ x_2 + x_4 + x_5 + x_6 + x_8 \\ x_3 + x_5 + x_6 + x_9 \\ x_4 + x_7 + x_8 \\ x_5 + x_7 + x_8 + x_9 \\ x_6 + x_8 + x_9 \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix},\] or equivalently, the system of equations \begin{eqnarray} x_1 + x_2 + x_4 = 0, \\ x_1 + x_2 + x_3 + x_5 = 0, \\ x_2 + x_3 + x_6 = 1, \\ x_1 + x_4 + x_5 + x_7 = 1, \\ x_2 + x_4 + x_5 + x_6 + x_8 = 0, \\ x_3 + x_5 + x_6 + x_9 = 1, \\ x_4 + x_7 + x_8 = 0, \\ x_5 + x_7 + x_8 + x_9 = 1, \\ x_6 + x_8 + x_9 = 0. \end{eqnarray}
All we need to do is to find appropriate values for \(x_1,\ldots,x_9\) to satisfy all these equations. Note that the only permissible values are \(0\) and \(1\) and under the rule “\(1+1=0\)”. However, the task does not seem easy, even though it is for a \(3\times 3\) board. Imagine what it will be like for the original \(5 \times 5\) board. Hence, we will have to study methods for solving such a system. Until then, can you find a solution?