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Preface

This book is an adaptation of the original text.1 With the exception of the last section

in Chapter 1 which is new, most of the changes in this adapation are editorial aimed to

improve exposition and accessibility for the web-based version.

It is hoped that adapting the text to bookdown makes it easy for customization.

To the student

You are at the right place in your mathematical career to be reading this book if you liked

trigonometry and calculus, were able to solve all the problems, but felt mildly annoyed

with the text when it put in these verbose, incomprehensible things called “proofs.” Those

things probably bugged you because a whole lot of verbiage (not to mention a sprinkling of

epsilons and deltas) was wasted on showing that a thing was true, which was obviously true!

Your physical intuition is sufficient to convince you that a statement like the Intermediate

Value Theorem just has to be true — how can a function move from one value at a to a

different value at b without passing through all the values in between?

Mathematicians discovered something fundamental hundreds of years before other sci-

entists — physical intuition is worthless in certain extreme situations. Probably you’ve

heard of some of the odd behavior of particles in quantum mechanics or general relativity.

Physicists have learned, the hard way, not to trust their intuitions. At least, not until

those intuitions have been retrained to fit reality! Go back to your calculus textbook

and look up the Intermediate Value Theorem. You’ll probably be surprised to find that

it doesn’t say anything about all functions, only those that are continuous. So what,
1The source files for the original text can be accesssed at http://osj1961.github.io/giam/.
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you say, aren’t most functions continuous? Actually, the number of functions that aren’t

continuous represents an infinity so huge that it outweighs the infinity of the real numbers!

The point of this book is to help you with the transition from doing math at an elementary

level (which is concerned mostly with solving problems) to doing math at an advanced level

(which is much more concerned with axiomatic systems and proving statements within

those systems).

As you begin your study of advanced mathematics, we hope you will keep the following

themes in mind:

1. Mathematics is alive! Math is not just something to be studied from ancient tomes.

A mathematician must have a sense of playfulness. One needs to “monkey around”

with numbers and other mathematical structures, make discoveries and conjectures

and uncover truths.

2. Math is not scary! There is an incredibly terse and compact language that is used

in mathematics — at first sight it looks like hieroglyphics. That language is actually

easy to master, and once mastered, the power that one gains by expressing ideas

rigorously with those symbols is truly astonishing.

3. Good proofs are everything! No matter how important a fact one discovers, if others

aren’t convinced of the truth of the statement, it does not become a part of the

edifice of human knowledge. It’s been said that a proof is simply an argument that

convinces. In mathematics, one “convinces” by using one of a handful of argument

forms and developing one’s argument in a clear, step-by-step fashion. Within those

constraints there is actually quite a lot of room for individual style — there is no

one right way to write a proof.

4. You have two cerebral hemispheres — use them both! In perhaps no other field

is the left/right-brain dichotomy more evident than in math. Some believe that

mathematical thought, deductive reasoning, is synonymous with left-brain function.

In truth, doing mathematics is often a creative, organic, visual, right-brain sort

of process — however, in communicating one’s results one must find that linear,

deductive, step-by-step, left-brain argument. You must use your whole mind to
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master advanced mathematics.

Also, there are amusing quotations at the start of every chapter.

To the instructor

At many universities and colleges in the United States of America, a course which provides

a transition from lower-level mathematics courses to those in the major has been adopted.

Some may find it hard to believe that a course like Calculus II is considered “lower-level”

so let’s drop the pejoratives and say what’s really going on. Courses for math majors, and

especially those one takes in the junior and senior years, focus on proofs — students are

expected to learn why a given statement is true, and be able to come up with their own

convincing arguments concerning such “why”s. Mathematics courses that precede these

typically focus on “how.” How does one find the minimum value a continuous function

takes on an interval? How does one determine the arclength along some curve, etc. The

essential raison d’etre of this text and others like it is to ease this transition from “how”

courses to “why” courses. In other words, our purpose is to help students develop a certain

facility with mathematical proof.

It should be noted that helping people to become good proof writers — the primary focus

of this text — is, very nearly, an impossible task. Indeed, it can be argued that the best

way to learn to write proofs is by writing a lot of proofs. Devising many different proofs,

and doing so in various settings, definitely develops the facility we hope to engender in

a so-called “transitions” course. Perhaps the pedagogical pendulum will swing back to

the previous tradition of essentially throwing students to the wolves. That is, students

might be expected to learn the art of proof writing while actually writing proofs in courses

like algebra and analysis2. Judging from the feedback I receive from students who have

completed our transitions course at Southern Connecticut State University, I think such

a return to the methods of the past is unlikely. The benefits of these transitions courses

are enormous, and even though the curriculum for undergraduate mathematics majors is

an extremely full one, the place of a transition course is, I think, assured.
2At the University of Maryland, Baltimore County, where I did my undergraduate work, these courses were

actually known as the “proofs” courses.
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What precisely are the benefits of these transitions courses? One of my pet theories is

that the process one goes through in learning to write and understand proofs represents

a fundamental reorganization of the brain. The only evidence for this stance, albeit

rather indirect, are the almost universal reports of “weird dreams” from students in these

courses. Our minds evolved in a setting where inductive reasoning is not only acceptable,

but advisable in coping with the world. Imagine some Cro Magnon child touching a

burning branch and being burned by it. S/He quite reasonably draws the conclusion

that s/he should not touch any burning branches, or indeed anything that is on fire. A

mathematician has to train himself or herself to think strictly by the rules of deductive

reasoning — the above experience would only provide the lesson that at that particular

instant of time, that particular burning branch caused a sensation of pain. Ideally, no

further conclusions would be drawn — obviously this is an untenable method of reasoning

for an animal driven by the desire to survive to adulthood, but it is the only way to think

in the artificial world of mathematics.

While a gentle introduction to the art of reading and writing proofs is the primary focus of

this text, there are other subsidiary goals for a transitions course that we hope to address.

Principal among these is the need for an introduction to the “culture” of mathematics.

There is a shared mythos and language common to all mathematicians — although there

are certainly some distinct dialects! Another goal that is of extraordinary importance is

impressing the budding young mathematics student with the importance of play. My thesis

adviser3 used to be famous for saying “Well, I don’t know! Why don’t you monkey around

with it a little. . . ” In the course of monkeying around — doing small examples by hand,

trying bigger examples with the aid of a computer, changing some element of the problem

to see how it affected the answer, and various other activities that can best be described as

“play,” eventually patterns emerged, conjectures made themselves apparent, and possible

proof techniques suggested themselves. In this text there are a great many open-ended

problems, some with associated hints as to how to proceed (which the wise student will

avoid until hair-thinning becomes evident), whose point is to introduce students to this

process of mathematical discovery.

3Dr. Vera Pless, to whom I am indebted in more ways than I can express.
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To recap, the goals of this text are: an introduction to reading and writing mathematical

proofs, an introduction to mathematical culture, and an introduction to the process of

discovery in mathematics. Two pedagogical principles have been of foremost importance

in determining how this material is organized and presented. One is the so-called “rule

of three” which is probably familiar to most educators. Propounded by (among others)

Gleason, Hughes-Hallett, et al. in their reform calculus it states that, when possible,

information should be delivered via three distinct mechanisms — symbolically, graphically

and numerically. The other is also a “rule of three” of sorts, it is captured by the old

speechwriter’s maxim — “Tell ’em what you’re gonna tell ’em. Tell ’em. Then tell ’em

what you told ’em.” Important and/or difficult topics are revisited at least three times in

this book. In marked contrast to the norm in mathematics, the first treatment of a topic

is not rigorous, precise definitions are often withheld. The intent is to provide a bit of

intuition regarding the subject material. Another reason for providing a crude introduction

to a topic before giving rigorous detail revolves around the way human memory works.

Unlike computer memory, which (excluding the effects of the occasional cosmic ray) is

essentially perfect, animal memory is usually imperfect and mechanisms have evolved to

ensure that data that are important to the individual are not lost. Repetition and rote

learning are often derided these days, but the importance of multiple exposures to a

concept in “anchoring” it in the mind should not be underestimated.

A theme that has recurred over and over in my own thinking about the transitions course is

that the “transition” is that from inductive to deductive mental processes. Yet, often, we

the instructors of these courses are ourselves so thoroughly ingrained with the deductive

approach that the mode of instruction presupposes the very transition we hope to facilitate!

In this book, I have to a certain extent taken the approach of teaching deductive methods

using inductive ones. The first time a concept is encountered should only be viewed as

providing evidence that lends credence to some mathematical truth. Most concepts that

are introduced in this intuitive fashion are eventually exposited in a rigorous manner —

there are exceptions though, ideas whose scope is beyond that of the present work which

are nonetheless presented here with very little concern for precision. It should not be

forgotten that a good transition ought to blend seamlessly into whatever follows. The
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courses that follow this material should be proof-intensive courses in geometry, number

theory, analysis and/or algebra. The introduction of some material from these courses

without the usual rigor is intentional.

Please resist the temptation to fill in the missing “proper” definitions and terminology

when some concept is introduced and is missing those, uhmm, missing things. Give your

students the chance to ruminate, to “chew”4 on these new concepts for a while on their

own! Later we’ll make sure they get the same standard definitions that we all know and

cherish. As a practical matter, if you spend more than three weeks in Chapter 1, you are

probably filling in too much of that missing detail — so stop it. It really won’t hurt them

to think in an imprecise way (at first) about something so long as we get them to be

rigorous by the end of the day.

Finally, it will probably be necessary to point out to your students that they should actually

read the text. I don’t mean to be as snide as that probably sounds. . . Their experiences

with math texts up to this point have probably impressed them with the futility of reading

— just see what kind of problems are assigned and skim ’til you find an example that

shows you “how to do one like that.” Clearly, such an approach is far less fruitful in

advanced study than it is in courses which emphasize learning calculational techniques.

I find that giving expressed reading assignments and quizzing them on the material that

they are supposed to have read helps. There are “exercises” given within most sections

(as opposed to the “Exercises” that appear at the end of the sections) these make good

fodder for quizzes and/or probing questions from the professor. The book is written in

an expansive, friendly style with whimsical touches here and there. Some students have

reported that they actually enjoyed reading it!5

4Why is it that most of the metaphorical ways to refer to “thinking” actually seem to refer to “eating”?
5Although it should be added that they were making that report to someone from whom they wanted a good

grade.



Chapter 1

Introduction and notation

“Wisdom is the quality that keeps you from getting into situations where you

need it.”

—Doug Larson

1.1 Basic sets

It has been said1 that “God invented the integers, all else is the work of man.” This is a

mistranslation. The term “integers” should actually be “whole numbers.” The concepts

of zero and negative values seem (to many people) to be unnatural constructs. Indeed,

otherwise intelligent people are still known to rail against the concept of a negative quantity

— “How can you have negative three apples?” The concept of zero is also somewhat

profound.

Probably most people will agree that the natural numbers are a natural construct — they

are the numbers we use to count things. Traditionally, the natural numbers are denoted

N.

At this point in time, there seems to be no general agreement about the status of zero

(0) as a natural number. Are there collections that we might possibly count that have no

members? Well, yes — I’d invite you to consider the collection of gold bars that I keep in

my basement. . .
1Usually attributed to Kronecker — “Die ganze Zahl schuf der liebe Gott, alles Übrige ist Menschenwerk.”

15
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The traditional view seems to be that

N = {1, 2, 3, 4, . . .}.

That is, the naturals don’t include 0. However, in this book, we choose to include 0 as a

natural number.

Be advised that this is a choice. We are adopting a convention. If in some other resources,

you find that the other convention is preferred, well, it’s good to learn flexibility. . .

Perhaps the best way of saying what a set is, is to do as we have above. List all the

elements. Of course, if a set has an infinite number of things in it, this is a difficult task

— so we satisfy ourselves by listing enough of the elements that the pattern becomes

clear.

Taking N for granted, what is meant by the “all else” that humankind is responsible for?

The basic sets of different types of “numbers” that every mathematics student should

know are: N, Z, Q, R, and C. Respectively: the naturals, the integers, the rationals, the

reals, and the complex numbers. The use of N, R, and C is probably clear to an English

speaker. The integers are denoted with a Z because of the German word zählen which

means “to count.” The rational numbers are probably denoted using Q, for “quotients.”

Etymology aside, is it possible for us to provide precise descriptions of these remaining

sets?

The integers (Z) are just the set of natural numbers together with the negatives of naturals.

We can use a doubly infinite list to denote this set:

Z = {. . .− 3,−2,−1, 0, 1, 2, 3, . . .}.

To describe the rational numbers precisely, we’ll have to wait until Section @ref(#sec:rat).

In the interim, we can use an intuitively appealing, but somewhat imprecise definition for

the set of rationals. A rational number is a fraction built out of integers. This also

provides us with a chance to give an example of using the main other way of describing

the contents of a set — so-called set-builder notation.

Q =
{
a

b
: a ∈ Z and b ∈ Z and b 6= 0

}
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This is a good time to start building a “glossary” — a translation lexicon between the

symbols of mathematics and plain language. In the line above, we are defining the set Q

of rational numbers, so the first symbols that appear are “Q =.” It is interesting to note

that the equals sign has two subtly different meanings: assignment and equality testing.

In the mathematical sentence above, we are making an assignment — that is, we are

declaring that from now on the set Q will be the set defined on the remainder of the line.2

Let’s dissect the rest of that line now. There are only four characters whose meaning may

be in doubt, {, }, ∈ and : . The curly braces (a.k.a. french braces) are almost universally

reserved to denote sets; anything appearing between curly braces is meant to define a set.

In translating from “math” to English, replace the initial brace with the phrase “the set

of all.” The next arcane symbol to appear is the colon. In the sentence we are analyzing,

it stands for the words “such that.” The last bit of arcana to be deciphered is the symbol

∈, it stands for the English word “in” or, more formally, “is an element of.”

Let’s parse the entire mathematical sentence we’ve been discussing with an English trans-

lation in parallel.

Q = {

The rational numbers are defined to be the set of all

a

b
:

fractions of the form a over b such that

a ∈ Z and b ∈ Z

a is an element of the integers and b is an element of the integers

and b 6= 0 }

and b is nonzero. (the final curly brace is silent)

2Some mathematicians contend that only the “equality test” meaning of the equals sign is real, that by writing
the mathematical sentence above we are asserting the truth of the equality test. This may be technically correct
but it isn’t how most people think of things.
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It is quite apparent that the mathematical notation represents a huge improvement as

regards brevity.

As mentioned previously, this definition is slightly flawed. We will have to wait ’til later to

get a truly precise definition of the rationals, but we invite the reader to mull over what’s

wrong with this one. Hint: think about the issue of whether a fraction is in lowest terms.

Let’s proceed with our menagerie of sets of numbers. The next set we’ll consider is R,

the set of real numbers. To someone who has completed calculus, the reals are perhaps

the most obvious and natural notion of what is meant by “number.” It may be surprising

to learn that the actual definition of what is meant by a real number is extremely difficult.

In fact, the first reasonable formulation of a precise definition of the reals came around

1858, more than 180 years after the development of the calculus3.

A precise definition for the set R of real numbers is beyond the scope of this book.

For the moment, consider the following intuitive description: a real number is a number

that measures some physical quantity. For example, if a circle has diameter 1 then its

circumference is π, thus π is a real number. The points (0, 0) and (1, 1) in the Cartesian

plane have distance
√

(0− 1)2 + (0− 1)2 =
√

2, thus
√

2 is a real number. Any rational

number is clearly a real number — slope is a physical quantity, and the line from (0, 0)

to (b, a) has slope a/b. In ancient Greece, Pythagoras — who has sometimes been

described as the first pure mathematician, believed that every real quantity was in fact

rational, a belief that we now know to be false. The numbers π and
√

2 mentioned

above are not rational numbers. For the moment, it is useful to recall a practical method

for distinguishing between rational numbers and real quantities that are not rational —

consider their decimal expansions. If the reader is unfamiliar with the result to which we

are alluding, we urge you to experiment. Use a calculator or (even better) a computer

algebra package to find the decimal expansions of various quantities. Try π,
√

2, 1/7, 2/5,

16/17, 1/2 and a few other quantities of your own choice. Given that we have already

said that the first two of these are not rational, try to determine the pattern. What is it

about the decimal expansions that distinguishes rational quantities from reals that aren’t

3Although it was not published until 1736, Newton’s book De Methodis Serierum et Fluxionum describing
both differential and integral calculus was written in 1671.
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rational?

Given that we can’t give a precise definition of a real number at this point it is perhaps

surprising that we can define the set C of complex numbers with precision (modulo the

fact that we define them in terms of R).

C = {a+ bi : a ∈ R and b ∈ R and i2 = −1}.

Translating this bit of mathematics into English we get:

C = {

The complex numbers are defined to be the set of all

a+ bi :

expressions of the form a plus b times i such that

a ∈ R and b ∈ R

a is an element of the reals and b is an element of the reals

and i2 = −1 }

and i has the property that its square is negative one

We sometimes denote a complex number using a single variable (by convention, either

late alphabet Roman letters or Greek letters). Suppose that we’ve defined z = a + bi.

The single letter z denotes the entire complex number. We can extract the individual

components of this complex number by talking about the real and imaginary parts of z.

Specifically, Re(z) = a is called the real part of z, and Im(z) = b is called the imaginary

part of z.

Complex numbers are added and multiplied as if they were binomials (polynomials with

just two terms) where i is treated as if it were the variable — except that we use the
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algebraic property that the square of i is −1. For example, to add the complex numbers

1 + 2i and 3 − 6i, we just think of the binomials 1 + 2x and 3 − 6x. Of course we

normally write a binomial with the term involving the variable coming first, but this is

just a convention. The sum of those binomials would be 4 − 4x and so the sum of the

given complex numbers is 4 − 4i. This sort of operation is fairly typical and is called

component-wise addition. To multiply complex numbers, we have to recall how it is that

we multiply binomials. This is the well-known FOIL rule (first, outer, inner, last). For

example the product of 3− 2x and 4 + 3x is (3 · 4) + (3 · 3x) + (−2x · 4) + (−2x · 3x) this

expression simplifies to 12 + x − 6x2. The analogous calculation with complex numbers

looks just the same, until we get to the very last stage where, in simplifying, we use the

fact that i2 = −1:

(3− 2i) · (4 + 3i)

= (3 · 4) + (3 · 3i) + (−2i · 4) + (−2i · 3i)

= 12 + 9i− 8i− 6i2

= 12 + i+ 6

= 18 + i.

The real numbers have a natural ordering, and hence, so do the other sets that are

contained in R. The complex numbers can’t really be put into a well-defined order —

which should be bigger, 1 or i? But we do have a way to, at least partially, accomplish

this task. The modulus of a complex number is a real number that gives the distance

from the origin (0 + 0i) of the complex plane, to a given complex number. We indicate

the modulus using absolute value bars, and you should note that if a complex number

happens to be purely real, the modulus and the usual notion of absolute value coincide.

If z = a + bi is a complex number, then its modulus, |a + bi|, is given by the formula
√
a2 + b2.

Several of the sets of numbers we’ve been discussing can be split up based on the so-called

trichotomy property : every real number is either positive, negative or zero. In particular,
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Z, Q and R can have modifiers stuck on so that we can discuss (for example) the negative

real numbers, or the positive rational numbers or the integers that aren’t negative. To do

this, we put subscripts on the set symbols as follows:

Z>0 = {x ∈ Z :x > 0}

and

Z<0 = {x ∈ Z :x < 0}

and

Z≥0 = {x ∈ Z :x ≥ 0}.

You should note that Z≥0 is really the same thing as N.

We would be remiss in closing this section without discussing the way the sets of numbers

we’ve discussed fit together. Simply put, each is contained in the next. N is contained in

Z, Z is contained in Q, Q is contained in R, and R is contained in C. Geometrically, the

complex numbers are essentially a two-dimensional plane. The real numbers sit inside this

plane just as the x-axis sits inside the usual Cartesian plane — in this context you may

hear people talk about “the real line within the complex plane.” It is probably clear how N

lies within Z, and every integer is certainly a real number. The intermediate set Q (which

contains the integers, and is contained by the reals) has probably the most interesting

relationship with the set that contains it. Think of the real line as being solid, like a dark

pencil stroke. The rationals are like sand that has been sprinkled very evenly over that

line. Every point on the line has bits of sand nearby, but not (necessarily) on top of it.

1.1.1 Exercises

1. Each of the quantities indexing the rows of the following table is in one or more of

the sets which index the columns. Place a check mark in a table entry if the quantity
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is in the set.
N Z Q R C

17

π

22/7

−6

e0

1 + i
√

3

i2

2. Write the set Z of integers using a singly infinite listing.

3. Identify each as rational or irrational.

a. 5021.2121212121 . . .

b. 0.2340000000 . . .

c. 12.31331133311133331111 . . .

d. π

e. 2.987654321987654321987654321 . . .

4. The “see and say” sequence is produced by first writing a 1, then iterating the

following procedure: look at the previous entry and say how many entries there are

of each integer and write down what you just said. The first several terms of the “see

and say” sequence are 1, 11, 21, 1112, 3112, 211213, 312213, 212223, . . .. Comment

on the rationality (or irrationality) of the number whose decimal digits are obtained

by concatenating the “see and say” sequence.

0.1112111123112211213...

5. Give a description of the set of rational numbers whose decimal expansions terminate.

(Alternatively, you may think of their decimal expansions ending in an infinitely-long

string of zeros.)
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6. Find the first 20 decimal places of π, 3/7,
√

2, 2/5, 16/17,
√

3, 1/2 and 42/100.

Classify each of these quantity’s decimal expansion as: terminating, having a repeat-

ing pattern, or showing no discernible pattern.

7. Consider the process of long division. Does this algorithm give any insight as to why

rational numbers have terminating or repeating decimal expansions? Explain.

8. Give an argument as to why the product of two rational numbers is again a rational.

9. Perform the following computations with complex numbers

a. (4 + 3i)− (3 + 2i)

b. (1 + i) + (1− i)

c. (1 + i) · (1− i)

d. (2− 3i) · (3− 2i)

10. The conjugate of a complex number is denoted with a superscript star, and is

formed by negating the imaginary part. Thus if z = 3 + 4i then the conjugate of z

is z∗ = 3− 4i. Give an argument as to why the product of a complex number and

its conjugate is a real quantity. (That is, the imaginary part of z · z∗ is necessarily

0, no matter what complex number is used for z.)
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1.2 Definitions: prime numbers

You may have noticed that in Section 1.1, an awful lot of emphasis was placed on whether

we had good, precise definitions for things. Indeed, more than once apologies were made

for giving imprecise or intuitive definitions. This is because, in mathematics, definitions

are our lifeblood. More than in any other human endeavor, mathematicians strive for

precision. This precision comes with a cost — mathematics can deal with only the very

simplest of phenomena.4

To laypeople who think of math as being a horribly difficult subject, that last sentence

will certainly sound odd, but most professional mathematicians will be nodding their

heads at this point. Hard questions are more properly dealt with by philosophers than

by mathematicians. Does a cat have a soul? Impossible to say, because neither of the

nouns in that question can be defined with any precision. Is the
√

2 a rational number?

Absolutely not! The reason for the certainty we feel in answering this second question

is that we know precisely what is meant by the phrases “square root of 2” and “rational

number.”

We often need to first approach a topic by thinking visually or intuitively, but when it

comes to proving our assertions, nothing beats the power of having the “right” definitions

around. It may be surprising to learn that the “right” definition often evolves over the

years. This happens for the simple reason that some definitions lend themselves more

easily to proving assertions. In fact, it is often the case that definitions are inspired by

attempts to prove something that fail. In the midst of such a failure, it isn’t uncommon

for a mathematician to bemoan “If only the definition of (fill in the blank) were. . . ”, then

to realize that it is possible to use that definition or a modification of it. But! When there

are several definitions for the same idea they had better agree with one another!

Consider the definition of a prime number.

Definition 1.1. A prime number is a positive integer, greater than 1, whose only factors

are 1 and itself.
4For an intriguing discussion of this point, read Rota (1997)
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You probably first heard this definition in middle school, if not earlier. It is a perfectly valid

definition of what it means for an integer to be prime. In more advanced mathematics,

it was found that it was necessary to define a notion of primality for objects other than

integers. It turns out that the following statement is essentially equivalent to the definition

of “prime” we’ve just given (when dealing with integers), but that it can be applied in

more general settings.

Definition 1.2. A prime is a quantity p such that whenever p is a factor of some product

ab, then either p is a factor of a or p is a factor of b.

Question: The number 1 is not considered to be a prime. Does 1 satisfy the above

definition?

If you go on to study number theory or abstract algebra, you’ll see how the alternate

definition we’ve given needs to be tweaked so that (for example) 1 wouldn’t get counted

as a prime. The fix isn’t hugely complicated (but it is a little complicated) and is a bit

beyond our scope right now.

Often, it is the case that we can formulate many equivalent definitions for some concept.

When this happens, you may run across the abbreviation TFAE, which stands for “The

following are equivalent.” A TFAE proof consists of showing that a host of different

statements actually define the same concept.

Since we have been discussing primes in this section (mainly as an example of a concept

with more than one equivalent definition), this seems like a reasonable time to make some

explorations relative to prime numbers. We’ll begin in the third century B.C..

Eratosthenes of Cyrene was a Greek mathematician and astronomer who is remembered

to this day for his many accomplishments. He was a librarian at the great library of

Alexandria. He made measurements of the Earth’s circumference and the distances of the

Sun and the Moon that were remarkably accurate, but probably his most remembered

achievement is the “sieve” method for finding primes. Indeed, the sieve of Eratosthenes

is still of importance in mathematical research. Basically, the sieve method consists of

creating a very long list of natural numbers and then crossing off all the numbers that

aren’t primes (a positive integer that isn’t 1, and isn’t a prime is called composite).
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2 3 51 4 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

Figure 1.1: The first three stages in the sieve of Eratosthenes.

This process is carried out in stages. First, we circle 2 and then cross off every number

that has 2 as a factor — thus we’ve identified 2 as the first prime number and eliminated a

whole bunch of numbers that aren’t prime. The first number that hasn’t been eliminated

at this stage is 3. We circle it (indicating that 3 is the second prime number) and then

cross off every number that has 3 as a factor. Note that some numbers (for example, 6

and 12) will have been crossed off more than once! In the third stage of the sieve process,

we circle 5, which is the smallest number that hasn’t yet been crossed off, and then cross

off all multiples of 5. The first three stages in the sieve method are shown in Figure 1.1.

It is interesting to note that the sieve gives us a means of finding all the primes up to p2

by using the primes up to (but not including) p. For example, to find all the primes less

than 132 = 169, we need only use 2, 3, 5, 7 and 11 in the sieve.

Despite the fact that one can find primes using this simple mechanical method, the way

that prime numbers are distributed amongst the integers is very erratic. Nearly any

statement that purports to show some regularity in the distribution of the primes will turn

out to be false. Here are two such false conjectures regarding prime numbers.

Conjecture 1.1. Whenever p is a prime number, 2p − 1 is also a prime.

Conjecture 1.2. The polynomial x2− 31x+ 257 evaluates to a prime number whenever

x is a natural number.

In the exercises for this section, you will be asked to explore these statements further.
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T 0 1 2 3 4 5 6 7 8 9
H
0 2 3 5 7 1 3 7 9 3 9 1 7 1 3 7 3 9 1 7 1 3 9 3 9 7
1 1 3 7 9 3 7 1 7 9 9 1 7 3 7 3 9 1 1 3 7 9
2 1 3 7 9 3 9 1 1 7 3 9 1 7 1 3 3
3 7 1 3 7 1 7 7 9 3 9 7 3 9 3 9 7
4 1 9 9 1 1 3 9 3 9 7 1 3 7 9 7 1 9
5 3 9 1 3 1 7 7 3 9 1 7 7 3 9
6 1 7 3 7 9 1 1 3 7 3 9 1 3 7 3 1
7 1 9 9 7 3 9 3 1 7 1 9 3 7 7
8 9 1 1 3 7 9 9 3 7 9 3 7 1 3 7
9 7 1 9 9 7 1 7 3 7 1 7 3 1 7
10 9 3 9 1 1 3 9 9 1 1 3 9 7 1 3 7
11 3 9 7 3 9 1 3 3 1 1 7 3
12 1 3 7 3 9 1 7 9 9 7 9 3 9 1 7
13 1 3 7 9 1 7 1 7 3 1 9
14 9 3 7 9 3 9 7 1 3 9 1 1 3 7 9 3 9
15 1 3 1 3 9 3 9 7 1 9 3 7
16 1 7 9 3 9 1 7 7 7 3 7 9 3 7 9
17 9 1 3 3 1 7 3 9 7 3 7 9
18 1 1 3 1 7 1 7 1 3 7 9 9
19 1 7 3 1 3 9 1 3 9 7 3 7 9
20 3 1 7 7 9 9 3 3 9 1 3 7 9 9
21 1 3 9 1 7 1 3 3 1 9
22 3 7 3 1 7 9 3 1 7 9 3 1 7 3 7
23 9 1 3 9 1 7 1 7 1 7 1 3 9 3 9
24 1 7 3 7 1 7 9 7 3 7
25 3 1 1 9 3 9 1 7 9 1 3
26 9 7 1 3 7 7 9 3 1 7 3 7 9 3 9
27 7 1 3 9 9 1 1 9 3 7 7 9 1 7
28 1 3 9 3 7 3 1 7 1 9 7 7
29 3 9 7 7 9 3 7 3 9 1 9
30 1 1 9 3 7 1 9 1 7 9 3 9
31 9 9 1 7 3 7 9 1 7 1
32 3 9 7 1 9 1 3 7 9 1 9
33 1 7 3 9 3 9 1 3 7 9 1 1 3 9 1
34 7 3 3 9 7 1 3 7 9 1 9
35 1 7 7 9 3 9 1 7 7 9 1 1 3 3
36 7 3 7 3 1 7 3 9 1 3 7 1 7
37 1 9 9 7 3 9 1 7 9 9 3 7
38 3 1 3 3 7 1 3 3 7 1 9
39 7 1 7 9 3 9 1 3 7 7 9
40 1 3 7 3 9 1 7 9 1 7 3 9 1 3 9
41 1 7 9 3 9 3 7 9 7
42 1 1 7 9 9 1 1 3 3 9 1 1 3 3 9 7
43 7 7 9 9 7 3 3 1 7
44 9 1 3 1 7 1 7 3 1 3 3
45 7 3 7 9 3 7 9 1 7 3 1 7
46 3 1 7 9 3 9 1 7 3 3 9 1
47 3 1 3 9 3 1 9 3 7 9 3 9
48 1 3 7 1 1 1 7 9
49 3 9 9 1 3 7 3 1 7 7 9 3 7 3 9

Figure 1.2: Primes under 5000.

Prime numbers act as multiplicative building blocks for the rest of the integers. When we

disassemble an integer into its building blocks, we are finding the prime factorization of

that number. Prime factorizations are unique; that is, a number is either prime or it has

prime factors (possibly raised to various powers) that are uniquely determined — except

that they may be re-ordered.

Figure 1.2 shows all the primes that are less than 5000. Study this table and discover the

secret of its compactness.
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1.2.1 Exercises

1. Find the prime factorizations of the following integers.

a. 105

b. 414

c. 168

d. 1612

e. 9177

2. Use the sieve of Eratosthenes to find all prime numbers up to 100.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

3. What would be the largest prime one would sieve with in order to find all primes up

to 400?

4. Characterize the prime factorizations of numbers that are perfect squares.
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5. Complete the following table which is related to Conjecture 1.1.

p 2p − 1 prime? factors

2 3 yes 1 and 3

3 7 yes 1 and 7

5 31 yes

7 127

11

6. Find a counterexample for Conjecture 1.2.

7. Use the second definition of “prime” to see that 6 is not a prime. In other words,

find two numbers (the a and b that appear in the definition) such that 6 is not a

factor of either, but is a factor of their product.

8. Use the second definition of “prime” to show that 35 is not a prime.

9. A famous conjecture that is thought to be true (but for which no proof is known)

is the Twin Prime conjecture. A pair of primes is said to be twin if they differ by

2. For example, 11 and 13 are twin primes, as are 431 and 433. The Twin Prime

conjecture states that there are an infinite number of such twins. Try to come up

with an argument as to why 3, 5 and 7 are the only prime triplets.

10. Another famous conjecture, also thought to be true — but as yet unproved, is

Goldbach’s conjecture. Goldbach’s conjecture states that every even number greater

than 4 is the sum of two odd primes. There is a function g(n), known as the Goldbach

function, defined on the positive integers, that gives the number of different ways to

write a given number as the sum of two odd primes. For example g(10) = 2 since

10 = 5 + 5 = 7 + 3. Thus another version of Goldbach’s conjecture is that g(n) is

positive whenever n is an even number greater than 4.

Graph g(n) for 6 ≤ n ≤ 20.
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1.3 More scary notation

It is often the case that we want to prove statements that assert something is true for

every element of a set. For example, “Every number has an additive inverse.” You should

note that the truth of that statement is relative because it depends on what is meant by

“number.” If we are talking about natural numbers, it is clearly false: 3’s additive inverse

isn’t in the set under consideration. If we are talking about integers or any of the other

sets we’ve considered, the statement is true.

A statement that begins with the English words “every” or “all” is called universally

quantified. It is asserted that the statement holds for everything within some universe.

It is probably clear that when we are making statements asserting that a thing has an

additive inverse, we are not discussing human beings or animals or articles of clothing —

we are talking about objects that it is reasonable to add together: numbers of one sort or

another.

When being careful — and we should always strive to be careful! — it is important

to make explicit what universe (known as the universe of discourse) the objects we are

discussing come from. Furthermore, we need to distinguish between statements that assert

that everything in the universe of discourse has some property, and statements that say

something about a few (or even just one) of the elements of our universe. Statements of

the latter sort are called existentially quantified.

Adding to the glossary or translation lexicon we started earlier, there are symbols which

describe both these types of quantification. The symbol ∀, an upside-down A, is used for

universal quantification, and is usually translated as “for all.” The symbol ∃, a backwards

E, is used for existential quantification, it’s translated as “there is” or “there exists.” Lets

have a look at a mathematically precise sentence that captures the meaning of the one

with which we started this section.

∀x ∈ Z, ∃y ∈ Z, x+ y = 0.

Parsing this as we have done before with an English translation in parallel, we get:
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∀x ∈ Z ∃y

For every number x in the set of integers there is a number y

∈ Z x+ y = 0

in the integers having the property that their sum is 0.

Exercise 1.1. Which type of quantification do the following statements have?

• Every dog has his day.

• Some days it’s just not worth getting out of bed.

• There’s a party in somebody’s dorm this Saturday.

• There’s someone for everyone.

A couple of the examples in the exercise above actually have two quantifiers in them.

When there are two or more (different) quantifiers in a sentence, you have to be careful

about keeping their order straight. The following two sentences contain all the same

elements except that the words that indicate quantification have been switched. Do they

have the same meaning?

• For every student in James Woods High School, there is some item of cafeteria food

that they like to eat.

• There is some item of cafeteria food that every student in James Woods High School

likes to eat.

1.3.1 Exercises

1. How many quantifiers (and what sorts) are in the following sentence?

“Everybody has some friend that thinks they know everything about a sport.”

2. The sentence “Every metallic element is a solid at room temperature.” is false.

Why?
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3. The sentence “For every pair of (distinct) real numbers there is another real number

between them.” is true. Why?

4. Write your own sentences containing four quantifiers. One sentence in which the

quantifiers appear ∀∃∀∃ and another in which they appear ∃∀∃∀.
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1.4 Definitions of elementary number theory

1.4.1 Even and odd

If you divide a number by 2 and it comes out even (i.e. with no remainder), the number

is said to be even. So the word even is related to division. It turns out that the concept

even is better understood through thinking about multiplication.

Definition 1.3. An integer n is even exactly when there is an integerm such that n = 2m.

You should note that there is a “two-way street” sort of quality to this definition — indeed

with most, if not all, definitions. If a number is even, then we are guaranteed the existence

of another integer half as big. On the other hand, if we can show that another integer half

as big exists, then we know the original number is even. This two-wayness means that

the definition is what is known as a biconditional, a concept which we’ll revisit in Section

2.2.

A lot of people don’t believe that 0 should be counted as an even number. Now that we

are armed with a precise definition, we can answer this question easily. Is there an integer

x such that 0 = 2x ? Certainly! let x also be 0. (Notice that in the definition, nothing

was said about m and n being distinct from one another.)

An integer is odd if it isn’t even. That is, amongst integers, there are only two possibilities:

even or odd. We can also define oddness without reference to “even.”

Definition 1.4. An integer n is odd exactly when there is an integer m such that n =

2m+ 1.

1.4.2 Decimal and base-n notation

You can also identify even numbers by considering their decimal representation. Recall

that each digit in the decimal representation of a number has a value that depends on its

position. For example, the number 3482 really means 3 · 103 + 4 · 102 + 8 · 101 + 2 · 100.

This is also known as place notation. The fact that we use the powers of 10 in our place

notation is probably due to the fact that most humans have ten fingers. It is possible
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to use any positive integer in place of 10. In computer science, there are three other

bases in common use: 2, 8 and 16 — these are known (respectively) as binary, octal

and hexadecimal notation. When denoting a number using some base other than 10, it

is customary to append a subscript indicating the base. So, for example, 10112 is binary

notation meaning 1 ·23 + 0 ·22 + 1 ·21 + 1 ·20 or 8 + 2 + 1 = 11. No matter what base we

are using, the rightmost digit of the number multiplies the base raised to the 0-th power.

Any number raised to the 0-th power is 1, and the rightmost digit is consequently known

as the units digit. We are now prepared to give some statements that are equivalent to

our definition of even. These statements truly don’t deserve the designation “theorem,”

they are immediate consequences of the definition.

Theorem 1.1. An integer is even if the units digit in its decimal representation is one of

0, 2, 4, 6 or 8.

Theorem 1.2. An integer is even if the units digit in its binary representation is 0.

For certain problems, it is natural to use some particular notational system. For example,

the last theorem would tend to indicate that binary numbers are useful in problems dealing

with even and odd. Given that there are many different notations that are available to

us, it is obviously desirable to have means at our disposal for converting between them.

It is possible to develop general rules for converting a base-a number to a base-b number

(where a and b are arbitrary) but it is actually more convenient to pick a “standard” base

(and since we’re human we’ll use base-10) and develop methods for converting between

an arbitrary base and the “standard” one.

Imagine that in the not-too-distant future we need to convert some numbers from the

base-7 system used by the Seven-lobed Amoebazoids from Epsilon Eridani III to the base-

12 scheme favoured by the Dodecatons of Alpha-Centauri IV. We will need a procedure

for converting base-7 to base-10 and another procedure for converting from base-10 to

base-12. In the School House Rock episode “Little Twelve Toes” they describe base-12

numeration in a way that is understandable for elementary school children — the digits

they use are {1, 2, 3, 4, 5, 6, 7, 8, 9, δ, ε}, the last two digits (which are pronounced “dec”

and “el”) are necessary since we need single symbols for the things we ordinarily denote
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using 10 and 11.

Converting from some other base to decimal is easy. You just use the definition of place

notation. For example, to find what 4516637 represents in decimal, just write

4 · 75 + 5 · 74 + 1 · 73 + 6 · 72 + 6 · 7 + 3

= 4 · 16807 + 5 · 2401 + 1 · 343 + 6 · 49 + 6 · 7 + 3

= 79915.

(Everything in the above derivation can be interpreted as a base-10 number, and no

subscripts are necessary for base-10.)

Converting from decimal to some other base is harder. There is an algorithm called

“repeated division” that we’ll explore a bit in the exercises for this section. For the moment,

just verify that 3δ2ε712 is also a representation of the number more conventionally written

as 79915.

1.4.3 Divisibility

The notion of being even has an obvious generalization. Suppose that we asked whether

3 divided evenly into a given number. Presumably we could make a definition of what

it meant to be threeven, but rather than doing so (or engaging in any further punnery),

we shall instead move to a general definition. We need a notation for the situation when

one number divides evenly into another. There are many ways to describe this situation

in English, but essentially just one in “math,” we use a vertical bar — not a fraction bar.

Indeed the difference between this vertical bar and the fraction symbol (| versus /) needs

to be strongly stressed. The vertical bar when placed between two numbers is a symbol

which asks the question “Does the first number divide evenly (i.e. with no remainder) into

the second?” On the other hand, the fraction bar asks you to actually carry out some

division. The value of 2 | 5 is false, whereas the value of 2/5 is .4

As was the case in defining even, it turns out that it is best to think of multiplication, not

division, when making a formal definition of this concept. Given any two integers n and

d we define the symbol d | n by
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Definition 1.5. d | n exactly when ∃k ∈ Z such that n = kd.

In spoken language, the symbol d | n can be translated in a variety of ways:

• d is a divisor of n.

• d divides n evenly.

• d is a factor of n.

• n is an integer multiple of d.

Nevertheless, by far the most popular way of expressing this concept is to just say “d

divides n.”

1.4.4 Floor and ceiling

Suppose that there is an elevator with a capacity of 1300 pounds. A large group of

men who all weigh about 200 pounds want to ascend in it. How many should ride at a

time? This is just a division problem, 1300/200 gives 6.5 men should ride together. Well,

obviously putting half a person on an elevator is a bad idea — should we just round-up

and let 7 ride together? Not if the 1300 pound capacity rating doesn’t have a safety

margin! This is an example of the kind of problem in which the floor function is used.

The floor function takes a real number as input and returns the next lower integer.

Suppose that after a party we have 43 unopened bottles of beer. We’d like to store them

in containers that hold 12 bottles each. How many containers will we need? Again, this

is simply a division problem — 43/12 = 3.58333. So we need three boxes and another

seven-twelfths of a box. Obviously, we really need four boxes — at least one will have

some unused space in it. In this sort of situation, we’re dealing with the ceiling function.

Given a real number, the ceiling function rounds it up to the next integer.

Both of these functions are denoted using symbols that look very much like absolute value

bars. The difference lies in some small horizontal strokes.

If x is a real number, its floor is denoted bxc, and its ceiling is denoted dxe. Here are the

formal definitions:

Definition 1.6. y = bxc exactly when y ∈ Z and y ≤ x < y + 1.
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Definition 1.7. y = dxe exactly when y ∈ Z and y − 1 < x ≤ y.

Basically, the definition of floor says that y is an integer that is less than or equal to x,

but y + 1 definitely exceeds x. The definition of ceiling can be paraphrased similarly.

1.4.5 Div and mod

In the next section, we’ll discuss the so-called division algorithm — this may be over-kill

since you certainly already know how to do division! Indeed, in the U.S.A., long division

is usually first studied in the latter half of elementary school, and division problems that

don’t involve a remainder may be found as early as the first grade. Nevertheless, we’re

going to discuss this process in sordid detail because it gives us a good setting in which to

prove relatively easy statements. Suppose that you are setting-up a long division problem

in which the integer n is being divided by a positive divisor d. (If you want to divide by

a negative number, just divide by the corresponding positive number and then throw an

extra minus sign on at the end.) Recall that the answer consists of two parts, a quotient q,

and a remainder r. Of course, r may be zero, but also, the largest r can be is d− 1. The

assertion that this answer uniquely exists is known as the quotient-remainder theorem:

Theorem 1.3. Given integers n and d > 0, there are unique integers q and r such that

n = qd+ r and 0 ≤ r < d.

The words “div” and “mod” that appear in the title of this subsection provide mathematical

shorthand for q and r. Namely, “n mod d” is a way of expressing the remainder r, and

“n div d” is a way of expressing the quotient q.

If two integers, m and n, leave the same remainder when you divide them by d, we say that

they are congruent modulo d. One could express this by writing n mod d = m mod d,

but usually we adopt a shorthand notation

n ≡ m (mod d).

If one is in a context in which it is completely clear what d is, it’s acceptable to just write

n ≡ m.
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The “mod” operation is used quite a lot in mathematics. When we do computations

modulo some number d, (this is known as “modular arithmetic” or, sometimes, “clock

arithmetic”) some very nice properties of “mod” come in handy:

x+ y mod d = (x mod d+ y mod d) mod d

and

x · y mod d = (x mod d · y mod d) mod d.

These rules mean that we can either do the operations first, then reduce the answer

mod d or we can do the reduction mod d first and then do the operations (although we

may have to do one more round of reduction mod d).

For example, if we are working mod 10, and want to compute 87 · 96 mod 10, we can

instead just compute 7 · 6 mod 10, which is 2.

1.4.6 Binomial coefficients

A “binomial” is a polynomial with two terms; for example x + 1 or a + b. The numbers

that appear as the coefficients when one raises a binomial to some power are, rather

surprisingly, known as binomial coefficients.

Let’s have a look at the first several powers of a+ b.

(a+ b)0 = 1

(a+ b)1 = a+ b

(a+ b)2 = a2 + 2ab+ b2

To go much further than the second power requires a bit of work, but try to multiply

(a+ b) and (a2 + 2ab+ b2) to determine (a+ b)3. If you feel up to it, take (a2 + 2ab+ b2)

times itself to find (a+ b)4.
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Since we’re interested in the coefficients of these polynomials, it’s important to point out

that if no coefficient appears in front of a term that means the coefficient is 1.

These binomial coefficients can be placed in an arrangement known as Pascal’s triangle5,

which provides a convenient way to calculate small binomial coefficients. The first five

rows of Pascal’s triangle (which are numbered 0 through 4 . . . ).} are as follows:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Notice that in the triangle there is a border on both sides containing 1’s and that the

numbers on the inside of the triangle are the sum of the two numbers above them. You

can use these facts to extend the triangle.

Exercise 1.2. Add the next two rows to the Pascal triangle shown above.

Binomial coefficients are denoted using a somewhat strange looking symbol. The number

in the k-th position in row number n of the triangle is denoted
(n
k

)
. This looks a little like

a fraction, but the fraction bar is missing. Don’t put one in! It’s supposed to be missing.

In spoken English you say “n choose k” when you encounter the symbol
(n
k

)
.

There is a formula for the binomial coefficients. Otherwise, we’d need to complete a

pretty huge Pascal triangle in order to compute something like
(52

5
)
. The formula involves

factorial notation. Just to be sure we are all on the same page, we’ll define factorials

before proceeding.

The symbol for factorials is an exclamation point following a number. This is just a short-

hand for expressing the product of all the numbers up to a given one. For example 7!

means 1 · 2 · 3 · 4 · 5 · 6 · 7. Of course, there’s really no need to write the initial 1. Also, for

some reason, people usually write the product in decreasing order (7! = 7 ·6 ·5 ·4 ·3 ·2 ·1).

5This triangle was actually known well before Blaise Pascal began to study it, but it carries his name today.
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The formula for a binomial coefficient is(
n

k

)
= n!
k! · (n− k)! .

For example, (
5
3

)
= 5!

3! · (5− 3)! = 1 · 2 · 3 · 4 · 5
(1 · 2 · 3) · (1 · 2) = 10.

A slightly more complicated example (and one that gamblers are fond of) is(
52
5

)
= 52!

5! · (52− 5)!

= 1 · 2 · 3 · · · · 52
(1 · 2 · 3 · 4 · 5) · (1 · 2 · 3 · · · · 47)

= 48 · 49 · 50 · 51 · 52
1 · 2 · 3 · 4 · 5

= 2598960.

The reason that a gambler might be interested in the number we just calculated is that

binomial coefficients do more than just give us the coefficients in the expansion of a

binomial. They also can be used to compute how many ways one can choose a subset

of a given size from a set. Thus
(52

5
)
is the number of ways that one can get a five-card

hand out of a deck of 52 cards.

Exercise 1.3. There are seven days in a week. In how many ways can one choose a set

of three days (per week)?

1.4.7 Exercises

1. An integer n is doubly-even if it is even, and the integer m guaranteed to exist

because n is even is itself even. Is 0 doubly-even? What are the first 3 positive,

doubly-even integers?

2. Dividing an integer by two has an interesting interpretation when using binary nota-

tion: simply shift the digits to the right. Thus, 22 = 101102 when divided by two

gives 10112 which is 8 + 2 + 1 = 11. How can you recognize a doubly-even integer

from its binary representation?
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3. The octal representation of an integer uses powers of 8 in place notation. The digits

of an octal number run from 0 to 7, one never sees 8’s or 9’s. How would you

represent 8 and 9 as octal numbers? What octal number comes immediately after

7778? What (decimal) number is 7778?

4. One method of converting from decimal to some other base is called repeated di-

vision. One divides the number by the base and records the remainder — one

then divides the quotient obtained by the base and records the remainder. Con-

tinue dividing the successive quotients by the base until the quotient is smaller

than the base. Convert 3267 to base-7 using repeated division. Check your an-

swer by using the meaning of base-7 place notation. (For example 543217 means

5 · 74 + 4 · 73 + 3 · 72 + 2 · 71 + 1 · 70.)

5. State a theorem about the octal representation of even numbers.

6. In hexadecimal (base-16) notation, one needs 16 “digits,” the ordinary digits

are used for 0 through 9, and the letters A through F are used to give single

symbols for 10 through 15. The first 32 natural number in hexadecimal are:

1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12,13,14,15,16,

17,18,19,1A, 1B,1C,1D,1E,1F,20.

Write the next 10 hexadecimal numbers after AB.

Write the next 10 hexadecimal numbers after FA.

7. For conversion between the three bases used most often in computer science, we can

take binary as the “standard” base and convert using a table look-up. Each octal

digit will correspond to a binary triple, and each hexadecimal digit will correspond

to a 4-tuple of binary numbers. Complete the following tables. (As a check, the

4-tuple next to A in the table for hexadecimal should be 1010 — which is nice since
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A is really 10 so if you read that as “ten-ten” it is a good aid to memory.)

octal binary

0 000

1 001

2

3

4

5

6

7

hexadecimal binary

0 0000

1 0001

2 0010

3

4

5

6

7

8

9

A

B

C

D

E

F

8. Use the tables from the previous problem to make the following conversions.

a. Convert 7578 to binary.

b. Convert 10078 to hexadecimal.

c. Convert 1001010101102 to octal.

d. Convert 11111010001101012 to hexadecimal.

e. Convert FEED16 to binary.

f. Convert FFFFFF16 to octal.

9. Try the following conversions between various number systems:

a. Convert 30 (base 10) to binary.
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b. Convert 69 (base 10) to base 5.

c. Convert 12223 to binary.

d. Convert 12347 to base 10.

e. Convert EEED15 to base 12.

f. (Use {1, 2, 3 . . . 9, d, e} as the digits in base 12.)

g. Convert 6789 to hexadecimal.

10. It is a well known fact that if a number is divisible by 3, then 3 divides the sum of

the (decimal) digits of that number. Is this result true in base 7? Do you think this

result is true in any base?

11. Suppose that 340 pounds of sand must be placed into bags having a 50 pound

capacity. Write an expression using either floor or ceiling notation for the number

of bags required.

12. True or false? ⌊
n

d

⌋
<

⌈
n

d

⌉

13. What is the value of dπe2 − dπ2e?

14. Assuming the symbols n, d, q, and r have meanings as in the quotient-remainder

theorem (Theorem 1.3). Write expressions for q and r, in terms of n and d using

floor and/or ceiling notation.

15. Calculate the following quantities:

a. 3 mod 5

b. 37 mod 7

c. 1000001 mod 100000

d. 6 div 6

e. 7 div 6

f. 1000001 div 2
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16. Calculate the following binomial coefficients:

a.
(

3
0

)

b.
(

7
7

)

c.
(

13
5

)

d.
(

13
8

)

e.
(

52
7

)
17. An ice cream shop sells the following flavours: chocolate, vanilla, strawberry, coffee,

butter pecan, mint chocolate chip and raspberry. How many different bowls of ice

cream — with three scoops — can they make?
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1.5 Some algorithms of elementary number theory

An algorithm is simply a set of clear instructions for achieving some task. The Persian

mathematician and astronomer Al-Khwarizmi6 was a scholar at the House of Wisdom in

Baghdad who lived in the 8th and 9th centuries A.D. He is remembered for his algebra

treatise Hisab al-jabr w’al-muqabala from which we derive the very word “algebra,” and

a text on the Hindu-Arabic numeration scheme.

Al-Khwarizmi also wrote a treatise on Hindu-Arabic numerals. The Arabic

text is lost but a Latin translation, Algoritmi de numero Indorum (in English

Al-Khwarizmi on the Hindu Art of Reckoning) gave rise to the word algorithm

deriving from his name in the title.7

While the study of algorithms is more properly a subject within computer science, a student

of mathematics can derive considerable benefit from it.

There is a big difference between an algorithm description intended for human consumption

and one meant for a computer8. The two favoured human-readable forms for describing

algorithms are pseudocode and flowcharts. The former is text-based and the latter is visual.

There are many different modules from which one can build algorithmic structures: for-

next loops, do-while loops, if-then statements, goto statements, switch-case structures,

etc. We’ll use a minimal subset of the choices available.

• Assignment statements

• If-then control statements

• Goto statements

• Return

We take the view that an algorithm is something like a function; it takes for its input a list

of parameters that describe a particular case of some general problem, and produces as

its output a solution to that problem. (It should be noted that there are other possibilities

6Abu Ja’far Muhammad ibn Musa al-Khwarizmi
7From the article at http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Al-Khwarizmi.html
8The whole history of computer science could be described as the slow advance whereby computers have

become able to utilize more and more abstracted descriptions of algorithms. Perhaps in the not-too-distant
future machines will be capable of understanding instruction sets that currently require human interpreters.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Al-Khwarizmi.html
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Yes

No

Let x = x + 1.

Is x = y?

Figure 1.3: A small example as a flowchart.

— some programs require that the variable in which the output is to be placed be handed

them as an input parameter, others have no specific output, their purpose is achieved as

a side-effect.) The intermediary between input and output is the algorithm instructions

themselves and a set of so-called local variables which are used much the way scrap paper

is used in a hand calculation — intermediate calculations are written on them, but they

are tossed aside once the final answer has been calculated.

Assignment statements allow us to do all kinds of arithmetic operations (or rather to think

of these types of operations as being atomic.) In actuality even a simple procedure like

adding two numbers requires an algorithm of sorts, we’ll avoid such a fine level of detail.

Assignments consist of evaluating some (possibly quite complicated) formula in the inputs

and local variables and assigning that value to some local variable. The two uses of the

phrase “local variable” in the previous sentence do not need to be distinct, thus x = x +

1 is a perfectly legal assignment.

If-then control statements are decision makers. They first calculate a Boolean expression

(this is just a fancy way of saying something that is either “true” or “false”, and send

program flow to different locations depending on that result. A small example will serve

as an illustration. Suppose that in the body of an algorithm we wish to check if two

variables, x and y are equal, and if they are, increment x by 1. This is illustrated in Figure

1.3 as a flowchart followed by the pseudocode.

If x = y then

x = x + 1

End If
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Notice the use of indentation in the pseudocode example to indicate the statements that

are executed if the Boolean expression is true. These examples also highlight the difference

between the two senses that the word “equals” (and the symbol =) has. In the Boolean

expression, the sense is that of testing equality. In the assignment statements (as the name

implies), an assignment is being made. In many programming languages, this distinction

is made explicit. For instance, in the C language, equality testing is done via the symbol

“==” whereas assignment is done using a single equals sign (=). In mathematics, the

equals sign usually indicates equality testing. When the assignment sense is desired, the

word “let” will generally precede the equality.

While this brief introduction to the means of notating algorithms is by no means complete,

it is hopefully sufficient for our purpose which is solely to introduce two algorithms that

are important in elementary number theory. The division algorithm, as presented here, is

simply an explicit version of the process one follows to calculate a quotient and remainder

using long division. The procedure we give is unusually inefficient — with very little

thought one could devise an algorithm that would produce the desired answer using many

fewer operations — however the main point here is purely to show that division can

be accomplished by essentially mechanical means. The Euclidean algorithm is far more

interesting both from a theoretical and a practical perspective. The Euclidean algorithm

computes the greatest common divisor (gcd) of two integers. The gcd of of two numbers

a and b is denoted gcd(a, b) and is the largest integer that divides both a and b evenly.

A pseudocode outline of the division algorithm is as follows:

Algorithm: Division

Inputs: integers n and d.

Local variables: q and r.

1. Let q = 0.

2. Let r = n.

3. Label 1.
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Yes

No

Goto

Let r = r - d.
Let q = q + 1.

Is r > d?

(q, r)
Return:

Let q = 0 and r = n.

Input: integers n, d
Local: integers q, r

Figure 1.4: The division algorithm in flowchart form.

4. If r < d then

5. Return q and r.

6. End If

7. Let q = q + 1.

8. Let r = r - d.

9. Goto 1.

This same algorithm is given in flowchart form in Figure 1.4.

Note that in a flowchart, the action of a “Goto” statement is clear because an arrow

points to the location where program flow is being redirected. In pseudocode, a “Label”

statement is required which indicates a spot where flow can be redirected via subsequent

“Goto” statements. Because of the potential for confusion, in complicated algorithms

that involve multitudes of Goto statements and their corresponding Labels, this sort of

redirection is now deprecated in virtually all popular programming environments.

Before we move on to describe the Euclidean algorithm it might be useful to describe

more explicitly what exactly it’s for. Given a pair of integers, a and b, there are two

quantities that it is important to be able to compute, the least common multiple or

lcm, and the greatest common divisor or gcd. The lcm also goes by the name lowest

common denominator because it is the smallest denominator that could be used as a
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common denominator in the process of adding two fractions that had a and b in their

denominators. The gcd and the lcm are related by the formula

lcm(a, b) = ab

gcd(a, b) ,

so they are essentially equivalent as far as representing a computational challenge.

The Euclidean algorithm depends on a rather extraordinary property of the gcd. Suppose

that we are trying to compute gcd(a, b) and that a is the larger of the two numbers. We

first feed a and b into the division algorithm to find q and r such that a = qb+ r. It turns

out that b and r have the same gcd as did a and b. In other words, gcd(a, b) = gcd(b, r).

Furthermore, these numbers are smaller than the ones we started with! This is nice

because it means we’re now dealing with an easier version of the same problem. In

designing an algorithm, it is important to formulate a clear ending criterion, a condition

that tells you you’re done. In the case of the Euclidean algorithm, we know we’re done

when the remainder r comes out 0.

So, here, without further ado is the Euclidean algorithm in pseudocode. A flowchart

version is given in Figure 1.5.

Algorithm: Euclidean

Inputs: integers a and b.

Local variables: q and r.

1. Let (q,r) = Division(a,b).

2. If r = 0 then

3. Return b.

4. End If

5. Let a = b.

6. Let b = r.

7. Goto 1.

It should be noted that for small numbers one can find the gcd and lcm quite easily

by considering their factorizations into primes. For the moment consider numbers that

factor into primes but not into prime powers (that is, their factorizations don’t involve
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No

Yes

Inputs: integers a, b

Is r = 0?

Goto

Let a = b.
Let b = r.

Let (q, r) = Division(a, b)

b
Return:

Local: integers q, r

Figure 1.5: The Euclidean algorithm in flowchart form.

exponents). The gcd is the product of the primes that are in common between these

factorizations (if there are no primes in common it is 1). The lcm is the product of all

the distinct primes that appear in the factorizations. As an example, consider 30 and 42.

The factorizations are 30 = 2 · 3 · 5 and 42 = 2 · 3 · 7. The primes that are common to

both factorizations are 2 and 3, thus gcd(30, 42) = 2 · 3 = 6. The set of all the primes

that appear in either factorization is {2, 3, 5, 7} so lcm(30, 42) = 2 · 3 · 5 · 7 = 210.

The technique just described is of little value for numbers having more than about 50

decimal digits because it rests a priori on the ability to find the prime factorizations of the

numbers involved. Factoring numbers is easy enough if they’re reasonably small, especially

if some of their prime factors are small, but in general the problem is considered so difficult

that many cryptographic schemes are based on it.

1.5.1 Exercises

1. Trace through the division algorithm with inputs n = 27 and d = 5, each time

an assignment statement is encountered write it out. How many assignments are

involved in this particular computation?
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2. Find the gcd’s and lcm’s of the following pairs of numbers.

a b gcd(a, b) lcm(a, b)

110 273

105 42

168 189

3. Formulate a description of the gcd of two numbers in terms of their prime factoriza-

tions in the general case (when the factorizations may include powers of the primes

involved).

4. Trace through the Euclidean algorithm with inputs a = 3731 and b = 2730, each

time the assignment statement that calls the division algorithm is encountered write

out the expression a = qb+ r. (With the actual values involved!)
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1.6 Rational and irrational numbers

When we first discussed the rational numbers in Section 1.1, we gave the following defi-

nition, which isn’t quite right.

Q =
{
a

b
: a ∈ Z and b ∈ Z and b 6= 0

}
.

We are now in a position to fix the problem.

So what was the problem after all? Essentially this: there are many expressions formed

with one integer written above another (with an intervening fraction bar) that represent

the exact same rational number. For example 3
6 and 14

28 are distinct things that appear in

the set defined above, but we all know that they both represent the rational number 1
2 .

To eliminate this problem with our definition of the rationals we need to add an additional

condition that ensures that such duplicates don’t arise. It turns out that what we want

is for the numerators and denominators of our fractions to have no factors in common.

Another way to say this is that the a and b from the definition above should be chosen so

that gcd(a, b) = 1. A pair of numbers whose gcd is 1 are called relatively prime.

We’re ready, at last, to give a good, precise definition of the set of rational numbers.

(Although it should be noted that we’re not quite done fiddling around; an even better

definition will be given in Section 6.3.)

Q =
{
a

b
: a, b ∈ Z and b 6= 0 and gcd(a, b) = 1

}
.

As we have in the past, let’s parse this with an English translation in parallel.

Q = {

The rational numbers are defined to be the set of all

a

b
: a, b ∈ Z

fractions of the form a over b such that a and b are integers
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and b 6= 0 and gcd(a, b) = 1 }

and b is non-zero and a and b are relatively prime.

Finally, we are ready to face a fundamental problem that was glossed-over in Section

1.1. We defined two sets back then, Q and R. The hidden assumption that one makes

in asserting that there are two of something is that the two things are distinct. Is this

really the case? The reals have been defined (unrigorously) as numbers that measure the

magnitudes of physical quantities, so another way to state the question is this: Are there

physical quantities (for example lengths) that are not rational numbers?

The answer is that there are numbers that measure lengths which are not rational numbers.

With our new and improved definition of what is meant by a rational number, we are ready

to prove that there is at least one length that can’t be expressed as a fraction. Using the

Pythagorean theorem, it’s easy to see that the length of the diagonal of a unit square is
√

2. The proof that
√

2 is not rational is usually attributed to the followers of Pythagoras

(but probably not to Pythagoras himself). In any case, it is a result of great antiquity.

The proof is of a type known as reductio ad absurdum9. We show that a given assumption

leads logically to an absurdity, a statement that can’t be true, then we know that the

original assumption must itself be false. This method of proof is a bit slippery; one has to

first assume the exact opposite of what one hopes to prove and then argue (on purpose)

towards a ridiculous conclusion.

Theorem 1.4. The number
√

2 is not in the set Q of rational numbers.

Before we can actually give the proof we should prove an intermediary result — but we

won’t, we’ll save this proof for the student to do later (heh, heh, heh. . . ). These sorts of

intermediate results, things that don’t deserve to be called theorems themselves, but that

aren’t entirely self-evident are known as lemmas. It is often the case that in an attempt at

proving a statement we find ourselves in need of some small fact. Perhaps it even seems

to be true but it’s not clear. In such circumstances, good form dictates that we first state

and prove the lemma then proceed on to our theorem and its proof. So, here, without its
9Reduction to an absurdity — better known these days as proof by contradiction.
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proof is the lemma we’ll need.

Lemma 1.1. If the square of an integer is even, then the original integer is even.

Given that thoroughness demands that we fill in this gap by actually proving the lemma

at a later date, we can now proceed with the proof of our theorem.

Proof. Assume the contrary that
√

2 is a rational number. Then by the definition of the

set of rational numbers, we know that there are integers a and b having the following

properties:
√

2 = a

b
and gcd(a, b) = 1.

Consider the expression
√

2 = a

b
. By squaring both sides of this we obtain

2 = a2

b2 .

This last expression can be rearranged to give

a2 = 2b2.

An immediate consequence of this last equation is that a2 is an even number. Using the

lemma above we now know that a is an even integer and hence that there is an integer

m such that a = 2m. Substituting this last expression into the previous equation gives

(2m)2 = 2b2.

Thus,

4m2 = 2b2,

implying that

2m2 = b2.

This tells us that b2 is even, and hence (by the lemma), b is even.

Finally, we have arrived at the desired absurdity because if a and b are both even, then

gcd(a, b) ≥ 2, but one of our initial assumptions is that gcd(a, b) = 1.
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1.6.1 Exercises

1. Rational approximation is a field of mathematics that has received much study. The

main idea is to find rational numbers that are very good approximations to given

irrationals. For example, 22/7 is a well-known rational approximation to π. Find

good rational approximations to
√

2,
√

3,
√

5 and e.

2. The theory of base-n notation that we looked at in subsection 1.4.2 can be extended

to deal with real and rational numbers by introducing a decimal point (which should

probably be re-named in accordance with the base) and adding digits to the right of

it. For instance 1.1011 is binary notation for 1 ·20 +1 ·2−1 +0 ·2−2 +1 ·2−3 +1 ·2−4

or 1 + 1
2 + 1

8 + 1
16 = 111

16 .

Consider the binary number .1010010001000010000010000001 . . ., is this number

rational or irrational? Why?

3. If a number x is even, it’s easy to show that its square x2 is even. The lemma

that went unproved in this section asks us to start with a square (x2) that is even

and deduce that the UN-squared number (x) is even. Perform some numerical

experimentation to check whether this assertion is reasonable. Can you give an

argument that would prove it?

4. The proof that
√

2 is irrational can be generalized to show that √p is irrational for

every prime number p. What statement would be equivalent to the lemma about

the parity of x and x2 in such a generalization?

5. Write a proof that
√

3 is irrational.
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1.7 Relations

One of the principle ways in which mathematical writing differs from ordinary writing is

in its incredible brevity. For instance, a Ph.D. thesis for someone in the humanities would

be very suspicious if it was under 300 pages, whereas it would be quite acceptable for a

math doctoral student to submit a thesis amounting to fewer than 100 pages. Indeed, the

usual criteria for a doctoral thesis (or indeed any scholarly work in mathematics) is that

it be “new, true and interesting.” If one can prove a truly interesting, novel result in a

single page — they’ll probably hand over the sheepskin.

How is this great brevity achieved? By inserting single symbols in place of a whole

paragraph’s worth of words! One class of symbols in particular has immense power — so-

called relational symbols. When you place a relational symbol between two expressions,

you create a sentence that says the relation holds. The period at the end of the last

sentence should probably be pronounced! “The relation holds, period!” In other words,

when you write down a mathematical sentence involving a relation, you are asserting the

relation is True (the capital T is intentional). This is why it’s okay to write “2 < 3” but it’s

not okay to write “3 < 2.” The symbol < is a relation symbol and you are only supposed

to put it between two things when they actually bear this relation to one another.

The situation becomes slightly more complicated when we have variables in relational

expressions, but before we proceed to consider that complication, let’s make a list of the

relations we’ve seen to date:

=, <,>,≤,≥, | , and ≡ (mod m).

Each of these, when placed between numbers, produces a statement that is either true or

false. Ordinarily we wouldn’t write down the false ones; instead we should express that

we know the relation doesn’t hold by negating the relation symbol (often by drawing a

slash through it, but some of the symbols above are negations of others).

What about expressions involving variables and these relation symbols? For example,

what does x < y really mean? Okay, I know that you know what x < y means but,

philosophically, a relation symbol involving variables is doing something that you may
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have only been vaguely aware of in the past — it is introducing a supposition. Watch

out for relation symbols involving variables! Whenever you encounter them, it means the

rules of the game are being subtly altered — up until the point where you see x < y, x

and y are just two arbitrary numbers, but after that point we must suppose that x is the

smaller of the two.

The relations we’ve discussed so far are binary relations; that is, they go in between two

numbers. There are also higher-order relations. For example, a famous ternary relation

(a relationship between three things) is the notion of “betweenness.” If A, B and C are

three points which all lie on a single line, we write A ?B ? C if B falls somewhere on the

line segment AC. So the symbol A ? B ? C is shorthand for the sentence “Point B lies

somewhere in between points A and C on the line determined by them.”

There is a slightly silly tendency these days to define functions as being a special class of

relations. (This is slightly silly not because it’s wrong — indeed, functions are a special

type of relation — but because it’s the least intuitive approach possible, and it is usually

foisted off on middle or high school students.) When this approach is taken, we first define

a relation to be any set of ordered pairs and then state a restriction on the ordered pairs

that may be in a relation if it is to be a function. Clearly, what these algebra textbook

authors are talking about are binary relations. A ternary relation would actually be a set

of ordered triples, and higher-order relations might involve ordered 4-tuples or 5-tuples,

etc. A couple of small examples should help to clear up this connection between a relation

symbol and some set of tuples.

Consider the numbers from 1 to 5 and the less-than relation, <. As a set of ordered pairs,

this relation is the set

{(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}.

The pairs that are in the relation are those such that the first is smaller than the second.

An example involving the ternary relation “betweenness” can be had as shown in Figure

1.6.
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A

C
DE

F

G

B

Figure 1.6: A "betweenness" ternary relation.

The betweenness relation on the points in Figure 1.6 consists of the following triples:

{(A,B,C), (A,G,D), (A,F,E), (B,G,E), (C,B,A), (C,G, F ), (C,D,E),

(D,G,A), (E,D,C), (E,G,B), (E,F,A), (F,G,C)}.

Exercise 1.4. When thinking of a function as a special type of relation, the pairs are of

the form (x, f(x)). That is, they consist of an input and the corresponding output. What

is the restriction that must be placed on the pairs in a relation if it is to be a function?

(Hint: think about the so-called vertical line test.)

1.7.1 Exercises

1. Consider the numbers from 1 to 10. Give the set of pairs of these numbers that

corresponds to the divisibility relation.

2. The domain of a function (or binary relation) is the set of numbers appearing in the

first coordinate. The range of a function (or binary relation) is the set of numbers

appearing in the second coordinate.

Consider the set {0, 1, 2, 3, 4, 5, 6} and the function f(x) = x2 (mod 7). Express

this function as a relation by explicitly writing out the set of ordered pairs it contains.

What is the range of this function?
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3. What relation on the numbers from 1 to 10 does the following set of ordered pairs

represent?

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (1, 10),

(2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (2, 10),

(3, 3), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (3, 10),

(4, 4), (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (4, 10),

(5, 5), (5, 6), (5, 7), (5, 8), (5, 9), (5, 10),

(6, 6), (6, 7), (6, 8), (6, 9), (6, 10),

(7, 7), (7, 8), (7, 9), (7, 10),

(8, 8), (8, 9), (8, 10),

(9, 9), (9, 10),

(10, 10)}

4. Draw a five-pointed star and label all 10 points. There are 40 triples of these labels

that satisfy the betweenness relation. List them.

5. Sketch a graph of the relation

{(x, y) :x, y ∈ R and y > x2}.

6. A function f(x) is said to be invertible if there is another function g(x) such that

g(f(x)) = x for all values of x. (Usually, the inverse function, g(x) would be denoted

f−1(x).) Suppose that a function is presented to you as a relation — that is, you are

just given a set of pairs. How can you distinguish whether the function represented

by this list of input/output pairs is invertible? How can you produce the inverse (as

a set of ordered pairs)?

7. There is a relation known as “has colour” which goes from the set

F = {orange, cherry, pumpkin, banana}

to the set

C = {orange, red, green, yellow}.
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What pairs are in “has colour”?
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1.8 What are mathematical proofs

The beginning student in mathematical reasoning might find it surprising that there is no

agreement as to what exactly constitutes a mathematical proof.10 Despite this lack of

agreement, hundreds if not thousands of mathematical proofs are being published every

day. For the working mathematician, a proof is a sequence of statements that starts with

the premise and ends with the conclusion such that each statement in the proof follows

logically from earlier statements. You have already seen some examples of proofs in this

chapter. And in this day and age of computers, formal proofs in which every logical step

can be verified against a predefined set of rules of inference are also possible.11 It can be

argued that formal proofs are the ideal because they leave little room for doubt but formal

proofs are at the moment very tedious to construct and most mathematicians do not

construct such proofs for their theorems — all they need to do is to convince their peers

that their results are correct in what is known as a peer-reviewed process for publication

in an academic journal.

In the following chapters, you will learn various techniques for writing convincing arguments

for establishing the truth of mathematical statements. You will also recognize the need

for rigour. As an illustration, consider the following derivation:

−2 = −2

1− 3 = 4− 6

1− 3 + 9
4 = 4− 6 + 9

4

12 − 2 · 1 · 3
2 +

(3
2

)2
= 22 − 2 · 2 · 3

2 +
(3

2

)2

(
1− 3

2

)2
=
(

2− 3
2

)2

1− 3
2 = 2− 3

2
1 = 2.

The derivation starts with the obviously true statement “−2 = −2” and ends with the
10See Chapter 4 of Hanna (1983) for a discussion.
11An introductory article on formal proofs by Thomas Hales can be found at https://www.ams.org/notices/

200811/tx081101370p.pdf.

https://www.ams.org/notices/200811/tx081101370p.pdf
https://www.ams.org/notices/200811/tx081101370p.pdf
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absurdity “1 = 2.” Unless you truly believe that 1 and 2 are the same number, you should

feel that there must be an error somewhere. Do you spot the error?

Every step in the derivation is valid up to

12 − 2 · 1 · 3
2 +

(3
2

)2
= 22 − 2 · 2 · 3

2 +
(3

2

)2
.

However, moving from this to

1− 3
2 = 2− 3

2
is where the trouble occurs. Remember, if a and b are numbers satisfying a2 = b2, it is

not necessarily true that a = b; a = −b is another possibility which is precisely the case

here!

Many people find the exactness required in doing mathematics difficult or even scary — a

little blunder can cause the whole enterprise to collapse. But this exactness is also what

makes mathematics easy in some sense — once a statement is correctly proved, it stays

true and is immune to the fads of fashion. . . well, provided that the logical foundation

itself is not being called into question.

Exercise 1.5. What is wrong with the following derivation?

1 =
√

1

=
√

(−1)(−1)

=
√

(−1)
√

(−1)

= (
√

(−1))2

= −1.
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Hints to exercises

1.1.1

1. Note that these sets contain one another. So if you determine that a number is

a natural number, it is automatically an integer and a rational number and a real

number and a complex number.

2. What the heck is meant by a “singly infinite listing”? To help you figure this out,

note that

. . .− 3,−2,−1, 0, 1, 2, 3, . . .

is a doubly infinite listing.

3. rat, rat, irr, irr, rat

4. Experiment!

What would it mean for this number to be rational? If we were to run into an

element of the “see and say” sequence that is its own description, then from that

point onward the sequence would get stuck repeating the same thing over and over

(and the number whose digits are found by concatenating the elements of the “see

and say” sequence will enter into a repeating pattern.)

5. If a decimal expansion terminates after, say, k digits, can you figure out how to

produce an integer from that number? Think about multiplying by something.

6. A calculator will generally be inadequate for this problem. You should try using a

CAS (Computer Algebra System). I would recommend the Sage computer algebra

system because like this book it is free — you can download Sage and run it on

your own system or you can try it out online without installing. Check it out at

http://www.sagemath.org.

You can get sage to output π to high accuracy by typing pi.N(digits=21) at the

Sage > prompt.

7. You really need to actually sit down and do some long division problems. When in

the process do you suddenly realize that the digits are going to repeat? Must this

http://www.sagemath.org
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decision point always occur? Why?

8. Take for granted that the usual rule for multiplying two fractions is okay to use:

a

b
× c

d
= ac

bd
.

How do you know that the result is actually a rational number?

9. These are straightforward. If you really must verify these somehow, you can go to

a CAS like Sage, or you can learn how to enter complex numbers on your graphing

calculator. (On my TI-84, you get i by hitting the 2nd key and then the decimal

point.)

10. This is really easy, but be sure to do it generically. In other words, don’t just use

examples — do the calculation with variables for the real and imaginary parts of the

complex number.

1.2.1

1. Divide out the obvious factors in order to reduce the complexity of the remaining

problem. The first number is divisible by 5. The next three are all even. Recall that

a number is divisible by 3 if and only if the sum of its digits is divisible by 3.

2. The primes used in this instance of the sieve are just 2, 3, 5 and 7. Any number less

than 100 that isn’t a multiple of 2, 3, 5 or 7 will not be crossed off during the sieving

process. If you’re still unclear about the process, try a web search for "Sieve of

Eratosthenes" +applet. There are several interactive applets that will help you

to understand how to sieve.

3. Remember that if a number factors into two multiplicands, the smaller of them will

be less than the square root of the original number.

4. It might be helpful to write down a bunch of examples. Think about how the prime

factorization of a number gets transformed when we square it.

5. You’ll need to determine if 211 − 1 = 2047 is prime or not. If you never figured out

how to read the table of primes on page 15, here’s a hint: If 2047 was a prime there

would be a 7 in the cell at row 20, column 4.
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A quick way to find the factors of a not-too-large number is to use the “table”

feature of your graphing calculator. If you enter y1=2047/X and select the table

view (2ND GRAPH). Now, just scan down the entries until you find one with nothing

after the decimal point. That’s an X that evenly divides 2047!

An even quicker way is to type factor(2047) in Sage.

6. Part of what makes the “prime-producing-power” of that polynomial impressive is

that it gives each prime twice — once on the descending arm of the parabola and

once on the ascending arm. In other words, the polynomial gives prime values on a

set of contiguous natural numbers {0,1,2, . . . , N} and the vertex of the parabola

that is its graph lies dead in the middle of that range. You can figure out what N is

by thinking about the other end of the range: (-1)2 + 31 (-1) + 257 = 289 (289 is

not a prime, you should recognize it as a perfect square.)

7. Well, we know that 6 really isn’t a prime. Maybe its factors enter into this somehow.

8. How about a = 2 · 5 and b = 3 · 7. Now you come up with a different pair!

9. It has to do with one of the numbers being divisible by 3. (Why is this forced to be

the case?) If that number isn’t actually 3, then you know it’s composite.

10. If you don’t like making graphs, a table of the values of g(n) would suffice. Note

that we don’t count sums twice that only differ by order. For example, 16 = 13 + 3

and 11 + 5 (and 5 + 11 and 3 + 13) but g(16) = 2.

1.3.1

1. Four.

2. The chemical symbol for an element that is an exception is Hg which stands for

“Hydro-argyrum” it is also known as “liquid silver” or “quick silver”.

3. Think about this: is there any way to (using a formula) find a number that lies in

between two other numbers?

4. Write your own sentences containing four quantifiers. One sentence in which the

quantifiers appear (∀∃∀∃) and another in which they appear (∃∀∃∀).
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5. You’re on your own here. Be inventive!

1.4.7:

1. Answers: yes, 0,4 and 8.

2. Even numbers have a zero in their units place. What digit must also be zero in a

doubly-even number’s binary representation?

3. Eight is 108, nine is 118. The point of asking questions about 777, is that (in octal)

7 is the digit that is analogous to 9 in base-10. Thus 7778 is something like 99910 in

that the number following both of them is written 1000 (although 10008 and 100010

are certainly not equal!)

4. It is helpful to write something of the form n = qd+ r at each stage. The first two

stages should look like

3267 = 466 · 7 + 5

466 = 66 · 7 + 4.

You do the rest.

5. One possibility is to mimic the result for base-10 that an even number always ends

in 0, 2, 4, 6 or 8.

6. As a check, the tenth number after AB is B5. The tenth hexadecimal number after

FA is 104.

7. This is just counting in binary. Remember the sanity check that the hexadecimal

digit A is represented by 1010 in binary. (1010 = A16 = 10102

8. Answers for the first three:

a. 7578 = 1111011112

b. 10078 = 0010000001112 = 0010000001112 = 20716

c. 1001010101102 = 45268

9. Answer for the first one: 111102
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10. Might this effect have something to do with 10 being just one bigger than 9 (a

multiple of 3)?

11. Seven 50 pound bags would hold 350 pounds of sand. They’d also be able to handle

340 pounds!

12. You have to try a bunch of examples. You should try to make sure the examples

you try cover all the possibilities. The pairs that provide counterexamples (i.e. show

the statement is false in general) are relatively sparse, so be systematic.

13. π2 = 9.8696

14. I just can’t bring myself to spoil this one for you, you really need to work this out

on your own.

15. The even numbered ones are 2, 1, 500000.

16. The even numbered ones are 1 and 1287. The TI-84 calculates binomial coefficients.

The symbol used is nCr (which is placed between the numbers – i.e. it is an infix

operator). You get nCr as the 3rd item in the PRB menu under MATH. In Sage, the

command is binomial(n,k).

17. You’re choosing three things out of a set of size seven.

1.5.1:

1. r=27 q=0

r=27-5=22

q=0+1=1

r=22-5=17

q=1+1=2

r=17-5=12

q=2+1=3

r=12-5=7

q=3+1=4

r=7-5=2

q=4+1=5
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return r is 2 and q is 5.

2. For such small numbers, you can just find their prime factorizations and use that,

although it might be useful to practice your understanding of the Euclidean algorithm

by tracing through it to find the gcd’s and then using the formula

lcm(a, b) = ab

gcd(a, b).

3. Suppose that one number’s prime factorization contains pe and the other contains

pf , where e < f . What power of p will divide both, pe or pf ?}

4. The quotients you obtain should alternate between 1 and 2.

1.6.1:

1. One approach is to truncate a decimal approximation and then rationalize. E.g.
√

2 is approximately 1.4142, so 14142/10000 isn’t a bad approximator (although

naturally 7071/5000 is better since it involves smaller numbers).

2. Does the rule about rational numbers having terminating or repeating decimal rep-

resentations carry over to other bases?

3. What if the lemma wasn’t true? Can you work out what it would mean if we had a

number x such that x2 was even but x itself was odd?}

4. Saying “x is even” is the same thing as saying “x is evenly divisible by 2.” Replace

the 2 by p and you’re halfway there.

5. You can mostly just copy the argument for
√

2.

1.7.1:

1. A pair is “in” the relation when the first number gazinta the second number. 1

gazinta anything, 2 gazinta the even numbers, 3 gazinta 3, 6 and 9, etc. (Also a

number always gazinta itself.)

2.

f = {(0, 0), (1, 1), (2, 4), (3, 2), (4, 2), (5, 4), (6, 1)}
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Figure 1.7: Star.

and

Rng(f) = {0, 1, 2, 4}.

3. Less-than-or-equal-to

4. Yeah, hmmm. Forty is kind of a lot. . . Let’s look at the points (E,F,G and B) on

the horizontal line in Figure 1.7. The triples involving these four points are: (E,F,G),

(G,F,E), (E,F,B), (B,F,E), (E,G,B), (B,G,E), (F,G,B), (B,G,F).

5. Is this the region above or below the curve y = x2?

6. If f sends x to y, then we want f−1 to send y back to x. So the inverse just has

the pairs in f reversed. When is the inverse going to fail to be a function?

7. Depending on your personal experience level with fruit there may be different an-

swers. Certainly (orange, orange) will be one of the pairs, but (orange, green)

happens too!
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Chapter 2

Logic and quantifiers

If at first you don’t succeed, try again. Then quit. There’s no use being a

damn fool about it.

—W. C. Fields

2.1 Propositions and logical connectives

In every branch of mathematics, there are special atomic notion that defy precise definition.

In geometry, for example, the atomic notions are points, lines and their incidence. Euclid

defines a point as “that which has no part” — people can argue (and have argued)

incessantly over what exactly is meant by this. Is it essentially saying that anything without

volume, area or length of some sort is a point? In modern times it has been recognized

that any formal system of argumentation has to have such elemental, undefined, concepts

— and that Euclid’s apparent lapse in precision comes from an attempt to hide this basic

fact. The notion of “point” can’t really be defined. All we can do is point (no joke

intended) at a variety of points and hope that our audience will absorb the same concept

of point that we hold via the process of induction1.

The atomic concepts in set theory are “set”, “element” and “membership”. The atomic

concepts in logic are “true”, “false”, “sentence” and “statement”.

1inference of a generalized conclusion from particular instances — compare DEDUCTION

71
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Regarding true and false, we hope there is no uncertainty as to their meanings. Sentence

also has a well-understood meaning that most will agree on — a syntactically correct

ordered collection of words such as “Johnny was a football player.” or “Red is a colour.”

or “This is a sentence which does not refer to itself.”

A statement is a sentence which is either true or false. In other words, a statement is a

sentence whose truth value is definite, in more other words, it is always possible to decide

— one way or the other — whether a statement is true or false.2 The first example of a

sentence given above (“Johnny was a football player”) is not a statement — the problem

is that it is ambiguous unless we know who Johnny is. If it had said “Johnny Unitas was

a football player.” then it would have been a statement. If it had said “Johnny Appleseed

was a football player.” it would also have been a statement, just not a true one.

Ambiguity is only one reason that a sentence may not be a statement. As we consider

more complex sentences, it may be the case that the truth value of a given sentence simply

cannot be decided. One of the most celebrated mathematical results of the 20th century

is Kurt Gödel’s “Incompleteness Theorem.” An important aspect of this theory is the

proof that in any axiomatic system of mathematical thought there must be undecidable

sentences — statements which can neither be proved nor disproved from the axioms3.

Simple sentences (e.g. those of the form subject-verb-object) have little chance of being

undecidable for this reason, so we will next look at ways of building more complex sentences

from simple components.

Let’s start with an example. Suppose I come up to you in some windowless room and

make the statement: “The sun is shining but it’s raining!” You decide to investigate my

claim and determine its veracity. Upon reaching a room that has a view of the exterior,

there are four possible combinations of sunniness and/or precipitation that you may find.

That is, the atomic propositions “The sun is shining” and “It is raining” can each be true

or false independently of one another. In the following table, we introduce a convention

used throughout the remainder of this book — that true is indicated with 1 and false is
2Although, as a practical matter it may be almost impossibly difficult to do so! For instance it is certainly

either true or false that I ate eggs for breakfast on my 21st birthday — but I don’t remember, and short of
building a time machine, I don’t know how you could find out.

3There are trivial systems that are complete, but if a system is sufficiently complicated that it contains
“interesting” statements it can’t be complete.
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indicated with 0.

The sun is shining It is raining

1 1

1 0

0 1

0 0

Each row of the above table represents a possible state of the outside world. Suppose

you observe the conditions given in the last row, namely that it is neither sunny, nor

is it raining — you would certainly conclude that I am not to be trusted. That is, my

statement, the compounding of “The sun is shining” and “It is raining” (with the word

“but” in between as a connector) is false. If you think about it a bit, you’ll agree that this

so-called compound sentence is true only in the case when both of its component pieces

are true. This underscores an amusing linguistic point: “but” and “and” have exactly the

same meaning! More precisely, they denote the same thing, they have subtly different

connotations however — “but” indicates that both of the statements it connects are true

and that the speaker is surprised by this state of affairs.

In mathematics we distinguish two main connectives for hooking up simple sentences into

compound ones. The conjunction of two sentences is the compound sentence made by

sticking the word “and” between them. The disjunction of two sentences is formed by

placing an “or” between them. Conjunctions are true only when both components are

true. Disjunctions are false only when both components are false.

As usual, mathematicians have developed an incredibly terse, compact notation for these

ideas.4 First, we represent an entire sentence by a single letter — traditionally, a capital

letter. This is called a propositional variable (or a sentential variable). For example,

following the example above, we could denote the sentence “The sun is shining” by the

letter S. Similarly, we could make the assignment R = “It is raining.” The conjunction

and disjunction of these sentences can then be represented using the symbols S ∧R and
4One begins to suspect that mathematicians form an unusually lazy sub-species of humanity.
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S ∨ R, respectively. As a mnemonic, note that the connective in S ∧ R looks very much

like the capital letter A (as in And).

To display, very succinctly, the effect of these two connectives, we can use so-called truth

tables. In a truth table, we list all possible truth values of the propositional variables and

then enumerate the truth values of some compound sentence. For the conjunction and

disjunction connectors we have (respectively):

A B A ∧B

1 1 1

1 0 0

0 1 0

0 0 0

and
A B A ∨B

1 1 1

1 0 1

0 1 1

0 0 0

In addition to these connectors, we need a modifier (called negation) that acts on individual

sentences. The negation of a sentence A is denoted by ¬A, and its truth value is exactly

the opposite of A’s truth value. The negation of a sentence is also known as the denial

of a sentence. A truth table for the negation operator is somewhat trivial but we include

it here for completeness.
A ¬A

1 0

0 1

These three simple connectors are sufficient to create extraordinarily complex sentences

out of basic components. The way these pieces interrelate is a bit reminiscent of algebra.

In fact, the study of these logical operators (or any operators that act like them) is called

Boolean algebra5. There are distinct differences between Boolean and ordinary algebra,
5In honour of George Boole, whose 1854 book An investigation into the Laws of Thought inaugurated the

subject.
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however. In regular algebra, we have the binary connectors + (plus) and · (times), and

the unary negation operator −; these are certainly analogous to ∧, ∨, and ¬, but there

are certain consequences of the fact that multiplication is effectively repeated addition

that simply don’t hold for the Boolean operators. For example, there is a well-defined

precedence between · and +. In parsing the expression 4 · 5 + 3 we all know that the

multiplication is to be done first. There is no such rule governing order of operations

between ∧ and ∨. So an expression like A ∧B ∨C is simply ambiguous — it must have

parentheses inserted in order to show the order, either (A ∧ B) ∨ C or A ∧ (B ∨ C).

Another distinction between ordinary and Boolean algebra is exponentiation. If there

were exponents in Boolean algebra, we’d need two different kinds — one for repeated

conjunction and another for repeated disjunction.

Exercise 2.1. Why is it that there is no such thing as exponentiation in the algebra of

logic?

While there are many differences between Boolean algebra and the usual, garden-variety

algebra, there are also many similarities. For instance, the associative, commutative and

distributive laws of algebra all have versions that work in the Boolean case.

2.1.1 Digital logic circuit diagrams

A very handy way of visualizing Boolean expressions is given by digital logic circuit dia-

grams. To discuss these diagrams we must make a brief digression into electronics. One of

the most basic components inside an electronic device is a transistor, this is a component

that acts like a switch for electricity, but the switch itself is controlled by electricity. In

Figure 2.1 we see the usual schematic representation of a transistor. If voltage is applied

to the wire labeled z, the transistor becomes conductive, and current may flow from x to

y.

Suppose that two transistors are connected as in Figure 2.2 (this is called a series connec-

tion). In order for current to flow from x to y we must have voltage applied to both the

wires labeled z and w. In other words, this circuit effectively creates the AND operation

— assuming voltage is always applied to x, if z AND w are energized then the output at
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x

z

y

Figure 2.1: A schematic representation of a transistor.

x

z w

y

Figure 2.2: The connection of two transistors in series provides an implementation of the AND
operator.

y will be energized.

When two transistors are connected in parallel (this is illustrated in Figure 2.3) current

can flow from x to y when either (or both) of the wires at z and w have voltage applied.

This brings up a point which is confusing for some: in common speech the use of the

word “or” often has the sense known as exclusive or (a.k.a. XOR), when we say “X OR

Y” we mean “Either X or Y, but not both.” In electronics and mathematics, or always

has the non-exclusive (better known as inclusive) sense.

x

z w

y

Figure 2.3: The connection of two transistors in parallel provides an implementation of the OR
operator.
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Not (¬)

Or (∨)And (∧)

Figure 2.4: Symbols for AND-gates, OR-gates, and NOT-gates.

((A ∧ B) ∧ (C ∧ D))

(((A ∧ B) ∧ C) ∧ D)

A

B

C

D

A

B

C

D

Figure 2.5: Two of the possible ways to parenthesize the conjunction of four statement variables
— expressed as digital logic circuits.

As a sort of graphical shorthand, electronics engineers use the symbols shown in Figure

2.4 to indicate AND-gates, OR-gates, and NOT-gates (better known as negators).

An AND-gate has two transistors inside it that are wired in series — if both the inputs

are energized, the output will be too. An OR-gate has two transistors in parallel inside it.

NOT-gates involve magic — when their input is not on, their output is and vice versa.

Using this graphical “language” one can make schematic representations of logical ex-

pressions. Some find that tracing such diagrams makes understanding the structure of a

Boolean expression easier. For example, in Figure 2.5 we illustrate two of the possible

ways that the conjunction of four proprositional variables can be parenthesized. In fact,

when a multitude of propositions are joined by the same connective, the way in which

the expression is parenthesized is unimportant, thus one often sees a further shorthand —

gates with more than two inputs.

A common task for an electronics designer is to come up with a digital logic circuit having
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x

y

z

x

y

z

x

y

z

Figure 2.6: Three recognizers.

a prescribed input/output table. Note that an input/output table for a logic circuit is

entirely analogous with a truth table for a compound sentence in logic.

Suppose that we wanted to design a circuit that would have the following input/output

table.

x y z out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

A systematic method for accomplishing such a design task involves a notion called dis-

junctive normal form. A Boolean expression is in disjunctive normal form if it consists of

the disjunction of one or more statements, each of which consists entirely of conjunctions

of predicate variables and/or their negations. In other words, the or of a bunch of ands.

In terms of digital logic circuits, the ands we’re talking about are called recognizers. For

example, the 3-input and-gates shown in Figure 2.6 recognize the input states in the 4th,

7th and 8th rows of the input/output table above. (These are the rows where the output

is supposed to be 1.)
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x

y

z

out

Figure 2.7: A digital logic circuit built using disjunctive normal form. The output of this circuit
is (¬x ∧ y ∧ z) ∨ (x ∧ y ∧ ¬z) ∨ (x ∧ y ∧ z).

Figure 2.7 illustrates how to create a circuit whose input/output table is as above using

these recognizers.

2.1.2 Exercises

1. Design a digital logic circuit (using AND-, OR-, and NOT-gates) that implements

an exclusive or.

2. Consider the sentence “This is a sentence which does not refer to itself.” which was

given in the beginning of this chapter as an example. Is this sentence a statement?

If so, what is its truth value?

3. Consider the sentence “This sentence is false.” Is this sentence a statement?

4. Complete truth tables for each of the sentences (A∧B)∨C and A∧ (B∨C). Does

it seem that these sentences have the same logical content?

5. There are two other logical connectives that are used somewhat less commonly than

∨ and ∧. These are the Scheffer stroke and the Peirce arrow — written | and ↓,

respectively — they are also known as NAND and NOR.
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The truth tables for these connectives are:

A B A |B

1 1 0

1 0 1

0 1 1

0 0 1

and
A B A ↓ B

1 1 0

1 0 0

0 1 0

0 0 1

Find an expression for (A ∧ ¬B) ∨ C using only these new connectives (as well as

negation and the variable symbols themselves).

6. The famous logician Raymond Smullyan devised a family of logical puzzles around a

fictitious place he called “the Island of Knights and Knaves.” The inhabitants of the

island are either knaves, who always make false statements, or knights, who always

make truthful statements.

In the most famous knight/knave puzzle, you are in a room which has only two exits.

One leads to certain death and the other to freedom. There are two individuals in

the room, and you know that one of them is a knight and the other is a knave,

but you don’t know which. Your challenge is to determine the door which leads to

freedom by asking a single question.
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2.2 Implication

Suppose a mother makes the following statement to her child: “If you finish your peas,

you’ll get dessert.”

This is a compound sentence made up of the two simpler sentences P = “You finish your

peas” and D = “You’ll get dessert.” It is an example of a type of compound sentence

called a conditional.

Conditionals are if-then type statements. In ordinary language, the word “then” is often

elided (as is the case with our example above). Another way of phrasing the “If P then

D.” relationship is to use the word “implies” — although it would be a rather uncommon

mother who would say “Finishing your peas implies that you will receive dessert.”

As was the case in the previous section, there are four possible situations and we must

consider each to decide the truth/falsity of this conditional statement. The peas may or

may not be finished, and independently, the dessert may or may not be proffered.

Suppose that the child finishes the peas and the mother comes across with the dessert. It

is clear in this situation that the mother’s statement was true. On the other hand, if the

child finishes the hated peas and yet does not receive a treat, it is just as obvious that the

mother has lied! What do we say about the mother’s veracity in the case that the peas

go unfinished? Here, mom gets a break. She can either hold firm and deliver no dessert,

or she can be a softy and give out unearned sweets — in either case, we can’t accuse

her of telling a falsehood. The statement she made had to do only with the eventualities

following total pea consumption, she said nothing about what happens if the peas go

uneaten.

A conditional statement’s components are called the antecedent (this is the “if” part, as in

“finish your peas”) and the consequent (this is the “then” part, as in “get dessert”). The

discussion in the last paragraph was intended to make the point that when the antecedent

is false, we should consider the conditional to be true. Conditionals that are true because

their antecedents are false are said to be vacuously true. The conditional involving an

antecedent A and a consequent B is expressed symbolically using an arrow: A =⇒ B.
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Here is a truth table for this connective.

A B A =⇒ B

1 1 1

1 0 0

0 1 1

0 0 1

Exercise 2.2. Note that this truth table is similar to the truth table for A ∨ B in that

there is only a single row having a 0 in the last column. For A∨B the 0 occurs in the 4th

row and for A =⇒ B it occurs in the 2nd row. This suggests that by suitably modifying

things (replacing A or B by their negations) we could come up with an “or” statement

that had the same meaning as the conditional. Try it!

It is fairly common that conditionals are used to express threats, as in the peas/dessert

example. Another common way to express a threat is to use a disjunction — “Finish your

peas, or you won’t get dessert.” If you’ve been paying attention (and did the last exercise),

you will notice that this is not the disjunction that should have the same meaning as the

original conditional. There is probably no mother on Earth who would say “Don’t finish

your peas, or you get dessert!” to her child (certainly not if she expects to be understood).

So what’s going on here?

The problem is that “Finish your peas, or you won’t get dessert.” has the same logical

content as “If you get dessert, then you finished your peas.” (Notice that the roles of the

antecedent and consequent have been switched.) And, while this last sentence sounds

awkward, it is probably a more accurate reflection of what the mother intended. The

problem really is that people are incredibly sloppy with their conditional statements! A

lot of people secretly want the 3rd row of the truth table for =⇒ to have a 0 in it, and

it simply doesn’t! The operator that results if we do make this modification is called the

biconditional, and is expressed in English using the phrase “if and only if” (which leads

mathematicians to the abbreviation “iff” much to the consternation of spell-checking

programs everywhere). The biconditional is denoted using an arrow that points both
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ways. Its truth table follows.

A B A ⇐⇒ B

1 1 1

1 0 0

0 1 1

0 0 1

Please note, that while we like to strive for precision, we do not necessarily recommend

the use of phrases such as “You will receive dessert if, and only if, you finish your peas.”

with young children.

Since conditional sentences are often confused with the sentence that has the roles of

antecedent and consequent reversed, this switched-around sentence has been given a

name: it is the converse of the original statement. Another conditional that is distinct

from (but related to) a given conditional is its inverse. This sort of sentence probably had

to be named because of a very common misconception, many people think that the way

to negate an if-then proposition is to negate its parts. Algebraically, this looks reasonable

— sort of a distributive law for logical negation over implications — ¬(A =⇒ B) =

¬A =⇒ ¬B. Sadly, this reasonable looking assertion can’t possibly be true; since

implications have just one 0 in a truth table, the negation of an implication must have

three — but the statement with the ¬’s on the parts of the implication is going to only

have a single 0 in its truth table.

To recap, the converse of an implication has the pieces (antecedent and consequent)

switched about. The inverse of an implication has the pieces negated. Neither of these is

the same as the original implication. Oddly, this is one of those times when two wrongs

do make a right. If you start with an implication, form its converse, then take the inverse

of that, you get a statement having exactly the same logical meaning as the original. This

new statement is called the contrapositive.

This information is displayed below.
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A =⇒ B ← converses → B =⇒ A

↑

inverses

↓

↑

inverses

↓

¬A =⇒ ¬B ← converses → ¬B =⇒ ¬A

One final piece of advice about conditionals: don’t confuse logical if-then relationships

with causality. Many of the if-then sentences we run into in ordinary life describe cause

and effect: “If you cut the green wire, the bomb will explode.” (Okay, that one is an

example from the ordinary life of a bomb squad technician, but. . . ) It is usually best to

think of the if-then relationships we find in logic as divorced from the flow of time, the

fact that A =⇒ B is logically the same as ¬A∨B lends credence to this point of view.

2.2.1 Exercises

1. The transitive property of equality says that if a = b and b = c then a = c. Does

the implication arrow satisfy a transitive property? If so, state it.

2. Complete truth tables for the compound sentences A =⇒ B and ¬A ∨B.

3. Complete a truth table for the compound sentence A =⇒ (B =⇒ C) and for

the sentence (A =⇒ B) =⇒ C. What can you conclude about conditionals and

the associative property?

4. Determine a sentence using the and connector (∧) that gives the negation of A =⇒

B.

5. Rewrite the sentence “Fix the toilet or I won’t pay the rent!” as a conditional.

6. Why is it that the sentence “If pigs can fly, I am the king of Mesopotamia.” true?

7. Express the statement A =⇒ B using the Peirce arrow and/or the Scheffer stroke.

(See the exercise on NAND and NOR in the previous section.)

8. Find the contrapositives of the following sentences.

a. If you can’t do the time, don’t do the crime.
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b. If you do well in school, you’ll get a good job.

c. If you wish others to treat you in a certain way, you must treat others in that

fashion.

d. If it’s raining, there must be clouds.

e. If an ≤ bn, for all n and
∑∞
n=0 bn is a convergent series, then

∑∞
n=0 an is a

convergent series.

9. What are the converse and inverse of “If you watch my back, I’ll watch your back.”?

10. The integral test in calculus is used to determine whether an infinite series converges

or diverges: Suppose that f(x) is a positive, decreasing, real-valued function with

limx−→∞ f(x) = 0, if the improper integral
∫∞

0 f(x) has a finite value, then the

infinite series
∑∞
n=1 f(n) converges.

The integral test should be envisioned by letting the series correspond to a right-

hand Riemann sum for the integral, since the function is decreasing, a right-hand

Riemann sum is an underestimate for the value of the integral, thus
∞∑
n=1

f(n) <
∫ ∞

0
f(x).

Discuss the meanings of and (where possible) provide justifications for the inverse,

converse and contrapositive of the conditional statement in the integral test.

11. On the Island of Knights and Knaves, you encounter two individuals named Locke

and Demosthenes on the island.

Locke says, “Demosthenes is a knave.”

Demosthenes says “Locke and I are knights.”

Who is a knight and who a knave?
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2.3 Logical equivalences

Some logical statements are “the same.” For example, in the last section, we discussed

the fact that a conditional and its contrapositive have the same logical content. Wouldn’t

we be justified in writing something like the following?

A =⇒ B = ¬B =⇒ ¬A

Well, one pretty serious objection to doing that is that the equals sign (=) has already got

a job; it is used to indicate that two numerical quantities are the same. What we’re doing

here is really sort of a different thing! Nevertheless, there is a concept of “sameness”

between certain compound statements, and we need a symbolic way of expressing it.

There are two notations in common use. The notation that seems to be preferred by

logicians is the biconditional ( ⇐⇒ ). The notation we’ll use in the rest of this book is

an equals sign with a bit of extra decoration on it (∼=).

Thus we can can either write

(A =⇒ B) ⇐⇒ (¬B =⇒ ¬A)

or

A =⇒ B ∼= ¬B =⇒ ¬A.

I like the latter, but use whichever form you like — no one will have any problem under-

standing either.

The formal definition of logical equivalence, which is what we’ve been describing, is this:

two compound sentences are logically equivalent if in a truth table (that contains all

possible combinations of the truth values of the propositional variables in its rows) the

truth values of the two sentences are equal in every row.

Exercise 2.3. Consider the two compound sentences A∨B and A∨(¬A∧B). There are

a total of 2 propositional variables between them, so a truth table with 4 rows will suffice.

Fill out the missing entries in the truth table and determine whether the statements are
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equivalent.
A B A ∨B A ∨ (¬A ∧B)

1 1

1 0

0 1

0 0

One could, in principle, verify all logical equivalences by filling out truth tables. Indeed, in

the exercises for this section we will ask you to develop a certain facility at this task. While

this activity can be somewhat fun, and many of my students want the filling-out of truth

tables to be a significant portion of their midterm exam, you will probably eventually come

to find it somewhat tedious. A slightly more mature approach to logical equivalences is

this: use a set of basic equivalences — which themselves may be verified via truth tables

— as the basic rules or laws of logical equivalence, and develop a strategy for converting

one sentence into another using these rules. This process will feel very familiar, it is like

“doing” algebra, but the rules one is allowed to use are subtly different.

2.3.1 Basic laws of logical equivalence

First, we have the commutative laws, one each for conjunction and disjunction. It’s worth

noting that there isn’t a commutative law for implication.

The commutative property of conjunction says that A ∧ B ∼= B ∧ A. This is quite an

apparent statement from the perspective of linguistics. Surely it’s the same thing to

say “the weather is cold and snowy” as it is to say “the weather is snowy and cold.”

This commutative property is also clear from the perspective of digital logic circuits as

illustrated in Figure 2.8.

The commutative property of disjunctions is equally transparent from the perspective of

a circuit diagras as illustrated in Figure 2.8.

The associative laws also have something to do with what order operations are done. One

could think of the difference in the following terms: Commutative properties involve spatial

or physical order and the associative properties involve temporal order. The associative
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B

A
B ∧ A

A ∧B
B

A

Figure 2.8: Equivalent circuits illustrating the commutative law of conjunction.

B

A

B

A
A ∨B

B ∨ A

Figure 2.9: Equivalent circuits illustrating the commutative law of disjunction.

law of addition could be used to say we’ll get the same result if we add 2 and 3 first,

then add 4, or if we add 2 to the sum of 3 and 4 (i.e. that (2 + 3) + 4 is the same as

2 + (3 + 4).) Note that physically, the numbers are in the same order (2 then 3 then 4)

in both expressions but that the parentheses indicate a precedence in when the plus signs

are evaluated.

The associative law of conjunction states that A ∧ (B ∧ C) ∼= (A ∧ B) ∧ C. In visual

terms, this means the two circuit diagrams in Figure 2.10 are equivalent.

The associative law of disjunction states that A ∨ (B ∨ C) ∼= (A ∨ B) ∨ C. In visual

terms, this means the two circuit diagrams in Figure 2.11 are equivalent.

Exercise 2.4. In a situation where both associativity and commutativity pertain the

symbols involved can appear in any order and with any reasonable parenthesization. In

how many different ways can the sum 2 + 3 + 4 be expressed? Only consider expression

that are fully parenthesized.
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A

B

C

(A ∧B) ∧ C

A

B

C

A ∧ (B ∧ C)

Figure 2.10: Equivalent circuits illustrating the associative law of conjunction.

A

B

C

(A ∨B) ∨ C

A

B

C

A ∨ (B ∨ C)

Figure 2.11: Equivalent circuits illustrating the associative law of disjunction.
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2 * ( 3 + 4 ) = ( 2 * 3 ) + ( 2 * 4 )

Figure 2.12: Illustration of 2 * (3+4) = (2 * 3) + (2 * 4)

C

B

A

A ∧ (B ∨ C)

A

B

C

(A ∧B) ∨ (A ∧ C)

Figure 2.13: Equivalent circuits illustrating the distributive law of conjunction over disjunction.

The next type of basic logical equivalences we’ll consider are the so-called distributive

laws. Distributive laws involve the interaction of two operations, when we distribute

multiplication over a sum, we effectively replace one instance of an operand and the

associated operator, with two instances, as illustrated in Figure 2.12.

The logical operators ∧ and ∨ each distribute over the other. Thus we have the distributive

law of conjunction over disjunction, which is expressed in the equivalence

A ∧ (B ∨ C) ∼= (A ∧B) ∨ (A ∧ C)

and in the digital logic circuit diagram in Figure 2.13.

We also have the distributive law of disjunction over conjunction which is given by the

equivalence

A ∨ (B ∧ C) ∼= (A ∨B) ∧ (A ∨ C)

and in the circuit diagram in Figure 2.14.
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A

B

C

(A ∨B) ∧ (A ∨ C)

C

B

A

A ∨ (B ∧ C)

Figure 2.14: Equivalent circuits illustrating the distributive law of disjunction over conjunction

Traditionally, the laws we’ve just stated would be called left-distributive laws and we would

also need to state that there are right-distributive laws that apply. Since, in the current

setting, we have already said that the commutative law is valid, this isn’t really necessary.

Exercise 2.5. State the right-hand versions of the distributive laws.

The next set of laws we’ll consider come from trying to figure out what the distribution

of a minus sign over a sum (−(x + y) = −x + −y) should correspond to in Boolean

algebra. At first blush, one might assume the analogous thing in Boolean algebra would

be something like ¬(A ∧ B) ∼= ¬A ∧ ¬B, but we can easily dismiss this by looking at a

truth table.

A B ¬(A ∧B) ¬A ∧ ¬B

1 1 0 0

1 0 1 0

0 1 1 0

0 0 1 1

What actually works is a set of rules known as De Morgan’s laws, which basically say

that you distribute the negative sign but you also must change the operator. As logical

equivalences, De Morgan’s laws are

¬(A ∧B) ∼= ¬A ∨ ¬B
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and

¬(A ∨B) ∼= ¬A ∧ ¬B.

In ordinary arithmetic, there are two notions of “inverse.” The negative of a number is

known as its additive inverse and the reciprocal of a number is its multiplicative inverse.

These notions lead to a couple of equations,

x+−x = 0

and

x · 1
x

= 1.

Boolean algebra only has one “inverse” concept, the denial of a proposition (i.e. logical

negation), but the equations above have analogues, as do the symbols 0 and 1 that

appear in them. First, consider the Boolean expression A∨¬A. This is the logical or of a

statement and its exact opposite; when one is true the other is false and vice versa. But,

the disjunction A∨¬A, is always true! We use the symbol > (which stands for tautology)

to represent a compound sentence whose truth value is always true. A tautology (>) is

to Boolean algebra something like a zero (0) is to arithmetic. Similar thinking about

the Boolean expression A ∧ ¬A leads to the definition of the symbol ⊥ (which stands

for contradiction) to represent a sentence that is always false. The rules we have been

discussing are known as complementarity laws:

A ∨ ¬A ∼= >

and

A ∧ ¬A ∼= ⊥.

Now that we have the special logical sentences represented by > and ⊥ we can present

the so-called identity laws, A ∧ > ∼= A and A ∨ ⊥ ∼= A. If you “and” a statement with

something that is always true, this new compound has the exact same truth values as the

original. If you “or” a statement with something that is always false, the new compound

statement is also unchanged from the original. Thus performing a conjunction with a

tautology has no effect — sort of like multiplying by 1. Performing a disjunction with a

contradiction also has no effect — this is somewhat akin to adding 0.
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The number 0 has a special property: 0 · x = 0 is an equation that holds no matter what

x is. This is known as a domination property. Note that there isn’t a dominance rule that

involves 1. On the Boolean side, both the symbols > and ⊥ have related domination

rules.

A ∨ > ∼= >

and

A ∧ ⊥ ∼= ⊥.

In mathematics, the word idempotent is used to describe situations where the powers of

a thing are equal to that thing. For example, because every power of 1 is 1, we say that

1 is an idempotent. Both of the Boolean operations have idempotence relations that just

always work (regardless of the operand). In ordinary algebra idempotents are very rare (0

and 1 are the only ones that come to mind), but in Boolean algebra, every statement is

equivalent to its square — where the square of A can be interpreted either as A ∧ A or

as A ∨ A.

A ∨ A ∼= A

and

A ∧ A ∼= A.

There are a couple of properties of the logical negation operator that should be stated,

though probably they seem self-evident. If you form the denial of a denial, you come back

to the same thing as the original; also the symbols ⊥ and > are negations of one another.

¬(¬A) ∼= A

and

¬> ∼= ⊥.

Finally, we should mention a really strange property, called absorption, which states that

the expressions A∧ (A∨B) and A∨ (A∧B) don’t actually have anything to do with B

at all! Both of the preceding statements are equivalent to A.

A ∧ (A ∨B) ∼= A
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and

A ∨ (A ∧B) ∼= A

2.3.2 Summary of basic logical equivalences

The following is a summary of the basic logical equivalences described earlier.

Double negation: ¬(¬A) ∼= A

Conjunctive form:

Commutative law A ∧B ∼= B ∧ A

Associative law A ∧ (B ∧ C) ∼= (A ∧B) ∧ C

Distributive law A ∧ (B ∨ C) ∼= (A ∧B) ∨ (A ∧ C)

De Morgan’s law ¬(A ∧B) ∼= ¬A ∨ ¬B

Complementarity A ∧ ¬A ∼= ⊥

Identity law A ∧ > ∼= A

Domination A ∧ ⊥ ∼= ⊥

Idempotence A ∧ A ∼= A

Absorption A ∧ (A ∨B) ∼= A

Disjunctive form:

Commutative law A ∨B ∼= B ∨ A

Associative law A ∨ (B ∨ C) ∼= (A ∨B) ∨ C

Distributive law A ∨ (B ∧ C) ∼= (A ∨B) ∧ (A ∨ C)

De Morgan’s law ¬(A ∨B) ∼= ¬A ∧ ¬B

Complementarity A ∨ ¬A ∼= >

Identity law A ∨ ⊥ ∼= A

Domination A ∨ > ∼= >

Idempotence A ∨ A ∼= A

Absorption A ∨ (A ∧B) ∼= A
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2.3.3 Exercises

1. There are three operations used in basic algebra (addition, multiplication and expo-

nentiation) and thus there are potentially six different distributive laws. State all six

“laws” and determine which two are actually valid. (As an example, the distributive

law of addition over multiplication would look like x + (y · z) = (x + y) · (x + z),

this isn’t one of the true ones.)

2. Use truth tables to verify or disprove the following logical equivalences.

a. (A ∧B) ∨B ∼= (A ∨B) ∧B

b. A ∧ (B ∨ ¬A) ∼= A ∧B

c. (A ∧ ¬B) ∨ (¬A ∧ ¬B) ∼= (A ∨ ¬B) ∧ (¬A ∨ ¬B)

d. The absorption laws.

3. Draw pairs of related digital logic circuits that illustrate De Morgan’s laws.

4. Find the negation of each of the following and simplify as much as possible.

a. (A ∨B) ⇐⇒ C

b. (A ∨B) =⇒ (A ∧B)

5. Because a conditional sentence is equivalent to a certain disjunction, and because De

Morgan’s law tells us that the negation of a disjunction is a conjunction, it follows

that the negation of a conditional is a conjunction. Find denials (the negation of a

sentence is often called its “denial”) for each of the following conditionals.

a. “If you smoke, you’ll get lung cancer.”

b. “If a substance glitters, it is not necessarily gold.”

c. “If there is smoke, there must also be fire.”

d. “If a number is squared, the result is positive.”

e. “If a matrix is square, it is invertible.”
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6. The so-called “ethic of reciprocity” is an idea that has come up in many of the

world’s religions and philosophies. Below are statements of the ethic from several

sources. Discuss their logical meanings and determine which (if any) are logically

equivalent.

a. “One should not behave towards others in a way which is disagreeable to one-

self.” Mencius Vii.A.4 (Hinduism)

b. “None of you [truly] believes until he wishes for his brother what he wishes for

himself.” Number 13 of Imam “Al-Nawawi’s Forty Hadiths.” (Islam)

c. “And as ye would that men should do to you, do ye also to them likewise.”

Luke 6:31, King James Version. (Christianity)

d. “What is hateful to you, do not to your fellow man. This is the law: all the

rest is commentary.” Talmud, Shabbat 31a. (Judaism)

e. “An it harm no one, do what thou wilt” (Wicca)

f. “What you would avoid suffering yourself, seek not to impose on others.” (the

Greek philosopher Epictetus — first century A.D.)

g. “Do not do unto others as you expect they should do unto you. Their tastes

may not be the same.” (the Irish playwright George Bernard Shaw — 20th

century A.D.)

7. You encounter two natives of the land of knights and knaves. Fill in an explanation

for each line of the proofs of their identities.

a. Natasha says, “Boris is a knave.”

Boris says, “Natasha and I are knights.”

Claim: Natasha is a knight, and Boris is a knave.

Proof. If Natasha is a knave, then Boris is a knight.

If Boris is a knight, then Natasha is a knight.
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Therefore, if Natasha is a knave, then Natasha is a knight. Hence Natasha is

a knight.

Therefore, Boris is a knave.

b. Bonaparte says “I am a knight and Wellington is a knave.”

Wellington says “I would tell you that B is a knight.”

Claim: Bonaparte is a knight and Wellington is a knave.

Proof. Either Wellington is a knave or Wellington is a knight.

If Wellington is a knight it follows that Bonaparte is a knight.

If Bonaparte is a knight then Wellington is a knave.

So, if Wellington is a knight then Wellington is a knave (which is impossible!)

Thus, Wellington is a knave.

Since Wellington is a knave, his statement “I would tell you that Bonaparte is

a knight” is false.

So Wellington would in fact tell us that Bonaparte is a knave.

Since Wellington is a knave we conclude that Bonaparte is a knight.

Thus Bonaparte is a knight and Wellington is a knave (as claimed).
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2.4 Two-column proofs

If you’ve ever spent much time trying to check someone else’s work in solving an algebraic

problem, you’d probably agree that it would be a help to know what they were trying to

do in each step. Most people have this fairly vague notion that they’re allowed to “do

the same thing on both sides” and they’re allowed to simplify the sides of the equation

separately — but more often than not, several different things get done on a given line,

mistakes get made, and it can be nearly impossible to figure out what went wrong and

where.

Now, after all, the beauty of math is supposed to lie in its crystal clarity, so this sort of

situation is really unacceptable. It may be an impossible goal to get “the average Joe”

to perform algebraic manipulations with clarity, but those of us who aspire to become

mathematicians must certainly hold ourselves to a higher standard.

Two-column proofs are usually what is meant by a “higher standard” when we are talking

about relatively mechanical manipulations — like doing algebra, or more to the point,

proving logical equivalences. Now don’t despair! You will not, in a mathematical career,

be expected to provide two-column proofs very often. In fact, in more advanced work,

one tends to not give any sort of proof for a statement that lends itself to a two-column

approach. But, if you find yourself writing “As the reader can easily verify, Equation 17

holds. . . ” in a paper, or making some similar remark to your students, you are morally

obligated to being able to produce a two-column proof.

So, what exactly is a two-column proof? In the left column, you show your work, being

careful to go one step at a time. In the right column, you provide a justification for each

step.

We’re going to go through a couple of examples of two-column proofs in the context of

proving logical equivalences. One thing to watch out for: if you’re trying to prove a given

equivalence, and the first thing you write down is that very equivalence, it’s wrong! This

would constitute the logical error known as “begging the question” also known as “circular

reasoning.” It’s clearly not okay to try to demonstrate some fact by first asserting the very
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same fact. Nevertheless, there is (for some unknown reason) a powerful temptation to do

this very thing. To avoid making this error, we will not put any equivalences on a single

line. Instead we will start with one side or the other of the statement to be proved, and

modify it using known rules of equivalence, until we arrive at the other side.

Without further ado, let’s provide a proof of the equivalence A ∧ (B ∨ ¬A) ∼= A ∧B.6

A ∧ (B ∨ ¬A)

distributive law
∼= (A ∧B) ∨ (A ∧ ¬A)

complementarity
∼= (A ∧B) ∨ ⊥

identity law
∼= (A ∧B)

We have assembled a nice, step-by-step sequence of equivalences — each justified by a

known law — that begins with the left-hand side of the statement to be proved and ends

with the right-hand side. That’s an irrefutable proof!

In the next example, we’ll highlight a slightly sloppy habit of thought that tends to be

problematic. People usually (at first) associate a direction with the basic logical equiva-

lences. This is reasonable for several of them because one side is markedly simpler than

the other. For example, the domination rule would normally be used to replace a part of

a statement that looked like

A ∧ ⊥

with the simpler expression

⊥.

There is a certain amount of strategization necessary in doing these proofs, and I usually

advise people to start with the more complicated side of the equivalence to be proved. It

just feels right to work in the direction of making things simpler, but there are times when

one has to take one step back before proceeding two steps forward. . .
6This equivalence should have been verified using truth tables in the exercises from the previous section.
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Let’s have a look at another equivalence: A∧ (B∨C) ∼= (A∧ (B∨C))∨ (A∧C). There

are many different ways in which valid steps can be concatenated to convert one side of

this equivalence into the other, so a subsidiary goal is to find a proof that uses the least

number of steps. Following my own advice, I’ll start with the right-hand side of this one.

(A ∧ (B ∨ C)) ∨ (A ∧ C)

distributive law
∼= ((A ∧B) ∨ (A ∧ C)) ∨ (A ∧ C)

associative law
∼= (A ∧B) ∨ ((A ∧ C) ∨ (A ∧ C))

idempotence
∼= (A ∧B) ∨ (A ∧ C)

distributive law
∼= A ∧ (B ∨ C)

Note that in the example we’ve just done, the two applications of the distributive law go

in opposite directions as far as their influence on the complexity of the expressions are

concerned.

2.4.1 Exercises

Write two-column proofs that verify each of the following logical equivalences.

1. A ∨ (A ∧B) ∼= A ∧ (A ∨B)

2. (A ∧ ¬B) ∨ A ∼= A

3. A ∨B ∼= A ∨ (¬A ∧B)

4. ¬(A ∨ ¬B) ∨ (¬A ∧ ¬B) ∼= ¬A

5. A ∼= A ∧ ((A ∨ ¬B) ∨ (A ∨B))

6. (A ∧ ¬B) ∧ (¬A ∨B) ∼= c

7. A ∼= A ∧ (A ∨ (A ∧ (B ∨ C)))
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8. ¬(A ∧B) ∧ ¬(A ∧ C) ∼= ¬A ∨ (¬B ∧ ¬C)
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2.5 Quantified statements

All of the statements discussed in the previous sections were of the “completely unam-

biguous” sort; that is, they didn’t have any unknowns in them. As a reader of this text,

it’s a sure bet that you’ve mastered algebra and are firmly convinced of the utility of x

and y. Admittedly, we’ve used variables to refer to sentences (or sentence fragments)

themselves, but we’ve said that sentences that had variables in them were ambiguous and

didn’t even deserve to be called logical statements. The notion of quantification allows

us to use the power of variables within a sentence without introducing ambiguity.

Consider the sentence “There are exactly seven odd primes less than 20.”

This sentence has some kind of ambiguity in it (because it doesn’t mention the primes

explicitly) and yet it certainly seems to have a definite truth value! The reason its truth

value is known (by the way, it is 1) is that the sentence is quantified. “X is an odd prime

less than 20.” is an ambiguous sentence, but “There are exactly seven distinct X’s that

are odd primes less than 20.” is not. This example represents a fairly unusual form of

quantification. Usually, we take away the ambiguity of a sentence having a variable in

it by asserting one of two levels of quantification: “this is true at least once” or “this is

always true”. We’ve actually seen the symbols (∃ and ∀) for these concepts already (in

Section 1.3).

An open sentence is one that has variables in it. We represent open sentences using a

sort of functional notation to show what variables are in them.

Examples:

1. P (x) = “22x + 1 is a prime.”

2. Q(x, y) = “x is prime or y is a divisor of x.”

3. L(f, c, l) = “The function f has limit l at c, if and only if, for every positive number

ε, there is a positive number δ such that whenever |x − c| < δ, it follows that

|f(x)− l| < ε.”

That last example certainly is a doozey! At first glance, it would appear to have more
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than three variables in it, and indeed it does! In order of appearance, we have f , l, c,

ε, δ and x — the last three variables that appear (ε, δ and x) are said to be bound. A

variable in an open sentence is bound if it is in the scope of a quantifier. Bound variables

don’t need to be mentioned in the argument list of the sentence. Unfortunately, when

sentences are given in natural languages the quantification status of a variable may not

be clear. For example in the third sentence above, the variable δ is easily seen to be in the

scope of the quantifier ∃ because of the words “there is a positive number” that precede

it. Similarly, ε is universally quantified (∀) because the phrase “for every positive number”

appears before it. What is the status of x? Is it really bound? The answers to such

questions may not be clear at first, but after some thought you should be able to decide

that x is universally quantified.

Exercise 2.6. What word in the second example above indicates that x is in the scope

of a ∀ quantifier?

It is not uncommon, in advanced mathematics, to encounter compound sentences involving

dozens of variables and four or five levels of quantification. Such sentences seem hopelessly

complicated at first sight — the key to understanding them is to determine each variable’s

quantification status explicitly and to break things down into simpler sub-parts. For

instance, in understanding the third example above, it might be useful to define some

new open sentences:

D(x, c, δ) = “|x− c| < δ”

E(f, x, l, ε) = “|f(x)− l| < ε”

Furthermore, it’s often handy to replace an awkward phrase (such as “the limit of f at c

is l”) with symbols when possible.

The third example now looks like

lim
x→c

f(x) = l ⇐⇒ ∀ε > 0∃δ > 0∀xD(x, c, δ) =⇒ E(f, x, l, ε).

The sentence D(x, c, δ) is usually interpreted as saying that “x is close to c” (where δ

tells you how close.) The sentence E(f, x, l, ε) could be expressed informally as “f(x) is
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close to l” (again, ε serves to make the word “close” more exact).

It’s instructive to write this sentence one last time, completely in symbols and without

the abbreviations we created for saying that x is near c and f(x) is near l:

lim
x→c

f(x) = l ⇐⇒ ∀ε > 0∃δ > 0∀x (|x− c| < δ) =⇒ (|f(x)− l| < ε).

It would not be unfair to say that developing the facility to read, and understand, this

hieroglyph (and others like it) constitutes the first several weeks of a course in real analysis.

Let us turn back to another of the examples (of an open sentence) from the beginning of

this section. P (x) = “22x + 1 is a prime.”

In the 17th century, Pierre de Fermat made the conjecture7 that ∀x ∈ N, P (x). No

doubt, this seemed reasonable to Fermat because the numbers given by this formula (they

are called Fermat numbers in his honour) are all primes — at first! Fermat numbers are

conventionally denoted with a subscripted F , Fn = 22n +1. The first five Fermat numbers

are prime.

F0 = 220 + 1 = 3

F1 = 221 + 1 = 5

F2 = 222 + 1 = 17

F3 = 223 + 1 = 257

F4 = 224 + 1 = 65537

Fermat probably computed that F5 = 4294967297, and we can well imagine that he

checked that this number was not divisible by any small primes. Of course, this was well

before the development of effective computing machinery, so we shouldn’t blame Fermat

for not noticing that

4294967297 = 641 · 6700417.

This remarkable feat of factoring can be replicated in seconds on a modern computer,

however it was done first by Leonhard Euler in 1732!
7Fermat’s more famous conjecture, that xn + yn = zn has no non-trivial integer solutions if n is an integer

with n > 2 was discovered after his death.
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There is quite a lot of literature concerning the primeness and/or compositeness of Fermat

numbers. So far, all the Fermat numbers between F5 and F32 (inclusive) have been shown

to be composite. One might be tempted to conjecture that only the first five Fermat

numbers are prime, however this temptation should be resisted. . .

Let us set aside, for the moment, further questions about Fermat numbers. Suppose

that we define the set U (for ‘Universe’) by U = {0, 1, 2, 3, 4}. Then the assertion

“∀x ∈ U, P (x)” is certainly true. You should note that the only variable in this sentence

is x, and that the variable is bound — it is universally quantified. Open sentences that have

all variables bound are statements. It is possible (in principle, and in finite universes, in

practice) to check the truth value of such sentences. Indeed, the sentence “∀x ∈ U, P (x)”

has the same logical content as “P (0) ∧ P (1) ∧ P (2) ∧ P (3) ∧ P (4)”. Both happen to

be true, but the real point here is to note that a universally quantified sentence can be

thought of instead as a conjunction.

Exercise 2.7. Define a new set U by U = {0, 1, 2, 3, 4, 5}. Write a sentence using

disjunctions that is equivalent to “∃x ∈ U,¬P (x).”

Even when we are dealing with infinite universes, it is possible to think of universally

quantified sentences in terms of conjunctions, and existentially quantified sentences in

terms of disjunctions. For example, a quick look at the graphs should be sufficient to

convince you that “x > ln x” is a sentence that is true for all x values in R>0. There is

a notation, reminiscent of so-called sigma notation for sums, that can be used to express

this universally quantified sentence as a conjunction.

∀x ∈ R>0, x > ln x ∼=
∧

x∈R>0

x > ln x

A similar notation exists for disjunctions. Purely as an example, consider the following

problem from recreational math: Find a four digit number that is an integer multiple of

its reversal. (By reversal, we mean the four digit number with the digits in the opposite

order — for example, the reversal of 1234 is 4321.) The sentence8 that states that this
8This sentence uses what is commonly referred to as an “abuse of notation” in order avoid an unnecessarily

complex problem statement. One should not necessarily avoid such abuses if one’s readers can be expected to
easily understand what is meant, any more than one should completely eschew the splitting of infinitives.
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question has a solution is

∃abcd ∈ Z,∃k ∈ Z, abcd = k · dcba

This could be expressed instead as the disjunction of 9000 statements, or more compactly

as ∨
1000≤abcd≤9999

∃k ∈ Z, abcd = k · dcba.

Exercise 2.8. The existential statement above is true because 8712 = 4 · 2178. There is

one other solution — find it!

An important, or at least useful, talent for a mathematics student to develop is the ability

to negate quantified sentences. There are two major reasons for this: the techniques known

as proof by contradiction and proof by contraposition. The contrapositive of a conditional

sentence is logically equivalent to it. Many veteran proof writers give newcomers the

advice:

“If you get stuck, try writing down the contrapositive.”

Writing down the contrapositive of a logical statement will often involve finding the nega-

tion of a quantified sentence. Proof by contradiction also requires you to be able to negate

a logical statement in order to even get started. Let’s try one.

Our universe of discourse9 will be P = {Manny,Moe, Jack}.

Consider the sentence “∀x ∈ P, x starts with M.” The equivalent sentence expressed

conjunctively is

(Manny starts with M)∧

(Moe starts with M)∧

(Jack starts with M).

9The Pep Boys — Manny, Moe and Jack — are hopefully known to some readers as the mascots of a chain
of automotive supply stores.
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The negation of this sentence (by De Morgan’s law) is a disjunction:

(Manny doesn’t start with M)∨

(Moe doesn’t start with M)∨

(Jack doesn’t start with M)

Finally, this disjunction of three sentences can be converted into a single sentence, exis-

tentially quantified over P :

“∃x ∈ P,¬(x starts with M).”

The discussion in the previous paragraphs justifies some laws of logic which should be

thought of as generalizations of De Morgan’s laws:

¬(∀x ∈ U, P (x)) ∼= ∃x ∈ U,¬P (x)

and

¬(∃x ∈ U, P (x)) ∼= ∀x ∈ U,¬P (x).

It’s equally valid to think of these rules in a way that’s divorced from De Morgan’s laws.

To show that a universal sentence is false, it suffices to show that an existential sentence

involving a negation of the original is true.

If someone announces that “All the Pep boys name’s start with M!” you might counter

that with “Uhhmmm. . .What about Jack?”

In other words, to show that it is not the case that every Pep boy’s name starts with ‘M’,

one only needs to demonstrate that there is a Pep boy (Jack) whose name doesn’t start

with ‘M’.

2.5.1 Exercises

1. There is a common variant of the existential quantifier, ∃!, if you write ∃!x, P (x)

you are asserting that there is a unique element in the universe that makes P (x)

true. Determine how to negate the sentence ∃!x, P (x).
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2. The order in which quantifiers appear is important. Let L(x, y) be the open sentence

“x is in love with y.” Discuss the meanings of the following quantified statements

and find their negations.

a. ∀x ∃y L(x, y).

b. ∃x ∀y L(x, y).

c. ∀x ∀y L(x, y).

d. ∃x ∃y L(x, y).

3. Determine a useful denial of:

∀ε > 0∃δ > 0∀x (|x− c| < δ) =⇒ (|f(x)− l| < ε).

The denial above gives a criterion for saying limx→c f(x) 6= l.

4. A Sophie Germain prime is a prime number p such that the corresponding odd

number 2p + 1 is also a prime. For example 11 is a Sophie Germain prime since

23 = 2 · 11 + 1 is also prime. Almost all Sophie Germain primes are congruent to 5

(mod 6), nevertheless, there are exceptions — so the statement “There are Sophie

Germain primes that are not 5 mod 6.” is true. Verify this.

5. Alvin, Betty, and Charlie enter a cafeteria which offers three different entrees, turkey

sandwich, veggie burger, and pizza; four different beverages, soda, water, coffee, and

milk; and two types of desserts, pie and pudding. Alvin takes a turkey sandwich, a

soda, and a pie. Betty takes a veggie burger, a soda, and a pie. Charlie takes a pizza

and a soda. Based on this information, determine whether the following statements

are true or false.

a. ∀ people p, ∃ dessert d such that p took d

b. ∃ person p such that ∀ desserts d, p did not take d.

c. ∀ entrees e, ∃ person p such that p took e.

d. ∃ entree e such that ∀ people p, p took e
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e. ∀ people p, p took a dessert ⇐⇒ p did not take a pizza.

f. Change one word of statement (d) so that it becomes true.

g. Write down the negation of (a) and compare it to statement (b). Hopefully

you will see that they are the same! Does this make you want to modify one

or both of your answers to (a) and (b)?
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2.6 Deductive reasoning and argument forms

Deduction is the process by which we determine new truths from old. It is sometimes

claimed that nothing truly new can come from deduction, the truth of a statement that

is arrived at by deductive processes was lying (perhaps hidden somewhat) within the

hypotheses. This claim is something of a canard, as any Sherlock Holmes aficionado can

tell you, the statements that can sometimes be deduced from others can be remarkably

surprising. A better argument against deduction is that it is a relatively ineffective way

for most human beings to discover new truths — for that purpose inductive processes are

superior for the majority of us. Nevertheless, if a chain of deductive reasoning leading from

known hypotheses to a particular conclusion can be exhibited, the truth of the conclusion

is unassailable. For this reason, mathematicians have latched on to deductive reasoning

as the tool for, if not discovering our theorems, communicating them to others.

The word “argument” has a negative connotation for many people because it seems to

have to do with disagreement. Arguments within mathematics (as well as many other

scholarly areas), while they may be impassioned, should not involve discord. A mathe-

matical argument is a sequence of logically connected statements designed to produce

agreement as to the validity of a proposition. This “design” generally follows one of two

possibilities, inductive reasoning or deductive reasoning. In an inductive argument, a long

list of premises is presented whose truths are considered to be apparent to all, each of

which provides evidence that the desired conclusion is true. So an inductive argument

represents a kind of statistical thing, you have all these statements that are true each

of which indicates that the conclusion is most likely true. A strong inductive argument

amounts to what attorneys call a “preponderance of the evidence.”

Occasionally a person who has been convicted of a crime based on a preponderance of

the evidence is later found to be innocent. This usually happens when new evidence is

discovered that incontrovertibly proves (i.e. shows through deductive means) that he or she

cannot be guilty. In a nutshell, inductive arguments can be wrong. In contrast, a deductive

argument can only turn out to be wrong under certain well-understood circumstances.

Like an inductive argument, a deductive argument is essentially just a long sequence of
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statements; but there is some additional structure. The last statement in the list is

the conclusion — the statement to be proved — those occurring before it are known as

premises. Premises may be further subdivided into (at least) five sorts: axioms, definitions,

previously proved theorems, hypotheses and deductions. Axioms and definitions are often

glossed over, indeed, they often go completely unmentioned (but rarely unused) in a proof.

In the interest of brevity this is quite appropriate, but conceptually, you should think of an

argument as being based off of the axioms for the particular area you are working in, and

its standard definitions. A rote knowledge of all the other theorems proved up to the one

you are working with would generally be considered excessive, but completely memorizing

the axioms and standard definitions of a field is essential.

Hypotheses are a funny class of premises — they are things which can be assumed true for

the sake of the current argument. For example, if the statement you are trying to prove is

a conditional, then the antecedent may be assumed true (if the antecedent is false, then

the conditional is automatically true!). You should always be careful to list all hypotheses

explicitly, and at the end of your proof make sure that each and every hypothesis got used

somewhere along the way. If a hypothesis really isn’t necessary then you have proved a

more general statement (that’s a good thing).

Finally, deductions — I should note that the conclusion is also a deduction — obey a

very strict rule: every deduction follows from the premises that have already been written

down (this includes axioms and definitions that probably won’t actually have been written,

hypotheses and all the deductions made up to this point) by one of the so-called rules of

inference.

Each of the rules of inference actually amounts to a logical tautology that has been re-

expressed as a sort of re-writing rule. Each rule of inference will be expressed as a list of

logical sentences that are assumed to be among the premises of the argument, a horizontal

bar, followed by the symbol ∴ (which is usually voiced as the word “therefore”) and then

a new statement that can be placed among the deductions.
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For example, one (very obvious) rule of inference is

A ∧B

∴ B

This rule is known as conjunctive simplification, and is equivalent to the tautology (A ∧

B) =⇒ B.

The modus ponens rule10 is one of the most useful.

A

A =⇒ B

∴ B

Modus ponens is related to the tautology (A ∧ (A =⇒ B)) =⇒ B.

Modus tollens is the rule of inference we get if we put modus ponens through the “con-

trapositive” wringer.

¬B

A =⇒ B

∴ ¬A

Modus tollens is related to the tautology (¬B ∧ (A =⇒ B)) =⇒ ¬A.

Modus ponens and modus tollens are also known as syllogisms. A syllogism is an argu-

ment form wherein a deduction follows from two premises. There are two other common

syllogisms, hypothetical syllogism and disjunctive syllogism.

Hypothetical syllogism basically asserts a transitivity property for implications.

A =⇒ B

B =⇒ C

∴ A =⇒ C

Disjunctive syllogism can be thought of as a statement about alternatives, but be careful
10Latin for “method of affirming”, the related modus tollens rule means “method of denying.”
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to remember that in logic, the disjunction always has the inclusive sense.

A ∨B

¬B

∴ A

Exercise 2.9. Convert the A∨B that appears in the premises of the disjunctive syllogism

rule into an equivalent conditional. How is the new argument form related to modus ponens

and/or modus tollens?

The word “dilemma” usually refers to a situation in which an individual is faced with an

impossible choice. A cute example known as the Crocodile’s dilemma is as follows:

A crocodile captures a little boy who has strayed too near the river. The child’s

father appears and the crocodile tells him “Don’t worry, I shall either release

your son or I shall eat him. If you can say, in advance, which I will do, then I

shall release him.” The father responds, “You will eat my son.” What should

the crocodile do?

In logical arguments, the word dilemma is used in another sense having to do with certain

rules of inference. Constructive dilemma is a rule of inference having to do with the

conclusion that one of two possibilities must hold.

A =⇒ B

C =⇒ D

A ∨ C

∴ B ∨D

Destructive dilemma is often not listed among the rules of inference because it can easily

be obtained by using the constructive dilemma and replacing the implications with their

contrapositives.
A =⇒ B

C =⇒ D

¬B ∨ ¬D

∴ ¬A ∨ ¬C
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2.6.1 Rules of inference

The ten most common rules of inference are listed below:

• Modus ponens:
A

A =⇒ B

∴ B

• Modus tollens:
¬B

A =⇒ B

∴ ¬A

• Hypothetical syllogism:
A =⇒ B

B =⇒ C

∴ A =⇒ C

• Disjunctive syllogism:
A ∨B

¬B

∴ A

• Constructive dilemma:

A =⇒ B

C =⇒ D

A ∨ C

∴ B ∨D

• Destructive dilemma:

A =⇒ B

C =⇒ D

¬B ∨ ¬D

∴ ¬A ∨ ¬C

• Conjunctive simplification:
A ∧B

∴ A

• Conjunctive addition:
A

B

∴ A ∧B
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• Disjunctive addition:
A

∴ A ∨B

• Absorption:
A =⇒ B

∴ A =⇒ (A ∧B)

Note that all of these are equivalent to tautologies that involve conditionals (as opposed to

biconditionals), every one of the basic logical equivalences that we established in Section

2.3 is really a tautology involving a biconditional, collectively these are known as the

“rules of replacement.” In an argument, any statement allows us to infer a logically

equivalent statement. Or, put differently, we could replace any premise with a different,

but logically equivalent, premise. You might enjoy trying to determine a minimal set of

rules of inference, that together with the rules of replacement would allow one to form all

of the same arguments as the ten rules above.

2.6.2 Exercises

1. In the movie “Monty Python and the Holy Grail” we encounter a medieval villager

who (with a bit of prompting) makes the following argument.

If she weighs the same as a duck, then she’s made of wood. If she’s made

of wood then she’s a witch. Therefore, if she weighs the same as a duck,

she’s a witch.

Which rule of inference is he using?

2. In constructive dilemma, the antecedent of the conditional sentences are usually cho-

sen to represent opposite alternatives. This allows us to introduce their disjunction

as a tautology. Consider the following proof that there is never any reason to worry

(found on the walls of an Irish pub).

Either you are sick or you are well. If you are well there’s nothing to worry

about. If you are sick there are just two possibilities: Either you will get

better or you will die. If you are going to get better there’s nothing to

worry about. If you are going to die there are just two possibilities: Either
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you will go to Heaven or to Hell. If you go to Heaven there is nothing to

worry about. If you go to Hell, you’ll be so busy shaking hands with all

your friends there won’t be time to worry. . .

Identify the three tautologies that are introduced in this “proof.”

3. For each of the following arguments, write it in symbolic form and determine which

rules of inference are used.

a. You are either with us, or you’re against us. And you don’t appear to be with

us. So, that means you’re against us!

b. All those who had cars escaped the flooding. Sandra had a car — therefore,

Sandra escaped the flooding.

c. When Johnny goes to the casino, he always gambles ’til he goes broke. Today,

Johnny has money, so Johnny hasn’t been to the casino recently.

d. (A non-constructive proof that there are irrational numbers a and b such that ab

is rational.) Either
√

2
√

2 is rational or it is irrational. If
√

2
√

2 is rational, we let

a = b =
√

2. Otherwise, we let a =
√

2
√

2 and b =
√

2. (Since
√

2
√

2
√

2

= 2,

which is rational.) It follows that in either case, there are irrational numbers a

and b such that ab is rational.
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2.7 Validity of arguments and common errors

An argument is said to be valid or to have a valid form if each deduction in it can be

justified with one of the rules of inference listed in the previous section. The form of an

argument might be valid, but still the conclusion may be false if some of the premises are

false. So to show that an argument is good, we have to be able to do two things: show

that the argument is valid (i.e. that every step can be justified) and that the argument is

sound which means that all the premises are true. If you start off with a false premise,

you can prove anything !

Consider, for example the following “proof” that 2 = 1.

Proof. Suppose that a and b are two real numbers such that a = b.

by hypothesis, a = b and so

a2 = ab

subtracting b2 from both sides

a2 − b2 = ab− b2

factoring both sides

(a+ b)(a− b) = b(a− b)

canceling (a− b) from both sides

a+ b = b

Now let a and b both have a particular value, a = b = 1, and we see that

1 + 1 = 1, i.e. 2 = 1.

This argument is not sound (thank goodness!) because one of the premises — actually

the bad premise appears as one of the justifications of a step — is false. You can argue

with perfect logic to achieve complete nonsense if you include false premises.

Exercise 2.10. It is not true that you can always cancel the same thing from both sides

of an equation. Under what circumstances is such cancellation disallowed?

So, how can you tell if an argument has a valid form? Use a truth table. As an example,
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we’ll verify that the rule of inference known as “destructive dilemma” is valid using a truth

table. This argument form contains four propositional variables so the truth table will have

16 rows. There is a column for each of the variables, the premises of the argument and

its conclusion.

A B C D A =⇒ B C =⇒ D ¬B ∨ ¬D ¬A ∨ ¬C

1 1 1 1 1 1 0 0

1 1 1 0 1 0 1 0

1 1 0 1 1 1 0 1

1 1 0 0 1 1 1 1

1 0 1 1 0 1 1 0

1 0 1 0 0 0 1 0

1 0 0 1 0 1 1 1

1 0 0 0 0 1 1 1

0 1 1 1 1 1 0 1

0 1 1 0 1 0 1 1

0 1 0 1 1 1 0 1

0 1 0 0 1 1 1 1

0 0 1 1 1 1 1 1

0 0 1 0 1 0 1 1

0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1

Now, mark the lines in which all of the premises of this argument form are true. You

should note that in every single situation in which all the premises are true the conclusion

is also true. That’s what makes “destructive dilemma” — and all of its friends — a rule of

inference. Whenever all the premises are true so is the conclusion. You should also notice

that there are several rows in which the conclusion is true but some one of the premises

isn’t. That’s okay too, isn’t it reasonable that the conclusion of an argument can be true,

but at the same time the particulars of the argument are unconvincing?

As we’ve noted earlier, an argument by deductive reasoning can go wrong in only certain
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well-understood ways. Basically, either the form of the argument is invalid, or at least

one of the premises is false. Avoiding false premises in your arguments can be trickier

than it sounds — many statements that sound appealing or intuitively clear are actually

counter-factual. The other side of the coin, being sure that the form of your argument

is valid, seems easy enough — just be sure to only use the rules of inference as found

in Section 2.6.1. Unfortunately, most arguments that you either read or write will be

in prose, rather than appearing as a formal list of deductions. When dealing with that

setting — using natural rather than formalized language — making errors in form is quite

common.

Two invalid forms are usually singled out for criticism, the converse error and the inverse

error. In some sense, these two apparently different ways to screw up are really the same

thing. Just as a conditional statement and its contrapositive are known to be equivalent,

so too are the other related statements — the converse and the inverse — equivalent.

The converse error consists of mistaking the implication in a modus ponens form for its

converse.

The converse error:
B

A =⇒ B

∴ A

Consider, for a moment the following argument.

If a rhinoceros sees something on fire, it will stomp on it. A rhinoceros stomped

on my duck. Therefore, the rhino must have thought that my duck was on

fire.

It is true that rhinoceroses have an instinctive desire to extinguish fires. Also, we can

well imagine that if someone made this ridiculous argument that their duck must actually

have been crushed by a rhino. But, is the conclusion that the duck was on fire justified?

Not really, what the first part of the argument asserts is that “(on fire) implies (rhino

stomping)” but couldn’t a rhino stomp on something for other reasons? Perhaps the

rhino was just ill-tempered. Perhaps the duck was just horrifically unlucky.
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The closer the conditional is to being a biconditional, the more reasonable sounding is

an argument exhibiting the converse error. Indeed, if the argument actually contains a

biconditional, the “converse error” is not an error at all.

The following is a perfectly valid argument, that (sadly) has a false premise.

You will get an A in your Foundations class if and only if you read Dr. Fields’

book. You read Dr. Fields’ book. Therefore, you will get an A in Foundations.

Suppose that we try changing the major premise of that last argument to something more

believable.

If you read Dr. Fields’ book, you will pass your Foundations class. You did not

read Dr. Fields’ book. Therefore, you will not pass Foundations.

This last argument exhibits the so-called inverse error. It is by no means meant as a

guarantee, but nevertheless, it seems reasonable that if someone reads this book they

will pass a course on this material. The second premise is also easy to envision as true,

although the “you” that it refers to obviously isn’t you, because you are reading this book!

But even if we accept the premises as true, the conclusion doesn’t follow. A person might

have read some other book that addressed the requisite material in an exemplary way.

Notice that the names for these two errors are derived from the change that would have

to be made to convert them to modus ponens. For example, the inverse error is depicted

formally by:

¬A

A =⇒ B

∴ ¬B

If we replaced the conditional in this argument form by its inverse (¬A =⇒ ¬B), then

the revised argument would be modus ponens. Similarly, if we replace the conditional in

an argument that suffers from the converse error by its converse, we’ll have modus ponens.
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2.7.1 Exercises

1. Determine the logical form of the following arguments. Use symbols to express

that form and determine whether the form is valid or invalid. If the form is invalid,

determine the type of error made. Comment on the soundness of the argument as

well, in particular, determine whether any of the premises are questionable.

a. All who are guilty are in prison. George is not in prison. Therefore, George is

not guilty.

b. If one eats oranges one will have high levels of vitamin C. You do have high

levels of vitamin C. Therefore, you must eat oranges.

c. All fish live in water. The mackerel is a fish. Therefore, the mackerel lives in

water.

d. If you’re lazy, don’t take math courses. Everyone is lazy. Therefore, no one

should take math courses.

e. All fish live in water. The octopus lives in water. Therefore, the octopus is a

fish.

f. If a person goes into politics, they are a scoundrel. Harold has gone into politics.

Therefore, Harold is a scoundrel.

2. Below is a rule of inference that we call extended elimination.

(A ∨B) ∨ C

¬A

¬B

∴ C

Use a truth table to verify that this rule is valid.

3. If we allow quantifiers and open sentences in an argument form, we get a couple

of new argument forms. Arguments involving existentially quantified premises are

rare — the new forms we are speaking of are called “universal modus ponens” and

“universal modus tollens.” The minor premises may also be quantified or they may
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involve particular elements of the universe of discourse — this leads us to distinguish

argument subtypes that are termed “universal” and “particular.”

For example,
∀x,A(x) =⇒ B(x)

A(p)

∴ B(p)

is the particular form of universal modus

ponens (here, p is not a variable — it stands for some particular element of the uni-

verse of discourse) and
∀x,A(x) =⇒ B(x)

∀x,¬B(x)

∴ ∀x,¬A(x)

is the universal form of (universal)

modus tollens.

Reexamine the arguments from the first exercise above and determine their forms

(including quantifiers) and whether they are universal or particular.

4. Identify the rule of inference being used.

a. The Buley Library is very tall. Therefore, either the Buley Library is very tall or

it has many levels underground.

b. The grass is green. The sky is blue. Therefore, the grass is green and the sky

is blue.

c. g has order 3 or it has order 4. If g has order 3, then g has an inverse. If g has

order 4, then g has an inverse. Therefore, g has an inverse.

d. x is greater than 5 and x is less than 53. Therefore, x is less than 53.

e. If a|b, then a is a perfect square. If a|b, then b is a perfect square. Therefore,

if a|b, then a is a perfect square and b is a perfect square.

5. Read the following proof that the sum of two odd numbers is even. Discuss the rules

of inference used.

Proof.

Let x and y be odd numbers. Then x = 2k + 1 and y = 2j + 1 for
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some integers j and k. By algebra,

x+ y = 2k + 1 + 2j + 1 = 2(k + j + 1).

Note that k+ j + 1 is an integer because k and j are integers. Hence

x+ y is even.

6. Sometimes in constructing a proof we find it necessary to “weaken” an inequality.

For example, we might have already deduced that x < y but what we need in our

argument is that x ≤ y. It is okay to deduce x ≤ y from x < y because the former

is just shorthand for x < y ∨ x = y. What rule of inference are we using in order to

deduce that x ≤ y is true in this situation?
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Hints to exercises

2.1.2

1. First, it’s essential to know what is meant by the term “exclusive or”. This is the

interpretation that many people give to the word “or” – where “X or Y” means either

X is true or Y is true, but that it isn’t the case that both X and Y are true. This

(wrong) understanding of what “or” means is common because it is often the case

that X and Y represent complementary possibilities: old or new, cold or hot, right or

wrong. . . The truth table for exclusive or (often written XOR, pronounced “ex-or”,

symbolically it is usually ⊕) is

X Y X ⊕ Y

1 1 0

1 0 1

0 1 1

0 0 0

So it’s true when one, or the other, but not both of its inputs are true. The upshot

of the last sentence is that we can write X ⊕ Y ≡ (X ∨ Y ) ∧ ¬(X ∧ Y ).

The above reformulation should help.

2. The only question in your mind, when deciding whether a sentence is a statement,

should be “Does this thing have a definite truth value?” Well?

Isn’t it just plainly false?

3. Try to justify why this sentence can’t be either true or false.

4. Since the sentences involve three variables you’ll need truth tables with 8 rows.

Here’s a template.
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A B C (A ∧B) ∨ C A ∧ (B ∨ C)

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

5. Sorry, I know this is probably the hardest problem in the chapter, but I’m (mostly)

not going to help. Just one hint to help you get started: NAND and NOR are the

negations of AND and OR (respectively) so, for example, (X ∧ Y ) ≡ ¬(A |B).

6. Ask one of them what the other one would say to do.

2.2.1

1. I sometimes like to rephrase the implication X =⇒ Y as “X’s truth forces Y to

be true.” Does that help? If we know that X being true forces Y to be true, and

we also know that Y being true will force Z to be true, what can we conclude?

2. You should definitely be able to do this one on your own, but anyway, here’s an

outline of the table:

A B A =⇒ B ¬A ∨B

1 1

1 0

0 1

0 0

3. No help on this one other than to say that the associative property does not hold

for implications.
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4. Hmmm. . . This will seem like a strange hint, but if you were to hear a kid at the

playground say “Oh yeah? Well, I did call your mom a fatty and you still haven’t

clobbered me! Owww! OWWW!!! Stop hitting me!!”

What conditional sentence was he attempting to negate?

5. The way I see it there are eight possible ways to arrange “You fix the toilet” and

“I’ll pay the rent” (or their respective negations) around an implication arrow. Here

they all are. You decide which one sounds best.

• If you fix the toilet, then I’ll pay the rent.

• If you fix the toilet, then I won’t pay the rent.

• If you don’t fix the toilet, I’ll pay the rent.

• If you don’t fix the toilet, then I won’t pay the rent.

• If I payed the rent, then you must have fixed the toilet.

• If I payed the rent, then you must not have fixed the toilet.

• If I didn’t pay the rent, then you must have fixed the toilet.

• If I didn’t pay the rent, then you must not have fixed the toilet.

Some of those are truly strange.

6. Unless we’re talking about some celebrity bringing their pet Vietnamese pot-bellied

pig into first class with them, or possibly a catapult of some type. . . The antecedent

(the if part) is false, so Yay! I AM the king of Mesopotamia!! Whoo-hooh! What?

I’m not? Oh. But the if-then sentence is true. Bummer.

7. You’ll want to use |, the Scheffer stroke, aka NAND, because its truth table contains

three 1’s and one 0 – you’ll just need to figure out which of its inputs to negate so

as to make that one 0 occur in the second row of the table instead of the first.

8. a. If you do the crime, you must do the time.

b. If you don’t have a good job, you must’ve done poorly in school.

c. If you don’t treat others in a certain way, you can’t hope for others to treat you

in that fashion,

d. If there are no clouds, it can’t be raining.
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e. If
∑∞
n=0 an is not a convergent series, then either an ≤ bn, for some n or∑∞

n=0 bn is not a convergent series.

9. The converse is “If I watch your back, then you’ll watch my back.” (Sounds a little

dopey doesn’t it — likes its sort of a wishful thinking. . . ) The inverse is “If you

don’t watch my back, then I won’t watch your back.” (Sounds less vapid, but it

means the same thing. . . )

10. The inverse says — if the integral isn’t finite, then the series doesn’t converge. You

can cook-up a function that shows this to be false by (for example) creating one

with vertical asymptotes that occur in between the integer x-values. Even one such

pole can be enough to make the integral go infinite. The converse says that if the

series converges, the integral must be finite. The counter-example we just discussed

would work here too.

The contrapositive says that if the series doesn’t converge, then the integral must

not be finite. If we were allowed to use discontinuous functions, it isn’t too hard to

come up with an f that actually has zero area under it — just make f be identically

zero except at the integer x-values where it will take the same values as the terms

of the series. But wait, the function we just described isn’t “decreasing” — which

is probably why that hypothesis was put in there!

11. Could Demosthenes be telling the truth?

2.3.3

1. These “laws” should probably be layed-out in a big 3-by-3 table. Such a table would

of course have 9 cells, but we won’t be using the cells on the diagonal because they

would involve an operation distributing over itself. (That can’t happen, can it?) I’m

going to put a few of the entries in, and you do the rest.
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Figure 2.15: Circuits for De Morgan’s law.

+ ∗ ˆ

+ ∅
x+ (y ∗ z)

= (x+ y) ∗ (x+ z)

x+ (yz)

= (x+ y)(x+z)

∗
x ∗ (y + z)

= (x ∗ y) + (x ∗ z)
∅

ˆ ∅

2. You should be able to do these on your own.

3. Figure 2.15 shows the negation of an AND is the same as the OR of the same inputs

negated.

4. Neither of these is particularly amenable to simplification. Nor, perhaps, is it readily

apparent what “simplify” means in this context! My interpretation is that we should

look for a logically equivalent expression using the fewest number of operators and if

possible not using the more complicated operators ( =⇒ and ⇐⇒ ). However, if

we try to rewrite the first statement’s negation using only ∧, ∨ and ¬ we get things

that look a lot more complicated than (A ∨ B) ⇐⇒ ¬C — the quick way to

negate a biconditional is simply to negate one of its parts.

The second statement’s negation turns out to be the same thing as exclusive or, so

a particularly simple response would be to write A⊕B although that feels a bit like

cheating, so maybe we should answer with (A∨B)∧¬(A∧B) – but that answer is

what we would get by simply applying the rule for negating a conditional and doing

no further simplification.

5. a. “You smoke and you haven’t got lung cancer.”

b. “A substance glitters and it is necessarily gold.”
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c. “There is smoke,and there isn’t fire.”

d. “A number is squared, and the result is not positive.”

e. “A matrix is square and it is not invertible.”

6. The ones from Wicca and George Bernard Shaw are just there for laughs.

For the remainder, you may want to contrast how restrictive they seem. For example

the Christian version is (in my opinion) a lot stronger than the one from the Talmud

— “treat others as you would want to be treated” restricts your actions both in

terms of what you would like done to you and in terms of what you wouldn’t like

done to you; “Don’t treat your fellows in a way that would be hateful to you.” is

leaving you a lot more freedom of action, since it only prohibits you from doing

those things you wouldn’t want done to yourself to others. The Hindus, Epictetus

and the Jews (and the Wiccans for that matter) seem to be expressing roughly the

same sentiment — and promoting an ethic that is rather more easy for humans to

conform to!

From a logical perspective it might be nice to define open sentences:

W (x, y) = “x would want y done to him.”

N(x, y) = “x would not want y done to him.”

D(x, y) = “do y to x.”

DD(x, y) = “don’t do y to x.”

In which case, the aphorism from Luke would be

(W (you, y) =⇒ D(others, y)) ∧ (N(you, y) =⇒ DD(others, y))

7. Here’s the second one:

Proof. Either Wellington is a knave or Wellington is a knight.

It’s either one thing or the other!

If Wellington is a knight it follows that Bonaparte is a knight.
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That’s what he said he would tell us and if he’s a knight we can trust him.

If Bonaparte is a knight then Wellington is a knave.

True, because that is one of the things Bonaparte states.

So, if Wellington is a knight then Wellington is a knave (which is impossible!)

This is just summing up what was deduced above.

Thus, Wellington is a knave.

Because the other possibility leads to something possible.

Since Wellington is a knave, his statement “I would tell you that Bonaparte is a

knight” is false.

Knave’s statements are always false!}

So Wellington would in fact tell us that Bonaparte is a knave.

He was lying when he said he would tell us B is a knight.

Since Wellington is a knave we conclude that Bonaparte is a knight.

Wait, now I’m confused. . . can you do this part?

Thus Bonaparte is a knight and Wellington is a knave (as claimed).

Just summarizing.

2.4.1

Write two-column proofs that verify each of the following logical equivalences.

1. Here’s the last one:
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Proof.

¬(A ∧B) ∧ ¬(A ∧ C)

De Morgan’s law (times 2)
∼= (¬A ∨ ¬B) ∧ (¬A ∨ ¬C)

Distributive law
∼= ¬A ∨ (¬B ∧ ¬C)

2.5.1

1. Unique existence is essentially saying that there is exactly 1 element of the universe

of discourse that makes P (x) true. The negation of “there is exactly 1” is “there’s

either none, or at least 2”. Is that enough of a hint?

2. a. ∀x ∃y L(x, y).

This is a fairly optimistic statement “For everyone out there, there’s somebody

that they are in love with.”

b. ∃x ∀y L(x, y).

This one, on the other hand, says something fairly strange: “There’s someone

who has fallen in love with every other human being.” I don’t know, maybe the

Dalai Lama? Mother Theresa?. . . Anyway, do the last two for yourself.

c. ∀x ∀y L(x, y).

d. ∃x ∃y L(x, y).

Here’s a couple of bonus questions. Two of the statements above have different

meanings if you just interchange the order that the quantifiers appear in. What do

the following mean (in contrast to the ones above)?

e. ∃y ∀x L(x, y).

f. ∀y ∃x L(x, y).
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3. This is asking you to put a couple of things together. The first thing is that in

negating a quantified statement, we get a new statement with all the quantified

variables occurring in the same order but with ∀’s and ∃’s interchanged. The second

issue is that the logical statement that appears after all the quantifiers needs to be

negated. Since, in this statement we have a conditional, you must remember to

negate that properly (its negation is a conjunction).

∃ε > 0∀δ > 0∃x (|x− c| < δ) ∧ (|f(x)− l| ≥ ε).

4. The exceptions are very small prime numbers. You should be able to find them

easily.

5. a. False.

b. True.

c. True.

d. False

e. True.

f. entree −→ beverage

g. ∃ person p such that ∀ desserts d, p did not take d. Yes I do. No, I got them

right in the first place!}

2.6.2

1. This is what many people refer to as the transitive rule of implication. As an

argument form it’s known as “hypothetical syllogism.”

2. Look at the lines that start with the word “Either.”

3. a.
W ∨ A

¬W

∴ A

This is “disjunctive syllogism.”
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b. Let C(x) be the open sentence “x has a car” and let E(x) be the open sentence

“x escaped the flooding.” This argument is actually the particular form of

universal modus ponens: (See the final question in the next set of exercises.)

∀x,C(x) =⇒ E(x)

C(Sandra)

∴ E(Sandra)

At this stage in the game it would be perfectly fine to just identify this as modus

ponens and not worry about the quantifiers that appear.

c. Valid form.

d. Valid form.

2.7.1

1. a. This looks like modus tollens. Let G refer to “guilt” and P refer to “in prison”

∀x,G(x) =⇒ P (x)

¬P (George)

∴ ¬G(George)

You should note that while the form is valid, there is something terribly wrong

with this argument. Is it really true that everyone who is guilty of a crime is in

prison?

2. In the following truth table the propositional variables occupy the first three columns,

the argument’s premises are in the next three columns and the conclusion is in the

right-most column. The truth values have already been filled-in. You only need to

identify the critical rows and verify that the conclusion is true in those rows.
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A B C (A ∨B) ∨ C ¬A ¬B C

1 1 1 1 0 0 1

1 1 0 1 0 0 0

1 0 1 1 0 1 1

1 0 0 1 0 1 0

0 1 1 1 1 0 1

0 1 0 1 1 0 0

0 0 1 1 1 1 1

0 0 0 0 1 1 0

3. All of them except for one are the particular form — number 4 is the exception.

Here’s an analysis of number 5:

All fish live in water. The octopus lives in water. Therefore, the octopus

is a fish.

Let F (x) be the open sentence “x is a fish” and let W (x) be the open sentence “x

lives in water.”

Our argument has the form

∀x, F (x) =⇒ W (x)

W (the octopus)

∴ F (the octopus)

Clearly something is wrong — a converse error has been made — if everything that

lived in water was necessarily a fish the argument would be OK (in fact it would

then be the particular form of universal modus ponens). But that is the converse of

the major premise given.

4. a. Disjunctive addition.

b. Conjunctive addition.

c. Constructive dilemma.
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d. Conjunctive simplification.

e. Note that the conclusion could be re-expressed as the conjunction of the two

conditionals that are found in the premises. This is conjunctive addition with a

bit of “window dressing.”

5. The definition for “odd” only involves the oddness of a single integer, but the first

line of our proof is a conjunction claiming that x and y are both odd. It seems that

two conjunctive simplifications, followed by applications of the definition, followed

by a conjunctive addition have been used in order to go from the first sentence to

the second.

6. Disjunctive addition.
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Chapter 3

Proof techniques I — Standard
methods

Love is a snowmobile racing across the tundra and then suddenly it flips over,

pinning you underneath. At night, the ice weasels come.

—Matt Groening

3.1 Direct proofs of universal statements

If you form the product of four consecutive numbers, the result will be one less than a

perfect square. Try it!

1 · 2 · 3 · 4 = 24 = 52 − 1,

2 · 3 · 4 · 5 = 120 = 112 − 1,

3 · 4 · 5 · 6 = 360 = 192 − 1.

It always works!

The three calculations that we’ve carried out above constitute an inductive argument in

favour of the result. If you like, we can try a bunch of further examples,

137
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13 · 14 · 15 · 16 = 43680 = 2092 − 1,

14 · 15 · 16 · 17 = 571200 = 2392 − 1.

But really, no matter how many examples we produce, we haven’t proved the statement

— we’ve just given evidence.

Generally, the first thing to do in proving a universal statement like this is to rephrase it

as a conditional. The resulting statement is a Universal Conditional Statement or a UCS.

The reason for taking this step is that the hypotheses will then be clear — they form the

antecedent of the UCS. So, while you won’t have really made any progress in the proof

by taking this advice, you will at least know what tools you have at hand. Taking the

example we started with, and rephrasing it as a UCS we get

∀a, b, c, d ∈ Z, (a,b,c,d consecutive) =⇒ ∃k ∈ Z, a·b·c·d = k2 − 1

The antecedent of the UCS is that a, b, c and d must be consecutive. By concentrating our

attention on what it means to be consecutive, we should quickly realize that the original

way we thought of the problem involved a red herring. We don’t need to have variables

for all four numbers; because they are consecutive, a uniquely determines the other three.

Finally, we have a version of the statement that we’d like to prove that should lend itself

to our proof efforts.

Theorem 3.1.

∀a ∈ Z,∃k ∈ Z, a(a+ 1)(a+ 2)(a+ 3) = k2 − 1.

In this simplistic example, the only thing we need to do is come up with a value for k

given that we know what a is. In other words, a “proof” of this statement involves doing

some algebra.

Without further ado. . .
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Proof. Suppose that a is a particular but arbitrarily chosen integer. Consider the product

of the four consecutive integers, a, a + 1, a + 2 and a + 3. We would like to show that

this product is one less than the square of an integer k. Let k be a2 + 3a+ 1.

First, note that

a(a+ 1)(a+ 2)(a+ 3) = a4 + 6a3 + 11a2 + 6a.

Then, note that

k2 − 1 = (a2 + 3a+ 1)2 − 1

= (a4 + 6a3 + 11a2 + 6a+ 1)− 1

= a4 + 6a3 + 11a2 + 6a.

Now, if you followed the algebra above, the proof stands as a completely valid argument

showing the truth of our proposition, but this is very unsatisfying! All the real work was

concealed in one stark little sentence: “Let k be a2 + 3a + 1.” Where on earth did that

particular value of k come from? The answer to that question should hopefully convince

you that there is a huge difference between devising a proof and writing one. A good

proof can sometimes be somewhat akin to a good demonstration of magic, a magician

doesn’t reveal the inner workings of his trick, neither should a mathematician feel guilty

about leaving out some of the details behind the work! Heck, there are plenty of times

when you just have to guess at something, but if your guess works out, you can write a

perfectly correct proof.

In devising the proof above, we multiplied out the consecutive numbers and then realized

that we’d be done if we could find a polynomial in a whose square was a4 + 6a3 + 11a2 +

6a + 1. Now, obviously, we’re going to need a quadratic polynomial, and because the

leading term is a4 and the constant term is 1, it should be of the form a2 + ma + 1.
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Squaring this gives a4 + 2ma3 + (m2 + 2)a2 + 2ma + 1 and comparing that result with

what we want, we pretty quickly realize that m had better be 3. So it wasn’t magic after

all!

This seems like a good time to make a comment on polynomial arithmetic. Many people

give up (or go searching for a computer algebra system) when dealing with products of

anything bigger than binomials. This is a shame because there is an easy method using a

table for performing such multiplications. As an example, in devising the previous proof

we needed to form the product a(a + 1)(a + 2)(a + 3), now we can use the distributive

law or the infamous F.O.I.L rule to multiply pairs of these, but we still need to multiply

(a2 + a) with (a2 + 5a+ 6). Create a table that has the terms of these two polynomials

as its row and column headings.

a2 5a 6

a2

a

Now, fill in the entries of the table by multiplying the corresponding row and column

headers.

a2 5a 6

a2 a4 5a3 6a2

a a3 5a2 6a

Finally, add up all the entries of the table, combining any like terms.

You should note that the F.O.I.L rule is just a mnemonic for the case when the table has

two rows and two columns.

Okay, let’s get back to doing proofs. We are going to do a lot of proofs involving the

concepts of elementary number theory. So, as a convenience, all of the definitions that

were made in Chapter 1 are gathered below:
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Definition 3.1. (Even)

∀n ∈ Z, n is even ⇐⇒ ∃k ∈ Z, n = 2k

Definition 3.2. (Odd)

∀n ∈ Z, n is even ⇐⇒ ∃k ∈ Z, n = 2k

Definition 3.3. (Divisibility)

∀n ∈ Z, ∀d > 0 ∈ Z, d |n ⇐⇒ ∃k ∈ Z, n = kd

Definition 3.4. (Floor)

∀x ∈ R, y = bxc ⇐⇒ y ∈ Z ∧ y ≤ x < y + 1

Definition 3.5. (Ceiling)

∀x ∈ R, y = dxe ⇐⇒ y ∈ Z ∧ y − 1 < x ≤ y

Definition 3.6. (Quotient-remainder theorem, Div and Mod)

∀n, d > 0 ∈ Z

∃!q, r ∈ Z, n = qd+ r ∧ 0 ≤ r < d

n div d = q

n mod d = r

Definition 3.7. (Prime)

∀ p ∈ Z, p is prime ⇐⇒ (p > 1) ∧ (∀x, y ∈ Z>0, p = xy =⇒ x = 1 ∨ y = 1)

In this section, we are concerned with direct proofs of universal statements. Such state-

ments come in two flavours — those that appear to involve conditionals, and those that

don’t:

Every prime greater than two is odd.

versus
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For all integers n, if n is a prime greater than two, then n is odd.

These two forms can readily be transformed one into the other, so we will always concen-

trate on the latter. A direct proof of a UCS always follows a form known as “generalizing

from the generic particular.” We are trying to prove that ∀x ∈ U, P (x) =⇒ Q(x). The

argument (in skeletal outline) will look like:

Proof. Suppose that a is a particular but arbitrary element of U such that

P (a) holds.
...

Therefore Q(a) is true. Thus we have shown that for all x in U , P (x) =⇒

Q(x).

Okay, so this outline is pretty crappy. It tells you how to start and end a direct proof, but

those obnoxious dot-dot-dots in the middle are where all the real work has to go. If I could

tell you (even in outline) how to fill in those dots, that would mean mathematical proof isn’t

really a very interesting activity to engage in. Filling in those dots will sometimes (rarely)

be obvious, more often it will be extremely challenging; it will require great creativity,

loads of concentration, you’ll call on all your previous mathematical experiences, and you

will most likely experience a certain degree of anguish. Just remember that your sense

of accomplishment is proportional to the difficulty of the puzzles you attempt. So let’s

attempt another. . .

Recall Definition 3.4 of the floor of a real number:

y = bxc ⇐⇒ (y ∈ Z ∧ y ≤ x < y + 1).

There is a sad tendency for people to apply old rules in new situations just because of a

chance similarity in the notation. The brackets used in notating the floor function look

very similar to ordinary parentheses, so the following “rule” is often proposed
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bx+ yc = bxc+ byc

Exercise 3.1. Find a counterexample to the previous “rule.”

What is (perhaps) surprising is that if one of the numbers involved is an integer then the

“rule” really works.

Theorem 3.2.

∀x ∈ R, ∀n ∈ Z, bx+ nc = bxc+ bnc

Since the floor of an integer is that integer, we could restate this as bx+ nc = bxc+ n.

Now, let’s try rephrasing this theorem as a UCS: If x is a real number and n is an integer,

then bx+nc = bxc+n. This is bad. . . it appears that the only hypotheses that we can use

involve what kinds of numbers x and n are — our hypotheses aren’t particularly potent.

Your next most useful allies in constructing proofs are the definitions of the concepts

involved. The quantity bxc appears in the theorem, let’s make use of the definition:

a = bxc ⇐⇒ a ∈ Z ∧ a ≤ x < a+ 1.

The only other floor function that appears in the statement of the theorem (perhaps even

more prominently) is bx+ nc, here, the definition gives us

b = bx+ nc ⇐⇒ b ∈ Z ∧ b ≤ x+ n < b+ 1.

These definitions are our only available tools so we’ll certainly have to make use of them,

and it’s important to notice that that is a good thing; the definitions allow us to work

with something well-understood (the inequalities that appear within them) rather than

with something new and relatively suspicious (the floor notation). Putting the proof of

this statement together is an exercise in staring at the two definitions above and noting

how one can be converted into the other. It is also a testament to the power of naming

things.
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Proof. Suppose that x is a particular but arbitrary real number and that n is a particular

but arbitrary integer. Let a = bxc. By the definition of the floor function it follows that

a is an integer and a ≤ x < a + 1. By adding n to each of the parts of this inequality

we deduce a new (and equally valid) inequality, a + n ≤ x + n < a + n + 1. Note that

a + n is an integer and the inequality above together with this fact constitute precisely

the definition of a + n = bx + nc. Finally, recalling that a = bxc (by assumption), and

rewriting, we obtain the desired result

bx+ nc = bxc+ n.

As we’ve seen in the examples presented in this section, coming up with a proof can

sometimes involve a bit of ingenuity. But, sometimes, there is a “follow your nose” sort

of approach that will allow you to devise a valid argument without necessarily displaying

any great leaps of genius! Here are a few pieces of advice about proof-writing:

• Before anything else, determine precisely what hypotheses you can use.

• Jot down the definitions of anything in the statement of the theorem.

• There are 26 letters at your disposal (and even more if you know Greek) (and you

can always throw on subscripts!) don’t be stingy with letters. The nastiest mistake

you can make is to use the same variable for two different things.

• Please write a rough draft first. Write two drafts! Even if you can write beautiful,

lucid prose on the first go around, it won’t fly when it comes to organizing a proof.

• The statements in a proof are supposed to be logical statements. That means they

should be Boolean (statements that are either true or false). An algebraic expression

all by itself doesn’t count, an inequality or an equality does.

• Don’t say “if” when you mean “since.” Really! If you start a proof about rational

numbers like so:

Proof. Suppose that x is a particular but arbitrary rational number.

If x is a rational number, it follows that. . .
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people are going to look at you funny. What’s the point of supposing that x is

rational, then acting as if you’re in doubt of that fact by writing “if”? You mean

“since.”

• Mark off the beginning and the end of your proofs as a hint to your readers. In this

book, we use the following template:

Proof.

(Beginning of proof.)
...

(End of proof.)

Instead of a square at the end, some authors use the abbreviation Q.E.D.1

We’ll close this section with a word about axioms. The axioms in any given area of math

are your most fundamental tools. Axioms don’t need to be proved — we are supposed

to just accept them! A very common problem for beginning proof writers is telling the

difference between statements that are axiomatic and statements that require some proof.

For instance, in the exercises for this section, there is a problem that asks us to prove that

the sum of two rational numbers is rational. Doesn’t this seem like it might be one of the

axioms of rational numbers? Is it really something that can be proved?

Well, we know how the process of adding rational numbers works: we put the fractions

over a common denominator and then just add numerators. Do you see how adding

fractions really rests on our ability to add the numerators (which are integers). So, in

doing that exercise, you can use the fact (indeed, you’ll need to use the fact) that the

sum of two integers is an integer. So how about that statement? Is it necessary to prove

that adding integers produces an integer?

As a matter of fact it is necessary since the structure of the integers rests on a foundation

known as the Peano axioms for the naturals — and the Peano axioms don’t include one

that guarantees that the sum of two naturals is also a natural. If you are tempted to trace

this whole thing back, to “find out how deep the rabbit hole goes,” I commend you. But,
1Quod erat demonstrandum or “(that) which was to be demonstrated.” some authors prefer placing a small

rectangle at the end of their proofs, but Q.E.D. seems more pompous.
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if you just want to be able to get on with doing your homework problems, I sympathize

with that sentiment too. Let’s agree that integers behave the way we’ve come to expect

— if you add or multiply integers the result will be an integer.

3.1.1 Exercises

1. Every prime number greater than 3 is of one of the two forms 6k + 1 or 6k + 5.

What statement(s) could be used as hypotheses in proving this theorem?

2. Prove that 129 is odd.

3. Prove that the sum of two rational numbers is a rational number.

4. Prove that the sum of an odd number and an even number is odd.

5. Prove that if the sum of two integers is even, then so is their difference.

6. Prove that for every real number x, 2
3 < x < 3

4 =⇒ b12xc = 8.

7. Prove that if x is an odd integer, then x2 is of the form 4k + 1 for some integer k.

8. Prove that for all integers a and b, if a is odd and 6 |(a+ b), then b is odd.

9. Prove that ∀x ∈ R, x 6∈ Z =⇒ bxc+ b−xc = −1.

10. Define the evenness of an integer n by:

evenness(n) = k ⇐⇒ 2k |n ∧ 2k+1 - n

State and prove a theorem concerning the evenness of products.

11. Suppose that a, b and c are integers such that a |b and b |c. Prove that a |c.

12. Suppose that a, b, c and d are integers with a 6= c. Further, suppose that x is a real

number satisfying the equation

ax+ b

cx+ d
= 1.

Show that x is rational. Where is the hypothesis a 6= c used?

13. Show that if two positive integers a and b satisfy a |b and b |a then they are equal.
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3.2 More direct proofs

In creating a direct proof, we need to look at our hypotheses, consider the desired con-

clusion, and develop a strategy for transforming A into B. Quite often you’ll find it easy

to make several deductions from the hypotheses, but none of them seems to be headed

in the direction of the desired conclusion. The usual advice at this stage is, “Try working

backwards from the conclusion.”2

There is a lovely result known as the “arithmetic-geometric mean inequality” whose proof

epitomizes this approach. Basically, this inequality compares two different ways of getting

an “average” between two real numbers. The arithmetic mean of two real numbers a and

b is the one you’re probably used to, (a + b)/2. Many people just call this the “mean”

of a and b without using the modifier “arithmetic” but as we’ll see, our notion of what

intermediate value to use in between two numbers is dependent on context. Consider the

following two sequences of numbers (both of which have a missing entry)

2, 9, 16, 23, __, 37, 44

and

3, 6, 12, 24, __, 96, 192.

How should we fill in the blanks?

The first sequence is an arithmetic sequence. Arithmetic sequences are characterized by

the property that the difference between successive terms is a constant. The second

sequence is a geometric sequence. Geometric sequences have the property that the ratio

of successive terms is a constant. The blank in the first sequence should be filled with

the arithmetic mean of the surrounding entries (23 + 37)/2 = 30. The blank in the

second sequence should be filled using the geometric mean of its surrounding entries:
√

24 · 96 = 48.

Given that we accept the utility of having two inequivalent concepts of mean that can

be used in different contexts, it is interesting to see how these two means compare to
2Some people refer to this as the forwards-backwards method, since you work backwards from the conclusion,

but also forwards from the premises, in the hopes of meeting somewhere in the middle.
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one another. The arithmetic-geometric mean inequality states that the arithmetic mean

is always bigger.

∀a, b ∈ R, a, b ≥ 0 =⇒ a+ b

2 ≥
√
ab

In proving this statement, we have little choice but to work backwards from the conclusion

because the only hypothesis we have to work with is that a and b are non-negative real

numbers — which isn’t a particularly potent tool. But what should we do?

There isn’t a good response to that question. We’ll just have to try a bunch of different

things and hope that something will work out. When we finally get around to writing

up our proof though, we’ll have to rearrange the statements in the opposite order from

the way they were discovered. This means that we would be ill-advised to make any

uni-directional inferences, we should strive to make biconditional connections between our

statements (or else try to intentionally make converse errors).

The first thing that appeals to your humble author is to eliminate both the fractions and

the radicals. . .

a+ b

2 ≥
√
ab

⇐⇒ a+ b ≥ 2
√
ab

⇐⇒ (a+ b)2 ≥ 4ab

⇐⇒ a2 + 2ab+ b2 ≥ 4ab

One of the steps above involves squaring both sides of an inequality. We need to ask

ourselves if this step is really reversible. In other words, is the following conditional true?

∀x, y ∈ R≥0, x ≥ y =⇒
√
x ≥ √y
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Exercise 3.2. Provide a justification for the previous implication.

What should we try next? There’s really no good justification for this but experience

working with quadratic polynomials either in equalities or inequalities leads most people

to try “moving everything to one side,” that is, manipulating things so that one side of

the equation or inequality is zero.

a2 + 2ab+ b2 ≥ 4ab

⇐⇒ a2 − 2ab+ b2 ≥ 0

Whoa! We’re done! Do you see why? If not, I’ll give you one hint: the square of any real

number is greater than or equal to zero.

Exercise 3.3. Re-assemble all of the steps taken in the previous few paragraphs into a

proof of the arithmetic-geometric mean inequality.

3.2.1 Exercises

1. Suppose you have a savings account which bears interest compounded monthly. The

July statement shows a balance of $2104.87 and the September statement shows a

balance $2125.97. What would be the balance on the (missing) August statement?

2. Recall that a quadratic equation ax2 + bx+ c = 0 has two real solutions if and only

if the discriminant b2 − 4ac is positive. Prove that if a and c have different signs

then the quadratic equation has two real solutions.

3. Prove that if x3 − x2 is negative, then 3x+ 4 < 7.

4. Prove that for all integers a, b, and c,, if a | b and a | (b+ c), then a | c.

5. Show that if x is a positive real number, then x+ 1
x ≥ 2.

6. Prove that for all real numbers a, b, and c, if ac < 0, then the quadratic equation

ax2 + bx+ c = 0 has two real solutions.
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Hint: The quadratic equation ax2 + bx+ c = 0 has two real solutions if and only if

b2 − 4ac > 0 and a 6= 0.

7. Show that
(n
k

)
·
(k
r

)
=
(n
r

)
·
(n−r
k−r
)
(for all integers r, k and n with r ≤ k ≤ n).

8. In proving the product rule in calculus using the definition of the derivative, we might

start our proof with:

d
dx (f(x) · g(x))

= lim
h−→0

f(x+ h) · g(x+ h)− f(x) · g(x)
h

The last two lines of our proof should be:

= lim
h−→0

f(x+ h)− f(x)
h

· g(x) + f(x) · lim
h−→0

g(x+ h)− g(x)
h

= d
dx (f(x)) · g(x) + f(x) · d

dx (g(x))

Fill in the rest of the proof.
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3.3 Indirect proofs: contradiction and contraposition

Suppose we are trying to prove that all thrackles are polycyclic3. A direct proof of this

would involve looking up the definition of what it means to be a thrackle, and of what

it means to be polycyclic, and somehow discerning a way to convert whatever thrackle’s

logical equivalent is into the logical equivalent of polycyclic. As happens fairly often, there

may be no obvious way to accomplish this task.

Indirect proof takes a completely different tack. Suppose you had a thrackle that wasn’t

polycyclic, and furthermore, show that this supposition leads to something truly impossible.

Well, if it’s impossible for a thrackle to not be polycyclic, then it must be the case that

all of them are. Such an argument is known as proof by contradiction.

Quite possibly the sweetest indirect proof known is Euclid’s proof that there are an infinite

number of primes.

Theorem 3.3 (Euclid). The set of all prime numbers is infinite.

Proof. Suppose on the contrary that there are only a finite number of primes. This finite

set of prime numbers could, in principle, be listed in ascending order.

{p1, p2, p3, . . . , pn}

Consider the number N formed by adding 1 to the product of all of these primes.

N = 1 +
n∏
k=1

pk

Clearly, N is much larger than the largest prime pn, so N cannot be a prime number itself.

Thus N must be a product of some of the primes in the list. Suppose that pj is one of

the primes that divides N . Now notice that, by construction, N would leave remainder 1

upon division by pj . This is a contradiction since we cannot have both pj |N and pj - N .
3Both of these strange sounding words represent real mathematical concepts, however, they don’t have any-

thing to do with one another.
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Since the supposition that there are only finitely many primes leads to a contradiction,

there must indeed be an infinite number of primes.

If you are working on proving a UCS and the direct approach seems to be failing, you

may find that another indirect approach, proof by contraposition, will do the trick. In one

sense, this proof technique isn’t really all that indirect; what one does is determine the

contrapositive of the original conditional and then prove that directly. In another sense,

this method is indirect because a proof by contraposition can usually be recast as a proof

by contradiction fairly easily.

The easiest proof I know of using the method of contraposition (and possibly the nicest

example of this technique) is the proof of the lemma we stated in Section 1.6 in the

course of proving that
√

2 wasn’t rational. In case you’ve forgotten, we needed the fact

that whenever x2 is an even number, so is x.

Let’s first phrase this as a UCS.

∀x ∈ Z, x2 even =⇒ x even

Perhaps you tried to prove this result earlier. If so, you probably came across the conceptual

problem that all you have to work with is the evenness of x2 which doesn’t give you much

ammunition in trying to show that x is even. The contrapositive of this statement is:

∀x ∈ Z, x not even =⇒ x2 not even

Now, since x and x2 are integers, there is only one alternative to being even — so we can

re-express the contrapositive as

∀x ∈ Z, x odd =⇒ x2 odd.

Without further ado, here is the proof:
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Theorem 3.4.

∀x ∈ Z, x2 even =⇒ x even

Proof. This statement is logically equivalent to

∀x ∈ Z, x odd =⇒ x2 odd

so we prove that instead.

Suppose that x is a particular but arbitrarily chosen integer such that x is odd. Since x

is odd, there is an integer k such that x = 2k + 1. It follows that

x2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Finally, we see that x2 must be odd because it is of the form 2m+1, where m = 2k2 +2k

is clearly an integer.

Let’s have a look at a proof of the same statement done by contradiction.

Proof. We wish to show that

∀x ∈ Z, x2 even =⇒ x even.

Suppose to the contrary that there is an integer x such that x2 is even but x is odd.4 Since

x is odd, there is an integer m such that x = 2m + 1. Therefore, by simple arithmetic,

we obtain x2 = 4m2 + 4m+ 1 which is clearly odd. This is a contradiction because x2 is

even by assumption.

The main problem in applying the method of proof by contradiction is that it usually

involves “cleverness.” You have to come up with some reason why the presumption that

the theorem is false leads to a contradiction — and this may or may not be obvious. More
4Recall that the negation of a UCS is an existentially quantified conjunction.
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than any other proof technique, proof by contradiction demands that we use drafts and

rewriting. After monkeying around enough that we find a way to reach a contradiction,

we need to go back to the beginning of the proof and highlight the feature that we will

eventually contradict! After all, we want it to look like our proofs are completely clear,

concise and reasonable even if their formulation caused us some sort of Gordian-level

mental anguish.

We’ll end this section with an example from geometry.

Theorem 3.5. Among all triangles inscribed in a fixed circle, the one with maximum area

is equilateral.

Proof. We’ll proceed by contradiction. Suppose to the contrary that there is a triangle,

4ABC, inscribed in a circle having maximum area that is not equilateral. Since 4ABC

is not equilateral, there are two sides of it that are not equal. Without loss of generality,

suppose that sides AB and BC have different lengths. Consider the remaining side AC

to be the base of this triangle. We can construct another triangle 4AB′C, also inscribed

in our circle, and also having AC as its base, having a greater altitude than 4ABC —

since the area of a triangle is given by the formula bh/2 (where b is the base, and h

is the altitude), this triangle’s area is evidently greater than that of 4ABC. This is a

contradiction since 4ABC was presumed to have maximal area.

We leave the actual construction 4AB′C to the following exercise.

Exercise 3.4. Consider Figure 3.1. Where should we place the point B′ in order to create

a triangle 4AB′C having greater area than any triangle such as 4ABC which is not

isosceles?

3.3.1 Exercises

1. Prove that if the cube of an integer is odd, then that integer is odd.
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B

A C

Figure 3.1: Triangle inscribed in a circle.

2. Prove that whenever a prime p does not divide the square of an integer, it also

doesn’t divide the original integer. (p - x2 =⇒ p - x)

3. Prove (by contradiction) that there is no largest integer.

4. Prove (by contradiction) that there is no smallest positive real number.

5. Prove (by contradiction) that the sum of a rational and an irrational number is

irrational.

6. Prove (by contraposition) that for all integers x and y, if x+ y is odd, then x 6= y.

7. Prove (by contraposition) that for all real numbers a and b, if ab is irrational, then

a is irrational or b is irrational.

8. A Pythagorean triple is a set of three natural numbers, a, b and c, such that a2+b2 =

c2. Prove that, in a Pythagorean triple, at least one of a and b is even. Use either

a proof by contradiction or a proof by contraposition.

9. Suppose you have two pairs of positive real numbers whose products are 1. That is,

you have (a, b) and (c, d) in R2 satisfying ab = cd = 1. Prove that a < c implies

that b > d.
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3.4 Disproofs

The idea of a “disproof” is really just semantics — in order to disprove a statement we

need to prove its negation.

So far we’ve been discussing proofs quite a bit but have paid very little attention to a really

huge issue. If the statements we are attempting to prove are false, no proof is ever going to

be possible. Really, a prerequisite to developing a facility with proofs is developing a good

“lie detector.” We need to be able to guess, or quickly ascertain, whether a statement is

true or false. If we are given a universally quantified statement, the first thing to do is try

it out for some random elements of the universe we’re working in. If we happen across a

value that satisfies the statement’s hypotheses but doesn’t satisfy the conclusion, we’ve

found what is known as a counterexample.

Consider the following statement about integers and divisibility:

Conjecture 3.1.

∀a, b, c ∈ Z, a |bc =⇒ a |b ∨ a |c.

This is phrased as a UCS, so the hypothesis is clear. We’re looking for three integers

so that the first divides the product of the other two. In the following table, we have

collected several values for a, b and c such that a |bc.

a b c a |b ∨ a |c?

2 7 6 yes

2 4 5 yes

3 12 11 yes

3 5 15 yes

5 4 15 yes

5 10 3 yes

7 2 14 yes

Exercise 3.5. As noted in Section 1.2, the statement above is related to whether or not

a is prime. Note that in the table, only prime values of a appear. This is a rather broad
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hint. Find a counterexample to Conjecture 3.1.

There can be times when the search for a counterexample starts to feel really futile. Would

you think it likely that a statement about natural numbers could be true for (more than)

the first 50 numbers and yet still be false?

Exercise 3.6. Find a counterexample to the following statement:

∀n ∈ Z+, n2 − 79n+ 1601 is prime.

Hidden within Euclid’s proof of the infinitude of the primes is a sequence. Recall that in

the proof, we deduced a contradiction by considering the number N defined by

N = 1 +
n∏
k=1

pk.

Define a sequence by

Nn = 1 +
n∏
k=1

pk,

where {p1, p2, . . . , pn} are the actual first n primes. The first several values of this

sequence are:
n Nn

1 1 + (2) = 3

2 1 + (2 · 3) = 7

3 1 + (2 · 3 · 5) = 31

4 1 + (2 · 3 · 5 · 7) = 211

5 1 + (2 · 3 · 5 · 7 · 11) = 2311
...

...

In the proof, we deduced a contradiction by noting that Nn is much larger than pn. So if

pn is the largest prime, it follows that Nn can’t be prime — but what really appears to

be the case (just look at that table!) is that Nn actually is prime for all n.

Exercise 3.7. Find a counterexample to the conjecture that 1 +
n∏
k=1

pk is itself always a

prime.
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3.4.1 Exercises

1. Find a polynomial that assumes only prime values for a reasonably large range of

inputs.

2. Find a counterexample to the conjecture that ∀a, b, c ∈ Z, a | bc =⇒ a | b ∨ a | c

using only powers of 2.

3. The alternating sum of factorials provides an interesting example of a sequence of

integers.

1! = 1

2!− 1! = 1

3!− 2! + 1! = 5

4!− 3! + 2!− 1! = 19

etc.

Are they all prime? (After the first two 1’s.)

4. It has been conjectured that whenever p is prime, 2p−1 is also prime. Find a minimal

counterexample.

5. True or false: The sum of any two irrational numbers is irrational. Prove your

answer.

6. True or false: There are two irrational numbers whose sum is rational. Prove your

answer.

7. True or false: The product of any two irrational numbers is irrational. Prove your

answer.

8. True or false: There are two irrational numbers whose product is rational. Prove

your answer.

9. True or false: Whenever an integer n is a divisor of the square of an integer, m2, it

follows that n is a divisor of m as well. (In symbols, ∀n ∈ Z,∀m ∈ Z, n |m2 =⇒

n |m .) Prove your answer.
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10. In an exercise in Section 3.2, we proved that the quadratic equation ax2 +bx+c = 0

has two solutions if ac < 0. Find a counterexample which shows that this implication

cannot be replaced with a biconditional.
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3.5 Proofs by cases and by exhaustion

Proof by exhaustion is the least attractive proof method from an aesthetic perspective.

An exhaustive proof consists of literally (and exhaustively) checking every element of the

universe to see if the given statement is true for it. Usually, of course, this is impossible

because the universe of discourse is infinite; but when the universe of discourse is finite,

one certainly can’t argue the validity of an exhaustive proof.

In the last few decades, the introduction of powerful computational assistance for math-

ematicians has led to a funny situation. There is a growing list of important results that

have been “proved” by exhaustion using a computer. Important examples of this phe-

nomenon are the non-existence of a projective plane of order 10 (Lam (1991)) and the

only known value of a Ramsey number for hypergraphs (Radziszowski (1996)).

Proof by cases is subtly different from exhaustive proof — for one thing a valid proof

by cases can be used in an infinite universe. In a proof by cases, one has to divide the

universe of discourse into a finite number of sets5 and then provide a separate proof for

each of the cases. A great many statements about the integers can be proved using the

division of integers into even and odd. Another set of cases that is used frequently is the

finite number of possible remainders obtained when dividing by an integer. (Note that

even and odd correspond to the remainders 0 and 1 obtained after division by 2.)

A very famous instance of proof by cases is the computer-assisted proof of the four-colour

theorem. The four-colour theorem is a result known to map makers for quite some time

that says that four colours are always sufficient to colour the nations on a map in such a

way that countries sharing a boundary are always coloured differently. Figure 3.2 shows

one instance of an arrangement of nations that requires at least four different colours.

The theorem says that four colours are always enough. It should be noted that real

cartographers usually reserve a fifth colour for oceans (and other water) and that it is

possible to conceive of a map requiring five colours if one allows the nations to be non-

contiguous. In 1977, Kenneth Appel and Wolfgang Haken proved the four-colour theorem

5It is necessary to provide an argument that this list of cases is complete! That is, that every element of the
universe falls into one of the cases.
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Figure 3.2: The nations surrounding Luxembourg show that sometimes 4 colours are required in
cartography.

by reducing the infinitude of possibilities to 1,936 separate cases and analyzing each of

these with a computer.

The inelegance of a proof by cases is probably proportional to some power of the number

of cases. But in any case, the proof by Appel and Haken is generally considered somewhat

inelegant. Ever since the proof was announced, there has been an ongoing effort to reduce

the number of cases (currently the record is 633 cases — still far too many to be checked

through without a computer) or to find a proof that does not rely on cases. Wikipedia

has a good introductory article on the four-colour theorem6.

Most exhaustive proofs of statements that aren’t trivial tend to either be (literally) too

exhausting or to seem rather contrived. One example of a situation in which an exhaustive

proof of some statement exists is when the statement is thought to be universally true

but no general proof is known — yet the statement has been checked for a large number

of cases. Goldbach’s conjecture is one such statement.

Christian Goldbach7 was a mathematician born in Königsberg Prussia, who, curiously, did

not make the conjecture8 which bears his name. In a letter to Leonard Euler, Goldbach

conjectured that every odd number greater than 5 could be expressed as the sum of three

primes (nowadays this is known as the weak Goldbach conjecture).

Euler apparently liked the problem and replied to Goldbach stating what is now known as

6http://en.wikipedia.org/wiki/Four_color_theorem
7http://en.wikipedia.org/wiki/Goldbach
8This conjecture was discussed previously in the exercises of Section 1.2

http://en.wikipedia.org/wiki/Four_color_theorem
http://en.wikipedia.org/wiki/Goldbach
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Goldbach’s conjecture: Every even number greater than 2 can be expressed as the sum of

two primes. This statement has been lying around since 1742, and a great many of the

world’s best mathematicians have made their attempts at proving it — to no avail! (Well,

actually a lot of progress has been made but the result still hasn’t been proved.) It’s easy

to verify the Goldbach conjecture for relatively small even numbers, so what has been

done is/are proofs by exhaustion of Goldbach’s conjecture restricted to finite universes.

As of this writing, the conjecture has been verified to be true of all even numbers less

than 2× 1017.

Whenever an exhaustive proof or a proof by cases exists for some statement, it is generally

felt that a direct proof would be more esthetically pleasing. If you are in a situation that

doesn’t admit such a direct proof, you should at least seek a proof by cases using the

minimum possible number of cases. For example, consider the following theorem and

proof.

Theorem 3.6. ∀n ∈ Z n2 is of the form 4k or 4k + 1 for some k ∈ Z.

Proof. We will consider the four cases determined by the four possible residues modulo 4.

1. If n ≡ 0 (mod 4) then there is an integer m such that n = 4m. It follows that

n2 = (4m)2 = 16m2 is of the form 4k where k is 4m2.

2. If n ≡ 1 (mod 4) then there is an integer m such that n = 4m+ 1. It follows that

n2 = (4m+ 1)2 = 16m2 + 8m+ 1 is of the form 4k + 1 where k is 4m2 + 2m.

3. If n ≡ 2 (mod 4) then there is an integer m such that n = 4m+ 2. It follows that

n2 = (4m+ 2)2 = 16m2 + 16m+ 4 is of the form 4k where k is 4m2 + 4m+ 1.

4. If n ≡ 3 (mod 4) then there is an integer m such that n = 4m+ 3. It follows that

n2 = (4m+ 3)2 = 16m2 + 24m+ 9 is of the form 4k+ 1 where k is 4m2 + 6m+ 2.

Since these four cases exhaust the possibilities and since the desired result holds in each

case, our proof is complete.
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Figure 3.3: In graph pebbling problems a collection of pebbles are distributed on the nodes of a
graph. There is no significance to the particular graph that is shown here, or to the arrangement
of pebbles — we are just giving an example.

While the proof just stated is certainly valid, the argument is inelegant since a smaller

number of cases would suffice.

Exercise 3.8. The previous theorem can be proved using just two cases. Do so.

We’ll close this section by asking you to determine an exhaustive proof where the com-

plexity of the argument is challenging but not too impossible.

Graph pebbling is an interesting concept originated by the famous combinatorialist Fan

Chung. A “graph” (as the term is used here) is a collection of places or locations which

are known as “nodes,” some of which are joined by paths or connections which are known

as “edges.” Graphs have been studied by mathematicians for about 400 years, and many

interesting problems can be put in this setting. Graph pebbling is a crude version of a

broader problem in resource management — often a resource actually gets used in the

process of transporting it. Think of the big tanker trucks that are used to transport

gasoline. What do they run on? Well, actually they probably burn diesel — but the point

is that in order to move the fuel around we have to consume some of it. Graph pebbling

takes this to an extreme: in order to move one pebble we must consume one pebble.

Imagine that a bunch of pebbles are arbitrarily distributed on the nodes of a graph, and

that we are allowed to do graph pebbling moves — we remove two pebbles from some

node and place a single pebble on a node that is connected to it. See Figure 3.4.

For any particular graph, we can ask for its pebbling number, ρ. This is the smallest
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Figure 3.4: A graph pebbling move takes two pebbles off of a node and puts one of them on an
adjacent node (the other is discarded). Notice how node C, which formerly held 3 pebbles, now
has only 1 and that a pebble is now present on node D where previously there was none.

number so that if ρ pebbles are distributed in any way whatsoever on the nodes of the

graph, it will be possible to use pebbling moves so as to get a pebble to any node.

For example, consider the triangle graph — three nodes which are all mutually connected.

The pebbling number of this graph is 3. If we start with one pebble on each node we are

already done; if there is a node that has two pebbles on it, we can use a pebbling move

to reach either of the other two nodes.

Exercise 3.9. There is a graph C5 which consists of 5 nodes connected in a circular

fashion. Determine its pebbling number. Prove your answer exhaustively.

Hint: the pebbling number must be greater than 4 because if one pebble is placed on

each of the four nodes, the configuration is unmovable (we need to have two pebbles on

a node in order to be able to make a pebbling move at all) and so the 5th node can never

be reached.

3.5.1 Exercises

1. Prove that if n is an odd number then n4 (mod 16) = 1.

2. Prove that every prime number other than 2 and 3 has the form 6q + 1 or 6q + 5

for some integer q. (Hint: this problem involves thinking about cases as well as

contrapositives.)

3. Show that the sum of any three consecutive integers is divisible by 3.
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4. There is a graph known as K4 that has 4 nodes and there is an edge between every

pair of nodes. The pebbling number of K4 has to be at least 4 since it would be

possible to put one pebble on each of 3 nodes and not be able to reach the remaining

node using pebbling moves. Show that the pebbling number of K4 is actually 4.

5. Find the pebbling number of a graph whose nodes are the corners and whose edges

are the, uhmm, edges of a cube.

6. A vampire number is a 2n digit number v that factors as v = xy where x and y are

n digit numbers and the digits of v are the union of the digits in x and y in some

order. The numbers x and y are known as the “fangs” of v. To eliminate trivial

cases, pairs of trailing zeros are disallowed.

a. Show that there are no 2-digit vampire numbers.

b. Show that there are seven 4-digit vampire numbers.

7. Lagrange’s theorem on representation of integers as sums of squares says that every

positive integer can be expressed as the sum of at most 4 squares. For example,

79 = 72 + 52 + 22 + 12. Show (exhaustively) that 15 can not be represented using

fewer than 4 squares.

8. Show that there are exactly 15 numbers x in the range 1 ≤ x ≤ 100 that can’t be

represented using fewer than 4 squares.

9. The trichotomy property of the real numbers simply states that every real number is

either positive or negative or zero. Trichotomy can be used to prove many statements

by looking at the three cases that it guarantees. Develop a proof (by cases) that

the square of any real number is non-negative.

10. Consider the game called “binary determinant tic-tac-toe”9 which is played by two

players who alternately fill in the entries of a 3 × 3 array. Player One goes first,

placing 1’s in the array and player Zero goes second, placing 0’s. Player One’s

goal is that the final array have determinant 1, and player Zero’s goal is that the
9This question was problem A4 in the 63rd annual William Lowell Putnam Mathematics Competition (2002).

There are three collections of questions and answers from previous Putnam exams available from the MAA,
Gleason, Greenwood, and Kelly (2003), Alexanderson, Klosinski, and Larson (1985), Kiran S. Kedlaya and Vakil
(2002)
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determinant be 0. The determinant calculations are carried out mod 2.

Show that player Zero can always win a game of binary determinant tic-tac-toe by

the method of exhaustion.
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3.6 Proofs and disproofs of existential statements

From a certain point of view, there is no need for the current section. If we are proving

an existential statement we are disproving some universal statement. (Which has already

been discussed.) Similarly, if we are trying to disprove an existential statement, then we

are actually proving a related universal statement. Nevertheless, sometimes the way a

theorem is stated emphasizes the existence question over the corresponding universal —

and so people talk about proving and disproving existential statements as a separate issue

from universal statements.

Proofs of existential statements come in two basic varieties: constructive and non-

constructive. Constructive proofs are conceptually the easier of the two — you actually

name an example that shows the existential question is true. For example:

Theorem 3.7. There is an even prime.

Proof. The number 2 is both even and prime.

Exercise 3.10. The Fibonacci numbers are defined by the initial values F (0) = 1 and

F (1) = 1 and the recursive formula F (n+1) = F (n)+F (n−1) (to get the next number

in the series you add the last and the penultimate).

n F (n)

0 1

1 1

2 2

3 3

4 5

5 8
...

...

Prove that there is a Fibonacci number that is a perfect square.
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A non-constructive existence proof is trickier. One approach is to argue by contradiction

— the non-existence of the thing we’re seeking leads to an absurdity. Another approach

is to outline a search algorithm for the desired item and provide an argument as to why it

cannot fail!

A particularly neat approach is to argue using dilemma. This is my favourite non-

constructive existential theorem/proof.

Theorem 3.8. There are irrational numbers α and β such that αβ is rational.

Proof. If
√

2
√

2 is rational then we are done. (Let α = β =
√

2.) Otherwise, let α =
√

2
√

2

and β =
√

2. The result follows because

(√
2
√

2
)√2

=
√

2(
√

2
√

2) =
√

22 = 2,

which is clearly rational.

Many existential proofs involve a property of the natural numbers known as the well-

ordering principle. The well-ordering principle is sometimes abbreviated WOP. If a set has

WOP, it doesn’t mean that the set is ordered in a particularly good way, but rather that

its subsets are like wells — the kind one hoists water out of with a bucket on a rope.

You needn’t be concerned with WOP in general at this point, but notice that the subsets

of the natural numbers have a particularly nice property — any non-empty set of natural

numbers must have a least element (much like every water well has a bottom).

Because the natural numbers have the well-ordering principle we can prove that there

is a least natural number with property X by simply finding any natural number with

property X — by doing that we’ve shown that the set of natural numbers with property

X is non-empty and that’s the only hypothesis the WOP needs.

For example, in the exercises in Section 3.5 we introduced vampire numbers. A vampire

number is a 2n digit number v that factors as v = xy where x and y are n digit numbers

and the digits of v are the union of the digits in x and y in some order. The numbers x
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and y are known as the “fangs” of v. To eliminate trivial cases, pairs of trailing zeros are

disallowed.

Theorem 3.9. There is a smallest 6-digit vampire number.

Proof. The number 125460 is a vampire number (in fact this is the smallest example of a

vampire number with two sets of fangs: 125460 = 204 ·615 = 246 ·510). Since the set of

6-digit vampire numbers is non-empty, the well-ordering principle of the natural numbers

allows us to deduce that there is a smallest 6-digit vampire number.

This is quite an interesting situation in that we know there is a smallest 6-digit vampire

number without having any idea what it is!

Exercise 3.11. Show that 102510 is the smallest 6-digit vampire number.

There are quite a few occasions when we need to prove statements involving the unique

existence quantifier (∃!). In such instances we need to do just a little bit more work. We

need to show existence — either constructively or non-constructively – and we also need

to show uniqueness. To give an example of a unique existence proof, we’ll return to a

concept first discussed in Section 1.5 and finish up some business that was glossed over

there.

Recall the Euclidean algorithm that was used to calculate the greatest common divisor of

two integers a and b (which we denote gcd(a, b)). There is a rather important question

concerning algorithms known as the “halting problem.” Does the program eventually halt,

or does it get stuck in an infinite loop? We know that the Euclidean algorithm halts (and

outputs the correct result) because we know the following unique existence result.

∀a, b ∈ Z+, ∃! d ∈ Z+ such that d = gcd(a, b)

Now, before we can prove this result, we’ll need a precise definition for gcd(a, b). Firstly,

a gcd must be a common divisor which means it needs to divide both a and b. Secondly,

among all the common divisors, it must be the largest. This second point is usually
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addressed by requiring that every other common divisor divides the gcd. Finally, we

should note that a gcd is always positive, for whenever a number divides another number

so does its negative, and whichever of those two is positive will clearly be the greater!

This allows us to extend the definition of gcd to all integers, but things are conceptually

easier if we keep our attention restricted to the positive integers.

Definition 3.8. The greatest common divisor, or gcd, of two positive integers a and b is

a positive integer d such that d |a and d |b and if c is any other positive integer such that

c |a and c |b then c |d.

∀a, b, c, d ∈ Z+ d = gcd(a, b) ⇐⇒ d |a ∧ d |b ∧ (c |a ∧ c |b =⇒ c |d)

Armed with this definition, let’s return our attention to proving the unique existence of

the gcd. The uniqueness part is easier so we’ll do that first. We argue by contradic-

tion. Suppose that there were two different numbers d and d′ satisfying the definition of

gcd(a, b). Put d′ in the place of c in the definition to see that d′ | d. Similarly, we can

deduce that d |d′ and if two numbers each divide into the other, they must be equal. This

is a contradiction since we assumed d and d′ were different.

For the existence part, we’ll need to define a set — known as the Z-module generated by

a and b — that consists of all numbers of the form xa+ yb where x and y range over the

integers.

This set has a very nice geometric character that often doesn’t receive the attention it

deserves. Every element of a Z-module generated by two numbers (15 and 21 in the

example) corresponds to a point in the Euclidean plane. As indicated in Figure 3.5, there

is a dividing line between the positive and negative elements in a Z-module. It is also easy

to see that there are many repetitions of the same value at different points in the plane.

Exercise 3.12. The value 0 clearly occurs in a Z-module when both x and y are themselves

zero. Find another pair of (x, y) values such that 21x+ 15y is zero. What is the slope of

the line which separates the positive values from the negative in our Z-module?

In thinking about this Z-module, and perusing Figure 3.5, you may have noticed that the



3.6. PROOFS AND DISPROOFS OF EXISTENTIAL STATEMENTS 171

15

21

36

42 63 84 105-21-42-63-84

-15

-30

-45

-60

30

45

60

51

66

81

0

-36

-51

-66

-81

57

72

87

102

78

93

108

123

99

114

129

144

120

135

150

165

6 27 48 69 90

-9 12 33 54 75

-6-27-48

9-12-33

243

-54

-99 -78 -57

-114 -93 -72

-129 -108 -87

-69

-24 -3 18 39 60

-18-39

-102-123-144 -39 -18 3

-3 18 39

24 45

-24

Figure 3.5: The Z-module generated by 21 and 15. The number 21x + 15y is printed by the
point (x, y).

smallest positive number in the Z-module is 3. If you hadn’t noticed that, look back and

verify that fact now.

Exercise 3.13. How do we know that some smaller positive value (a 1 or a 2) doesn’t

occur somewhere in the Euclidean plane?

What we’ve just observed is a particular instance of a general result.

Theorem 3.10. The smallest positive number in the Z-module generated by a and b is

d = gcd(a, b).

Proof. Suppose that d is the smallest positive number in the Z-module

{xa+ yb :x, y ∈ Z}.

There are particular values of x and y (which we will distinguish with over-lines) such that

d = xa+yb. Now, it is easy to see that if c is any common divisor of a and b then c |d, so

what remains to be proved is that d itself is a divisor of both a and b. Consider dividing

d into a. By the division algorithm, there are uniquely determined numbers q and r such
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that a = qd+ r with 0 ≤ r < d. We will show that r = 0. Suppose, to the contrary, that

r is positive. Note that we can write r as

r = a− qd

= a− q(xa+ yb)

= (1− qx)a− qyb.

The last equality shows that r is in the Z-module under consideration, and so, since d

is the smallest positive integer in this Z-module it follows that r ≥ d which contradicts

the previously noted fact that r < d. Thus, r = 0 and so it follows that d | a. An

entirely analogous argument can be used to show that d | b which completes the proof

that d = gcd(a, b).

3.6.1 Exercises

1. Show that there is a perfect square that is the sum of two perfect squares.

2. Show that there is a perfect cube that is the sum of three perfect cubes.

3. Show that the WOP doesn’t hold in the integers. (This is an existence proof, you

show that there is a subset of Z that doesn’t have a smallest element.)

4. Show that the WOP doesn’t hold in Q>0.

5. In the proof of Theorem 3.10 we weaseled out of showing that d |b. Fill in that part

of the proof.

6. Give a proof of the unique existence of q and r in the division algorithm.

7. A digraph is a drawing containing a collection of points that are connected by

arrows. The game known as scissors-paper-rock can be represented by a digraph

that is balanced (each point has the same number of arrows going out as going in)

as illustrated in Figure 3.6. Show that there is a balanced digraph having five points.
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smashes

scissors

rock

covers

cuts

paper

Figure 3.6: Digraph for scissors-paper-rock.

Hints to exercises

3.1.1

1. Fill in the blanks:

• p is a number, and

• p is greater than .

2. All you have to do to show that some number is odd, is produce the integer k that

the definition of “odd” says has to exist. Hint: the same number could be used to

prove that 128 is even.

3. You want to argue about the sum of two generic rational numbers. Maybe call them

a/b and c/d. The definition of “rational number” then tells you that a, b, c and

d are integers and that neither b nor d are zero. You add these generic rational

numbers in the usual way — put them over a common denominator and then add

the numerators. One possible common denominator is bd, so we can express the

sum as (ad + bc)/(bd). You can finish off the argument from here: you need to

show that this expression for the sum satisfies the definition of a rational number

(quotient of integers with non-zero denominator). Also, write it all up a bit more

formally.

4. Suppose that x is an odd number and y is an even number. Since x is odd there

is an integer k such that x = 2k + 1. Furthermore, since y is even, there is an
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integer m such that y = 2m. By substitution, we can express the sum x + y as

x + y = (2k + 1) + (2m) = 2(k + m) + 1. Since k + m is an integer (the sum of

integers is an integer) it follows that x+ y is odd.

5. If we write x + y for the sum of two integers that is even (so x + y = 2k for some

integer k), then we could subtract what from it to obtain x− y?

6. Begin your proof like so:

Suppose that x is a real number such that 2
3 < x < 3

4 .

You need to multiply all three parts of the inequality by something to “clear” the

fractions. What should that be?

The definition for the floor of 12x will be satisfied if 8 ≤ 12x < 9 but unfortunately

the work done previously will have deduced that 8 < 12x < 9 is true. Don’t just

gloss over this discrepancy. Explain why one of these inequalities is implied by the

other.

7. You may be tempted to write “Since x is odd, it can be expressed as x = 2k + 1

where k is an integer.” This is slightly wrong since the variable k is already being

used in the statement of the theorem. But, except for replacing k with some other

variable (maybe m or j?) that is a good way to get started. From there it’s really

just algebra until, eventually, you’ll find out what k really is.

8. The premise that 6 | (a + b) is a bit of a red herring (a clue that is designed to

mislead). The premise that you really need is that a + b is even. Can you deduce

that from what’s given?

9. Suppose that x is a real number and x 6∈ Z. Let a = bxc. By the definition of

the floor function we have a ∈ Z and a ≤ x < a + 1. Since x 6∈ Z, we know that

x 6= a and so we may strengthen the inequality to a < x < a + 1. Multiplying

this inequality by −1 we obtain −a > −x > −a − 1. This inequality may be

weakened to −a > −x ≥ −a − 1. Finally, note that (since −a − 1 ∈ Z and

−a = (−a− 1) + 1 we have shown that b−xc = −a− 1. Thus, by substitution, we

have bxc+ b−xc = a+ (−a− 1) = −1 as desired.
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10. Well, the statement is that the evenness of a product is the sum of the evennesses

of the factors.

11. This one is pretty straightforward. Be sure to not reuse any variables. Particularly,

the fact that a | b tells us (because of the definition of divisibility) that there is an

integer k such that b = ak. It is not okay to also use k when the statement “b | c”

is converted.

12. Cross multiply and solve for x. If you need to divide by an expression, it had better

be non-zero!

13. From the definition of divisibility, you get two integers j and k, such that a = jb and

b = ka. Substitute one of those into the other and ask yourself what the resulting

equation says about j and k. Can they be any old integers? Or, are there restrictions

on their values?

3.2.1

1. A savings account where we are not depositing or withdrawing funds has a balance

that is growing geometrically.

2. You don’t need all the hypotheses. If a and c have different signs, then ac is a

negative quantity

3. This follows very easily by the method of working backwards from the conclusion.

Remember that when multiplying or dividing both sides of an inequality by some

number, the direction of the inequality may reverse (unless we know the number

involved is positive). Also, remember that we can’t divide by zero, so if we are (just

for example, don’t know why I’m mentioning it really. . . ) dividing both sides of an

inequality by x2 then we must treat the case where x = 0 separately.

4. Use the definition of divisibility.

5. If you work backwards from the conclusion on this one, you should eventually come

to the inequality (x − 1)2 ≥ 0. Notice that this inequality is always true — all

squares are non-negative. When you go to write-up your proof (writing things in the

forward direction), you’ll want to acknowledge this truth. Start with something like
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“Regardless of the value of x, the quantity (x− 1)2 is greater than or equal to zero

as it is a perfect square.”

6. This is very similar to an earlier problem. See if you can find it.

7. Use the definition of the binomial coefficients as fractions involving factorials. For

example, (
n

k

)
= n!
k!(n− k)! .

Write down the definitions, both of the left hand side and the right hand side and

consider how you can convert one into the other.

8. The critical step is to subtract and add the same thing: f(x)g(x+h) in the numerator

of the fraction in the limit which gives the definition of d
dx (f(x) · g(x)). Also, you’ll

need to recall the laws of limits (like “the limit of a product is the product of the

limits — provided both exist”.)

3.3.1

1. The best hint for this problem is simply to write down the contrapositive statement.

It is trivial to prove!

2. The contrapositive is (p |x) =⇒ (p |x2).

3. Well, if there was a largest integer — let’s call it L (for largest) – then isn’t L + 1

an integer, and isn’t it bigger? That’s the main idea. A more formal proof might

look like this:

Suppose (by way of contradiction) that there is a largest integer L. Then L ∈ Z and

∀z ∈ Z, L ≥ z. Consider the quantity L + 1. Clearly L + 1 is an integer (because

it is the sum of two integers) and also L + 1 > L. This is a contradiction so the

original supposition is false. Hence there is no largest integer.

4. Assume there was a smallest positive real number — might as well call it s (for

smallest) — what can we do to produce an even smaller number? (But be careful

that it needs to remain positive — for instance s− 1 won’t work.)
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5. Suppose that x is rational and y is irrational and their sum (let’s call it z) is also

rational. Do some algebra to solve for y, and you will see that y (which is, by

presumption, irrational) is also the difference of two rational numbers (and hence,

rational — a contradiction.)

6. Well, the problem says to do this by contraposition, so let’s write down the contra-

positive:

∀x, y ∈ Z, x = y =⇒ x+ y is even.

But proving that is obvious!

7. The contrapositive would be:

∀a, b ∈ R, (a ∈ Q ∧ b ∈ Q) =⇒ ab ∈ Q.

Wow! Haven’t we proved that before?}

8. If both a and b are odd then their squares will be 1 mod 4 — so the sum of their

squares will be 2 mod 4. But c2 can only be 0 or 1 mod 4, which gives us a

contradiction.

9. Suppose by way of contradiction that a, b, c, d ∈ R satisfy ab = cd = 1 and that

a < c and b ≤ d. By multiplying the inequalities we get that ab < cd which

contradicts the assumption that both products are equal to 1 (and so must be equal

to one another).

3.4.1

1. It sort of depends on what is meant by “a reasonably large range of inputs.” For

example the polynomial p(x) = 2x+1 gives primes three times in a row (at x = 1, 2

and 3). See if you can do better than that.

2. The intent of the problem is that you find three numbers, a, b and c, that are

all powers of 2 and such that a divides the product bc, but neither of the factors

separately. For instance, if you pick a = 16, then you would need to choose b and c

so that 16 doesn’t divide evenly into them (they would need to be less than 16. . . )

but so that their product is divisible by 16.
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3. Here’s some Sage code that would test this conjecture:

n = 1

for i in [2..8]:

n = factorial(i) - n

show(factor(n))

Of course it turns out that going out to 8 isn’t quite far enough.

4. I would definitely seek help at your friendly neighborhood CAS. In Sage you can loop

over the first several prime numbers using the following syntax.

for p in [2,3,5,7,11,13]:

If you want to automate that somewhat, there is a Sage function that returns a list

of all the primes in some range. So the following does the same thing.

for p in primes(2,13):

5. This statement and the next are negations of one another. Your answers should

reflect that.

6. If a number is irrational, isn’t its negative also irrational? That’s actually a pretty

huge hint.

7. This one and the next are negations too. Aren’t they?

8. The two numbers could be equal, couldn’t they?

9. List all of the divisors of 36 = (2 · 3)2. See if any of them are bigger than 6.

10. We’d want ac to be positive (so a and c have the same sign) but nevertheless have

b2 − 4ac > 0. It seems that if we make b sufficiently large that could happen.

3.5.1

1. While one could perform fairly complicated arithmetic, expanding expression like

(16k+ 13)4 and then regrouping to put it in the form 16q+ 1 (and one would need

to do that work for each of the odd remainders modulo 16), that would be missing

out on the true power of modular notation. In a “ (mod 16)” calculation, one can
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simply ignore summands like 16k because they are 0 (mod 16). Thus, for example,

(16k + 7)4 (mod 16) = 74 (mod 16)

= 2401 (mod 16)

= 1.

So, essentially one just needs to compute the 4th powers of 1, 3, 5, 7, 9, 11, 13 and

15, and then reduce them modulo 16. An even greater economy is possible if one

notes that (modulo 16) many of those cases are negatives of one another — so their

4th powers are equal.

2. It is probably obvious that the “cases” will be the possible remainders when divided

by 6. Numbers of the form 6q + 0 will be multiples of 6 and are clearly not prime.

The other forms that need to be eliminated are 6q + 2, 6q + 3, and 6q + 4.

3. Write the sum as n+ (n+ 1) + (n+ 2).

4. If there are two pebbles on any node we will be able to reach all the other nodes

using pebbling moves (since every pair of nodes is connected).

5. It should be clear that the pebbling number is at least 8 — 7 pebbles could be

distributed, one to a node, and the 8th node would be unreachable. It will be easier

to play around with this if you figure out how to draw the cube graph “flattened-out”

in the plane.

6. The 2-digit challenge is do-able by hand (just barely). The 4 digit question certainly

requires some computer assistance!

7. Note that 15 = 32 + 22 + 12 + 12. Also, if 15 were expressible as a sum of fewer

than 4 squares, the squares involved would be 1, 4 and 9. It’s really not that hard

to try all the possibilities.

8. The following Sage code generates all the numbers up to 100 that can be written

as the sum of at most 3 squares.

var('x y z')

a = [s^2 for s in [1..10]]
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b = [s^2 for s in [0..10]]

s = []

for x in a:

for y in b:

for z in b:

s = union(s,[x+y+z])

s = Set(s)

H = Set([1..100])

show(H.intersection(s))

9. By trichotomy, x is either zero, negative, or positive. If x is zero, its square is zero.

If x is negative, its square is positive. If x is positive, its square is also positive.

10. If you know something about determinants it would help here. The determinant will

be 0 if there are two identical rows (or columns) in the finished array. Also, if there

is a row or column that is all zeros, player Zero wins too. Also, cyclically permuting

either rows or columns has no effect on the determinant of a binary array. This

means we lose no generality in assuming player One’s first move goes (say) in the

upper-left corner.

3.6.1

1. Can you say “Pythagorean triple”? I thought you could.

2. 63 can be expressed as such a sum.

3. How about even integers? Is there a smallest one? That’s my example! You come

up with a different one!

4. Consider the set {1, 1/2, 1/4, 1/8, . . .}. Does it have a smallest element?

5. Yeah, I’m going to keep weaseling. . .

6. Unique existence proofs consist of two parts. First, just show existence. Then, show

that if there were two of the things under consideration that they must in fact be

equal.
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7. If at first you don’t succeed, try googling “scissor paper rock lizard spock.”
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Chapter 4

Sets

No more turkey, but I’d like some more of the bread it ate.

—Hank Ketcham

4.1 Basic notions of set theory

In modern mathematics, there is an area called category theory1 which studies the rela-

tionships between different areas of mathematics. More precisely, the founders of category

theory noticed that essentially the same theorems and proofs could be found in many dif-

ferent mathematical fields — with only the names of the structures involved changed. In

this sort of situation, one can make what is known as a categorical argument in which one

proves the desired result in the abstract, without reference to the details of any particular

field. In effect, this allows one to prove many theorems at once — all you need to convert

an abstract categorical proof into a concrete one relevant to a particular area is a sort of

key or lexicon to provide the correct names for things.

Category theory probably shouldn’t really be studied until you have a background that in-

cludes enough different fields that you can make sense of their categorical correspondences.

Also, there are a good many mathematicians who deride category theory as “abstract non-

sense.” But, as someone interested in developing a facility with proofs, you should be on
1The classic text by Saunders Mac Lane (Lane (1998)) is still considered one of the best introductions to

category theory.
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the lookout for categorical correspondences. If you ever hear yourself utter something like

“well, the proof of that goes just like the proof of the (insert weird technical-sounding

name here) theorem,” you are probably noticing a categorical correspondence.

Okay, so category theory won’t be of much use to you until much later in your mathe-

matical career (if at all), and one could argue that it doesn’t really save that much effort.

Why not just do two or three different proofs instead of learning a whole new field so we

can combine them into one? Nevertheless, category theory is being mentioned here at the

beginning of the chapter on sets. Why?

We are about to see our first example of a categorical correspondence. Logic and set

theory are different aspects of the same thing. To describe a set, people often quote Kurt

Gödel — “A set is a Many that allows itself to be thought of as a One.” (Note how the

attempt at defining what is really an elemental, undefinable concept ends up sounding

rather mystical.) A more practical approach is to think of a set as the collection of things

that make some open sentence true.2

Recall that in logic, the atomic concepts were “true”, “false”, “sentence” and “statement.”

In set theory, they are “set”, “element” and “membership.” These concepts (more or less)

correspond to one another. In most books, a set is denoted either using the letter M

(which stands for the German word “menge”) or early alphabet capital roman letters —

A, B, C, etc. Here, we will often emphasize the connection between sets and open

sentences in logic by using a subscript notation. The set that corresponds to the open

sentence P (x) will be denoted SP . We call SP the truth set of P (x).

SP = {x :P (x)}

On the other hand, when we have a set given in the absence of any open sentence, we’ll

be happy to use the early alphabet, capital roman letters convention — or frankly, any

other letters we feel like! Whenever we have a set A given, it is easy to state a logical

open sentence that would correspond to it. The membership question: MA(x) = “Is x
2This may sound less metaphysical, but this statement is also faulty because it defines “set” in terms of

“collection” — which will of course be defined elsewhere as “the sort of things of which sets are one example.”



4.1. BASIC NOTIONS OF SET THEORY 185

in the set A?” Or, more succinctly, MA(x) = “x ∈ A”. Thus the atomic concept “true”

from logic corresponds to the answer “yes” to the membership question in set theory (and

of course “false” corresponds to “no”).

There are many interesting foundational issues which we are going to sidestep in our

current development of set theory. For instance, recall that in logic we always worked

inside some “universe of discourse.” As a consequence of the approach we are taking now,

all of our set theoretic work will be done within some unknown “universal” set. Attempts

at specifying (a priori) a universal set for doing mathematics within are doomed to failure.

In the early days of the twentieth century, they attempted to at least get set theory itself

on a firm footing by defining the universal set to be “the set of all sets” — an innocuous

sounding idea that had funny consequences (we’ll investigate this in Section 4.5).

In logic, we had “sentences” and “statements,” the latter were distinguished as having

definite truth values. The corresponding thing in set theory is that sets have the property

that we can always tell whether a given object is or is not in them. If it ever becomes

necessary to talk about “sets” where we’re not really sure what’s in them we’ll use the

term collection.

You should think of a set as being an unordered collection of things, thus

{popover, 1, froggy} and {1, froggy, popover} are two ways to represent the same

set. Also, a set either contains, or doesn’t contain, a given element. It doesn’t make

sense to have an element in a set multiple times. By convention, if an element is

listed more than once when a set is listed we ignore the repetitions. So, the sets {1, 1}

and {1} are really the same thing. If the notion of a set containing multiple instances

of its elements is needed, there is a concept known as a multiset that is studied in

combinatorics. In a multiset, each element is preceded by a so-called repetition number

which may be the special symbol∞ (indicating an unlimited number of repetitions). The

multiset concept is useful when studying puzzles like “How many ways can the letters of

MISSISSIPPI be rearranged?” because the letters in MISSISSIPPI can be expressed as

the multiset {1 ·M, 4 · I, 2 ·P, 4 · S}. With the exception of the following exercise, in the

remainder of this chapter we will only be concerned with sets, never multisets.



186 CHAPTER 4. SETS

Exercise 4.1. (Not for the timid!) How many ways can the letters of MISSISSIPPI be

arranged?

If a computer scientist were seeking a data structure to implement the notion of “set,”

he’d want a sorted list where repetitions of an entry were somehow disallowed. We’ve

already noted that a set should be thought of as an unordered collection, and yet it’s been

asserted that a sorted list would be the right vehicle for representing a set on a computer.

Why? One reason is that we’d like to be able to tell (quickly) whether two sets are the

same or not. It’s easier if the elements have been presorted.

Consider the difficulty in deciding whether the following two sets are equal.

S1 = {♠, 1, e, π,♦, A,Ω, h,⊕, ε}

S2 = {A, 1, ε, π, e, s,⊕,♠,Ω,♦}

If instead we compare them after they’ve been sorted, the job is much easier.

S1 = {1, A,♦, e, ε, h,Ω,⊕, π,♠}

S2 = {1, A,♦, e, ε,Ω,⊕, π, s,♠}

This business about ordered versus unordered comes up fairly often so it’s worth investing

a few moments to figure out how it works. If a collection of things that is inherently

unordered is handed to us we generally put them in an order that is pleasing to us.

Consider receiving five cards from the dealer in a card game, or extracting seven letters

from the bag in a game of Scrabble. If, on the other hand, we receive a collection where

order is important we certainly may not rearrange them. Imagine someone receiving the

telephone number of an attractive other but writing it down with the digits sorted in

increasing order!
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Exercise 4.2. Consider a universe consisting of just the first 5 natural numbers U =

{1, 2, 3, 4, 5}. How many different sets having 4 elements are there in this universe? How

many different ordered collections of 4 elements are there?

The last exercise suggests an interesting question. If you have a universal set of some

fixed (finite) size, how many different sets are there? Obviously you can’t have any more

elements in a set than are in your universe. What’s the smallest possible size for a set?

Many people would answer 1 — which isn’t unreasonable! — after all a set is supposed

to be a collection of things, and is it really possible to have a collection with nothing in it?

The standard answer is 0 however, mostly because it makes a certain counting formula

work out nicely. A set with one element is known as a singleton set (note the use of the

indefinite article). A set with no elements is known as the empty set (note the definite

article). There are as many singletons as there are elements in your universe. They aren’t

the same though, for example 1 6= {1}. There is only one empty set and it is denoted ∅

— irrespective of the universe we are working in.

Let’s have a look at a small example. Suppose we have a universal set with three elements,

without loss of generality, {1, 2, 3}. It’s possible to construct a set, whose elements are all

the possible sets in this universe. This set is known as the power set of the universal set.

Indeed, we can construct the power set of any set A and we denote it with the symbol

P(A). Returning to our example, we have

P({1, 2, 3}) = { ∅,

{1}, {2}, {3},

{1, 2}, {1, 3}, {2, 3},

{1, 2, 3} } .

Exercise 4.3. Find the power sets P({1, 2}) and P({1, 2, 3, 4}). Conjecture a formula

for the number of elements (these are, of course, sets) in P({1, 2, . . . n}).

Hint: If your conjectured formula is correct you should see why these sets are named as

they are.

One last thing before we end this section. The size (a.k.a. cardinality) of a set is just the

number of elements in it. We use the very same symbol for cardinality as we do for the
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absolute value of a numerical entity. There should really never be any confusion. If A is

a set, then |A| means that we should count how many things are in A. If A isn’t a set

then we are talking about the ordinary absolute value

4.1.1 Exercises

1. What is the power set of ∅?

Hint: if you got Exercise 4.3, you’d know that this power set has 20 = 1 element.

2. Try iterating the power set operator. What is P(P(∅))? What is P(P(P(∅)))?

3. Determine the following cardinalities.

a. A = {1, 2, {3, 4, 5}} |A| =

b. B = {{1, 2, 3, 4, 5}} |B| =

4. What, in logic, corresponds the notion ∅ in set theory?

5. What, in set theory, corresponds to the notion t (a tautology) in logic?

6. What is the truth set of the proposition P (x) = “3 divides x and 2 divides x”?

7. Find a logical open sentence such that {0, 1, 4, 9, . . .} is its truth set.

8. How many singleton sets are there in the power set of {a, b, c, d, e}? “Doubleton”

sets?

9. How many 8 element subsets are there in

P({a, b, c, d, e, f, g, h, i, j, k, l,m, n, o, p})?

10. How many singleton sets are there in the power set of {1, 2, 3, . . . n}?
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4.2 Containment

There are two notions of being “inside” a set. A thing may be an element of a set, or

may be contained as a subset. Distinguishing these two notions of inclusion is essential.

One difficulty that sometimes complicates things is that a set may contain other sets as

elements. For instance, as we saw in the previous section, the elements of a power set are

themselves sets.

A set A is a subset of another set B if all of A’s elements are also in B. The terminology

superset is used to refer to B in this situation, as in “The set of all real-valued functions

in one real variable is a superset of the polynomial functions.” The subset/superset rela-

tionship is indicated with a symbol that should be thought of as a stylized version of the

less-than-or-equal sign, when A is a subset of B we write A ⊆ B.

We say that A is a proper subset of B if B has some elements that aren’t in A, and in

this situation, we write A ⊂ B or if we really want to emphasize the fact that the sets

are not equal, we can write A ( B. By the way, if you want to emphasize the superset

relationship, all of these symbols can be turned around. So for example A ⊇ B means

that A is a superset of B although they could potentially be equal.

As we’ve seen earlier, the symbol ∈ is used between an element of a set and the set that

it’s in. The following exercise is intended to clarify the distinction between ∈ and ⊆.

Exercise 4.4. Let A = {1, 2, {1}, {a, b}}. Which of the following are true?

i. {a, b} ⊆ A.

ii. {a, b} ∈ A.

iii. a ∈ A.

iv. 1 ∈ A.

v. 1 ⊆ A.

vi. {1} ⊆ A

vii. {1} ∈ A.

viii. {2} ∈ A.

ix. {2} ⊆ A.
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x. {{1}} ⊆ A.

Another perspective that may help clear up the distinction between ∈ and ⊆ is to consider

what they correspond to in logic. The “element of” symbol ∈ is used to construct open

sentences that embody the membership question — thus it corresponds to single sentences

in logic. The “set containment” symbol ⊆ goes between two sets and so whatever it

corresponds to in logic should be something that can appropriately be inserted between

two sentences. Let’s run through a short example to figure out what that might be. To

keep things simple we’ll work inside the universal set U = {1, 2, 3, . . . 50}. Let T be the

subset of U consisting of those numbers that are divisible by 10, and let F be those that

are divisible by 5.

T = {10, 20, 30, 40, 50}

F = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}

Hopefully it is clear that ⊆ can be inserted between these two sets like so: T ⊆ F .

On the other hand we can re-express the sets T and F using set-builder notation in order

to see clearly what their membership questions are.

T = {x ∈ U : 10 | x}

F = {x ∈ U : 5 | x}

What logical operator fits nicely between 10 | x and 5 | x? Well, of course, it’s the

implication arrow. It’s easy to verify that 10 | x =⇒ 5 | x, and it’s equally easy to note

that the other direction doesn’t work, 5 | x ; 10 | x — for instance, 5 goes evenly into

15, but 10 doesn’t.

The general statement is: if A and B are sets, and MA(x) and MB(x) are their respec-

tive membership questions, then A ⊆ B corresponds precisely to ∀x ∈ U,MA(x) =⇒

MB(x).
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Now to many people (me included!) this looks funny at first, ⊆ in set theory corresponds

to =⇒ in logic. It seems like both of these symbols are arrows of a sort — but they

point in opposite directions! Personally, I resolve the apparent discrepancy by thinking

about the “strength” of logical predicates. One predicate is stronger than another if it

puts more conditions on the elements that would make it true.

For example, “x is doubly-even” is stronger than “x is (merely) even.” Now, the stronger

statement implies the weaker (assuming of course that they are stronger and weaker

versions of the same idea). If a number is doubly-even (i.e. divisible by 4) then it is

certainly even — but the converse is certainly not true, 6 is even but not doubly-even.

Think of all this in terms of sets now. Which set contains the other, the set of doubly-even

numbers or the set of even numbers? Clearly the set that corresponds to more stringent

membership criteria is smaller than the set that corresponds to less restrictive criteria,

thus the set defined by a weak membership criterion contains the one having a stronger

criterion.

If we are asked to prove that one set is contained in another as a subset, A ⊆ B, there

are two ways to proceed. We may either argue by thinking about elements, or (although

this amounts to the same thing) we can show that A’s membership criterion implies B’s

membership criterion.

Exercise 4.5. Consider S, the set of perfect squares and F , the set of perfect fourth

powers. Which is contained in the other? Can you prove it?

We’ll end this section with a fairly elementary proof — mainly just to illustrate how one

should proceed in proving that one set is contained in another.

Let D represent the set of all integers that are divisible by 9,

D = {x ∈ Z :∃k ∈ Z, x = 9k}.

Let C represent the set of all integers that are divisible by 3,

C = {x ∈ Z :∃k ∈ Z, x = 3k}.
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The set D is contained in C. Let’s prove it!

Proof. Suppose that x is an arbitrary element of D. From the definition of D it follows

that there is an integer k such that x = 9k. We want to show that x ∈ C, but since

x = 9k it is easy to see that x = 3(3k) which shows (since 3k is clearly an integer) that

x is in C.

4.2.1 Exercises

1. Insert either ∈ or ⊆ in the blanks in the following sentences (in order to produce

true sentences).

i. 1 {3, 2, 1, {a, b}}

ii. {a} {a, {a, b}}

iii. {a, b} {3, 2, 1, {a, b}}

iv. {{a, b}} {a, {a, b}}

2. Suppose that p is a prime, for each n in Z>0, define the set Pn = {x ∈ Z>0 : pn | x}.

Conjecture and prove a statement about the containments between these sets.

3. Provide a counterexample to dispel the notion that a subset must have fewer ele-

ments than its superset.

4. We have seen that A ⊆ B corresponds to MA =⇒ MB. What corresponds to the

contrapositive statement?

5. Determine two sets A and B such that both of the sentences A ∈ B and A ⊆ B

are true.

6. Prove that the set of perfect fourth powers is contained in the set of perfect squares.
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4.3 Set operations

In this section, we’ll continue to develop the correspondence between logic and set theory.

The logical connectors ∧ and ∨ correspond to the set-theoretic notions of union (∪) and

intersection (∩). The symbols are designed to provide a mnemonic for the correspondence;

the set theory symbols are just rounded versions of those from logic.

Explicitly, if P (x) and Q(x) are open sentences, then the union of the corresponding truth

sets SP and SQ is defined by

SP ∪ SQ = {x ∈ U :P (x) ∨Q(x)}.

Exercise 4.6. Suppose two sets A and B are given. Re-express the previous definition of

“union” using their membership criteria, MA(x) = “x ∈ A” and MB(x) = “x ∈ B.”

The union of more than two sets can be expressed using a big union symbol. For example,

consider the family of real intervals defined by In = (n, n + 1].3 There’s an interval for

every integer n. Also, every real number is in one of these intervals. The previous sentence

can be expressed as

R =
⋃
n∈Z

In.

The intersection of two sets is conceptualized as “what they have in common” but the

precise definition is found by considering conjunctions,

A ∩B = {x ∈ U :x ∈ A ∧ x ∈ B}.

Exercise 4.7. With reference to two open sentences P (x) and Q(x), define the intersec-

tion of their truth sets, SP ∩ SQ.

There is also a “big” version of the intersection symbol. Using the same family of intervals

as before,

∅ =
⋂
n∈Z

In.

Of course the intersection of any distinct pair of these intervals is empty so the statement

above isn’t particularly strong.
3The elements of In can also be distinguished as the solution sets of the inequalities n < x ≤ n+ 1.
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Negation in logic corresponds to complementation in set theory. The complement of a set

A is usually denoted by A (although some prefer a superscript c — as in Ac), this is the

set of all things that aren’t in A. In thinking about complementation, one quickly sees

why the importance of working within a well-defined universal set is stressed. Consider

the set of all math textbooks. Obviously the complement of this set would contain texts

in English, engineering and evolution — but that statement is implicitly assuming that

the universe of discourse is “textbooks.” It’s equally valid to say that a very long sequence

of zeros and ones, a luscious red strawberry, and the number
√
π are not math textbooks

and so these things are all elements of the complement of the set of all math textbooks.

What is really a concern for us is the issue of whether or not the complement of a set

is well-defined; that is, can we tell for sure whether a given item is or is not in the

complement of a set. This question is decidable exactly when the membership question

for the original set is decidable. Many people think that the main reason for working within

a fixed universal set is that we then have well-defined complements. The real reason that

we accept this restriction is to ensure that both membership criteria, MA(x) and MA(x),

are decidable open sentences. As an example of the sort of strangeness that can crop

up, consider that during the time that I, as the author of this book, was writing the last

paragraph, this text was nothing more than a very long sequence of zeros and ones in the

memory of my computer. . .

Every rule that we learned in Section 2.3 has a set-theoretic equivalent. These set-

theoretic versions are expressed using equalities (i.e. the symbol = in between two sets)

which is actually a little bit funny if you think about it. We normally use = to mean

that two numbers or variables have the same numerical magnitude, as in 122 = 144, we

are doing something altogether different when we use that symbol between two sets, as

in {1, 2, 3} = {
√

1,
√

4,
√

9}, but people seem to be used to this so there’s no need to

quibble

Exercise 4.8. Develop a useful definition for set equality. In other words, come up with

a (quantified) logical statement that means the same thing as “A = B” for two arbitrary

sets A and B.
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Exercise 4.9. What symbol in logic should go between the membership criteria MA(x)

and MB(x) if A and B are equal sets?

The rules governing the interactions between the set theoretic operations are listed below:

Double complement: A = A

Intersection version:

Commutative law A ∩B = B ∩ A

Associative law A ∩ (B ∩ C) = (A ∩B) ∩ C

Distributive law A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

De Morgan’s law A ∩B = A ∪B

Complementarity A ∩ A = ∅

Identity law A ∩ U = A

Domination A ∩ ∅ = ∅

Idempotence A ∩ A = A

Absorption A ∩ (A ∪B) = A

Union version:

Commutative law A ∪B = B ∪ A

Associative law A ∪ (B ∪ C) = (A ∪B) ∪ C

Distributive law A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

De Morgan’s law A ∪B = A ∩B

Complementarity A ∪ A = U

Identity law A ∪ ∅ = A

Domination A ∪ U = U

Idempotence A ∪ A = A

Absorption A ∪ (A ∩B) = A

We are now in a position somewhat similar to when we jumped from proving logical

assertions with truth tables to doing two-column proofs. We have two different approaches
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for showing that two sets are equal. We can do a so-called “element chasing” proof (to

show A = B, assume x ∈ A and prove x ∈ B and then vice versa). Or, we can construct

a proof using the basic set equalities given above. Often the latter can take the form of

a two-column proof.

Before we proceed much further in our study of set theory, it would be a good idea to

give you an example. We’re going to prove the same assertion in two different ways —

once via element chasing and once using the basic set theoretic equalities.

The statement we’ll prove is A ∪B = A ∪ (A ∩B).

First, by chasing elements:

Proof. Suppose x is an element of A ∪B. By the definition of union we know that

x ∈ A ∨ x ∈ B.

The conjunctive identity law and the fact that x ∈ A ∨ x /∈ A is a tautology gives us an

equivalent logical statement:

(x ∈ A ∨ x /∈ A) ∧ (x ∈ A ∨ x ∈ B).

Finally, this last statement is equivalent to

x ∈ A ∨ (x /∈ A ∧ x ∈ B)

which is the definition of x ∈ A ∪ (A ∩B).

On the other hand, if we assume that x ∈ A ∪ (A ∩B), it follows that

x ∈ A ∨ (x /∈ A ∧ x ∈ B).

Applying the distributive law, disjunctive complementarity, and the identity law in se-

quence, we obtain

x ∈ A ∨ (x /∈ A ∧ x ∈ B)

∼= (x ∈ A ∨ x /∈ A) ∧ (x ∈ A ∨ x ∈ B)

∼= > ∧ (x ∈ A ∨ x ∈ B)

∼= x ∈ A ∨ x ∈ B



4.3. SET OPERATIONS 197

The last statement in this chain of logical equivalences provides the definition of x ∈

A ∪B.

A two-column proof of the same statement looks like this:

Proof.
A ∪B Given

= U ∩ (A ∪B) Identity law

= (A ∪ A) ∩ (A ∪B) Complementarity

= A ∪ (A ∩B) Distributive law

There are some notions within set theory that don’t have any clear parallels in logic. One

of these is essentially a generalization of the concept of “complements.” If you think of

the set A as being the difference between the universal set U and the set A, you are on

the right track. The difference between two sets is written A \ B (sadly, sometimes this

is denoted using the ordinary subtraction symbol A−B) and is defined by

A \B = A ∩B.

The difference, A \ B, consists of those elements of A that aren’t in B. In some devel-

opments of set theory, the difference of sets is defined first and then complementation is

defined by A = U \ A.

The difference of sets (like the difference of real numbers) is not a commutative operation.

In other words A \B 6= B \A (in general). It is possible to define an operation that acts

somewhat like the difference, but that is commutative. The symmetric difference of two

sets is denoted using a triangle (really a capital Greek delta)

A4B = (A \B) ∪ (B \ A).

Exercise 4.10. Show that A4B = (A ∪B) \ (A ∩B).
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Come on! You read right past that exercise without even pausing!

What? You say you did try it and it was too hard?

Okay, just for you (and this time only) I’ve prepared an aid to help you through. . .

What follows is a two-column proof of the result you need to prove, but the lines of the

proof are all scrambled. Make a copy and cut out all the pieces and then glue them

together into a valid proof.

= (A ∩B) ∪ (B ∩ A) identity law

= (A ∪B) ∩ (A ∩B) def. of relative difference

(A ∪B) \ (A ∩B) Given

= ((A ∩ A) ∪ (A ∩B)) ∪ ((B ∩ A) ∪ (B ∩B)) distributive law

= (A \B) ∪ (B \ A) def. of relative difference

= (A ∩ (A ∩B)) ∪ (B ∩ (A ∩B)) distributive law

= A4B def. of symmetric difference

= (A ∩ (A ∪B) ∪ (B ∩ (A ∪B)) De Morgan’s law

= (∅ ∪ (A ∩B)) ∪ ((B ∩ A) ∪ ∅) complementarity

4.3.1 Exercises

1. Let A = {1, 2, {1, 2}, b} and let B = {a, b, {1, 2}}. Find the following:

a. A ∩B

b. A ∪B

c. A \B

d. B \ A

e. A4B

2. In a standard deck of playing cards, one can distinguish sets based on face-value

and/or suit. Let A, 2, . . . 9, 10, J,Q and K represent the sets of cards having the
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various face-values. Also, let ♥, ♠, ♣ and ♦ be the sets of cards having the possible

suits. Find the following

a. A ∩ ♥

b. A ∪ ♥

c. J ∩ (♠ ∪♥)

d. K ∩ ♥

e. A ∩K

f. A ∪K

3. Figure 4.1 is a screenshot from the computational geometry program OpenSCAD

(very hand for making models for 3-d printing. . . ) In computational geometry, we

use the basic set operations together with a few other types of transformations to

create interesting models using simple components. Across the top of Figure 4.1,

we see three sets of points in R3, a ball, a sort of 3-dimensional plus sign, and a

disk. Let’s call the ball A, the plus sign B and the disk C. The nine shapes shown

below them are made from A, B and C using union, intersection and set difference.

Identify them!

4. Do element-chasing proofs (show that an element is in the left-hand side if and only

if it is in the right-hand side) to prove each of the following set equalities.

a. A ∩B = A ∪B

b. A ∪B = A ∪ (A ∩B)

c. A4B = (A ∪B) \ (A ∩B)

d. (A ∪B) \ C = (A \ C) ∪ (B \ C)

5. For each positive integer n, we’ll define an interval In by

In = [−n, 1/n).
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Figure 4.1: Screenshot of OpenSCAD.

Find the union and intersection of all the intervals in this infinite family.

⋃
n∈N

In =

⋂
n∈N

In =

6. There is a set X such that, for all sets A, we have X4A = A. What is X?

7. There is a set Y such that, for all sets A, we have Y4A = A. What is Y ?

8. In proving a set-theoretic identity, we are basically showing that two sets are equal.

One reasonable way to proceed is to show that each is contained in the other. Prove

that

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

by showing that

A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C)

and

(A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).
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9. Prove that

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

by showing that

A ∪ (B ∩ C) ⊆ (A ∪B) ∩ (A ∪ C)

and

(A ∪B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).

10. Prove the set-theoretic versions of De Morgan’s laws using the technique discussed

in the previous problems.

11. The previous technique (showing that A = B by arguing that A ⊆ B ∧ B ⊆ A)

will have an outline something like

Proof. First we will show that A ⊆ B.

Towards that end, suppose x ∈ A.
...

Thus x ∈ B.

Now, we will show that B ⊆ A.

Suppose that x ∈ B.
...

Thus x ∈ A.

Therefore, A ⊆ B ∧ B ⊆ A and so we conclude that A = B.

Formulate a proof that A4B = (A ∪B) \ (A ∩B) that follows this outline.
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A

U

B

Figure 4.2: A prototypical Venn digram.

4.4 Venn diagrams

Hopefully, you’ve seen Venn diagrams before, but possibly you haven’t thought deeply

about them. Venn diagrams take advantage of an obvious but important property of

closed curves drawn in the plane. They divide the points in the plane into two sets, those

that are inside the curve and those that are outside! (Forget for a moment about the

points that are on the curve.) This seemingly obvious statement is known as the Jordan

curve theorem, and actually requires some details.

A Jordan curve is the sort of curve you might draw if you are required to end where you

began and you are required not to cross-over any portion of the curve that has already

been drawn. In technical terms such a curve is called continuous, simple and closed. The

Jordan curve theorem is one of those statements that hardly seems like it needs a proof,

but nevertheless, the proof of this statement is probably the best-remembered work of the

famous French mathematician Camille Jordan.

The prototypical Venn diagram is the picture that looks something like the view through

a set of binoculars as illustrated in Figure 4.2.

In a Venn diagram, the universe of discourse is normally drawn as a rectangular region

inside of which all the action occurs. Each set in a Venn diagram is depicted by drawing

a simple closed curve — typically a circle, but not necessarily. For instance, if you want

to draw a Venn diagram that shows all the possible intersections among four sets, you’ll
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D

U

A

C

B

Figure 4.3: A four-set Venn diagram.

find it’s impossible with (only) circles. Figure 4.3 shows a drawing of a Venn diagram for

four sets.

Exercise 4.11. Verify that the diagram above has regions representing all 16 possible

intersections of four sets.

There is a certain “zen” to Venn diagrams that must be internalized, but once you have

done so they can be used to think very effectively about the relationships between sets.

The main deal is that the points inside of one of the simple closed curves are not necessarily

in the set — only some of the points inside a simple closed curve are in the set, and we

don’t know precisely where they are! The various simple closed curves in a Venn diagram

divide the universe up into a bunch of regions. It might be best to think of these regions as

fenced-in areas in which the elements of a set mill about, much like domesticated animals

in their pens. One of our main tools in working with Venn diagrams is to deduce that

certain of these regions don’t contain any elements — we then mark that region with the

emptyset symbol (∅).

Figure 4.4 shows a small example of a finite universe.

And Figure 4.5 shows the same universe with some Jordan curves used to encircle two

subsets.
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Mr. Ed

Shadowfax

Silver

Secretariat

Misty

Black Beauty

Heckle

Donald Duck

Wile E. Coyote

Tweety Bird

Ren

Snowball

Figure 4.4: A finite universe.

Mr. Ed

Shadowfax

Silver

Misty

Black Beauty
Donald Duck

Heckle

Secretariat

Snowball

Wile E. Coyote

Ren

H
C

Tweety Bird

Figure 4.5: A finite universe with two subets.
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Mr. Ed

Shadowfax

Silver

Misty

Black Beauty
Donald Duck

Heckle

Secretariat

Snowball

Wile E. Coyote

Ren

H
C

Night Mare

Tweety Bird

Figure 4.6: A finite universe with two subsets having a common element.

A B

∅

Figure 4.7: An illustrating Venn diagram for proving set inclusion.

The picture in Figure 4.5 might lead us to think that the set of cartoon characters and

the set of horses are disjoint, so we thought it would be nice to add one more element to

our universe in order to dispel that notion. (See Figure 4.6.)

Suppose we have two sets A and B and we’re interested in proving that B ⊆ A. The job

is done if we can show that all of B’s elements are actually in the eye-shaped region that

represents the intersection A ∩ B. It’s equivalent if we can show that the region marked

with ∅ in Figure 4.7 is actually empty.

Let’s put all this together. The inclusion B ⊆ A corresponds to the logical sentence

MB =⇒ MA. We know that implications are equivalent to OR statements, so

MB =⇒ MA
∼= ¬MB ∨MA.

The notion that the region we’ve indicated above is empty is written as A ∩ B = ∅;
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A B

Figure 4.8: Venn diagram illustrating two disjoint sets.

A

B

Figure 4.9: Venn diagram illustrating set containment.

in logical terms, this is ¬MA ∧ MB
∼= ⊥. Finally, we apply De Morgan’s law and a

commutation to get ¬MB∨MA
∼= >. You should take note of the convention that when

you see a logical sentence just written on the page (as is the case withMB =⇒ MA in the

first sentence of this paragraph) what’s being asserted is that the sentence is universally

true. Thus, writing MB =⇒ MA is the same as writing

MB =⇒ MA
∼= >.

One can use information that is known a priori when drawing a Venn diagram. For

instance, if two sets are known to be disjoint, or if one is known to be contained in the

other, we can draw Venn diagrams like the ones in Figure 4.8 and Figure 4.9

However, both of these situations can also be dealt with by working with Venn diagrams in

which the sets are in general position — which in this situation means that every possible

intersection is shown — and then marking any empty regions with ∅.
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A B

Figure 4.10: Venn diagram of two sets in general position

Exercise 4.12. On a Venn diagram given in Figure 4.10 for two sets in general position,

indicate the empty regions when

a. The sets are disjoint.

b. A is contained in B.

There is a connection, perhaps obvious, between the regions we see in a Venn diagram

with sets in general position and the recognizers we studied in the section on digital logic

circuits. In fact both of these topics have to do with disjunctive normal form.

In a Venn diagram with k sets, we are seeing the universe of discourse broken up into the

union of 2k regions each of which corresponds to an intersection of either one of the sets

or its complement. An arbitrary expression involving set-theoretic symbols and these k

sets is true in certain of these 2k regions and false in the others.

We have put the arbitrary expression in disjunctive normal form when we express it as a

union of the intersections that describe those regions.

4.4.1 Exercises

1. Let A = {1, 2, 4, 5}, B = {2, 3, 4, 6}, and C = {1, 2, 3, 4}. Place each of the

elements 1, . . . , 6 in the appropriate regions of a three-set Venn diagram shown in

Figure 4.12.

2. Prove or disprove:

(A ∩ C ⊆ B ∩ C) =⇒ A ⊆ B
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U

A ∩B ∩ C
A ∩B ∩ C

A ∩B ∩ C

A ∩B ∩ C

A ∩B ∩ C

A B

C

A ∩B ∩ C

A ∩B ∩ C

A ∩B ∩ C

Figure 4.11: Venn diagram of three sets in general position

A B

U

C

Figure 4.12: Three-set Venn diagram
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Figure 4.13: A rectilinear curve.

3. Venn diagrams are usually made using simple closed curves with no further restric-

tions. Try creating Venn diagrams for three, four and five sets (in general position)

using rectangular simple closed curves.

4. We call a curve rectilinear if it is made of line segments that meet at right angles. If

you have ever played with an Etch-a-Sketch you’ll know what we mean by the term

“rectilinear.” Figure 4.13 shows an example of a rectilinear curve.

Use rectilinear simple closed curves to create a Venn diagram for five sets.

5. Argue as to why rectilinear curves will suffice to build any Venn diagram.

6. Find the disjunctive normal form of A ∩ (B ∪ C).

7. Find the disjunctive normal form of (A4B)4C

8. The prototypes for the modus ponens and modus tollens argument forms are the

following:

All men are mortal.

Socrates is a man.

Therefore Socrates is mortal.

and

All men are mortal.

Zeus is not mortal.

Therefore Zeus is not a man.

Illustrate these arguments using Venn diagrams.

9. Use Venn diagrams to convince yourself of the validity of the following containment
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statement

(A ∩B) ∪ (C ∩D) ⊆ (A ∪ C) ∩ (B ∪D).

Now prove it!

10. Use Venn diagrams to show that the following set equivalence is false.

(A ∪B) ∩ (C ∪D) = (A ∪ C) ∩ (B ∪D)
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4.5 Russell’s Paradox

There is no Nobel prize category for mathematics.4 Alfred Nobel’s will called for the

awarding of annual prizes in physics, chemistry, physiology or medicine, literature, and

peace. Later, the “Bank of Sweden Prize in Economic Sciences in Memory of Alfred

Nobel” was created and certainly several mathematicians have won what is improperly

known as the Nobel prize in Economics. But, there is no Nobel prize in mathematics per

se. There is an interesting urban myth that purports to explain this lapse: Alfred Nobel’s

wife either left him for, or had an affair with a mathematician — so Nobel, the inventor

of dynamite and an immensely wealthy and powerful man, when he decided to endow a

set of annual prizes for “those who, during the preceding year, shall have conferred the

greatest benefit on mankind” pointedly left out mathematicians.

One major flaw in this theory is that Nobel was never married.

In all likelihood, Nobel simply didn’t view mathematics as a field which provides benefits

for mankind — at least not directly. The broadest division within mathematics is between

the “pure” and “applied” branches. Just precisely where the dividing line between these

spheres lies is a matter of opinion, but it can be argued that it is so far to one side that

one may as well call an applied mathematician a physicist (or chemist, or biologist, or

economist, or. . . ). One thing is clear, Nobel believed to a certain extent in the utilitarian

ethos. The value of a thing (or a person) is determined by how useful it is (or they are),

which makes it interesting that one of the few mathematicians to win a Nobel prize was

Bertrand Russell (the 1950 prize in Literature “in recognition of his varied and significant

writings in which he champions humanitarian ideals and freedom of thought”).

Bertrand Russell was one of the twentieth century’s most colourful intellectuals. He

helped revolutionize the foundations of mathematics, but was perhaps better known as a

philosopher. It’s hard to conceive of anyone who would characterize Russell as an applied

mathematician!

Russell was an ardent anti-war and anti-nuclear activist. He achieved a status (shared
4There are prizes considered equivalent to the Nobel in stature — the Fields Medal, awarded every four years

by the International Mathematical Union to up to four mathematical researchers under the age of forty, and the
Abel Prize, awarded annually by the King of Norway.
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with Albert Einstein, but very few others) as an eminent scientist who was also a powerful

moral authority. Russell’s mathematical work was of a very abstruse foundational sort; he

was concerned with the idea of reducing all mathematical thought to logic and set theory.

In the beginning of our investigations into set theory, we mentioned that the notion of a

“set of all sets” leads to something paradoxical. Now we’re ready to look more closely

into that remark and hopefully gain an understanding of Russell’s paradox.

By this point, you should be familiar with the notion of a set that contains other sets, but

would it be okay for a set to contain itself ? That is, would it make sense to have a set

defined by

A = {1, 2, A}?

The set A has three elements, 1, 2 and itself. So we could write

A = {1, 2, {1, 2, A}},

and then

A = {1, 2, {1, 2, {1, 2, A}}},

and then

A = {1, 2, {1, 2, {1, 2, {1, 2, A}}}},

etc.

This obviously seems like a problem. Indeed, often paradoxes seem to be caused by

self-reference of this sort. Consider

The sentence in this box is false.

So a reasonable alternative is to “do” math among the sets that don’t exhibit this particular

pathology.

Thus, inside the set of all sets we are singling out a particular subset that consists of sets

which don’t contain themselves.

S = {A : A is a set ∧ A /∈ A}
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Within the universal set we’re working in (the set of all sets), there are only two possibilities:

a given set is either in S or it is in its complement S. Russell’s paradox comes about when

we try to decide which of these alternatives pertains to S itself, the problem is that each

alternative leads us to the other!

If we assume that S ∈ S, then it must be the case that S satisfies the membership

criterion for S. Thus, S /∈ S.

On the other hand, if we assume that S /∈ S, then we see that S does indeed satisfy the

membership criterion for S. Thus S ∈ S.

Russell himself developed a workaround for the paradox which bears his name. Together

with Alfred North Whitehead, he published a three-volume work entitled Principia Mathe-

matica5 (Whitehead and Russell (1910)). In the Principia, Whitehead and Russell develop

a system known as type theory which sets forth principles for avoiding problems like Rus-

sell’s paradox. Basically, a set and its elements are of different “types” and so the notion

of a set being contained in itself (as an element) is disallowed.

4.5.1 Exercises

1. Verify that (A =⇒ ¬A) ∧ (¬A =⇒ A) is a logical contradiction in two ways: by

filling out a truth table and using the laws of logical equivalence.

2. One way out of Russell’s paradox is to declare that the collection of sets that don’t

contain themselves as elements is not a set itself. Explain how this circumvents the

paradox.

5Isaac Newton also published a three-volume work which is often cited by this same title, Philosophiae Naturalis
Principia Mathematica.
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Hints to exercises

4.1.1

1. The power set of a set always includes the empty set as well as the whole set that we

are forming the power set of. In this case they happen to coincide so P(∅) = {∅}.

Notice that 20 = 1.

2. I won’t spoil your fun, but as a check P(P(∅)) should have 2 elements, and

P(P(P(∅))) should have 4.

3. Three and one.

4. A contradiction.

5. The universe of discourse.

6. The set of all multiples of 6.

7. Many answers are possible. Perhaps the easiest is ∃y ∈ Z, x = y2.

8. 5, 10

9.
(16

8
)

= 12870

10. n

4.2.1

1. ∈, ⊆, ∈, ⊆

2. When p = 2 we have seen these sets. P1 is the even numbers, P2 is the doubly-even

numbers, etc.

3. A subset is called proper if it is neither empty nor equal to the superset. If we are

talking about finite sets then the proper subsets do indeed have fewer elements than

the supersets. Among infinite sets it is possible to have proper subsets having the

same number of elements as their superset, for example there are just as many even

natural numbers as there are natural numbers all told.
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4. Turn “logical negation” into “set complement” and reverse the direction of the

inclusion.

5. The smallest example I can think of would be A = ∅ and B = {∅}. You should

come up with a different example.

6. It would probably be helpful to have precise definitions of the sets described in the

problem.

The fourth powers are

F = {x :∃y ∈ Z, x = y4}.

The squares are

S = {x :∃z ∈ Z, x = z2}.

To show that one set is contained in another, we need to show that the first set’s

membership criterion implies that of the second set.

4.3.1

1. a. {b, {1, 2}}

b. {1, 2, a, b, {1, 2}}

c. {1, 2}

d. {a}

e. {1, 2, a}

2. a. This is just the ace of hearts.

b. All of the hearts and the other three aces.

c. These two cards are known as the one-eyed jacks.

d. The king of hearts, a.k.a. the suicide king.

e. ∅

f. Eight cards: all four kings and all four aces.

3. You’re on your own for this one.

4. Here’s the first one (although I’m omiting justifications for each step).
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x ∈ A ∩B

⇐⇒ ¬(x ∈ A ∩B)

⇐⇒ ¬(x ∈ A ∧ x ∈ B)

⇐⇒ ¬(x ∈ A) ∨ ¬(x ∈ B)

⇐⇒ x ∈ A ∨ x ∈ B

⇐⇒ x ∈ A ∪B

5. To better understand what is going on, first figure out what the first three or four

intervals actually are.

I1 =

I2 =

I3 =

I4 =

Any negative real number r will be in the intersection only if r ≥ −1. Certainly 0 is

in the intersection since it is in each of the intervals. Are there any positive numbers

in the intersection?

In order to be in the union a real number just needs to be in one of the intervals.

6. You’re on your own for this one.

7. One of the answers to the last two questions is ∅ and the other is U . Decide which

is which.

8. You’re on your own for this one.

9. This exercise, as well as the previous one, is really just about converting set-theoretic

statements into their logical equivalents, applying some rules of logic that we’ve

already verified, and then returning to a set-theoretic version of things.

10. Try to model make use of the De Morgan’s laws in logic.
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11. The definition of A4B is (A \ B) ∪ (B \ A). The definition of X \ Y is X ∩ Y .

Restating things in terms of ∩ and ∪ (and complementation) should help. So your

first few lines should be:

Suppose x ∈ A4B.

Then, by definition, x ∈ (A \B) ∪ (B \A). So, x ∈ (A ∩B) ∪ (B ∩A).

...

4.4.1

1. The center region contains 2 and 4.

2. I found it easier to experiment by making my drawings on graph paper. I never did

anage to draw the 5-set Venn diagram with just rectangles. . . probably just a lack of

persistence.

3. Of course, rectangles are rectilinear, so one could use the solution from the previous

problem (if, unlike me, you were persistant enough to find it). Otherwise, start with

the 4 set diagram made with rectangles and use your 5th (rectilinear) curve to split

each region into 2 — don’t forget to split the region on the outside too.

4. Fortunately the instructions don’t say to prove that rectilinear curves will always

suffice, so we can be less rigorous. Try to argue as to why it will alway be possible

to add one more rectilinear curve to an existing Venn diagram and split every region

into two.

One might also argue that any continuous curve can be approximated using rectilinear

curves. So if a Venn diagram can be constructed using continuous curves we can

also get the job done with rectilinear curves.}

5. (A ∩B ∩ C) ∪ (A ∩B ∩ C)

6. It is (A ∩ B ∩ C) ∪ (A ∩ B ∩ C) ∪ (A ∩ B ∩ C). Now find the disjunctive normal

form of A4(B4C).

7. The statement “All men are mortal” would be interpreted on a Venn diagram by

showing the set of “All men” as being entirely contained within the set of “mortal
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beings.” Socrates is an element of the inner set. Zeus, on the other hand, lies outside

of the outer set.

8. Obviously we’ll need one of the 4-set Venn diagrams.

9. After constructing Venn diagrams for both sets you should be able to see that there

are 4 regions where they differ. One is A ∩B ∩ C ∩D. What are the other three?

4.5.1

1. In order to get started on this you’ll need to convert the conditionals into equivalent

disjunctions. Recall that X =⇒ Y ≡ ¬X ∨ Y .}

2. If it’s not a set then it doesn’t necessarily have to have the property that we can be

sure whether an element is in it or not.



Chapter 5

Proof techniques II — Induction

Who was the guy who first looked at a cow and said, “I think I’ll drink whatever

comes out of these things when I squeeze ’em!”?

—Bill Watterson

5.1 The principle of mathematical induction

The principle of mathematical induction (PMI) may be the least intuitive proof method

available to us. Indeed, at first, PMI may feel somewhat like grabbing yourself by the seat

of your pants and lifting yourself into the air. Despite the indisputable fact that proofs by

PMI often feel like magic, we need to convince you of the validity of this proof technique.

It is one of the most important tools in your mathematical kit.

The simplest argument in favour of the validity of PMI is simply that it is axiomatic. This

may seem somewhat unsatisfying, but the axioms for the natural number system, known

as the Peano axioms, include one that justifies PMI. The Peano axioms will not be treated

thoroughly in this book, but here they are:

i. There is a least element of N that we denote by 0.

ii. Every natural number a has a successor denoted by s(a). (Intuitively, think of

s(a) = a+ 1.)

iii. There is no natural number whose successor is 0. (In other words, −1 isn’t in N.)

iv. Distinct natural numbers have distinct successors. (a 6= b =⇒ s(a) 6= s(b))

219
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v. If a subset of the natural numbers contains 0 and also has the property that whenever

a ∈ S it follows that s(a) ∈ S, then the subset S is actually equal to N.

The last axiom is the one that justifies PMI. Basically, if 0 is in a subset, and the subset

has this property about successors1, then 1 must be in it. But if 1 is in it, then 1’s

successor (2) must be in it. And so on. . .

The subset ends up having every natural number in it.

Exercise 5.1. Verify that the following symbolic formulation has the same content as the

version of the 5th Peano axiom given above.

∀S ⊆ N (0 ∈ S) ∧ (∀a ∈ N, a ∈ S =⇒ s(a) ∈ S) =⇒ S = N

On August 16th 2003, Ma Lihua of Beijing, China earned her place in the record books

by single-handedly setting up an arrangement of dominoes standing on end2 (actually, the

setup took seven weeks and was almost ruined by some cockroaches in the Singapore Expo

Hall) and toppling them. After the first domino was tipped over it took about six minutes

before 303,621 out of the 303,628 dominoes had fallen. (One has to wonder what kept

those other seven dominoes upright. . . )

This is the model one should keep in mind when thinking about PMI: domino toppling.

In setting up a line of dominoes, what do we need to do in order to ensure that they will

all fall when the toppling begins? Every domino must be placed so that it will hit and

topple its successor. This is exactly analogous to (a ∈ S =⇒ s(a) ∈ S). (Think of S

having the membership criterion, x ∈ S = “x will have fallen when the toppling is over.”)

The other thing that has to happen (barring the action of cockroaches) is for someone to

knock over the first domino. This is analogous to 0 ∈ S.

Rather than continuing to talk about subsets of the naturals, it will be convenient to recast

our discussion in terms of infinite families of logical statements. If we have a sequence of

statements, (one for each natural number) P0, P1, P2, P3, . . . we can prove them all to

be true using PMI. We have to do two things. First — and this is usually the easy part

— we must show that P0 is true (i.e. the first domino will get knocked over). Second,
1Whenever a number is in it, the number’s successor must be in it.
2Highlights of the record-breaking event can be found at https://youtu.be/2uABU93bd3g.

https://youtu.be/2uABU93bd3g
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we must show, for every possible value of k, Pk =⇒ Pk+1 (i.e. each domino will knock

down its successor). These two parts of an inductive proof are known, respectively, as the

basis and the inductive step.

Below is an outline for a proof of ∀n ∈ N, Pn using PMI:

Proof. (By induction)

Basis:
... (Here we establish P0.)

Inductive step:

... (Here we establish ∀k, Pk =⇒ Pk+1.)

By the principle of mathematical induction, Pn is true for every n ∈ N.

Soon we’ll do an actual example of an inductive proof, but first we have to say something

REALLY IMPORTANT about such proofs. Pay attention! This is REALLY IMPOR-

TANT ! When doing the second part of an inductive proof (the inductive step), you are

proving a UCS, and if you recall how that’s done, you start by assuming the antecedent

is true. But the particular UCS we’ll be dealing with is ∀k, Pk =⇒ Pk+1. That means

that in the course of proving ∀n, Pn, we have to assume that Pk is true.

Now this sounds very much like the error known as “circular reasoning,” especially as many

authors don’t even use different letters (n versus k in our outline) to distinguish the two

statements. (And, quite honestly, we only introduced the variable k to assuage a certain

lingering guilt regarding circular reasoning.) The sentence ∀n, Pn is what we’re trying to

prove, but the sentence we need to prove in order to do that is ∀k, Pk =⇒ Pk+1. This is

subtly different — in proving that ∀k, Pk =⇒ Pk+1 (which is a UCS!), we assume that

Pk is true for some particular value of k.

The sentence Pk is known as the inductive hypothesis. Think about it this way: If we

were doing an entirely separate proof of ∀n, Pn =⇒ Pn+1, it would certainly be fair to
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use the inductive hypothesis, and once that proof was done, it would be okay to quote

that result in an inductive proof of ∀n, Pn. Thus we can compartmentalize our way out

of the difficulty!

Okay, so on to an example. In Section 4.1, we discovered a formula relating the sizes of

a set A and its power set P(A). If |A| = n then |P(A)| = 2n. What we’ve got here is

an infinite family of logical sentences, one for each value of n in the natural numbers,

|A| = 0 =⇒ |P(A)| = 20,

|A| = 1 =⇒ |P(A)| = 21,

|A| = 2 =⇒ |P(A)| = 22,

|A| = 3 =⇒ |P(A)| = 23,

...

This is exactly the sort of situation in which we use induction.

Theorem 5.1. For all finite sets A, |A| = n =⇒ |P(A)| = 2n.

Proof. Let n = |A| and proceed by induction on n.

Basis: Suppose that A is a finite set and |A| = 0. It follows that A = ∅. The power set

of ∅ is {∅} which is a set having 1 element. Note that 20 = 1.

Inductive step: Suppose that A is a finite set with |A| = k+ 1. Choose some particular

element of A, say a, and note that we can divide the subsets of A (i.e. elements of P(A))

into two categories, those that contain a and those that don’t.

Let S1 = {X ∈ P(A) : a ∈ X} and let S2 = {X ∈ P(A) : a /∈ X}. We have created two

sets that contain all the elements of P(A), and which are disjoint from one another. In

symbolic form, S1 ∪ S2 = P(A) and S1 ∩ S2 = ∅. It follows that |P(A)| = |S1|+ |S2|.

Notice that S2 is actually the power set of the k-element set A \ {a}. By the inductive

hypothesis, |S2| = 2k. Also, notice that each set in S1 corresponds uniquely to a set in

S2 if we just remove the element a from it. This shows that |S1| = |S2|. Putting this all
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together we get that

|P(A)| = 2k + 2k = 2(2k) = 2k+1.

Here are a few pieces of advice about proofs by induction:

• Statements that can be proved inductively don’t always start out with P0. Sometimes

P1 is the first statement in an infinite family. Sometimes it is P5. Don’t get hung

up about something that could be handled by renumbering things.

• In your final write-up, you only need to prove the initial case (whatever it may be)

for the basis, but it is a good idea to try the first several cases while you are in

the “draft” stage. This can provide insights into how to prove the inductive step,

and it may also help you avoid a classic error in which the inductive approach fails

essentially just because there is a gap between two of the earlier dominoes.3

• It is a good idea to write down somewhere just what it is that needs to be proved

in the inductive step — just don’t make it look like you’re assuming what needs to

be shown. For instance, in the proof above, it might have been nice to start the

inductive step with a comment along the following lines, “What we need to show

is that under the assumption that any set of size k has a power set of size 2k, it

follows that a set of size k + 1 will have a power set of size 2k+1.”

5.1.1 Exercises

1. Consider the sequence of numbers that are 1 greater than a multiple of 4. (Such

numbers are of the form 4j + 1.)

1, 5, 9, 13, 17, 21, 25, 29, . . .

The sum of the first several numbers in this sequence can be expressed as a polyno-

mial.
3See exercise 2, the classic fallacious proof that all horses are the same colour.
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n∑
j=0

4j + 1 = 2n2 + 3n+ 1

Complete the following table in order to provide evidence that the formula above is

correct.

n
n∑
j=0

4j + 1 2n2 + 3n+ 1

0 1 1

1 1 + 5 = 6 2 · 12 + 3 · 1 + 1 = 6

2 1 + 5 + 9 =

3

4

2. What is wrong with the following inductive proof of “all horses are the same colour.”?

Theorem. Let H be a set of n horses, all horses in H are the same colour.

Proof. We proceed by induction on n.

Basis: Suppose H is a set containing 1 horse. Clearly this horse is the same colour

as itself.

Inductive step: Given a set of k + 1 horses H we can construct two sets of k

horses. Suppose H = {h1, h2, h3, . . . hk+1}. Define Ha = {h1, h2, h3, . . . hk} (i.e.

Ha contains just the first k horses) and Hb = {h2, h3, h4, . . . hk+1} (i.e. Hb contains

the last k horses). By the inductive hypothesis both these sets contain horses that

are “all the same colour.” Also, all the horses from h2 to hk are in both sets so both

Ha and Hb contain only horses of this (same) colour. Finally, we conclude that all

the horses in H are the same colour.

3. For each of the following theorems, write the statement that must be proved for the

basis — then prove it, if you can!
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Figure 5.1: Straight trominoe

Figure 5.2: L-shaped trominoe

a. The sum of the first n positive integers is (n2 + n)/2.

b. The sum of the first n (positive) odd numbers is n2.

c. If n coins are flipped, the probability that all of them are “heads” is 1/2n.

d. Every 2n×2n chessboard — with one square removed — can be tiled perfectly4

by L-shaped trominoes.

Note that a trominoe is like a domino but made up of three little squares. There

are two kinds: straight (see Figure 5.1) and L-shaped (see Figure 5.2). This

problem is only concerned with the L-shaped trominoes.

4. Suppose that the rules of the game for PMI were changed so that one did the

following:

• Basis. Prove that P0 is true.

• Inductive step. Prove that for all k, Pk implies Pk+2

Explain why this would not constitute a valid proof that Pn holds for all natural

numbers n.

How could we change the basis in this outline to obtain a valid proof?

5. If we wanted to prove statements that were indexed by the integers,

∀z ∈ Z, Pz,
4Here, “perfectly tiled” means that every trominoe covers three squares of the chessboard (nothing hangs over

the edge) and that every square of the chessboard is covered by some trominoe.
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what changes should be made to PMI?
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5.2 Formulas for sums and products

Gauss, when only a child, found a formula for summing the first 100 natural numbers (or

so the story goes. . . ). This formula, and his clever method for justifying it, can be easily

generalized to the sum of the first n naturals. While learning calculus, notably during

the study of Riemann sums, one encounters other summation formulas. For example, in

approximating the integral of the function f(x) = x2 from 0 to 100 one needs the sum of

the first 100 squares. For this reason, somewhere in almost every calculus book one will

find the following formulas collected:
n∑
j=1

j = n(n+ 1)
2

n∑
j=1

j2 = n(n+ 1)(2n+ 1)
6

n∑
j=1

j3 = n2(n+ 1)2

4 .

A really industrious author might also include the sum of the fourth powers. Jacob

Bernoulli (a truly industrious individual) got excited enough to find formulas for the sums

of the first ten powers of the naturals. Actually, Bernoulli went much further. His work

on sums of powers lead to the definition of what are now known as Bernoulli numbers and

let him calculate
1000∑
j=1

j10 in about seven minutes — long before the advent of calculators!

In Struik (1986) (p. 320), Bernoulli is quoted:

With the help of this table it took me less than half of a quarter of an hour

to find that the tenth powers of the first 1000 numbers being added together

will yield the sum

91, 409, 924, 241, 424, 243, 424, 241, 924, 242, 500.

To the beginning calculus student, the beauty of the above relationships may be somewhat

dimmed by the memorization challenge that they represent. It is fortunate then, that the

right-hand side of the third formula is just the square of the right-hand side of the first
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formula. And of course, the right-hand side of the first formula is something that can be

deduced by a six year old child (provided that he is a super-genius!) This happy coincidence

leaves us to apply most of our rote memorization energy to formula number two, because

the first and third formulas are related by the following rather bizarre-looking equation,

n∑
j=1

j3 =

 n∑
j=1

j

2

.

The sum of the cubes of the first n numbers is the square of their sum.

For completeness we should include the following formula which should be thought of as

the sum of the zeroth powers of the first n naturals.

n∑
j=1

1 = n

Exercise 5.2. Use the above formulas to approximate the integral∫ 10

x=0
x3 − 2x+ 3dx

Our challenge today is not to merely memorize these formulas but to prove their validity.

We’ll use PMI.

Before we start in on a proof, it’s important to figure out where we’re trying to go. In

proving the formula that Gauss discovered by induction, we need to show that the k+1–th

version of the formula holds, assuming that the k–th version does. Before proceeding on

to read the proof do the following

Exercise 5.3. Write down the k + 1–th version of the formula for the sum of the first n

naturals. (You have to replace every n with a k + 1.)

Theorem 5.2.

∀n ∈ N,
n∑
j=1

j = n(n+ 1)
2

Proof. We proceed by induction on n.
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Basis: Notice that when n = 0 the sum on the left-hand side has no terms in it! This is

known as an empty sum, and by definition, an empty sum’s value is 0. Also, when n = 0

the formula on the right-hand side becomes (0 · 1)/2 and this is 0 as well.5

Inductive step: Consider the sum on the left-hand side of the k + 1–th version of our

formula.

k+1∑
j=1

j

We can separate out the last term of this sum. Thus,

k+1∑
j=1

j = (k + 1) +
k∑
j=1

j.

Next, we can use the inductive hypothesis to replace the sum (the part that goes from 1

to k) with a formula. It follows that

k+1∑
j=1

j = (k + 1) + k(k + 1)
2 .

From here on out it’s just algebra:

(k + 1) + k(k + 1)
2 = 2(k + 1)

2 + k(k + 1)
2

= 2(k + 1) + k(k + 1)
2

= (k + 1) · (k + 2)
2 .

The statement of the theorem now from the principle of mathematical induction.

Notice how the inductive step in this proof works. We start by writing down the left-

hand side of Pk+1, we pull out the last term so we’ve got the left-hand side of Pk (plus

something else), then we apply the inductive hypothesis and do some algebra until we
5If you’d prefer to avoid the “empty sum” argument, you can choose to use n = 1 as the basis case. The

theorem should be restated so the universe of discourse is positive naturals.
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arrive at the right-hand side of Pk+1. Overall, we’ve just transformed the left-hand side

of the statement we wish to prove into its right-hand side.

There is another way to organize the inductive steps in proofs like these that works by

manipulating entire equalities (rather than just one side or the other of them).

Inductive step (alternate): By the inductive hypothesis, we can write

k∑
j=1

j = k(k + 1)
2 .

Adding (k + 1) to both side of this yields

k+1∑
j=1

j = (k + 1) + k(k + 1)
2 .

Next, we can simplify the right-hand side of this to obtain

k+1∑
j=1

j = (k + 1)(k + 2)
2 .

Oftentimes one can save considerable effort in an inductive proof by creatively using the

factored form during intermediate steps. However, sometimes it is easier to just simplify

everything completely, and also, completely simplify the expression on the right-hand side

of Pk+1 and then verify that the two things are equal. This is basically just another take on

the technique of “working backwards from the conclusion.” Just remember that in writing

up your proof, you need to make it look as if you reasoned directly from the premises to

the conclusion. We’ll illustrate what we’ve been discussing in this paragraph while proving

the formula for the sum of the squares of the first n positive integers.

Theorem 5.3.

∀n ∈ Z>0,
n∑
j=1

j2 = n(n+ 1)(2n+ 1)
6

Proof. We proceed by induction on n.

Basis: When n = 1 the sum has only one term, 12 = 1. On the other hand, the formula

is 1(1 + 1)(2 · 1 + 1)
6 = 1. Since these are equal, the basis is proved.



5.2. FORMULAS FOR SUMS AND PRODUCTS 231

Inductive step:

Before proceeding with the inductive step, we will figure out what the right-

hand side of our theorem looks like when n is replaced with k + 1:

(k + 1)((k + 1) + 1)(2(k + 1) + 1)
6

= (k + 1)(k + 2)(2k + 3)
6

= (k2 + 3k + 2)(2k + 3)
6

= 2k3 + 9k2 + 13k + 6
6 .

By the inductive hypothesis,
k∑
j=1

j2 = k(k + 1)(2k + 1)
6 .

Adding (k + 1)2 to both sides of this equation gives

(k + 1)2 +
k∑
j=1

j2 = k(k + 1)(2k + 1)
6 + (k + 1)2.

Thus,
k+1∑
j=1

j2 = k(k + 1)(2k + 1)
6 + 6(k + 1)2

6 .

Therefore,
k+1∑
j=1

j2 = (k2 + k)(2k + 1)
6 + 6(k2 + 2k + 1)

6

= (2k3 + 3k2 + k) + (6k2 + 12k + 6)
6

= 2k3 + 9k2 + 13k + 6
6

= (k2 + 3k + 2)(2k + 3)
6

= (k + 1)(k + 2)(2k + 3)
6

= (k + 1)((k + 1) + 1)(2(k + 1) + 1)
6 .

This proves the inductive step, so the result is true.
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Notice how the last four lines of the proof are the same as those in our scratch work?

(Except in the reverse order.)

We’ll end this section by demonstrating one more use of this technique. This time we’ll

look at a formula for a product rather than a sum.

Theorem 5.4.

∀n ≥ 2 ∈ Z,
n∏
j=2

(
1− 1

j2

)
= n+ 1

2n .

Before preceding with the proof, let’s look at an example (although this has nothing to

do with proving anything, it’s really not a bad idea — it can keep you from wasting a lot

of time trying to prove something that isn’t actually true!) When n = 4 the product is(
1− 1

22

)
·
(

1− 1
32

)
·
(

1− 1
42

)
.

This simplifies to(
1− 1

4

)
·
(

1− 1
9

)
·
(

1− 1
16

)
=
(3

4

)
·
(8

9

)
·
(15

16

)
= 360

576 .

The formula on the right-hand side is

4 + 1
2 · 4 = 5

8 .

Well! These two expressions are clearly not equal to one another. . .What? You say they

are? Just give me a second with my calculator. . .

Alright then. I guess we can’t dodge doing the proof. . .

Proof. (Using mathematical induction on n.)

Basis: When n = 2 the product has only one term, 1− 1/22 = 3/4. On the other hand,

the formula is 2 + 1
2 · 2 = 3/4. Since these are equal, the basis is proved.

Inductive step:

Let k be a particular but arbitrarily chosen integer such that
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k∏
j=2

(
1− 1

j2

)
= k + 1

2k .

Multiplying6 both sides by the k + 1–th term of the product gives

(
1− 1

(k + 1)2

)
·

k∏
j=2

(
1− 1

j2

)
= k + 1

2k ·
(

1− 1
(k + 1)2

)
.

Thus
k+1∏
j=2

(
1− 1

j2

)
= k + 1

2k ·
(

1− 1
(k + 1)2

)

= k + 1
2k − (k + 1)

2k(k + 1)2

= k + 1
2k − (1)

2k(k + 1)

= (k + 1)2 − 1
2k(k + 1)

= k2 + 2k
2k(k + 1)

= k(k + 2)
2k(k + 1)

= k + 2
2(k + 1) .

5.2.1 Exercises

1. Write an inductive proof of the formula for the sum of the first n cubes.

2. Find a formula for the sum of the first n fourth powers.

3. The sum of the first n natural numbers is sometimes called the n-th triangular

number Tn. Triangular numbers are so-named because one can represent them with

triangular shaped arrangements of dots.
6Really, the only reason I’m doing this silly proof is to point out to you that when you’re doing the inductive

step in a proof of a formula for a product, you don’t add to both sides anymore, you multiply. You see that,
right? Well, consider yourself to have been pointed out to or . . . oh, whatever.
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Figure 5.3: Illustration of the first five triangular numbers.

The first five triangular numbers are 1, 3, 6, 10, 15. (See Figure 5.3.)

Determine a formula for the sum of the first n triangular numbers
(

n∑
i=1

Ti

)
and

prove it using PMI.

4. Consider the alternating sum of squares:

1

1− 4 = −3

1− 4 + 9 = 6

1− 4 + 9− 16 = −10

etc.

Guess a general formula for
∑n
i=1(−1)i−1i2, and prove it using PMI.

5. Prove the following formula for a product.

n∏
i=2

(
1− 1

i

)
= 1
n

6. Prove
n∑
j=0

(4j + 1) = 2n2 + 3n+ 1 for all integers n ≥ 0.

7. Prove
n∑
i=1

1
(2i− 1)(2i+ 1) = n

2n+ 1 for all natural numbers n.

8. The Fibonacci numbers are a sequence of integers defined by the rule that a number

in the sequence is the sum of the two that precede it.

Fn+2 = Fn + Fn+1

The first two Fibonacci numbers (actually the zeroth and the first) are both 1.
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Thus, the first several Fibonacci numbers are

F0 = 1, F1 = 1, F2 = 2, F3 = 3, F4 = 5, F5 = 8, F6 = 13, F7 = 21, etc.

Use mathematical induction to prove the following formula involving Fibonacci num-

bers.

n∑
i=0

(Fi)2 = Fn · Fn+1
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5.3 Divisibility statements and other proofs using PMI

There is a very famous result known as Fermat’s Little Theorem. This would probably be

abbreviated FLT except for two things. In science fiction, FLT means “faster than light

travel” and there is another theorem due to Fermat that goes by the initials FLT: Fermat’s

Last Theorem. Fermat’s last theorem states that equations of the form an+bn = cn, where

n is a positive natural number, only have integer solutions that are trivial (like 03+13 = 13)

when n is greater than 2. When n is 1, there are lots of integer solutions. When n is 2,

there are still plenty of integer solutions — these are the so-called Pythagorean triples,

for example 3,4 & 5 or 5,12 & 13. It is somewhat unfair that this statement is known as

Fermat’s last theorem since he didn’t prove it (or at least we can’t be sure that he proved

it). Five years after his death, Fermat’s son published a translated7 version of Diophantus’s

Arithmetica containing his father’s notations. One of those notations — near the place

where Diophantus was discussing the equation x2 + y2 = z2 and its solution in whole

numbers — was the statement of what is now known as Fermat’s last theorem as well as

the following claim:

Cuius rei demonstrationem mirabilem sane detexi hanc marginis exiguitas non

caperet.

In English:

I have discovered a truly remarkable proof of this that the margin of this page

is too small to contain.

Between 1670 and 1994 a lot of famous mathematicians worked on FLT but never found

the “demonstrationem mirabilem.” Finally in 1994, Andrew Wiles of Princeton announced

a proof of FLT, but in Wiles’s own words, his is “a twentieth century proof” it can’t be

the proof Fermat had in mind.

These days most people believe that Fermat was mistaken. Probably he thought a proof

technique that works for small values of n could be generalized. It remains a tantaliz-

ing question, can a proof of FLT using only methods available in the 17th century be
7The translation from Greek into Latin was done by Claude Bachet.
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accomplished?

Part of the reason that so many people spent so much effort on FLT over the centuries

is that Fermat had an excellent record as regards being correct about his theorems and

proofs. The result known as Fermat’s little theorem is an example of a theorem and proof

that Fermat got right. It is probably known as his “little” theorem because its statement

is very short, but it is actually a fairly deep result.

Theorem 5.5 (Fermat’s Little Theorem). For every prime number p, and for all integers

x, the p-th power of x and x itself are congruent mod p. Symbolically:

xp ≡ x (mod p)

A slight restatement of Fermat’s little theorem is that p is always a divisor of xp − x

(assuming p is a prime and x is an integer). Math professors enjoy using their knowledge of

Fermat’s little theorem to cook up divisibility results that can be proved using mathematical

induction. For example, consider the following:

∀n ∈ N, 3 | (n3 + 2n+ 6).

This is really just the p = 3 case of Fermat’s little theorem with a little camouflage added:

n3 + 2n+ 6 = (n3− n) + 3(n+ 2). But let’s have a look at proving this statement using

PMI.

Theorem 5.6. ∀n ∈ N, 3 | (n3 + 2n+ 6)

Proof. (By mathematical induction)

Basis: Clearly 3 | 6.

Inductive step:

(We need to show that 3 | (k3 + 2k + 6) =⇒ 3 | ((k + 1)3 + 2(k + 1) + 6.)



238 CHAPTER 5. PROOF TECHNIQUES II — INDUCTION

Note that

(k + 1)3 + 2(k + 1) + 6

= (k3 + 3k2 + 3k + 1) + (2k + 2) + 6

= (k3 + 2k + 6) + 3k2 + 3k + 3

= (k3 + 2k + 6) + 3(k2 + k + 1).

By the inductive hypothesis, 3 is a divisor of k3 + 2k + 6 so there is an integer m such

that k3 + 2k + 6 = 3m. Thus,

(k + 1)3 + 2(k + 1) + 6

= 3m+ 3(k2 + k + 1)

= 3(m+ k2 + k + 1).

This equation shows that 3 is a divisor of (k + 1)3 + 2(k + 1) + 6, which is the desired

conclusion.

Exercise 5.4. Devise an inductive proof of the statement, ∀n ∈ N, 5 | n5 + 4n− 10.

There is one other subtle trick for devising statements to be proved by PMI that you should

know about. An example should suffice to make it clear. Notice that 7 is equivalent to

1 (mod 6). It follows that any power of 7 is also 1 (mod 6). So, if we subtract 1 from

some power of 7 we will have a number that is divisible by 6.

The proof (by PMI) of a statement like this requires another subtle little trick. Somewhere

along the way in the proof you’ll need the identity 7 = 6 + 1.

Theorem 5.7.

∀n ∈ N, 6 | 7n − 1

Proof. (By PMI)

Basis: Note that 70 − 1 is 0 and also that 6 | 0.
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Inductive step:

(We need to show that if 6 | 7k − 1 then 6 | 7k+1 − 1.)

Note that

7k+1 − 1 = 7 · 7k − 1

= (6 + 1) · 7k − 1

= 6 · 7k + 1 · 7k − 1

= 6(7k) + (7k − 1)

By the inductive hypothesis, 6 | 7k − 1 so there is an integer m such that 7k − 1 = 6m.

It follows that

7k+1 − 1 = 6(7k) + 6m.

So, clearly, 6 is a divisor of 7k+1 − 1.

Mathematical induction can often be used to prove inequalities. There are quite a few

examples of families of statements where there is an inequality for every natural number.

Often such statements seem to be obviously true and yet devising a proof can be illusive.

If such is the case, try using PMI. One hint: it is fairly typical that the inductive step

in a PMI proof of an inequality will involve reasoning that isn’t particularly sharp. Just

remember that if you have an inequality and you make the big side even bigger, the

resulting statement is certainly still true!

Consider the sequences 2n and n!:

n 0 1 2 3 . . .

2n 1 2 4 8 . . .

n! 1 1 2 6 . . .

As the table illustrates, 2n > n! for small values of n. But from n = 4 onward the

inequality is reversed.
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Theorem 5.8.

∀n ≥ 4 ∈ N, 2n < n!

Proof. (By mathematical induction)

Basis: When n = 4 we have 24 < 4!, which is certainly true (16 < 24).

Inductive step: Suppose that k is a natural number with k > 4, and that 2k < k!.

Multiply the left hand side of this inequality by 2 and the right hand side by k+ 18 to get

2 · 2k < (k + 1) · k!.

So

2k+1 < (k + 1)!.

The observant calculus student will certainly be aware of the fact that, asymptotically,

exponential functions grow faster than polynomial functions. That is, if you have a base b

which is greater than 1, the function bx is eventually larger than any polynomial p(x). This

may seem a bit hard to believe if b = 1.001 and p(x) = 500x10. The graph of y = 1.001x is

practically indistinguishable from the line y = 1 (at first), whereas the graph of y = 500x10

has already reached the astronomical value of five trillion (5, 000, 000, 000, 000) when x is

just 10. Nevertheless, the exponential will eventually outstrip the polynomial. We can use

the methods of this section to get started on proving the fact mentioned above. Consider

the two sequences n2 and 2n.

n 0 1 2 3 4 5 6

n2 0 1 4 9 16 25 36

2n 1 2 4 8 16 32 64

If we think of a “race” between the sequences n2 and 2n, notice that 2n starts out with

the lead. The two sequences are tied when n = 2. Briefly, n2 goes into the lead but
8It might be smoother to justify this step by first proving the lemma that ∀a, b, c, d ∈ R+, a < b∧ c < d =⇒

ac < bd.
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they are tied again when n = 4. After that it would appear that 2n recaptures the lead

for good. Of course we’re making a rather broad presumption — is it really true that n2

never catches up with 2n again? Well, if we’re right, then the following theorem should

be provable:

Theorem 5.9. For all natural numbers n, if n ≥ 4 then n2 ≤ 2n.

Proof. Basis: When n = 4 we have 42 ≤ 24, which is true since both

numbers are 16.

Inductive step:

(We assume that k2 ≤ 2k and then show that (k + 1)2 ≤ 2k+1.)

The inductive hypothesis tells us that

k2 ≤ 2k.

If we add 2k + 1 to the left-hand side of this inequality and 2k to the

right-hand side we will produce the desired inequality. Thus our proof will

follow provided that we know that 2k + 1 ≤ 2k. Indeed, it is sufficient to

show that 2k+1 ≤ k2 since we already know (by the inductive hypothesis)

that k2 ≤ 2k.

So the result remains in doubt unless you can complete the exercise that

follows. . .

Exercise 5.5. Prove the lemma: For all n ∈ N, if n ≥ 4 then 2n+ 1 ≤ n2.

5.3.1 Exercises

Give inductive proofs of the following

1. ∀x ∈ N, 3 |x3 − x
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2. ∀x ∈ N, 3 |x3 + 5x

3. ∀x ∈ N, 11 |x11 + 10x

4. ∀n ∈ N, 3 |4n − 1

5. ∀n ∈ N, 6 |(3n2 + 3n− 12)

6. ∀n ∈ N, 5 |(n5 − 5n3 + 14n)

7. ∀n ∈ N, 4 |(13n + 4n− 1)

8. ∀n ∈ N, 7 |8n + 6

9. ∀n ∈ N, 6 |2n3 − 2n− 12

10. ∀n ≥ 3 ∈ N, 3n2 + 3n+ 1 < 2n3

11. ∀n > 3 ∈ N, n3 < 3n

12. ∀n ≥ 3 ∈ N, n3 + 3 > n2 + 3n+ 1

13. ∀x ≥ 4 ∈ N, x22x ≤ 4x
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5.4 The strong form of mathematical induction

The strong form of mathematical induction (a.k.a. the principle of complete induction,

PCI) is so-called because the hypotheses one uses are stronger. Instead of showing that

Pk =⇒ Pk+1 in the inductive step, we get to assume that all the statements numbered

smaller than Pk+1 are true. To make life slightly easier, we’ll renumber things a little.

The statement that needs to be proved is

∀k(P0 ∧ P1 ∧ . . . ∧ Pk−1) =⇒ Pk.

Below is an outline for a strong inductive proof of ∀n ∈ N, Pn:

Proof. (By complete induction)

Basis:
... (Technically, a basis is not required in a

PCI proof. But we recommend having one.)

Inductive step:

... (Here we establish ∀k,
(∧k−1

i=0 Pi
)

=⇒ Pk.)

By the principle of complete induction, Pn is true for every n ∈ N.

It’s fairly common that we won’t truly need all of the statements from P0 to Pk−1 to be

true, but just one of them (and we don’t know a priori which one). The following is a

classic result; the proof that all numbers greater than 1 have prime factors.

Theorem 5.10. For all natural numbers n, n > 1 implies n has a prime factor.

Proof. (By strong induction) Consider an arbitrary natural number n > 1. If n is prime,
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then n clearly has a prime factor (itself). So suppose that n is not prime. By definition, a

composite natural number can be factored, so n = a · b for some pair of natural numbers

a and b which are both greater than 1. Since a and b are factors of n both greater than

1, it follows that a < n (it is also true that b < n but we don’t need that . . . ). The

inductive hypothesis can now be applied to deduce that a has a prime factor p. Since

p | a and a | n, by transitivity p | n. Thus n has a prime factor.

5.4.1 Exercises

Give inductive proofs of the following

1. A “postage stamp problem” is a problem that (typically) asks us to determine what

total postage values can be produced using two sorts of stamps. Suppose that you

have 3¢ stamps and 7¢ stamps, show (using strong induction) that any postage value

12¢ or higher can be achieved. That is,

∀n ∈ N, n ≥ 12 =⇒ ∃x, y ∈ N, n = 3x+ 7y.

2. Show that any integer postage of 12¢ or more can be made using only 4¢ and 5¢

stamps.

3. The polynomial equation x2 = x + 1 has two solutions, α = 1+
√

5
2 and β = 1−

√
5

2 .

Show that the Fibonacci number Fn is less than or equal to αn for all n ≥ 0.
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Hints to exercises

5.1.1

1. When n = 3,
n∑
j=0

4j+1 = 1+5+9+13 = 28 and 2n2+3n+1 = 2·32+3·3+1 = 28.

2. Look carefully at the stage from n = 2 to n = 3.

3. a. The sum of the first 0 positive integers is (02 + 0)/2. Or, if you prefer to start

with something rather than nothing: The sum of the first 1 positive integers is

(12 + 1)/2.

b. The sum of the first 0 positive odd numbers is 02. Or, the sum of the first 1

positive odd numbers is 12.

c. If 1 coin is flipped, the the probability that it is “heads” is 1/2. Or if we try it

when n = 0, “If no coins are flipped the probability that all of them are heads

is 1.” Does that make sense to you? Is it reasonable that we would say it is

100% certain that all of the coins are heads in a set that doesn’t contain any

coins?

d. If n = 1 we have: “Every 2 × 2 chessboard — with one square removed can

be tiled perfectly by L-shaped trominoes.” This version is trivial to prove. Try

formulating the n = 0 case.

4. In this modified version, P (0) is not going to imply P (1). and in fact, none of the

odd numbered statements will be proven. If we change the basis so that we prove

both P (0) and P (1), all the even statements will be implied by P (0) being true and

all the odd statements get forced because P (1) is true.

5. A quick change would be to replace ∀k, Pk =⇒ Pk+1 in the inductive step with

∀k, Pk ⇐⇒ Pk+1. While this would do the trick, a slight improvement is possible,

if we treat the positive and negative cases for k separately.

5.2.1

1. The proof is by induction on n.
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Base case: (n = 1) For the base case, note that when n = 1 we have
n∑
k=1

k3 = 1

and (
n(n+ 1)

2

)2
= 1.

Inductive step:

Suppose that m > 1 is an integer such that
m∑
k=1

k3 =
(
m(m+ 1)

2

)2

Add (m+ 1)3 to both sides to obtain

(m+ 1)3 +
m∑
k=1

k3 =
(
m(m+ 1)

2

)2
+ (m+ 1)3.

Thus
m+1∑
k=1

k3 =
(
m2(m+ 1)2

4

)
+ 4(m+ 1)3

4

=
(
m2(m+ 1)2 + 4(m+ 1)3

4

)

=
(

(m+ 1)2(m2 + 4(m+ 1))
4

)

=
(

(m+ 1)2(m2 + 4m+ 4)
4

)

=
(

(m+ 1)2(m+ 2)2

4

)

=
((m+ 1)(m+ 2)

2

)2

2. n·(n+1)·(2n+1)·(3n2+3n−1)
30

3. The formula is n(n+1)(n+2)
6 .

4. The proof is by induction on n.

Base case: (n = 1) For the base case, note that when n = 1 we have
n∑
i=1

(−1)i−1i2 = 1
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and also

(−1)n−1n(n+ 1)
2 = 1.

Inductive step:

Suppose that k > 1 is an integer such that
k∑
i=1

(−1)i−1i2 = (−1)k−1 k(k + 1)
2 .

Adding (−1)k(k + 1)2 to both sides gives
k+1∑
i=1

(−1)i−1i2 = (−1)k−1 k(k + 1)
2 + (−1)k(k + 1)2

= (−1)k−1 k(k + 1)
2 − (−1)k−1(k + 1)2

= (−1)k−1
(
k(k + 1)

2 − 2(k + 1)2

2

)

= (−1)k
(

2(k + 1)2

2 − k(k + 1)
2

)

= (−1)k (k + 1)(2(k + 1)− k)
2

= (−1)k (k + 1)(k + 2)
2

5. Notice that the problem statement didn’t specify the domain – but the smallest

value of n that gives a non-empty product on the left-hand side is n = 2. Below is

a sketch of the proof:

Base case: (n = 2) For the base case, note that when n = 2 we have
2∏
i=2

(
1− 1

i

)
=

(
1− 1

2

)
= 1/2

and the right-hand side (1/n) also evaluates to 1/2.

Inductive step:

Suppose that k ≥ 2 is an integer such that
k∏
i=2

(
1− 1

i

)
= 1
k
.
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Then,
k+1∏
i=2

(
1− 1

i

)
=
(

1− 1
k + 1

)
·

k∏
i=2

(
1− 1

i

)
=
(

1− 1
k + 1

)
· 1
k

= 1
k + 1 .

The final line skips over a tiny bit of algebraic detail. You may feel more comfortable

if you fill in those steps.

6. The proof is by induction on n.

Base case: (n = 0) For the base case, note that when n = 0 we have
n∑
j=0

(4j + 1) = (4 · 0 + 1 = 1

and

2n2 + 3n+ 1 = 2 · 02 + 3 · 0 + 1 = 1.

Inductive step:

Suppose that k ≥ 0 is an integer such that

k∑
j=0

(4j + 1) = 2k2 + 3k + 1.

(We want to show that
k+1∑
j=0

(4j + 1) = 2(k + 1)2 + 3(k + 1) + 1.)

So consider the sum
k+1∑
j=0

(4j + 1):

k+1∑
j=0

(4j + 1) = 4(k + 1) + 1 +
k∑
j=0

(4j + 1)

= 4(k + 1) + 1 + 2k2 + 3k + 1
...
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Notice that the last line given in the proof is where the inductive hypothesis gets

used. The actual last line of the proof is fairly easy to determine. (Hint: it is given

in the “We want to show” sentence.) So now you just have to fill in the gaps.

7. The proof is by induction on n.

Base case: (n = 0) For the base case, note that when n = 0

n∑
j=0

1
(2i− 1)(2i+ 1)

contains no terms. Thus its value is 0.

Note that n

2n+ 1 also evaluates to 0 when n = 0.

Inductive step:

By the inductive hypothesis, we may write

k∑
i=1

1
(2i− 1)(2i+ 1) = k

2k + 1 .

Adding 1
(2(k + 1)− 1)(2(k + 1) + 1) to both side of this gives

k+1∑
i=1

1
(2i− 1)(2i+ 1) = k

2k + 1 + 1
(2(k + 1)− 1)(2(k + 1) + 1) .

To complete the proof we must verify that

k

2k + 1 + 1
(2(k + 1)− 1)(2(k + 1) + 1) = k + 1

2(k + 1) + 1 .



250 CHAPTER 5. PROOF TECHNIQUES II — INDUCTION

Note that

k

2k + 1 + 1
(2(k + 1)− 1)(2(k + 1) + 1)

= k

2k + 1 + 1
(2k + 1)(2k + 3)

= k(2k + 3)
(2k + 1)(2k + 3) + 1

(2k + 1)(2k + 3)

= k(2k + 3) + 1
(2k + 1)(2k + 3)

= 2k2 + 3k + 1
(2k + 1)(2k + 3)

= (2k + 1)(k + 1)
(2k + 1)(2k + 3)

= k + 1
2k + 3 = k + 1

2(k + 1) + 1

as desired.

8. The proof is by induction on n.

Base case: (n = 0)

For the base case, note that when n = 0
n∑
i=0

(Fi)2 = 1.

Note also that Fn · Fn+1 = F0 · F1 = 1 · 1 = 1.

Inductive step:

By the inductive hypothesis, we may write

k∑
i=0

(Fi)2 = Fk · Fk+1.

Adding (Fk+1)2 to both sides gives

k+1∑
i=0

(Fi)2 = Fk · Fk+1 + (Fk+1)2.

Finally, note that (using factoring and the defining property of the Fibonacci num-
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bers) we can show that

Fk · Fk+1 + (Fk+1)2 = Fk+1 · (Fk + Fk+1)

= Fk+1 · Fk+2

So the inductive step has been proved and the result follows by PMI.

5.3.1

1. The proof is by induction on x.

Base case: (x = 0)

The base case is trivial since, when x = 0, x3 − x evaluates to 0 and every natural

number is a divisor of 0.

Inductive step:

In the inductive step we want to show that ∀k ∈ N, 3 |k3−k =⇒ 3 |(k+1)3−(k+1).

So, let k be an arbitrary natural number such that 3 |k3 − k.

Note that

(k + 1)3 − (k + 1) = (k3 + 3k2 + 3k + 1)− (k + 1)

= (k3 − k) + (3k2 + 3k).

By the inductive hypothesis (and the definition of divisibility), we know that there

is an integer q such that k3 − k = 3q. So, by substitution, we obtain

(k + 1)3 − (k + 1) = 3q + 3k2 + 3k = 3 · (q + k2 + k).

Finally, q + k2 − k (being the sum of integers) is certainly an integer, so by the

definition of divisibility, it follows that (k + 1)3 − (k + 1) is divisible by 3.

5.4.1

1. Look at how you can get 13 and 14.

2. Similar idea as in the previous question.
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Chapter 6

Relations and functions

If evolution really works, how come mothers only have two hands?

—Milton Berle

6.1 Relations

A relation in mathematics is a symbol that can be placed between two numbers (or

variables) to create a logical statement (or open sentence). The main point here is that

the insertion of a relation symbol between two numbers creates a statement whose value

is either true or false. For example, we have previously seen the divisibility symbol | and

noted the common error of mistaking it for the division symbol /; one of these tells us

to perform an arithmetic operation, the other asks us whether if such an operation were

performed there would be a remainder.

There are many other symbols that have the same characteristic. The most important is

probably =, but there are many others; 6=, <, ≤, >, ≥ all work this way — if we place

them between two numbers we get a Boolean thing, it’s either true or false. If, instead

of numbers, we think of placing sets on either side of a relation symbol, then =, ⊆ and

⊇ are valid relation symbols. If we think of placing logical expressions on either side of a

relation then, honestly, any of the logical symbols is a relation, but we normally think of

∧ and ∨ as operators and give things like ≡, =⇒ and ⇐⇒ the status of relations.

In the examples we’ve looked at, the things on either side of a relation are of the same type.

253
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1

b

{1, 3, 5, 7, . . .}

{1, 2, a}

{1}a

2

3

Figure 6.1: The "element of" relation is an example of a relation that goes from one set to a
different set.

This is usually, but not always, the case. The prevalence of relations with the same kind of

things being compared has even lead to the aphorism “Don’t compare apples and oranges.”

Think about the symbol ∈ for a moment. As we’ve seen previously, it isn’t usually

appropriate to put sets on either side of this, we might have numbers or other objects on

the left and sets on the right. Let’s look at a small example. Let A = {1, 2, 3, a, b} and

let B = {{1, 2, a}, {1, 3, 5, 7, . . .}, {1}}. The “element of” relation, ∈, is a relation from

A to B.

A diagram such as the one given in Figure 6.1 seems like a very natural thing. Such

pictures certainly give us an easy visual tool for thinking about relations. But we should

point out certain hidden assumptions. First, they’ll only work if we are dealing with finite

sets, or sets like the odd numbers in our example (sets that are infinite but could in

principle be listed). Second, by drawing the two sets separately, it seems that we are

assuming they are not only different, but disjoint. The sets not only need not be disjoint,

but often (most of the time!) we have relations that go from a set to itself so the sets in

a picture like this may be identical. Figure 6.2 illustrates the divisibility relation on the set

of all divisors of 6 — this is an example in which the sets on either side of the relation are

the same. Notice the linguistic distinction: we can talk about either “a relation from A

to B” (when there are really two different sets) or “a relation on A” (when there is only

one).

Purists will note that it is really inappropriate to represent the same set in two different

places in a Venn diagram. The diagram in Figure 6.2 should really look like the one in
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6

3

2

1

3

2

1

6

Figure 6.2: The "divides" relation is an example of a relation that goes from a set to itself. In
this example, we say that we have a relation on the set of divisors of 6.

3

1

6

2

Figure 6.3: Purist version of the relation.

Figure 6.3.

Indeed, this representation is definitely preferable, although it may be more crowded. A

picture such as this is known as the directed graph (a.k.a. digraph) of the relation.

Recall that when we were discussing sets we said the best way to describe a set is simply

to list all of its elements. Well, what is the best way to describe a relation? In the same

spirit, it would seem we should explicitly list all the things that make the relation true.

But it takes a pair of things, one to go on the left side and one to go on the right, to

make a relation true (or for that matter false!). It should also be evident that order is

important in this context; for example 2 < 3 is true but 3 < 2 isn’t. The identity of a

relation is so intimately tied up with the set of ordered pairs that make it true, that when

dealing with abstract relations, we define them as sets of ordered pairs.

Given two sets, A and B, the Cartesian product of A and B is the set of all ordered pairs
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(a, b) where a is in A and b is in B. We denote the Cartesian product using the symbol

×.

A×B = {(a, b) : a ∈ A ∧ b ∈ B}

From here on out in your mathematical career, you’ll need to take note of the context that

the symbol × appears in. If it appears between numbers go ahead and multiply, but if it

appears between sets you’re doing something different — forming the Cartesian product.

The familiar x–y plane, is often called the Cartesian plane. This is done for two reasons.

René Descartes, the famous mathematician and philosopher, was the first to consider

coordinatizing the plane and thus is responsible for our current understanding of the

relationship between geometry and algebra. Descartes’ name is also memorialized in the

definition of the Cartesian product of sets, and the plane is nothing more than the product

R × R. Indeed, the plane provided the very first example of the concept that was later

generalized to the Cartesian product of sets.

Exercise 6.1. Suppose A = {1, 2, 3} and B = {a, b, c}. Is (a, 1) in the Cartesian product

A×B? List all elements of A×B.

In the abstract, we can define a relation as any subset of an appropriate Cartesian product.

So an abstract relation R from a set A to a set B is just some subset of A×B. Similarly,

a relation R on a set S is defined by a subset of S × S. This definition looks a little bit

strange when we apply it to an actual (concrete) relation that we already know about.

Consider the relation “less than.” To describe “less than” as a subset of a Cartesian

product we must write

< = {(x, y) ∈ R× R : y − x ∈ R>0}.

This looks funny.

Also, if we have defined some relation R ⊆ A× B, then in order to say that a particular

pair, (a, b), of things make the relation true we have to write

aRb.

This looks funny too.
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Figure 6.4: The "less than" relation can be viewed as a subset of R×R, i.e. it can be graphed.

Despite the strange appearances, these examples do express the correct way to deal with

relations.

Let’s do a completely made-up example. Suppose A is the set {a, e, i, o, u} and B is the

set {r, s, t, l, n} and we define a relation from A to B by

R = {(a, s), (a, t), (a, n), (e, t), (e, l), (e, n),

(i, s), (i, t), (o, r), (o, n), (u, s)}.

Then, for example, because (e, t) ∈ R we can write eRt. We indicate the negation of

the concept that two elements are related by drawing a slash through the name of the

relation, for example the notation 6= is certainly familiar to you, as is ≮ (although in this

latter case we would normally write ≥ instead). We can denote the fact that (a, l) is not

a pair that makes the relation true by writing a 6 Rl.

We should mention another way of visualizing relations. When we are dealing with a

relation on R, the relation is actually a subset of R × R, that means we can view the

relation as a subset of the x–y plane. In other words, we can graph it. The graph of the

“<” relation is given in Figure 6.4.

A relation on any set that is a subset of R can likewise be graphed. The graph of the “|”

relation is given in Figure 6.5.
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Figure 6.5: The divisibility relation can be graphed. Only those points (as indicated) with integer
coordinates are in the graph.

Eventually, we will get around to defining functions as relations that have a certain nice

property. For the moment, we’ll just note that some of the operations that you are used to

using with functions also apply with relations. When one function “undoes” what another

function “does” we say the functions are inverses. For example, the function f(x) = 2x

(i.e. doubling) and the function g(x) = x/2 (halving) are inverse functions because, no

matter what number we start with, if we double it and then halve that result, we end up

with the original number. The inverse of a relation R is written R−1 and it consists of the

reversals of the pairs in R,

R−1 = {(b, a) : (a, b) ∈ R}.

This can also be expressed by writing

bR−1a ⇐⇒ aRb.

The process of “doing one function and then doing another” is known as functional

composition. For instance, if f(x) = 2x+ 1 and g(x) =
√
x, then we can compose them

(in two different orders) to obtain either f(g(x)) = 2
√
x + 1 or g(f(x)) =

√
2x+ 1.

When composing functions there is an “intermediate result” that you get by applying the

first function to your input, and then you calculate the second function’s value at the

intermediate result. (For example, in calculating g(f(4)) we get the intermediate result

f(4) = 9 and then we go on to calculate g(9) = 3.)
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The definition of the composite of two relations focuses very much on this idea of the

intermediate result. Suppose R is a relation from A to B and S is a relation from B to C

then the composite S ◦ R is given by

S ◦ R = {(a, c) :∃b ∈ B, (a, b) ∈ R ∧ (b, c) ∈ S}.

In this definition, b is the “intermediate result.” If there is no such b that serves to connect

a to c, then (a, c) won’t be in the composite. Also, notice that this is the composition

R first, then S, but it is written as S ◦ R — watch out for this! The compositions

of relations should be read from right to left. This convention makes sense when you

consider functional composition, f(g(x)) means g first, then f so if we use the “little

circle” notation for the composition of relations we have f ◦ g(x) = f(g(x)) which is nice

because the symbols f and g appear in the same order. But beware! There are atavists

out there who write their compositions the other way around.

You should probably have a diagram like the one in Figure 6.6 in mind while thinking

about the composition of relations. Here, we have the set A = {1, 2, 3, 4}, the set B is

{a, b, c, d} and C = {w, x, y, z}. The relation R goes from A to B and consists of the

following set of pairs,

R = {(1, a), (1, c), (2, d), (3, c), (3, d)}.

And

S = {(a, y), (b, w), (b, x), (b, z)}.

Exercise 6.2. Notice that the composition R ◦ S is impossible (or, more properly, it is

empty). Why? What is the (only) pair in the composition S ◦ R ?

6.1.1 Exercises

1. The lexicographic order, <lex, is a relation on the set of all words, where x <lex
y means that x would come before y in the dictionary. Consider just the three

letter words like “iff”, “fig”, “the”, et cetera. Come up with a usable definition for

x1x2x3 <lex y1y2y3.
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3

2

1

4

R S

d

a

b

c

w

x

y

z

Figure 6.6: A composite relation.

2. What is the graph of “=” in R× R?

3. The inverse of a relation R is denoted R−1. It contains exactly the same ordered

pair as R but with the order switched. (So technically, they aren’t exactly the same

ordered pairs . . . )

R−1 = {(b, a) : (a, b) ∈ R}

Define a relation S on R × R by S = {(x, y) : y = sin x}. What is S−1? Draw a

single graph containing S and S−1.

4. The “socks and shoes” rule is a very silly little mnemonic for remembering how to

invert a composition. If we think of undoing the process of putting on our socks and

shoes (that’s socks first, then shoes) we have to first remove our shoes, then take

off our socks.

The socks and shoes rule is valid for relations as well.

Prove that (S ◦ R)−1 = R−1 ◦ S−1.
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6.2 Properties of relations

There are two special classes of relations that we will study in the next two sections:

equivalence relations and ordering relations. The prototype for an equivalence relation

is the ordinary notion of numerical equality, =. The prototypical ordering relation is ≤.

Each of these has certain salient properties that are the root causes of their importance.

In this section, we will study a compendium of properties that a relation may or may not

have.

A relation that has three of the properties we’ll discuss:

1. reflexivity

2. symmetry

3. transitivity

is said to be an equivalence relation; it will in some ways resemble =.

A relation that has another set of three properties:

1. reflexivity

2. anti-symmetry

3. transitivity

is called an ordering relation; it will resemble ≤.

Additionally, there is a property known as irreflexivity that many relations have.

There are a total of 5 properties that we have named, and we will discuss them all more

thoroughly. But first, we’ll state the formal definitions. Take note that these properties

are all stated for a relation that goes from a set to itself. Indeed, most of them wouldn’t

even make sense if we tried to define them for a relation from a set to a different set.
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Table 6.1: Properties that relations may (or may not) have.

A relation R on a set S is reflexive iff

∀a ∈ S, aRa

“Everything is related to itself.”

A relation R on a set S is irreflexive iff

∀a ∈ S, a 6 Ra

“Nothing is related to itself.”

A relation R on a set S is symmetric iff

∀a, b ∈ S, aRb =⇒ bRa

“No one-way streets.”

A relation R on a set S is anti-symmetric iff

∀a, b ∈ S, aRb ∧ bRa =⇒ a = b

“Only one-way streets.”

A relation R on a set S is transitive iff

∀a, b, c ∈ S, aRb ∧ bRc =⇒ aRc

“Whenever there’s a roundabout route, there’s a direct route.”

The digraph of a relation that is reflexive will have little loops at every vertex. The digraph

of a relation that is irreflexive will contain no loops at all. Hopefully it is clear that these

concepts represent extreme opposite possibilities — they are not however negations of

one another.

Exercise 6.3. Find the logical denial of the property that says a relation is reflexive

¬(∀a ∈ S, aRa).
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a

b

c

d

Figure 6.7: A digraph illustrating vacuously symmetric.

How does this differ from the defining property for “irreflexive”?

If a relation R is defined on some subset S of the reals, then it can be graphed in the

Euclidean plane. Reflexivity for R can be interpreted in terms of the line L defined by the

equation y = x. Every point in (S × S) ∩ L must be in R. A similar statement can be

made concerning the irreflexive property. If a relation R is irreflexive its graph completely

avoids the line y = x.

Note that the reflexive and irreflexive properties are defined with a single quantified vari-

able. Symmetry and anti-symmetry require two universally quantified variables for their

definitions.

Definition 6.1. A relation R on a set S is symmetric iff

∀a, b ∈ S, aRb =⇒ bRa.

This can be interpreted in terms of digraphs as follows: If a connection from a to b exists

in the digraph of R, then there must also be a connection from b to a. In Table 6.1, this

is interpreted as “no one-way streets” and while that’s not quite what it says, that is the

effect of this definition. Since if a connection exists in one direction, there must also be a

connection in the other direction, it follows that we will never see a one-way connection.

Because most of the properties we are studying are defined using conditional statements,

it is often the case that a relation has a property for vacuous reasons. When the “if” part

doesn’t happen, there’s no need for its corresponding “then” part to happen either — the

conditional is still true. In the context of our discussion on the symmetry property of a

relation, this means that the digraph in Figure 6.7 is the digraph of a symmetric relation

(although it is neither reflexive nor irreflexive).
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Anti-symmetry is described as meaning “only one-way streets” but the definition is given

as:

Definition 6.2. A relation R on a set S is anti-symmetric iff

∀a, b ∈ S, aRb ∧ bRa =⇒ a = b.

It may be hard at first to understand why the definition we use for anti-symmetry is the

one above. If one wanted to insure that there were never two-way connections between

elements of the set it might seem easier to define anti-symmetry as follows:

Definition 6.3. (Alternate definition) A relation R on a set S is anti-symmetric iff

∀a, b ∈ S, aRb =⇒ b 6 Ra.

This definition may seem more straight-forward, but it turns out the original definition is

easier to use in proofs. We need to convince ourselves that the (first) definition really

accomplishes what we want. Namely, if a relation R satisfies the property that

∀a, b ∈ S, aRb ∧ bRa =⇒ a = b.

then there will not actually be any pair of elements that are related in both orders. One

way to think about it is this: suppose that a and b are distinct elements of S and that

both aRb and bRa are true. The property now guarantees that a = b which contradicts

the notion that a and b are distinct. This is a miniature proof by contradiction; if you

assume there are a pair of distinct elements that are related in both orders, you get a

contradiction, so there aren’t.

A funny thing about the anti-symmetry property is this: When it is true of a relation, it

is always vacuously true. The property is engineered in such a way that when it is true, it

forces that the statement in its antecedent never really happens.

Transitivity is an extremely useful property as witnessed by the fact that both equivalence

relations and ordering relations must have this property. When speaking of the transitive

property of equality we say “Two things that are equal to a third, are equal to each other.”

When dealing with ordering we may encounter statements like the following. “Since
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a

b

c

d

Figure 6.8: An illustration of a relation that is not reflexive.

‘Aardvark’ precedes ‘Bulwark’ in the dictionary, and since ‘Bulwark’ precedes ‘Catastrophe’,

it is plainly true that ‘Aardvark’ comes before ‘Catastrophe’ in the dictionary.”

Again, the definition of transitivity involves a conditional. Also, transitivity may be viewed

as the most complicated of the properties we’ve been studying; it takes three universally

quantified variables to state the property.

Definition 6.4. A relation R on a set S is transitive iff

∀a, b, c ∈ S, aRb ∧ bRc =⇒ aRc.

We paraphrased transitivity as “Whenever there’s a roundabout route, there’s a direct

route.” In particular, what the definition says is that if there’s a connection from a to b

and from b to c (the roundabout route from a to c) then there must be a connection from

a to c (the direct route).

You’ll really need to watch out for relations that are transitive for vacuous reasons. So

long as one never has three elements a, b and c with aRb and bRc the statement that

defines transitivity is automatically true.

A very useful way of thinking about these various properties that relations may have is

in terms of what doesn’t happen when a relation has them. Before we proceed, it is

important that you do the following

Exercise 6.4. Find logical negations for the formal properties defining each of the five

properties.

If a relation R is reflexive, we will never see a node that doesn’t have a loop. (See Figure

6.8.)
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a

b

c

d

Figure 6.9: An illustration of a relation that is not irreflexive.

a

c

b d

Figure 6.10: An illustration of a relation that is not symmetric.

If a relation R is irreflexive we will never see a node that does have a loop! (See Figure

6.9.)

If a relation R is symmetric we will never see a pair of nodes that are connected in one

direction only. (See Figure 6.10.)

If a relation R is anti-symmetric we will never see a pair of nodes that are connected in

both directions. (See Figure 6.11.)

If a relation R is transitive the thing we will never see is a bit harder to describe. There

will never be a pair of arrows meeting head to tail without there also being an arrow going

from the tail of the first to the head of the second. (See Figure 6.12.)

a

b

c

d

Figure 6.11: An illustration of a relation that is not anti-symmetric.
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a

b d

c

Figure 6.12: An illustration of a relation that is not transitive.

6.2.1 Exercises

1. Consider the relation S defined by S = {(x, y) : x is smarter than y}. Is S symmetric

or anti-symmetric? Explain.

2. Consider the relation A defined by A = {(x, y) : x has the same astrological sign as y}.

Is A symmetric or anti-symmetric? Explain.

3. Explain why both of the relations just described (in exercises 1 and 2) have the

transitive property.

4. For each of the five properties, name a relation that has it and a relation that doesn’t.

5. Show by counterexample that “|” (divisibility) is not symmetric as a relation on Z.

6. Prove that “|” is an ordering relation on the set of positive integers. (You must

verify that it is reflexive, anti-symmetric and transitive).
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6.3 Equivalence relations

The main idea of an equivalence relation is that it is something like equality, but not

quite. Usually there is some property that we can name so that equivalent things share

that property. For example Albert Einstein and Adolf Eichmann were two entirely differ-

ent human beings, if you consider all the different criteria that one can use to distinguish

human beings there is little they have in common. But, if the only thing one was inter-

ested in was a person’s initials, one would have to say that Einstein and Eichmann were

equivalent. Future examples of equivalence relations will be less frivolous. . . But first,

the formal definition:

Definition 6.5. A relation R on a set S is an equivalence relation iff R is reflexive,

symmetric and transitive.

Probably the most important equivalence relation we’ve seen to date is “congruence mod

m” which we will denote using the symbol ≡m. This relation may even be more interesting

than actual equality! The reason for this seemingly odd statement is that “congruence

mod m” gives us non-trivial equivalence classes. Equivalence classes are one of the most

potent ideas in modern mathematics and it’s essential that you understand them. So

we’ll start with an example. Consider congruence mod 5. What other numbers is (say)

11 equivalent to? There are many! Any number that leaves the same remainder as 11

when we divide it by 5. This collection is called the equivalence class of 11 and is usually

denoted using an overline — 11, another notation that is often seen for the set of things

equivalent to 11 is 11/ ≡5.

11 = {. . . ,−9,−4, 1, 6, 11, 16, . . .}

It’s easy to see that we will get the exact same set if we choose any other element of the

equivalence class (in place of 11), which leads us to an infinite list of set equalities,

1 = 6 = 11 = . . .

And similarly,

2 = 7 = 12 = . . .
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In fact, there are really just five different sets that form the equivalence classes mod 5:

0, 1, 2, 3, and 4. (Note: we have followed the usual convention of using the smallest

possible non-negative integers as the representatives for our equivalence classes.)

What we’ve been discussing here is one of the first examples of a quotient structure. We

start with the integers and “mod out” by an equivalence relation. In doing so, we “move

to the quotient” which means (in this instance) that we go from Z to a much simpler

set having only five elements: {0, 1, 2, 3, 4}. In moving to the quotient we will generally

lose a lot of information, but greatly highlight some particular feature — in this example,

properties related to divisibility by 5.

Given some equivalence relation R defined on a set S, the set of equivalence classes of S

under R is denoted S/R (which is read “S mod R”). This use of the slash — normally

reserved for division — shouldn’t cause any confusion since those aren’t numbers on either

side of the slash but rather a set and a relation. This notation may also clarify why some

people denote the equivalence classes above by 0/ ≡5, 1/ ≡5, 2/ ≡5, 3/ ≡5 and 4/ ≡5.

The set of equivalence classes forms a partition of the set S.

Definition 6.6. A partition P of a set S is a set of sets such that

S =
⋃
X∈P

X and ∀X, Y ∈ P, X 6= Y =⇒ X ∩ Y = ∅.

In other words, if you take the union of all the pieces of the partition you’ll get the set

S, and any pair of sets from the partition that aren’t identical are disjoint. Partitions

are an inherently useful way of looking at things, although in the real world there are

often problems (sets we thought were disjoint turn out to have elements in common,

or we discover something that doesn’t fit into any of the pieces of our partition). In

mathematics, we usually find that partitions do just what we would want them to do.

Partitions divide some set up into a number of convenient pieces in such a way that we’re

guaranteed that every element of the set is in one of the pieces and also so that none of

the pieces overlap. Partitions are a useful way of dissecting sets, and equivalence relations

(via their equivalence classes) give us an easy way of creating partitions — usually with

some additional structure to boot!
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The properties that make a relation an equivalence relation (reflexivity, symmetry and

transitivity) are designed to ensure that equivalence classes exist and do provide us with

the desired partition. For the beginning proof writer, this all may seem very complicated.

But take heart! Most of the work has already been done for you by those who created

the general theory of equivalence relations and quotient structures. All you have to do

(usually) is prove that a given relation is an equivalence relation by verifying that it is

indeed reflexive, symmetric and transitive. Let’s have a look at another example.

In number theory, the square-free part of an integer is what remains after we divide-out

the largest perfect square that divides it. (This is also known as the radical of an integer.)

The following table gives the square-free part, sf(n), for the first several values of n.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

sf(n) 1 2 3 1 5 6 7 2 1 10 11 3 13 14 15 1 17 2 19 5

It’s easy to compute the square-free part of an integer if you know its prime factorization

— just reduce all the exponents mod 2. For example1

808017424794512875886459904961710757005754368000000000

= 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

the square-free part of this number is

5 · 13 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

= 3504253225343845

which, while it is still quite a large number, is certainly a good bit smaller than the original!

We will define an equivalence relation S on the set of natural numbers by using the

square-free part:

∀x, y ∈ N, xSy ⇐⇒ sf(x) = sf(y)

In other words, two natural numbers will be S-related if they have the same square-free

parts.
1This is the size of largest sporadic finite simple group, known as “the Monster.”
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Exercise 6.5. What is 1/S?

Before we proceed to the proof that S is an equivalence relation we’d like you to be

cognizant of a bigger picture as you read. Each of the three parts of the proof will have

a similar structure. We will show that S has one of the three properties by using the fact

that = has that property. In more advanced work, this entire proof could be omitted or

replaced by the phrase “S inherits reflexivity, symmetry and transitivity from equality, and

is therefore an equivalence relation.” (Nice trick isn’t it? But before you’re allowed to use

it you have to show that you can do it the hard way. . . )

Theorem 6.1. The relation S defined by

∀x, y ∈ N, xSy ⇐⇒ sf(x) = sf(y)

is an equivalence relation on N.

Proof. We must show that S is reflexive, symmetric and transitive.

Reflexive — (Here we must show that ∀x ∈ N, xSx.) Let x be an arbitrary natural

number. Since sf(x) = sf(x) (this is the reflexive property of =) it follows from the

definition of S that xSx.

Symmetric — (Here we must show that ∀x, y ∈ N, xSy =⇒ ySx.) Let x and y be

arbitrary natural numbers, and further suppose that xSy. Since xSy, it follows from the

definition of S that sf(x) = sf(y), obviously then sf(y) = sf(x) (this is the symmetric

property of =) and so ySx.

Transitive — (Here we must show that ∀x, y, z ∈ N, xSy ∧ ySz =⇒ xSz.) Let

x, y and z be arbitrary natural numbers, and further suppose that both xSy and ySz.

From the definition of S we deduce that sf(x) = sf(y) and sf(y) = sf(z). Clearly,

sf(x) = sf(z) (this deduction comes from the transitive property of =), so xSz.

We’ll end this section with an example of an equivalence relation that doesn’t “inherit”

the three properties from equality.

A graph is a mathematical structure consisting of two sets, a set V of points (a.k.a.
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Figure 6.13: Examples of graphs

vertices or nodes) and a set2 E of edges. The elements of E may be either ordered or

unordered pairs from V . If E consists of ordered pairs we have a directed graph or digraph

— the diagrams we have been using to visualize relations! If E consists of unordered pairs

then we are dealing with an undirected graph. Since the undirected case is actually the

more usual, if the word “graph” appears without a modifier it is assumed that we are

talking about an undirected graph.

The previous paragraph gives a relatively precise definition of a graph in terms of sets,

however the real way to think of graphs is in terms of diagrams where a set of dots are

connected by paths. (The paths will, of course, need to have arrows on them in digraphs.)

Figure 6.13 show a few examples of the diagrams that are used to represent graphs.

Two graphs are said to be isomorphic if they represent the same connections. There must

first of all be a one-to-one correspondence between the vertices of the two graphs, and

further, a pair of vertices in one graph are connected by some number of edges if and

only if the corresponding vertices in the other graph are connected by the same number

of edges.

Exercise 6.6. The four examples of graphs above actually are two pairs of isomorphic

graphs. Which pairs are isomorphic?

This word “isomorphic” has a nice etymology. It means “same shape.” Two graphs are

isomorphic if they have the same shape. We don’t have the tools right now to do a formal

proof (in fact we need to look at some further prerequisites before we can really precisely

define isomorphism), but isomorphism of graphs is an equivalence relation. Let’s at least

verify this informally.
2Technically, E is a so-called multiset in many instances — there may be several edges that connect the same

pair of vertices.
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Reflexivity — Is a graph isomorphic to itself? That is, does a graph have the “same

shape” as itself? Clearly!

Symmetry — If graph A is isomorphic to graph B, is graph B isomorphic to graph A?

That is, if A has the “same shape” as B, doesn’t B have the same shape as A? Of

course!

Transitivity — Well. . . the answer here is going to be “Naturally!” but let’s wait to

delve into this issue when we have a usable formal definition for graph isomorphism. The

question at this stage should be clear though: If A is isomorphic to B and B is isomorphic

to C, then isn’t A isomorphic to C?

6.3.1 Exercise

1. Consider the relation A defined by

A = {(x, y) : x has the same astrological sign as y}.

Show that A is an equivalence relation. What equivalence class under A do you

belong to?

2. Define a relation � on the integers by x�y ⇐⇒ x2 = y2. Show that � is an

equivalence relation. List the equivalence classes x/� for 0 ≤ x ≤ 5.

3. Define a relation A on the set of all words by

w1Aw2 ⇐⇒ w1 is an anagram of w2.

Show that A is an equivalence relation. (Words are anagrams if the letters of one

can be re-arranged to form the other. For example, ‘ART’ and ‘RAT’ are anagrams.)

4. Figure 6.14 shows two representations of the famous graph known as the Petersen

graph. The one on the left is the usual representation which emphasizes its five-fold

symmetry. The one on the right highlights the fact that the Petersen graph also has

a three-fold symmetry. Label the one on the right using the same letters (A through

J) in order to show that these two representations are truly isomorphic.
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A

B

CD

E

F

G

H

J

I

Figure 6.14: Two representations of the Petersen graph.

5. We will use the symbol Z∗ to refer to the set of all integers except 0. Define a

relation Q on the set of all pairs in Z × Z∗ (pairs of integers where the second

coordinate is non-zero) by (a, b)Q(c, d) ⇐⇒ ad = bc. Show that Q is an

equivalence relation.

6. The relation Q defined in the previous problem partitions the set of all pairs of

integers into an interesting set of equivalence classes. Explain why

Q = (Z× Z∗)/Q.

Ultimately, this is the “right” definition of the set of rational numbers!

7. Reflect back on the proof in Exercise 5. Note that we were fairly careful in assuring

that the second coordinate in the ordered pairs is non-zero. (This was the whole

reason for introducing the Z∗ notation.) At what point in the argument did you use

this hypothesis?
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6.4 Ordering relations

The prototype for ordering relations is ≤. Although a case could be made for using <

as the prototypical ordering relation. These two relations differ in one important sense:

≤ is reflexive and < is irreflexive. Various authors, having made different choices as to

which of these is the more prototypical, have defined ordering relations in slightly different

ways. The majority view seems to be that an ordering relation is reflexive (which means

that ordering relations are modeled after ≤). We would really like to take the contrary

position — we always root for the underdog — but one of our favourite ordering relation

(divisibility) is reflexive and it would be eliminated if we made the other choice3. So. . .

Definition 6.7. A relation R on a set S is an ordering relation iff R is reflexive, anti-

symmetric and transitive.

Now, we’ve used ≤ to decide what properties an ordering relation should have, but we

should point out that most ordering relations don’t do nearly as good a job as ≤ does. The

≤ relation imposes what is known as a total order on the sets that it acts on (you should

note that it can’t be used to compare complex numbers, but it can be placed between

reals or any of the sets of numbers that are contained in R.) Most ordering relations only

create what is known as a partial order on the sets they act on. In a total ordering (a.k.a.

a linear ordering), every pair of elements can be compared and we can use the ordering

relation to decide which order they go in. In a partial ordering, there may be elements

that are incomparable.

Definition 6.8. If x and y are elements of a set S and R is an ordering relation on S,

then we say x and y are comparable if xRy ∨ yRx.

Definition 6.9. If x and y are elements of a set S and R is an ordering relation on S,

then we say x and y are incomparable if neither xRy nor yRx is true.

Consider the set S = {1, 2, 3, 4, 6, 12}. If we look at the relation ≤ on this set, we get

what is shown in Figure 6.15.

3If you insist on making the other choice, you will have a “strict ordering relation” a.k.a. an “irreflexive
ordering relation”
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321 4 6 12

Figure 6.15: An illustration of the less-than-or-equal-to relation.

1 12

2 4

3 6

Figure 6.16: An illustration of the divisibility relation.

On the other hand, perhaps you noticed these numbers are the divisors of 12. The

divisibility relation will give us our first example of a partial order as illustrated in Figure

6.16.

Exercise 6.7. Which elements in the above partial order are incomparable?

A set together with an ordering relation creates a mathematical structure known as a

partially ordered set. Since that is a bit of a mouthful, the abbreviated form poset is

actually heard more commonly. If one wishes to refer to a poset, it is necessary to identify

both the set and the ordering relation. Thus, if S is a set and R is an ordering relation,

we write (S,R) to denote the corresponding poset.

The digraphs given above for two posets having the same underlying set provide an ex-

istence proof — the same set may have different orders imposed upon it. They also

highlight another issue — these digraphs for ordering relations get pretty crowded Hasse

diagrams for posets (named after the famous German mathematician Helmut Hasse) are

a way of displaying all the information in a poset’s digraph, but much more succinctly.
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2 3

4 6

12

Figure 6.17: Hasse diagrams of the set {1, 2, 3, 4, 6, 12} totally ordered by ≤ and partially ordered
by |.

There are features of a Hasse diagram that correspond to each of the properties that an

ordering relation must have.

Since ordering relations are always reflexive, there will always be loops at every vertex in

the digraph. In a Hasse diagram we leave out the loops.

Since ordering relations are anti-symmetric, every edge in the digraph will go in one

direction or the other. In a Hasse diagram we arrange the vertices so that that direction is

upward — that way we can leave out all the arrowheads without losing any information.

The final simplification that we make in creating a Hasse diagram for a poset has to

do with the transitivity property — we leave out any connections that could be deduced

because of transitivity.

Hasse diagrams for the two orderings that we’ve been discussing are shown in Figure 6.17

Often there is some feature of the elements of the set being ordered that allows us to

arrange a Hasse diagram in “ranks.” For example, consider P({1, 2, 3}), the set of all

subsets of a three element set — this set can be partially ordered using the ⊆ relation.

(Technically, we should verify that this relation is reflexive, anti-symmetric and transitive

before proceeding, but by now you know why subset containment is denoted using a

rounded version of ≤.) Subsets of the same size can’t possibly be included one in the

other unless they happen to be equal! This allows us to draw the Hasse diagram for this
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{1} {2}

{1, 3}{1, 2}

{1, 2, 3}

{2, 3}

{3}

Figure 6.18: Hasse diagram for the power set of {1, 2, 3} partially ordered by set containment.

set with the nodes arranged in four rows. (See Figure 6.18.)

Exercise 6.8. Try drawing a Hasse diagram for the partially ordered set

(P({1, 2, 3, 4}),⊆).

Posets like (P({1, 2, 3}),⊆) that can be laid out in ranks are known as graded posets.

Things in a graded poset that have the same rank are always incomparable.

Definition 6.10. A graded poset is a triple (S,R, ρ), where S is a set, R is an ordering

relation, and ρ is a function from S to Z.

In the example we’ve been considering (the graded poset of subsets of a set partially

ordered by set inclusion), the grading function ρ takes a subset to its size. That is,

ρ(A) = |A|. Another nice example of a graded poset is the set of divisors of some

number partially ordered by the divisibility relation |. In this case, the grading function

takes a number to its total degree — the sum of all the exponents appearing in its prime

factorization. Figure 6.19 shows the poset of divisors of 72 and the grading.

We will end this section by giving a small collection of terminology relevant to partially

ordered sets.

A chain in a poset is a subset of the elements, all of which are comparable. If you restrict

your attention to a chain within a poset, you will be looking at a total order. An antichain

in a poset is a subset of the elements, none of which are comparable. Thus, for example,
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0

1

2

3

4

572 = 23 · 32

24 = 23 · 31 36 = 22 · 32

18 = 21 · 3212 = 22 · 318 = 23

4 = 22 6 = 21 · 31 9 = 32

3121

1

Figure 6.19: Hasse diagram for the divisors of 72, partially ordered by divisibility. This is a graded
poset.

a subset of elements having the same rank (in a graded poset) is an antichain.

Chains and antichains are said to be maximal if it is not possible to add further elements

to them (whilst maintaining the properties that make them chains and/or antichains). An

element x, that appears above another element y — and connected to it — in a Hasse

diagram is said to cover it. In this situation you may also say that x is an immediate

successor of y.

A maximal element is an element that is not covered by any other element. Similarly,

a minimal element is an element that is not a cover of any other element. If a chain is

maximal, it follows that it must contain both a maximal and a minimal element (with

respect to the surrounding poset). The collection of all maximal elements forms an

antichain, as does (separately) the collection of all minimal elements.

Finally, we have the notions of greatest element (a.k.a. top) and least element (a.k.a.

bottom) — the greatest element is greater than every other element in the poset, the

least element is smaller than every other element. Please be careful to distinguish these

concepts from maximal and minimal elements — a greatest element is automatically

maximal, and a least element is always minimal, but it is possible to have a poset with no
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greatest element that nevertheless has one or more maximal elements, and it is possible

to have a poset with no least element that has one or more minimal elements.

In the poset of divisors of 72, the subset {2, 6, 12, 24} is a chain. Since it would be possible

to add both 1 and 72 to this chain and still have a chain, this chain is not maximal. (But,

of course, {1, 2, 6, 12, 24, 72} is.) On the other hand, {8, 12, 18} is an antichain (indeed,

this is a maximal antichain). This poset has both a top and a bottom — 1 is the least

element and 72 is the greatest element. Notice that the elements which cover 1 (the least

element) are the prime divisors of 72.

6.4.1 Exercises

1. In population ecology, there is a partial order “predates” which basically means that

one organism feeds upon another. Strictly speaking, this relation is not transitive;

however, if we take the point of view that when a wolf eats a sheep, it is also eating

some of the grass that the sheep has fed upon, we see that in a certain sense it is

transitive. A chain in this partial order is called a “food chain” and so-called apex

predators are said to “sit atop the food chain”. Thus, “apex predator” is a term

for a maximal element in this poset. When poisons such as mercury and PCBs are

introduced into an ecosystem, they tend to collect disproportionately in the apex

predators — which is why pregnant women and young children should not eat shark

or tuna but sardines are fine.

Figure 6.20 shows a small example of an ecology partially ordered by “predates”.

Find the largest antichain in this poset.

2. Referring to the poset given in exercise 1, match the following.

1. An (non-maximal) antichain

2. A maximal antichain

3. A maximal element

4. A (non-maximal) chain

5. A maximal chain

6. A cover for “Worms”
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Fox Alligator

Cow

Goose
Duck Robin

WormsGrass

Figure 6.20: An illustration of the "predates" partial order.

7. A least element

8. A minimal element

a. Grass

b. Goose

c. Fox

d. {Grass,Duck}

e. There isn’t one!

f. {Fox,Alligator,Cow}

g. {Cow,Duck,Goose}

h. {Worms,Robin,Fox}

3. The graph of the edges of a cube is one in an infinite sequence of graphs. These

graphs are defined recursively by “Make two copies of the previous graph then join

corresponding nodes in the two copies with edges.” The 0-dimensional “cube” is just

a single point. The 1-dimensional cube is a single edge with a node at either end.

The 2-dimensional cube is actually a square and the 3-dimensional cube is what we

usually mean when we say “cube.” These cubes are illustrated in Figure 6.21.

Make a careful drawing of a hypercube — which is the name of the graph that

follows the ordinary cube in this sequence.
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Figure 6.21: Cubes of dimension 0 to dimension 3.

4. Label the nodes of a hypercube with the divisors of 210 in order to produce a Hasse

diagram of the poset determined by the divisibility relation.

5. Label the nodes of a hypercube with the subsets of {a, b, c, d} in order to produce

a Hasse diagram of the poset determined by the subset containment relation.

6. Complete a Hasse diagram for the poset of divisors of 11025 (partially ordered by

divisibility).

7. Find a collection of sets so that, when they are partially ordered by ⊆, we obtain

the same Hasse diagram as in the previous problem.
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6.5 Functions

The concept of a function is one of the most useful abstractions in mathematics. In fact,

it is an abstraction that can be further abstracted! For instance an operator is an entity

which takes functions as inputs and produces functions as outputs, thus an operator is

to functions as functions themselves are to numbers. There are many operators that you

have certainly encountered already — just not by that name. One of the most famous

operators is “differentiation,” when you take the derivative of some function; the answer

you obtain is another function. If two different people are given the same differentiation

problem and they come up with different answers, we know that at least one of them has

made a mistake! Similarly, if two calculations of the value of a function are made for the

same input, they must match.

The property we are discussing used to be captured by saying that a function needs to be

“well-defined.” The old school definition of a function was:

Definition 6.11. A function f is a well-defined rule, that, given any input value x produces

a unique output4 value f(x).

A more modern definition of a function is the following.

Definition 6.12. A function is a binary relation which does not contain distinct pairs

having the same initial element.

When we think of a function as a special type of binary relation, the pairs that are “in” the

function have the form (x, f(x)), that is, they consist of an input and the corresponding

output.

We have gotten relatively used to relations “on” a set, but recall that the more general

situation is that a binary relation is a subset of A × B. In this setting, if the relation is

actually a function f , we say that f is a function from A to B. Now, quite often there

are input values that simply don’t work for a given function (for instance the well-known

“you can’t take the square root of a negative” rule). Also, it is often the case that certain

4The use of the notation f(x) to indicate the output of function f associated with input x was instituted by
Leonhard Euler, and so it is known as Euler notation.
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x = f(c)

y = f(d)

z = f(e)

A′
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B
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Figure 6.22: The sets related to an arbitrary function.

outputs just can’t happen. So, when dealing with a function as a relation contained in

A × B there are actually four sets that are of interest — the sets A and B (of course)

but also some sets that we’ll denote by A′ and B′. The set A′ consists of those elements

of A that actually appear as the first coordinate of a pair in the relation f . The set B′

consists of those elements of B that actually appear as the second coordinate of a pair

in the relation f . A generic example of how these four sets might look is given in Figure

6.22.

Sadly, only three of the sets we have just discussed are known to the mathematical world.

The set we have denoted A′ is called the domain of the function f . The set we have

denoted B′ is known as the range of the function f . The set we have denoted B is called

the codomain of the function f . The set we have been calling A does not have a name.

In fact, the formal definition of the term “function” has been rigged so that there is no

difference between the sets A and A′. This seems a shame, if you think of range and

domain as being primary, doesn’t it seem odd that we have a way to refer to a superset

of the range (i.e. the codomain) but no way of referring to a superset of the domain?

Nevertheless, this is just the way it is. . . There is only one set on the input side — the

domain of our function.

The domain of any relation is expressed by writing Dom(R). Which is defined as follows.
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Definition 6.13. If R is a relation from A to B then Dom(R) is a subset of A defined by

Dom(R) = {a ∈ A :∃b ∈ B, (a, b) ∈ R}

We should point out that the notation just given for the domain of a relation R, (Dom(R))

has analogs for the other sets that are involved with a relation. We write Cod(R) to refer

the the codomain of the relation, and Rng(R) to refer to the range.

Since we are now thinking of functions as special classes of relations, it follows that a

function is just a set of ordered pairs. This means that the identity of a function is tied

up, not just with a formula that gives the output for a given input, but also with what

values can be used for those inputs. Thus, the function f(x) = 2x defined on R is a

completely different animal from the function f(x) = 2x defined on N. If you really want

to specify a function precisely you must give its domain as well as a formula for it. Usually,

one does this by writing a formula, then a semicolon, then the domain. For example,

f(x) = x2; x ≥ 0.

Okay, so, finally, we are prepared to give the real definition of a function.

Definition 6.14. If A and B are sets, then f is a function from A to B (which is expressed

symbolically by f : A −→ B), if and only if f is a subset of A×B, Dom(f) = A and

(a, b) ∈ f ∧ (a, c) ∈ f =⇒ b = c.

Recapping, a function must have its domain equal to the set A where its inputs come

from. This is sometimes expressed by saying that a function is defined on its domain. A

function’s range and codomain may be different however. In the event that the range and

codomain are the same (that is, Cod(R) = Rng(R)), we have a rather special situation and

the function is graced by the appellation “surjection.” The term “onto” is also commonly

used to describe a surjective function.

Exercise 6.9. There is an expression in mathematics, “Every function is onto its range.”

that really doesn’t say very much. Why not?
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Figure 6.23: The graph of y = x2 and its reflection in the line y = x.

If one has elements x and y, of the domain and codomain, (respectively) and y = f(x)5

then one may say that “y is the image of x” or that “x is a preimage of y.” Take careful

note of the articles used in these phrases — we say “y is the image of x” but “x is a

preimage of y.” This is because y is uniquely determined by x, but not vice versa. For

example, since the squares of 2 and −2 are both 4, if we consider the function f(x) = x2,

the image of (say) 2 is 4, but a preimage for 4 could be either 2 or −2.

It would be pleasant if there were a nice way to refer to the preimage of some element,

y, of the range. One notation that you have probably seen before is “f−1(y).” There is

a major difficulty with writing down such a thing. By writing “f−1” you are making a

rather vast presumption — that there actually is a function that serves as an inverse for

f . Usually, there is not.

One can define an inverse for any relation, the inverse is formed by simply exchanging the

elements in the ordered pairs that make up R.

Definition 6.15. The inverse relation of a relation R is denoted R−1 and

R−1 = {(y, x) : (x, y) ∈ R}.

In terms of graphs, the inverse and the original relation are related by being reflections

in the line y = x. It is possible for one, both, or neither of these to be functions. The

canonical example to keep in mind is probably f(x) = x2 and its inverse.

The graph that we obtain by reflecting y = f(x) = x2 in the line y = x (see Figure 6.23)
5Or, equivalently, (x, y) ∈ f .
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doesn’t pass the vertical line test and so it is the graph of (merely) a relation – not of

a function. The function g(x) =
√
x that we all know and love is not truly the inverse

of f(x). In fact this function is defined to make a specific (and natural) choice — it

returns the positive square root of a number. But this leads to a subtle problem; if we

start with a negative number (say −3) and square it we get a positive number (9) and if

we then come along and take the square root we get another positive number (3). This

is problematic since we didn’t end up where we started which is what ought to happen if

we apply a function followed by its inverse.

We’ll try to handle the general situation in a bit, but for the moment let’s consider the

nice case: when the inverse of a function is also a function. When exactly does this

happen? Well, we have just seen that the inverse of a function doesn’t necessarily pass

the vertical line test, and it turns out that that is the predominant issue. So, under what

circumstances does the inverse pass the vertical line test? When the original function

passes the so-called horizontal line test (every horizontal line intersects the graph at most

once). Thinking again about f(x) = x2, there are some horizontal lines that miss the

graph entirely, but all horizontal lines of the form y = c where c is positive will intersect

the graph twice.

There are many functions that do pass the horizontal line test, for instance, consider

f(x) = x3. Such functions are known as injections, this is the same thing as saying a

function is “one-to-one.” Injective functions can be inverted — the domain of the inverse

function of f will only be the range, Rng(f), which as we have seen may fall short of the

being the entire codomain, since Rng(f) ⊆ Cod(f).

Let’s first define injections in a way that is divorced from thinking about their graphs.

Definition 6.16. A function f(x) is an injection iff for all pairs of inputs x1 and x2, if

f(x1) = f(x2) then x1 = x2.

This is another of those defining properties that is designed so that when it is true it is

vacuously true. An injective function never takes two distinct inputs to the same output.

Perhaps the cleanest way to think about injective functions is in terms of preimages —

when a function is injective, preimages are unique. Actually, this is a good time to mention
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something about surjective functions and preimages — if a function is surjective, every

element of the codomain has a preimage. So, if a function has both of these properties it

means that every element of the codomain has one (and only one) preimage.

A function that is both injective and surjective (one-to-one and onto) is known as a

bijection. Bijections are tremendously important in mathematics since they provide a way

of perfectly matching up the elements of two sets. You will probably spend a good bit of

time in the future devising maps between sets and then proving that they are bijections,

so we will start practicing that skill now. . .

Ordinarily, we will show that a function is a bijection by proving separately that it is both

a surjection and an injection.

To show that a function is surjective we need to show that it is possible to find a preimage

for every element of the codomain. If we happen to know what the inverse function is,

then it is easy to find a preimage for an arbitrary element. In terms of the taxonomy for

proofs that was introduced in Chapter 3, we are talking about a constructive proof of an

existential statement. A function f is surjective iff

∀y ∈ Cod(f),∃x ∈ Dom(f), y = f(x).

So to prove surjectivity is to find the x that “works” for an arbitrary y. If this is done by

literally naming x, we have proved the statement constructively.

To show that a function is an injection, we traditionally prove that the property used in the

definition of an injective function is true. Namely, we suppose that x1 and x2 are distinct

elements of Dom(f) and that f(x1) = f(x2) and then we show that actually x1 = x2.

This is in the spirit of a proof by contradiction — if there were actually distinct elements

that get mapped to the same value then f would not be injective, but by deducing that

x1 = x2 we are contradicting that presumption and so, are showing that f is indeed an

injection.

Let’s start by looking at a very simple example, f(x) = 2x − 1; x ∈ N. Clearly this

function is not a surjection if we are thinking that Cod(f) = N since the outputs are
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always odd. Let

O = {1, 3, 5, 7, . . .}

be the set of odd naturals.

Theorem 6.2. The function f : Z>0 −→ O defined by f(x) = 2x− 1 is a bijection from

Z>0 to O.

Proof. First we will show that f is surjective. Consider an arbitrary element y of the set

O. Since y ∈ O it follows that y is both positive and odd. Thus there is an integer

k, such that y = 2k + 1, but also y > 0. From this it follows that 2k + 1 > 0 and so

k > −1/2. Since k is also an integer, this last inequality implies that k ∈ Z≥0. (Recall

that Z≥0 = {0, 1, 2, 3, . . .}.) We can easily verify that a preimage for y is k + 1, since

f(k + 1) = 2(k + 1)− 1 = 2k + 2− 1 = 2k + 1 = y.

Next we show that f is injective. Suppose that there are two input values, x1 and x2 such

that f(x1) = f(x2). Then 2x1 − 1 = 2x2 − 1 and simple algebra leads to x1 = x2.

For a slightly more complicated example consider the function from Z>0 to Z defined by

f(x) =

 x/2 if x is even

−(x− 1)/2 if x is odd

This function does quite a handy little job, it matches up the positive integer and the

integers in pairs. Every even positive integer gets matched with a positive integer and

every odd positive integer (except 1) gets matched with a negative integer (1 gets paired

with 0). This function is really doing something remarkable — common sense would seem

to indicate that the set of integers must be set than the set of positive integers after all

Z>0 is completely contained inside of Z), but the function f defined above serves to show

that these two sets are exactly the same size!

Theorem 6.3. The function f defined above is bijective.

Proof. First we will show that f is surjective.

It suffices to find a preimage for an arbitrary element of Z. Suppose that y is a particular

but arbitrarily chosen integer. There are two cases to consider: y ≤ 0 and y > 0.
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If y > 0 then x = 2y is a preimage for y. This follows easily since x = 2y is obviously

even and so x’s image will be defined by the first case in the definition of f . Thus

f(x) = f(2y) = (2y)/2 = y.

If y ≤ 0 then x = 1 − 2y is a preimage for y. Clearly, 1 − 2y is odd whenever y is

an integer, thus this value for x will fall into the second case in the definition of f . So,

f(x) = f(1− 2y) = −((1− 2y)− 1)/2 = −(−2y)/2 = y.

Since the cases y > 0 and y ≤ 0 are exhaustive (that is, every y in Z falls into one or the

other of these cases), and we have found a preimage for y in both cases, it follows that f

is surjective.

Next, we will show that f is injective.

Suppose that x1 and x2 are positive integers such that f(x1) = f(x2). Consider the

following three cases: x1 and x2 are both even, both odd, or have opposite parity.

If x1 and x2 are both even, then by the definition of f we have f(x1) = x1/2 and

f(x2) = x2/2 and since these functional values are equal, we have x1/2 = x2/2. Doubling

both sides of this leads to x1 = x2.

If x1 and x2 are both odd, then by the definition of f we have f(x1) = −(x1 − 1)/2 and

f(x2) = −(x2−1)/2 and since these functional values are equal, we have −(x1−1)/2 =

−(x2− 1)/2. A bit more algebra (doubling, negating and adding one to both sides) leads

to x1 = x2.

If x1 and x2 have opposite parity, we will assume w.l.o.g. that x1 is even and x2 is

odd. The equality f(x1) = f(x2) becomes x1/2 = −(x2 − 1)/2. Note that x1 ≥ 2 so

f(x1) = x1/2 ≥ 1. Also, note that x2 ≥ 1 so

x2 − 1 ≥ 0

(x2 − 1)/2 ≥ 0

−(x2 − 1)/2 ≤ 0

f(x2) ≤ 0.

Therefore, we have a contradiction since it is impossible for the two values f(x1) and
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f(x2) to be equal while f(x1) ≥ 1 and f(x2) ≤ 0.

Since the last case under consideration leads to a contradiction, it follows that x1 and x2

never have opposite parities, and so the first two cases are exhaustive — in both of those

cases we reached the desired conclusion that x1 = x2 so it follows that f is injective.

We’ll conclude this section by mentioning that the ideas of “image” and “preimage” can

be extended to sets. If S is a subset of Dom(f) then the image of S under f is denoted

f(S) and

f(S) = {y :∃x ∈ Dom(f), x ∈ S ∧ y = f(x)}.

Similarly, if T is a subset of of Rng(f) we can define something akin to the preimage.

The inverse image of the set T under the function f is denoted f−1(T ) and

f−1(T ) = {x :∃y ∈ Cod(f), y ∈ T ∧ y = f(x)}.

Essentially, we have extended the function f so that it goes between the power sets of

its codomain and range! This new notion gives us some elegant ways of restating what it

means to be surjective and injective.

A function f is surjective iff f(Dom(f)) = Cod(f).

A function f is injective iff the inverse images of singletons are always singletons. That

is,

∀y ∈ Rng(f),∃x ∈ Dom(f), f−1({y}) = {x}.

6.5.1 Exercises

1. For each of the following functions, give its domain, range and a possible codomain.

a. f(x) = sin (x)

b. g(x) = ex

c. h(x) = x2

d. m(x) = x2+1
x2−1
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e. n(x) = bxc

2. Find a bijection from the set of odd squares, {1, 9, 25, 49, . . .}, to the non-negative

integers, Z≥0 = {0, 1, 2, 3, . . .}. Prove that the function you just determined is both

injective and surjective. Find the inverse function of the bijection above.

3. The natural logarithm function ln(x) is defined by a definite integral with the variable

x in the upper limit.

ln(x) =
∫ x

t=1

1
t
dt.

From this definition we can deduce that ln(x) is strictly increasing on its entire

domain, (0,∞). Why is this true?

We can use the above definition with x = 2 to find the value of ln(2) ≈ .693. We

will also take as given the following rule (which is valid for all logarithmic functions).

ln(ab) = b ln(a)

Use the above information to show that Rng(ln) = R.

4. Georg Cantor developed a systematic way of listing the rational numbers. By “listing”

a set one is actually developing a bijection from N to that set. The method known as

“Cantor’s Snake” creates a bijection from the naturals to the non-negative rationals.

First, we create an infinite table whose rows are indexed by positive integers and

whose columns are indexed by non-negative integers — the entries in this table are

rational numbers of the form “column index” / “row index.” We then follow a snake-

like path that zig-zags across this table — whenever we encounter a rational number

that we haven’t seen before (in lower terms) we write it down. This is indicated in

Figure 6.24 by circling the entries.

Effectively this gives us a function f which produces the rational number that would

be found in a given position in this list. For example f(0) = 0/1, f(1) = 1/1 and

f(4) = 1/3.
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0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0/1 1/1 2/1 3/1 4/1 5/1 6/1 7/1 8/1

0/2 1/2 2/2 3/2 4/2 5/2 6/2 7/2 8/2

0/3 1/3 2/3 3/3 4/3 5/3 6/3 7/3 8/3

0/4 1/4 2/4 3/4 4/4 5/4 6/4 7/4 8/4

0/5 1/5 2/5 3/5 4/5 5/5 6/5 7/5 8/5

0/6 1/6 2/6 3/6 4/6 5/6 6/6 7/6 8/6

0/7 1/7 2/7 3/7 4/7 5/7 6/7 7/7 8/7

0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8

Figure 6.24: Traversal of Cantor’s Snake.

What is f(25)? What is f(29)? What is f−1(3/4)? What is f−1(6/7)?
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6.6 Special functions

There are a great many functions that fail the horizontal line test (HLT) which we never-

theless seem to have inverse functions for. For example, x2 fails HLT but
√
x is a pretty

reasonable inverse for it — one just needs to be careful about the “plus or minus” issue.

Also, sin x fails HLT pretty badly; any horizontal line y = c with −1 ≤ c ≤ 1 will hit sin x

infinitely many times. But look! Right here on my calculator is a button labeled “sin−1.”6

This apparent contradiction can be resolved using the notion of restriction.

Definition 6.17. Given a function f and a subset D of its domain, the restriction of f

to D is denoted f |D and

f |D = {(x, y) : x ∈ D ∧ (x, y) ∈ f}.

The way we typically use restriction is to eliminate any regions in Dom(f) that cause f

to fail to be one-to-one. That is, we choose a subset D ⊆ Dom(f) so that f |D is an

injection. This allows us to invert the restricted version of f . There can be problems

in doing this, but if we are careful about how we choose D, these problems are usually

resolvable.

Exercise 6.10. Suppose f is a function that is not one-to-one, and D is a subset of

Dom(f) such that f |D is one-to-one. The restricted function f |D has an inverse which

we will denote by g. Note that g is a function from Rng(f |D) to D. Which of the

following is always true:

f(g(x)) = x or g(f(x)) = x?

Technically, when we do the process outlined above (choose a domain D so that the

restriction f |D is invertible, and find that inverse) the function we get is a right inverse

for f .

Let’s take a closer look at the inverse sine function. This should help us to really understand

the “right inverse” concept.
6It might be labeled “asin” instead. The old-style way to refer to the inverse of a trig. function was arc-

whatever. So the inverse of sine was arcsine, the inverse of tangent was arctangent.
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Figure 6.25: Graph of y = sin x.

A glance at the graph of y = sin x in Figure 6.25 will certainly convince us that this

function is not injective, but the portion of the graph shown in bold below passes the

horizontal line test.

If we restrict the domain of the sine function to the closed interval [−π/2, π/2], we have

an invertible function. The inverse of this restricted function is the function we know as

sin−1(x) or arcsin(x). The domain and range of sin−1(x) are (respectively) the intervals

[−1, 1] and [−π/2, π/2].

Notice that if we choose a number x in the range −1 ≤ x ≤ 1 and apply the inverse

sine function to it, we will get a number between −π/2 and π/2 — i.e. a number we can

interpret as an angle in radian measure. If we then proceed to calculate the sine of this

angle, we will get back our original number x.

On the other hand, if we choose an angle first, then take the sine of it to get a number

in [−1, 1] and then take the inverse sine of that, we will only end up with the same angle

we started with if we chose the original angle so that it lay in the interval [−π/2, π/2].

Exercise 6.11. We get a right inverse for the cosine function by restricting it to the

interval [0, π]. What are the domain and range of cos−1?
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The winding map is a function that goes from R to the unit circle in the x–y plane,

defined by

W (t) = (cos t, sin t).

One can think of this map as literally winding the infinitely long real line around and

around the circle. Obviously, this is not an injection — there are an infinite number of

values of t that get mapped to (for instance) the point (1, 0), t can be any integer multiple

of 2π.

Exercise 6.12. What is the set W−1({(0, 1)}) ?

If we restrict W to the half-open interval [0, 2π) the restricted function W |[0,2π) is an

injection. The inverse function is not easy to write down, but it is possible to express (in

terms of the inverse functions of sine and cosine) if we consider the four cases determined

by what quadrant a point on the unit circle may lie in.

Exercise 6.13. Suppose (x, y) represents a point on the unit circle. If (x, y) happens to

lie on one of the coordinate axes we have

W−1((1, 0)) = 0

W−1((0, 1)) = π/2

W−1((−1, 0)) = π

W−1((0,−1)) = 3π/2.

If neither x nor y is zero, there are four cases to consider. Write an expression for

W−1((x, y)) using the cases

i. x > 0 ∧ y > 0,

ii. x < 0 ∧ y > 0,

iii. x < 0 ∧ y < 0 and

iv. x > 0 ∧ y < 0.

This last example that we have done (the winding map) was unusual in that the outputs

were ordered pairs. In thinking of this map as a relation (that is, as a set of ordered pairs)
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we have an ordered pair in which the second element is an ordered pair! Just for fun, here

is another way of expressing the winding map:

W = {(t, (cos t, sin t)) : t ∈ R}

When dealing with very complicated expressions involving ordered pairs, or more generally,

ordered n-tuples, it is useful to have a way to refer succinctly to the pieces of a tuple.

Let’s start by considering the set P = R × R — i.e. P is the x–y plane. There are two

functions, whose domain is P that “pick out” the x, and/or y coordinate. These functions

are called π1 and π2, π1 is the projection onto the first coordinate and π2 is the projection

onto the second coordinate.7

Definition 6.18. The function π1 : R × R −→ R known as projection onto the first

coordinate is defined by

π1((x, y)) = x.

The definition of π2 is entirely analogous.

You should note that these projection functions are very bad as far as being one-to-one is

concerned. For instance, the preimage of 1 under the map π1 consists of all the points on

the vertical line x = 1. That’s a lot of preimages! These guys are so far from being one-

to-one that it seems impossible to think of an appropriate restriction that would become

invertible. Nevertheless, there is a function that provides a right inverse for both π1 and

π2. Now, these projection maps go from R × R to R so an inverse needs to be a map

from R to R×R. What is a reasonable way to produce a pair of real numbers if we have

a single real number in hand? There are actually many ways one could proceed, but one

reasonable choice is to create a pair where the input number appears in both coordinates.

This is the so-called diagonal map, d : R× R −→ R, defined by d(a) = (a, a).

Exercise 6.14. Which of the following is always true,

d(π1((x, y)) = (x, y) or π1(d(x)) = x?
7Don’t think of the usual π ≈ 3.14159 when looking at π1 and π2. These functions are named as they are

because π is the Greek letter corresponding to “p” which stands for “projection.”
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There are a few other functions that it will be convenient to introduce at this stage. All

of them are aspects of the characteristic function of a subset, so we’ll start with that.

Whenever we have a subset/superset relationship, S ⊆ D, it is possible to define a function

whose codomain is {0, 1} which performs a very useful task — if an input x is in the set

S the function will indicate this by returning 1, otherwise it will return 0. The function

which has this behavior is known as 1S , and is called the characteristic function of the

subset S. (There are those who use the term indicator function of S for 1S .) By definition,

D is the domain of this function.

1S : D −→ {0, 1}

1S(x) =

 1 ifx ∈ S

0 otherwise

Exercise 6.15. If you have the characteristic function of a subset S, how can you create

the characteristic function of its complement, S.

A characteristic function may be thought of as an embodiment of a membership criterion.

The logical open sentence “x ∈ S” being true is the same thing as the equation “1S(x) =

1.” There is a notation, growing in popularity, that does the same thing for an arbitrary

open sentence. The Iverson bracket notation uses the shorthand [P (x)] to represent a

function that sends any x that makes P (x) true to 1, and any inputs that make P (x)

false will get sent to 0.

[P (x)] =

 1 ifP (x)

0 otherwise

The Iverson bracket notation can be particularly useful in expressing and simplifying sums.

For example, we can write
24∑
i=1

[2 | i] to find the number of even natural numbers less than

25. Similarly, we can write
24∑
i=1

[3 | i] to find the number of natural numbers less than 25

that are divisible by 3.

Exercise 6.16. What does the following formula count?

24∑
i=1

[2 | i] + [3 | i]− [6 | i]
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Exercise 6.17. There is a much more venerable notation known as the Kronecker delta

that can be thought of as a special case of the idea inherent in Iverson brackets. We write

δij as a shorthand for a function that takes two inputs, δ(i, j) is 1 if and only if i and j

are equal.

δij =

 1 if i = j

0 otherwise

The corresponding Iverson bracket would simply be [i = j].

We’ll end this section with a function that will be especially important in Chapter 8. If

we have an arbitrary subset of the natural numbers, we can associate it with an infinite

string of 0’s and 1’s. By sticking a decimal point in front of such a thing, we get binary

notation for a real number in the interval [0, 1]. There is a subtle problem that we’ll deal

with when we study this function in more detail in Chapter 8 — some real numbers can

be expressed in two different ways in base 2. For example, 1/2 can either be written as .1

or as .01 (where, as usual, the overline indicates a pattern that repeats forever). For the

moment, we are talking about defining a function φ whose domain is P(N) and whose

codomain is the set of all infinite binary strings. Let us denote these binary expansions by

.b0b1b2b3b4 . . .. Suppose A is a subset of N, then the binary expansion associated with A

will be determined by bi = 1A(i). (Alternatively, we can use the Iverson bracket notation:

bi = [i ∈ A].)

The function φ defined in the last paragraph turns out to be a bijection — given a subset

we get a unique binary expansion, and given binary expansion we get (using φ−1) a unique

subset of N.

A few examples will probably help to clarify this function’s workings. Consider the set

{0, 1, 2} ⊆ N, the binary expansion that this corresponds to will have 1’s in the first

three positions after the decimal — φ({0, 1, 2}) = .111 this is the number written .875

in decimal. The infinite repeating binary number .01 is the base-2 representation of 1/3,

it is easy to see that .01 is the image of the set of odd naturals, {1, 3, 5, . . .}.

Exercise 6.18. Find the binary representation for the real number which is the image of

the set of even numbers under φ.
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Exercise 6.19. Find the binary representation for the real number which is the image

of the set of triangular numbers under φ. (Recall that the triangular numbers are T =

{1, 3, 6, 10, 15, . . .}.)

6.6.1 Exercises

1. The n-th triangular number, denoted T (n), is given by the formula T (n) = (n2 +

n)/2. If we regard this formula as a function from R to R, it fails the horizontal line

test and so it is not invertible. Find a suitable restriction so that T is invertible.

2. The usual algebraic procedure for inverting T (x) = (x2 + x)/2 fails. Use your

knowledge of the geometry of functions and their inverses to find a formula for the

inverse. (Hint: it may be instructive to first invert the simpler formula S(x) = x2/2

— this will get you the right vertical scaling factor.)

3. What is π2(W (t))?

4. Find a right inverse for f(x) = |x|.

5. In three-dimensional space we have projection functions that go onto the three

coordinate axes (π1, π2 and π3) and we also have projections onto coordinate planes.

For example, π12 : R× R× R −→ R× R, defined by

π12((x, y, z)) = (x, y)

is the projection onto the x–y coordinate plane.

The triple of functions (cos t, sin t, t) is a parametric expression for a helix. Let

H = {(cos t, sin t, t) : t ∈ R} be the set of all points on the helix. What is the set

π12(H) ? What are the sets π13(H) and π23(H)?

6. Consider the set {1, 2, 3, . . . , 10}. Express the characteristic function of the subset

S = {1, 2, 3} as a set of ordered pairs.

7. If S and T are subsets of a set D, what is the product of their characteristic functions

1S · 1T ?
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8. Evaluate the sum
10∑
i=1

1
i
· [i is prime].
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Hints to exercises

6.1.1

1. x1x2x3 <lex y1y2y3 if and only if x1 comes before y1 in alphabetical order, or

x1 = y1 and x2 comes before y2 in alphabetical order, or x1 = y1, x2 = y2, and x3

comes before y3 in alphabetical order.

2. {(a, a) : a ∈ R}.

3. S−1 = {(y, x) : y = sin x}.

4. We show (S ◦ R)−1 ⊆ R−1 ◦ S−1. The reverse inclusion is left as an exercise.

Suppose that R is a relation from A to B and S is a relation from B to C. Let

(c, a) ∈ (S ◦ R)−1. Then by definition of the inverse relation, (a, c) ∈ S ◦ R. By the

definition of composition, there exists b ∈ B such that (a, b) ∈ R and (b, c) ∈ S.

Hence, (b, a) ∈ R−1 and (c, b) ∈ S−1, implying that (c, a) ∈ R−1 ◦ S1.

6.2.1

1. Anti-symmetric because if x is smarter than y, then y cannot be smarter than x.

2. Symmetric because if x has the same astrological sign as y, then y has the same

astrological sign as x.

3. If x is smarter than y and y is smarter than z, then x is smarter than z.

If x has the same astrological sign as y and y has the same astrological sign as z,

then x, y, and z all have the astrological sign and so x has the same astrological

sign as z.

4. All relations in the following table are over R.

Reflexive {(a, a)}

Not reflexive {(a, b) : a > b}

Irreflexive {(a, b) : a 6= b}

Not irreflexive {(a, b) : a ≥ b}

Symmetric {(a, b) : a2 + b2 = 1}
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Not symmetric {(a, b) : a > b}

Anti-symmetric {(a, b) : a = b+ 1}

Not anti-symmetric {(a, b) : a2 + b2 = 1}

Transitive {(a, b) : a > b}

Not transitive {(a, b) : a = b+ 1}

5. 1 | 2 but it is not true that 2 | 1.

6. Let a be a positive integer. Then a | a since a = 1 ·a. Thus, divisibility over positive

integers is reflexive.

Let a and b be positive integers such that a | b. If b 6= a, then b > a. Thus, we

cannot have b | a, showing that divisibility over positive integers is anti-symmetric.

If a | b and b | c, then there exist integers j and k such that b = ja and c = kb.

Hence, c = k(ja) = (kj)a, giving a | c since kj is a product of two integers and is

thus an integer. Thus, divisibility over positive integers is transitive.

6.3.1

1. We show that A reflexive, symmetric, and transitive. It is reflexive because every x

has the same astrological sign as x; symmetric because if x has the same astrological

sign as y, then y has the same astrological sign as x; transitive because if x has the

same astrological sign as y and y has the same astrological sign as z, then x, y, and

z all have the astrological sign and so x has the same astrological sign as z.

2. It is not difficult to show that � is reflexive, symmetric, and transitive.

0/� = {0}

1/� = {−1, 1}

2/� = {−2, 2}

3/� = {−3, 3}

4/� = {−4, 4}

5/� = {−5, 5}
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3. The solution becomes apparent by making the observation that two words are ana-

grams of each other if and only if they contain the same letters and matching in the

number of occurrences.

4. Label the outer nodes clockwise starting at the top in the following order: A, B, C,

H, J, E. See if you can label the inner nodes so that connections between labelled

vertices are preserved.

5. Since ab = ba, we have (a, b)Q(a, b). Hence, Q is reflexive.

Suppose that (a, b)Q(c, d). Then ad = bc, which is equivalent to cb = da, giving

(c, d)Q(a, b). Hence, Q is symmetric.

Suppose that (a, b)Q(c, d) and (c, d)Q(e, f). So ad = bc ∧ cf = de, giving adcf =

bcde. Since c and d are nonzero, we obtain af = be, giving (a, b)Q(e, f). Hence, Q

is transitive.

6. This can be seen from that the equivalence class (a, b)/Q contains all (c, d) such

that c
d = a

b .

7. We needed non-zero numbers in proving that Q is transitive.

6.4.1

1. {Cow,Duck,Robin,Goose}

2. 1: g, 2: f, 3: c, 4: d, 5: h, 6: b, 7: e, 8: a

3. Draw two 3-dimensional cubes and connect make some appropriate connections

between the two copies.

4. Since 210 = 2 · 3 · 5 · 7, there are 16 node labels which can be divided into those

that are even and those that are odd. The Hasse diagram for the odd labels is a

3-dimensional cube. So is the Hasse diagram for the even labels.

5. This exercise is similar to the previous one. Separate the labels into those that

contain a and those that do not.

6. Note that 11025 = 32 · 52 · 72. How many nodes are there in the Hasse diagram for

the poset of divisors of 11025?
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7. The following collection works:

{a, a′, b, b′, c, c′},

{a′, b, b′, c, c′}, {a, a′, b, c, c′}, {a, a′, b, b′, c′},

{a′, b′, c, c′}, {a′, b, b′, c′}, {a, a′, b′, c′}, {b, b′, c, c′}, {a, a′, c, c′}, {a, a′, b, b′},

{b′, c, c′}, {b, b′, c′}, {a′, c, c′}, {a, a′, c′}, {a, c, c′}, {a, a′, b′, c, c′}, {a′, b′, c′},

{a, b}, {a, c}, {b, c}, {a, a′}, {b, b′}, {c, c′},

{a}, {b}, {c},

{}

6.5.1

1. Note that any set containing the range can serve as the codomain.

a. Domain: R. Range: [−1, 1].

b. Domain: R. Range: (0,∞).

c. Domain: R. Range: [0,∞).

d. Domain: R \ {−1, 1}. Range: (−∞,−1] ∪ (1,∞).

e. Domain: R. Range: Z.

2. Let f(n) =
√
n−1
2 . It is not difficult to see that f is injective. To see that f is

surjective, let y ∈ {0, 1, . . .}. Then x = (2y + 1)2 is the square of an odd integer

and f(x) =
√

(2y+1)2−1
2 = 2y+1−1

2 = y.

Note that f−1(n) = (2n+ 1)2.

3. Let y > x > 0. Then

ln(y)− ln(x) =
∫ y

t=x

1
t
dt > 0

since 1
t is positive over the interval [x, y]. Hence, ln(x) is strictly increasing on

(0,∞).

Let y be a positive real number. Since ln(2) is a fixed real number, setting b =

y/ ln(2), we get that ln(2b) = y.



306 CHAPTER 6. RELATIONS AND FUNCTIONS

4. f(25) = 4/5, f(29) = 7/3, f−1(3/4) = 15.

6.6.1

1. We can restrict to [−0.5,∞) for example.

2. T−1(x) = −1+
√

1+8x
2 with domain [−1

8 ,∞).

3. sin(t).

4. f−1(x) = x for all x ∈ [0,∞).

5. π12(H) is the set of points on the unit circle on the x–y coordinate plane. The other

two are the sine and cosine curves.

6. {(1, 1), (2, 1), (3, 1), (4, 0), (5, 0), . . . , (10, 0)}.

7. 1S · 1T = 1S∩T .

8. 1
2 + 1

3 + 1
5 + 1

7 = 247
210 .



Chapter 7

Proof techniques III —
Combinatorics

Tragedy is when I cut my finger. Comedy is when you fall into an open sewer

and die.

—Mel Brooks

7.1 Counting

Many results in mathematics are answers to “How many. . . ” questions.

“How many subsets does a finite set have?”

“How many handshakes will transpire when n people first meet?”

“How many functions are there from a set of size n to a set of size m?”

The title of this section, “Counting,” is not intended to evoke the usual process of counting

sheep, or counting change. What we want is to be able to count some collection in principle

so that we will be able to discover a formula for its size.

There are two principles that will be indispensable in counting things. These principles are

simple, yet powerful, and they have been named in the most unimaginative way possible.

The “multiplication rule” which tells us when we should multiply, and the “addition rule”

which tells us when we should add.

307
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Before we describe these principles in detail, we’ll have a look at a simpler problem

which is most easily described by an example: How many integers are there in the list

(7, 8, 9, . . . 44)? We could certainly write down all the integers from 7 to 44 (inclusive)

and then count them — although this wouldn’t be the best plan if the numbers 7 and

44 were replaced with (say) 7,045,356 and 22,355,201. A method that does lead to a

generalized ability to count the elements of a finite sequence arises if we think carefully

about what exactly a finite sequence is.

Definition 7.1. A sequence from a set S is a function from N to S.

Definition 7.2. A finite sequence from a set S is a function from {0, 1, 2, . . . , n} to S,

where n is some particular (finite) integer.

Now it is easy to see that there are n+ 1 elements in the set {0, 1, 2, . . . , n} so counting

the elements of a finite sequence will be easy if we can determine the function involved

and figure out what n is by inverting it (n is an inverse image for the last element in a

listing of the sequence).

In the example that we started with, the function is f(x) = x+7. We can sum up the pro-

cess that allows us to count the sequence by saying “there is a one-to-one correspondence

between the lists (7, 8, 9, . . . , 44) and (0, 1, 2, . . . , 37) and the latter has 38 entries.”

More generally, if there is a list of consecutive numbers beginning with k and ending

with n, there will be n− k + 1 entries in the list. Lists of consecutive integers represent

a relatively simple type of finite sequence. Usually we would have some slightly more

interesting function that we’d need to invert.

The following exercise involves inverting the function (x+ 5)2.

Exercise 7.1. Give the number of integers in the list (25, 36, 49, . . . , 10000).

We will have a lot more practice with counting the elements of sequences in the exercises

at the end of this section, let’s continue on our tour of counting by having a look at the

addition rule.

The addition rule says that it is appropriate to add if we can partition a collection into

disjoint pieces. In other words, if a set S is the union of two or more subsets and these
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Figure 7.1: A full house with a pair of two’s and three five’s.

Figure 7.2: A full house with three two’s and a pair of five’s.

subsets are mutually disjoint, we can find the size of S by adding the sizes of the subsets.

In the game Yahtzee, one rolls five dice and (optionally) performs a second roll of some or

all of the dice. The object is to achieve several final configurations that are modeled after

the hands in Poker. In particular, one configuration, known as a “full house,” is achieved

by having two of one number and three of another. (Colloquially, we say “three-of-a-kind

plus a pair is a full house.”)

Now, we could use Yahtzee “hands” to provide us with a whole collection of counting

problems once we have our basic counting principles, but for the moment we just want

to make a simple (and obvious) point about “full houses” — the pair is either smaller or

larger than the three-of-a-kind. This means we can partition the set of all possible full

houses into two disjoint sets — the full houses consisting of a small pair and a larger

three-of-a-kind (see Figure 7.1) and those where the pair is larger than the three-of-a-kind

(see Figure 7.2). If we can find some way of counting these two cases separately, then the

total number of full houses will be the sum of these numbers.

The multiplication rule gives us a way of counting things by thinking about how we might

construct them. The numbers that are multiplied are the number of choices we have in

the construction process. Surprisingly often, the number of choices we can make in a

given stage of constructing some configuration is independent of the choices that have

gone before — if this is not the case, the multiplication rule may not apply.

If some object can be constructed in k stages, and if in the first stage we have n1 choices

as to how to proceed, in the second stage we have n2 choices, etc., then the total number
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of such objects is the product n1n2 · · ·nk.

A permutation of an n-set (w.l.o.g. {1, 2, . . . , n}) is an ordered n-tuple where each entry

is a distinct element of the n-set. Generally, a permutation may be regarded as a bijection

from an n-set to itself. Our first use of the multiplication rule will be to count the total

number of permutations of {1, 2, 3, . . . , n}.

Let’s start by counting the permutations of {1, 2, 3}. A permutation will be a 3-tuple

containing the numbers 1, 2 and 3 in some order. We will think about building such a

thing in three stages. First, we must select a number to go in the first position — there

are 3 choices. Having made that choice, there will only be two possibilities for the number

in the second position. Finally, there is just one number remaining to put in the third

position1. Thus there are 3 · 2 · 1 = 6 permutations of a 3-element set.

The general rule is that there are n! permutations of {1, 2, . . . , n}.

There are times when configurations that are like permutations (in that they are ordered

and have no duplicates) but don’t consist of all n numbers are useful.

Definition 7.3. A k-permutation from an n-set is an ordered selection of k distinct

elements from a set of size n.

There are certain natural limitations on the value of k; for instance k can’t be negative —

although (arguably) k can be 0, it makes more sense to think of k being at least 1. Also,

if k exceeds n we won’t be able to find any k-permutations, since it will be impossible to

meet the “distinct” requirement. If k and n are equal, there is no difference between a

k-permutation and an ordinary permutation. Therefore, we ordinarily restrict k to lie in

the range 0 < k < n.

The notation P (n, k) is used for the total number of k-permutations of a set of size n.

For example, P (4, 2) is 12, since there are twelve different ordered pairs having distinct

entries where the entries come from {1, 2, 3, 4}.

Exercise 7.2. Write down all twelve 2-permutations of the 4-set {1, 2, 3, 4}.

1People may say you have “no choice” in this last situation, but what they mean is that you have only one
choice.
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Counting k-permutations using the multiplication rule is easy. We build a k-permutation

in k stages. In stage 1, we pick the first element in the permutation — there are n possible

choices. In stage 2, we pick the second element — there are now only n− 1 choices since

we may not repeat the first entry. We keep going like this until we’ve picked k entries.

The number P (n, k) is the product of k numbers beginning with n and descending down

to n− k + 1. To verify that n− k + 1 is really the right lower limit, check that there are

indeed k entries in the sequence

(n, n− 1, n− 2, . . . n− k + 1).

This verification may be easier if we rewrite the sequence as

(n− 0, n− 1, n− 2, . . . n− (k − 1)).

Let’s have a look at another small example — P (8, 4). There will be eight choices for the

first entry in a 4-tuple, seven choices for the second entry, six choices for the third entry and

five choices for the last entry. (Note that 5 = 8−4+1.) Thus P (8, 4) = 8·7·6·5 = 1680.

Finally, we should take note that it is relatively easy to express P (n, k) using factorials.

If we divide a number factorialized by some smaller number factorialized, we will get a

descending product just like those above.

Exercise 7.3. What factorial would we divide 8! by in order to get P (8, 4)?

The general rule is that P (n, k) = n!
(n−k)! .

If we were playing a card game in which we were dealt five cards from a deck of 52, we

would receive our cards in the form of P (52, 5) = 52 · 51 · 50 · 49 · 48 = 311875200

ordered quintuples. Normally, we don’t really care about what order the cards came to

us in. In a card game, one ordinarily begins sorting the cards so as to see what hand one

has — this is a sure sign that the order the cards were dealt is actually immaterial. How

many different orders can five cards be put in? The answer to this question is 5! = 120

since what we are discussing is nothing more than a permutation of a set of size five.

Thus, if we say that there are 311,875,200 different possible hands in five-card poker, we

are over-counting things by quite a bit! Any given hand will appear 120 times in that

tabulation, which means the right value is 311875200/120 = 2598960.
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Okay, so there around 2.6 million different hands in five-card poker. Unless you plan to

become a gambler, this isn’t really that useful of a piece of information — but if you

generalize what we’ve done in the paragraph above, you’ll have found a way to count

unordered collections of a given size taken from a set.

A k-combination from an n-set is an unordered selection, without repetitions, of k things

out of n. This is the exact same thing as a subset of size k of a set of size n, and

the number of such things is denoted by several different notations — C(n, k), nCk

and
(
n

k

)
among them2. We can come up with a formula for C(n, k) by a slightly

roundabout argument. Suppose we think of counting the k-permutations of n things

using the multiplication rule in a different way then we have previously. We’ll build a

k-permutation in two stages. First, we’ll choose k symbols to put into our permutation

— which can be done in C(n, k) ways. And second, we’ll put those k symbols into a

particular order — which can be accomplished in k! ways. Thus P (n, k) = C(n, k) · k!.

Since we already know that P (n, k) = n!
(n−k)! , we can substitute and solve to obtain

C(n, k) = n!
k! · (n− k)! .

It is possible to partition many counting problems into four “types” based on the answers

to two questions:

1. Is order important in the configurations being counted?

2. Are we allowed to have repeated elements in a configuration?

Suppose that we are in the general situation of selecting k things out of a set of size n.

It should be possible to write formulas involving n and k in the four cells of the following

table.

Order matters Order does not matter

With repeats

No repeats

2Watch out for the
(

n
k

)
notation, it is easy to confuse it with the fraction

(
n
k

)
. They are not the same —

the fraction bar is supposed to be missing in
(

n
k

)
.
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Ordered with repetition

Selecting a PIN number3 for your bank account is a good example of the kind of problem

that is dealt with in the lower left part of the table. Obviously, the order in which you

key in the digits of your PIN is important. If one’s number is 1356, it won’t do to put in

6531! Also, there is no reason that we couldn’t have repeated digits in a PIN. (Although

someone who chooses a PIN like 3333 is taking a bit of a security risk! A bad guy looking

over your shoulder may easily discern what your PIN is.) A PIN is an ordered selection

of 4 things out of 10, where repetition is allowed. There are 104 possible PINs. We can

determine this by thinking of the multiplication principle — there are 10 choices for the

first digit of our PIN, since repetition is okay there are still 10 choices for our second

digit, then (still) 10 choices for the third digit as well as the fourth digit. In general, when

selecting k things out of n possibilities, where order counts and repetition is allowed, there

are nk possible selections.

Ordered without repetition

Suppose that one wishes to come up with a password for a computer account. There

are 52 letters (both upper and lower case) 10 numerals and 32 symbols and punctuation

marks — for a total of 94 different characters that may be used. Some system admin-

istrators can be very paranoid about passwords that might be guessable — for instance

no password that appears in a dictionary should ever be used on a system where security

is a concern. Suppose that your system administrator will reject any password that has

repeated symbols, and that passwords must have eight characters. How many passwords

are possible?

This is an instance of a counting problem where we are selecting eight things out of a set

of size 94 — clearly order is important and the system administrator’s restriction means

that we may not have repeats. The multiplication rule tells us that there are

94 · 93 · 92 · 91 · 90 · 89 · 88 · 87 = 4488223369069440
3The phrase “PIN number” is redundant. The ‘N’ in PIN stands for “number.” Anyway, a PIN is a four digit

(secret) number used to help ensure that automated banking (such as withdrawing your life’s savings) is only
done by an authorized individual.
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different passwords. In the general case (selecting k things out of a set of size n, without

repetition, and with order counting), there will be n!/(n − k)! possibilities. This is the

number we have denoted previously by P (n, k).

Unordered without repetition

This is also a case that we’ve considered previously. If we are choosing k things out of n

and order is unimportant and there can be no repetitions, then what we are describing is

a k-subset of the n-set. There are C(n, k) = n!
k!(n−k)! distinct subsets. Here, we’ll give an

example that doesn’t sound like we’re talking about counting subsets of a particular size.

(Although we really are!)

How many different sequences of 6 strictly increasing numbers can we choose from

{1, 2, 3, . . . 20}?

Obviously, listing all such sequences would be an arduous task. We might start with

(1, 2, 3, 4, 5, 6) and try to proceed in some orderly fashion to (15, 16, 17, 18, 19, 20), but

unfortunately there are 38,760 such sequences so unless we enlist the aid of a computer

we are unlikely to finish this job in a reasonable time. The number we’ve just given

(38,760) is C(20, 6) and so it would seem that we’re claiming that this problem is really

unordered selection without repetition of six things out of 20. Well, actually, some parts

of this are clearly right — we are selecting six things from a set of size 20, and because

our sequences are supposed to be strictly increasing there will be no repetitions — but, a

strictly increasing sequence is clearly ordered and the formula we are using is for unordered

collections.

By specifying a particular ordering (strictly increasing) on the sequences we are counting

above, we are actually removing the importance of order. Put another way: if order really

mattered, the symbols 1 through 6 could be put into 720 different orders — but we only

want to count one of those possibilities. Put another other way: there is a one-to-one

correspondence between a 6-subset of {1, 2, 3, . . . 20} and a strictly increasing sequence.

Just make sure the subset is written in increasing order!

Okay, at this point we have filled-in three out of the four cells in our table.
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Order matters Order does not matter

No repeats P (n, k) = n!
(n−k)! C(n, k) = n!

k!(n−k)!

With repeats nk

What kinds of things are we counting in the lower right part of the table? Unordered

selections of k things out of n possibilities where there may (or may not!) be repetitions.

The game Yahtzee provides a nice example of this type of configuration. When we roll

five dice, we do not do so one-at-a-time, rather, we roll them as a group — the dice are

indistinguishable so there is no way to order our set of five outcomes. In fact, it would

be quite reasonable to, after one’s roll, arrange the die in (say) increasing order. We’ll

repeat a bit of advice that was given previously: if one is free to rearrange a configuration

to suit one’s needs, that is a clue that order is not important in the configurations under

consideration. Finally, are repetitions allowed? The outcomes in Yahtzee are five numbers

from the set {1, 2, 3, 4, 5, 6}, and while it is possible to have no repetitions, that is a pretty

special outcome! In general, the same number can appear on two, or several, or even all

five of the die4.

Unordered with repetition

So, how many different outcomes are there when one rolls five dice? To answer this

question it will be helpful to think about how we might express such an outcome. Since

order is unimportant, we can choose to put the numbers that appear on the individual

die in whatever order we like. We may as well place them in increasing order. There

will be five numbers and each number is between 1 and 6. We can list the outcomes

systematically by starting with an all-ones Yahtzee:

4When this happens you are supposed to jump in the air and yell “Yahtzee!”
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(1, 1, 1, 1, 1) (1, 1, 1, 1, 2) (1, 1, 1, 1, 3) (1, 1, 1, 1, 4) (1, 1, 1, 1, 5) (1, 1, 1, 1, 6)
(1, 1, 1, 2, 2) (1, 1, 1, 2, 3) (1, 1, 1, 2, 4) (1, 1, 1, 2, 5) (1, 1, 1, 2, 6) (1, 1, 1, 3, 3)
(1, 1, 1, 3, 4) (1, 1, 1, 3, 5) (1, 1, 1, 3, 6) (1, 1, 1, 4, 4) (1, 1, 1, 4, 5) (1, 1, 1, 4, 6)
(1, 1, 1, 5, 5) (1, 1, 1, 5, 6) (1, 1, 1, 6, 6) (1, 1, 2, 2, 2) (1, 1, 2, 2, 3) (1, 1, 2, 2, 4)
(1, 1, 2, 2, 5) (1, 1, 2, 2, 6) (1, 1, 2, 3, 3) (1, 1, 2, 3, 4) (1, 1, 2, 3, 5) (1, 1, 2, 3, 6)
(1, 1, 2, 4, 4) (1, 1, 2, 4, 5) (1, 1, 2, 4, 6) (1, 1, 2, 5, 5) (1, 1, 2, 5, 6) (1, 1, 2, 6, 6)
(1, 1, 3, 3, 3) (1, 1, 3, 3, 4) (1, 1, 3, 3, 5) (1, 1, 3, 3, 6) (1, 1, 3, 4, 4) (1, 1, 3, 4, 5)
(1, 1, 3, 4, 6) (1, 1, 3, 5, 5) (1, 1, 3, 5, 6) (1, 1, 3, 6, 6) (1, 1, 4, 4, 4) (1, 1, 4, 4, 5)
(1, 1, 4, 4, 6) (1, 1, 4, 5, 5) (1, 1, 4, 5, 6) (1, 1, 4, 6, 6) (1, 1, 5, 5, 5) (1, 1, 5, 5, 6)
(1, 1, 5, 6, 6) (1, 1, 6, 6, 6) (1, 2, 2, 2, 2) (1, 2, 2, 2, 3) (1, 2, 2, 2, 4) (1, 2, 2, 2, 5)
(1, 2, 2, 2, 6) (1, 2, 2, 3, 3) (1, 2, 2, 3, 4) (1, 2, 2, 3, 5) (1, 2, 2, 3, 6) (1, 2, 2, 4, 4)
(1, 2, 2, 4, 5) (1, 2, 2, 4, 6) (1, 2, 2, 5, 5) (1, 2, 2, 5, 6) (1, 2, 2, 6, 6) (1, 2, 3, 3, 3)
(1, 2, 3, 3, 4) (1, 2, 3, 3, 5) (1, 2, 3, 3, 6) (1, 2, 3, 4, 4) (1, 2, 3, 4, 5) (1, 2, 3, 4, 6)
(1, 2, 3, 5, 5) (1, 2, 3, 5, 6) (1, 2, 3, 6, 6) (1, 2, 4, 4, 4) (1, 2, 4, 4, 5) (1, 2, 4, 4, 6)
(1, 2, 4, 5, 5) (1, 2, 4, 5, 6) (1, 2, 4, 6, 6) (1, 2, 5, 5, 5) (1, 2, 5, 5, 6) (1, 2, 5, 6, 6)
(1, 2, 6, 6, 6) (1, 3, 3, 3, 3) (1, 3, 3, 3, 4) (1, 3, 3, 3, 5) (1, 3, 3, 3, 6) (1, 3, 3, 4, 4)
(1, 3, 3, 4, 5) (1, 3, 3, 4, 6) (1, 3, 3, 5, 5) (1, 3, 3, 5, 6) (1, 3, 3, 6, 6) (1, 3, 4, 4, 4)
(1, 3, 4, 4, 5) (1, 3, 4, 4, 6) (1, 3, 4, 5, 5) (1, 3, 4, 5, 6) (1, 3, 4, 6, 6) (1, 3, 5, 5, 5)
(1, 3, 5, 5, 6) (1, 3, 5, 6, 6) (1, 3, 6, 6, 6) (1, 4, 4, 4, 4) (1, 4, 4, 4, 5) (1, 4, 4, 4, 6)
(1, 4, 4, 5, 5) (1, 4, 4, 5, 6) (1, 4, 4, 6, 6) (1, 4, 5, 5, 5) (1, 4, 5, 5, 6) (1, 4, 5, 6, 6)
(1, 4, 6, 6, 6) (1, 5, 5, 5, 5) (1, 5, 5, 5, 6) (1, 5, 5, 6, 6) (1, 5, 6, 6, 6) (1, 6, 6, 6, 6)
(2, 2, 2, 2, 2) (2, 2, 2, 2, 3) (2, 2, 2, 2, 4) (2, 2, 2, 2, 5) (2, 2, 2, 2, 6) (2, 2, 2, 3, 3)
(2, 2, 2, 3, 4) (2, 2, 2, 3, 5) (2, 2, 2, 3, 6) (2, 2, 2, 4, 4) (2, 2, 2, 4, 5) (2, 2, 2, 4, 6)
(2, 2, 2, 5, 5) (2, 2, 2, 5, 6) (2, 2, 2, 6, 6) (2, 2, 3, 3, 3) (2, 2, 3, 3, 4) (2, 2, 3, 3, 5)
(2, 2, 3, 3, 6) (2, 2, 3, 4, 4) (2, 2, 3, 4, 5) (2, 2, 3, 4, 6) (2, 2, 3, 5, 5) (2, 2, 3, 5, 6)
(2, 2, 3, 6, 6) (2, 2, 4, 4, 4) (2, 2, 4, 4, 5) (2, 2, 4, 4, 6) (2, 2, 4, 5, 5) (2, 2, 4, 5, 6)
(2, 2, 4, 6, 6) (2, 2, 5, 5, 5) (2, 2, 5, 5, 6) (2, 2, 5, 6, 6) (2, 2, 6, 6, 6) (2, 3, 3, 3, 3)
(2, 3, 3, 3, 4) (2, 3, 3, 3, 5) (2, 3, 3, 3, 6) (2, 3, 3, 4, 4) (2, 3, 3, 4, 5) (2, 3, 3, 4, 6)
(2, 3, 3, 5, 5) (2, 3, 3, 5, 6) (2, 3, 3, 6, 6) (2, 3, 4, 4, 4) (2, 3, 4, 4, 5) (2, 3, 4, 4, 6)
(2, 3, 4, 5, 5) (2, 3, 4, 5, 6) (2, 3, 4, 6, 6) (2, 3, 5, 5, 5) (2, 3, 5, 5, 6) (2, 3, 5, 6, 6)
(2, 3, 6, 6, 6) (2, 4, 4, 4, 4) (2, 4, 4, 4, 5) (2, 4, 4, 4, 6) (2, 4, 4, 5, 5) (2, 4, 4, 5, 6)
(2, 4, 4, 6, 6) (2, 4, 5, 5, 5) (2, 4, 5, 5, 6) (2, 4, 5, 6, 6) (2, 4, 6, 6, 6) (2, 5, 5, 5, 5)
(2, 5, 5, 5, 6) (2, 5, 5, 6, 6) (2, 5, 6, 6, 6) (2, 6, 6, 6, 6) (3, 3, 3, 3, 3) (3, 3, 3, 3, 4)
(3, 3, 3, 3, 5) (3, 3, 3, 3, 6) (3, 3, 3, 4, 4) (3, 3, 3, 4, 5) (3, 3, 3, 4, 6) (3, 3, 3, 5, 5)
(3, 3, 3, 5, 6) (3, 3, 3, 6, 6) (3, 3, 4, 4, 4) (3, 3, 4, 4, 5) (3, 3, 4, 4, 6) (3, 3, 4, 5, 5)
(3, 3, 4, 5, 6) (3, 3, 4, 6, 6) (3, 3, 5, 5, 5) (3, 3, 5, 5, 6) (3, 3, 5, 6, 6) (3, 3, 6, 6, 6)
(3, 4, 4, 4, 4) (3, 4, 4, 4, 5) (3, 4, 4, 4, 6) (3, 4, 4, 5, 5) (3, 4, 4, 5, 6) (3, 4, 4, 6, 6)
(3, 4, 5, 5, 5) (3, 4, 5, 5, 6) (3, 4, 5, 6, 6) (3, 4, 6, 6, 6) (3, 5, 5, 5, 5) (3, 5, 5, 5, 6)
(3, 5, 5, 6, 6) (3, 5, 6, 6, 6) (3, 6, 6, 6, 6) (4, 4, 4, 4, 4) (4, 4, 4, 4, 5) (4, 4, 4, 4, 6)
(4, 4, 4, 5, 5) (4, 4, 4, 5, 6) (4, 4, 4, 6, 6) (4, 4, 5, 5, 5) (4, 4, 5, 5, 6) (4, 4, 5, 6, 6)
(4, 4, 6, 6, 6) (4, 5, 5, 5, 5) (4, 5, 5, 5, 6) (4, 5, 5, 6, 6) (4, 5, 6, 6, 6) (4, 6, 6, 6, 6)
(5, 5, 5, 5, 5) (5, 5, 5, 5, 6) (5, 5, 5, 6, 6) (5, 5, 6, 6, 6) (5, 6, 6, 6, 6) (6, 6, 6, 6, 6)

Whew. . . err, I mean, Yahtzee!

You can describe a generic element of the above listing by saying “It starts with some

number of 1’s (which may be zero), then there are some 2’s (again, it might be that there

are zero 2’s), then some (possibly none) 3’s, then some 4’s (or maybe not), then some

5’s (I think you probably get the idea) and finally some 6’s (sorry for all the parenthetical

remarks).”

We could, of course, actually count the outcomes as listed above (there are 252) but

that would be pretty dull — and it wouldn’t get us any closer to solving such problems in

general. To count things like Yahtzee rolls it will turn out that we can count something

related but much simpler — blank-comma arrangements. For the Yahtzee problem we

count arrangements of five blanks and five commas. That is, things like __,_ , ,_ ,_,

and ___ ,__ , , , , , and , , ,_____ , ,. These arrangements of blanks and commas
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correspond uniquely to Yahtzee rolls — the commas serve to separate different numerical

values and the blanks are where we would write-in the five outcomes on the die.

Convince yourself that there really is a one-to-one correspondence between Yahtzee out-

comes and arrangements of five blanks and five commas by doing the following

Exercise 7.4. What Yahtzee rolls correspond to the following blank-comma arrange-

ments?

• _ ,_ ,_ ,_ ,_ ,

• __ ,___ , , , ,

• , , , , ,_____

What blank-comma arrangements correspond to the following Yahtzee outcomes?

• {2, 3, 4, 5, 6}

• {3, 3, 3, 3, 4}

• {5, 5, 6, 6, 6}

It may seem at first that this blank-comma thing is okay, but that we’re still no closer to an-

swering the question we started with. It may seem that way until you realize how easy it is

to count these blank-comma arrangements! You see, there are ten symbols in one of these

blank-comma arrangements and if we choose positions for (say) the commas, the blanks

will have to go into the other positions — thus every 5-subset of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

gives us a blank-comma arrangement and every one of them gives us a Yahtzee outcome.

That is why there are C(10, 5) = 252 outcomes listed in the giant tabulation above.

In general, when we are selecting k things from a set of size n (with repetition and without

order) we will need to consider blank-comma arrangements having k blanks and n − 1

commas. As an aid to memory, consider that when you actually write-out the elements of

a set it takes one fewer commas than there are elements — for example {1, 2, 3, 4} has

four elements but we only need three commas to separate them. The general answer to

our problem is either C(k + n− 1, k) or C(k + n− 1, n− 1), depending on whether you

want to think about selecting positions for the k blanks or for the n− 1 commas. It turns

out that these binomial coefficients are equal so there’s no problem with the apparent



318 CHAPTER 7. PROOF TECHNIQUES III — COMBINATORICS

ambiguity.

So, finally, our table of counting formulas is complete. We’ll produce it here one more time

and, while we’re at it, ditch the C(n, k) notation in favour of the more usual “binomial

coefficient” notation
(n
k

)
.

Order matters Order does not matter

No repeats P (n, k) = n!
(n−k)!

(n
k

)
= n!

k!(n−k)!

With repeats nk
(n+k−1

k

)

7.1.1 Exercises

1. Determine the number of entries in the following sequences.

a. (999, 1000, 1001, . . . 2006)

b. (13, 15, 17, . . . 199)

c. (13, 19, 25, . . . 601)

d. (5, 10, 17, 26, 37, . . . 122)

e. (27, 64, 125, 216, . . . 8000)

f. (7, 11, 19, 35, 67, . . . 131075)

2. How many “full houses” are there in Yahtzee? (A full house is a pair together with

a three-of-a-kind.)

3. In how many ways can you get “two pairs” in Yahtzee?

4. Prove that the binomial coefficients
(
n+ k − 1

k

)
and

(
n+ k − 1
n− 1

)
are equal.

5. The “Cryptographer’s alphabet” is used to supply small examples in coding and

cryptography. It consists of the first six letters, {a, b, c, d, e, f}. How many “words”

of length up to six can be made with this alphabet? (A word need not actually be a

word in English, for example both “fed” and “dfe” would be words in the sense we

are using the term.)
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6. How many “words” are there of length four, with distinct letters from the Cryp-

tographer’s alphabet, in which the letters appear in increasing order alphabetically?

(“Acef” would be one such word, but “cafe” would not.)

7. How many “words” are there of length four from the Cryptographer’s alphabet,

with repeated letters allowed, in which the letters appear in non-decreasing order

alphabetically?

8. How many subsets does a finite set have?

9. How many handshakes will transpire when n people first meet?

10. How many functions are there from a set of size n to a set of size m?

11. How many relations are there from a set of size n to a set of size m?
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7.2 Parity and Counting arguments

This section is concerned with two very powerful elements of the proof-making arsenal:

“Parity” is a way of referring to the result of an even/odd calculation. Counting arguments

most often take the form of counting some collection in two different ways — and then

comparing those results. These techniques have little to do with one another, but when

they are applicable they tend to produce really elegant little arguments.

In (very) early computers and business machines, paper cards were used to store informa-

tion. A so-called “punch card” or “Hollerith card” was used to store binary information by

means of holes punched into it. Paper tape was also used in a similar fashion. A typical

paper tape format would involve eight positions in rows across the tape that might or

might not be punched, often a column of smaller holes would appear as well which did not

store information but were used to drive the tape through the reading mechanism on a

sprocket. Tapes and cards could be “read” either by small sets of electrical contacts which

would touch through a punched hole or be kept separate if the position wasn’t punched,

or by using a photo-detector to sense whether light could pass through the hole or not.

The mechanisms for reading and writing on these paper media were amazingly accurate,

and allowed early data processing machines to use just a couple of large file cabinets to

store what now fits in a jump drive one can wear on a necklace. (About 10 or 12 cabinets

could hold a gigabyte of data).

Paper media was ideally suited to storing binary information, but of course most of the

real data people needed to store and process would be alphanumeric5. There were several

encoding schemes that served to translate between the character sets that people com-

monly used and the binary numerals that could be stored on paper. One of these schemes

still survives today — The American Standard Code for Information Interchange (ASCII).

ASCII uses 7-bit binary numerals to represent characters, so it contains 128 different sym-

bols. (See Table 7.4.) This is more than enough to represent both upper- and lower-case

letters, the 10 numerals, and the punctuation marks — many of the remaining spots in

the ASCII code were used to contain so-called “control characters” that were associated
5“Alphanumeric” is a somewhat antiquated term that refers to information containing both alphabetic char-

acters and numeric characters — as well as punctuation marks, etc.
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with functionality that appeared on old-fashioned teletype equipment — things like “ring

the bell,” “move the carriage backwards one space,” “move the carriage to the next line,”

etc. These control characters are why modern keyboards still have a modifier key labeled

“Ctrl” on them.

Table 7.4: ASCII Table

Decimal Binary Character Decimal Binary Character

1 0000 0001 SOH 65 0100 0001 A

2 0000 0010 STX 66 0100 0010 B

3 0000 0011 ETX 67 0100 0011 C

4 0000 0100 EOT 68 0100 0100 D

5 0000 0101 ENQ 69 0100 0101 E

6 0000 0110 ACK 70 0100 0110 F

7 0000 0111 BEL 71 0100 0111 G

8 0000 1000 BS 72 0100 1000 H

9 0000 1001 TAB 73 0100 1001 I

10 0000 1010 LF 74 0100 1010 J

11 0000 1011 VT 75 0100 1011 K

12 0000 1100 FF 76 0100 1100 L

13 0000 1101 CR 77 0100 1101 M

14 0000 1110 SO 78 0100 1110 N

15 0000 1111 SI 79 0100 1111 O

16 0001 0000 DLE 80 0101 0000 P

17 0001 0001 DC1 81 0101 0001 Q

18 0001 0010 DC2 82 0101 0010 R

19 0001 0011 DC3 83 0101 0011 S

20 0001 0100 DC4 84 0101 0100 T

21 0001 0101 NAK 85 0101 0101 U

22 0001 0110 SYN 86 0101 0110 V

23 0001 0111 ETB 87 0101 0111 W
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Decimal Binary Character Decimal Binary Character

24 0001 1000 CAN 88 0101 1000 X

25 0001 1001 EM 89 0101 1001 Y

26 0001 1010 SUB 90 0101 1010 Z

27 0001 1011 ESC 91 0101 1011 [

28 0001 1100 FS 92 0101 1100 \

29 0001 1101 GS 93 0101 1101 ]

30 0001 1110 RS 94 0101 1110 ˆ

31 0001 1111 US 95 0101 1111 _

32 0010 0000 96 0110 0000 ‘

33 0010 0001 ! 97 0110 0001 a

34 0010 0010 “ 98 0110 0010 b

35 0010 0011 # 99 0110 0011 c

36 0010 0100 $ 100 0110 0100 d

37 0010 0101 % 101 0110 0101 e

38 0010 0110 & 102 0110 0110 f

39 0010 0111 ’ 103 0110 0111 g

40 0010 1000 ( 104 0110 1000 h

41 0010 1001 ) 105 0110 1001 i

42 0010 1010 * 106 0110 1010 j

43 0010 1011 + 107 0110 1011 k

44 0010 1100 , 108 0110 1100 l

45 0010 1101 - 109 0110 1101 m

46 0010 1110 . 110 0110 1110 n

47 0010 1111 / 111 0110 1111 o

48 0011 0000 0 112 0111 0000 p

49 0011 0001 1 113 0111 0001 q

50 0011 0010 2 114 0111 0010 r

51 0011 0011 3 115 0111 0011 s

52 0011 0100 4 116 0111 0100 t
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Decimal Binary Character Decimal Binary Character

53 0011 0101 5 117 0111 0101 u

54 0011 0110 6 118 0111 0110 v

55 0011 0111 7 119 0111 0111 w

56 0011 1000 8 120 0111 1000 x

57 0011 1001 9 121 0111 1001 y

58 0011 1010 : 122 0111 1010 z

59 0011 1011 ; 123 0111 1011 {

60 0011 1100 < 124 0111 1100

61 0011 1101 = 125 0111 1101 }

62 0011 1110 > 126 0111 1110 ~

63 0011 1111 ? 127 0111 1111 DEL

Now, it only takes seven bits to encode the 128 possible values in the ASCII system, which

can easily be verified by noticing that the left-most bits in all of the binary representations

are 0. Most computers use 8-bit words or “bytes” as their basic units of information, and

the fact that the ASCII code only requires seven bits lead someone to think up a use for

that additional bit. It became a “parity check bit.” If the seven bits of an ASCII encoding

have an odd number of 1’s, the parity check bit is set to 1 — otherwise, it is set to 0.

The result of this is that, subsequently, all of the 8-bit words that encode ASCII data will

have an even number of 1’s. This is an example of a so-called error-detecting code known

as the “even code” or the “parity check code.”

When data is sent over a noisy telecommunications channel, or is stored in fallible computer

memory, there is some small but calculable probability that there will be a “bit error.” For

instance, one computer might send 10000111 (which is the ASCII code that says “ring

the bell”) but another machine across the network might receive 10100111 (the third bit

from the left has been received in error). Now, if we are only looking at the rightmost

seven bits, we will think that the ASCII code for a single quote has been received. But

if we note that this piece of received data has an odd number of ones, we’ll realize that
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Figure 7.3: A simplified map of Königsberg, Prussia circa 1736.

something is amiss. There are other more advanced coding schemes that will let us not

only detect an error, but (within limits) correct it as well! This rather amazing feat is

what makes wireless telephony (not to mention communications with deep space probes

— whoops! I mentioned it) work.

The concept of parity can be used in many settings to prove some fairly remarkable results.

In Section 6.3, we introduced the idea of a graph. This notion was first used by Leonhard

Euler to solve a recreational math problem posed by the citizens of Königsberg, Prussia

(this is the city now known as Kaliningrad, Russia). Königsberg was situated at a place

where two branches of the Pregel river6 come together — there is also a large island

situated near this confluence. By Euler’s time, the city of Königsberg covered this island

as well as the north and south banks of the river and also the promontory where the

branches came together. A network of seven bridges had been constructed to connect all

these land masses. (See Figure 7.3.) The townsfolk are alleged to have become enthralled

by the question of whether it was possible to leave one’s home and take a walk through

town which crossed each of the bridges exactly once and, finally, return to one’s home.

Euler settled the question (it can’t be done) be converting the map of Königsberg into a

graph (Figure 7.4) and then making some simple observations about the parities of the

nodes in this graph. The degree of a node in a graph is the number of edges that are

incident with it (if a so-called “loop edge” is present, it adds two to the node’s degree).

The “parity of a node” is shorthand for the “parity of the degree of the node.”
6Today, this river is known as the Pregolya.
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Figure 7.4: Euler’s solution of the "seven bridges of Königsberg problem" involved representing
the town as an undirected graph.

The graph of Königsberg has four nodes: one of degree five and three of degree three.

All the nodes are odd. Would it be possible to either modify Königsberg or come up with

an entirely new graph having some even nodes? Well, the answer to that is easy — just

tear down one of the bridges, and two of the nodes will have their degree changed by one;

they’ll both become even. Notice that, by removing one edge, we effected the parity of

two nodes. Is it possible to create a graph with four nodes in which just one of them is

even? More generally, given any short list of natural numbers, is it possible to draw a

graph whose degrees are the listed numbers?

Exercise 7.5. Try drawing graphs having the following lists of vertex degrees. (In some

cases it will be impossible. . . )

• {1, 1, 2, 3, 3}

• {1, 2, 3, 5}

• {1, 2, 3, 4}

• {4, 4, 4, 4, 5}

• {3, 3, 3, 3}

• {3, 3, 3, 3, 3}

When it is possible to create a graph with a specified list of vertex degrees, it is usually

easy to do. Of course, when it’s impossible you struggle a bit. . . To help get things rolling

(just in case you haven’t really done the exercise) I’ll give a hint — for the first list it is

possible to draw a graph, for the second it is not. Can you distinguish the pattern? What
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makes one list of vertex degrees reasonable and another not?

Exercise 7.6. Figure out a way to distinguish a sequence of numbers that can be the

degree sequence of some graph from the sequences that cannot be.

Okay, now if you’re reading this sentence, you should know that every other list of vertex

degrees above is impossible, you should have graphs drawn in the margin here for the 1st,

3rd and 5th degree sequences, and you may have discovered some version of the following

Theorem 7.1. In an undirected graph, the number of vertices having an odd degree is

even.

A slightly pithier statement is: All graphs have an even number of odd nodes.

We’ll leave the proof of this theorem to the exercises but most of the work is done in

proving the following equivalent result.

Theorem 7.2. In an undirected graph, the sum of the degrees of the vertices is even.

Proof. The sum of the degrees of all the vertices in a graph G,

∑
v∈V (G)

deg(v),

counts every edge of G exactly twice.

Thus,

∑
v∈V (G)

deg(v) = 2 · |E(G)|.

In particular we see that this sum is even.

The question of whether a graph having a given list of vertex degrees can exist comes

down to an elegant little argument using both of the techniques in the title of this section.

We count the edge set of the graph in two ways — once in the usual fashion and once by



7.2. PARITY AND COUNTING ARGUMENTS 327

summing the vertex degrees; we also note that since this latter count is actually a double

count we can bring in the concept of parity.

Another perfectly lovely argument involving parity arises in questions concerning whether

or not it is possible to tile a pruned chessboard with dominoes. We’ve seen dominoes

before in Section 5.1 and we’re just hoping you’ve run across chessboards before. Usually

a chessboard is 8 × 8, but we would like to adopt a more liberal interpretation that a

chessboard can be any rectangular grid of squares we might choose.7 Suppose that we

have a supply of dominoes that are of just the right size that if they are laid on a chessboard

they perfectly cover two adjacent squares. Our first question is quite simple. Is it possible

to perfectly tile an m× n chessboard with such dominoes?

First let’s specify the question a bit more. By “perfectly tiling” a chessboard we mean

that every domino lies (fully) on the board, covering precisely two squares, and that every

square of the board is covered by a domino.

The answer is straightforward. If at least one ofm or n is even it can be done. A necessary

condition is that the number of squares be even (since every domino covers two squares)

and so, if both m and n are odd we will be out of luck.

A “pruned board” is obtained by either literally removing some of the squares or perhaps

by marking them as being off limits in some way. When we ask questions about perfect

tilings of pruned chessboards things get more interesting and the notion of parity can be

used in several ways.

Here are two tiling problems regarding square chessboards:

1. An even-sided square board (e.g. an ordinary 8× 8 board) with diagonally opposite

corners pruned.

2. An odd-sided board with one square pruned.

Both of these situations satisfy the basic necessary condition that the number of squares

on the board must be even. You may be able to determine another “parity” approach to

these tiling problems by attempting the following
7The game known as “draughts” in the UK and “checkers” in the US is played on an 8 × 8 board, but (for

example) international draughts is played on a 10×10 board and Canadian checkers is played on a 12×12 board.
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Figure 7.5: Two five-by-five chessboards. One with top-left square pruned. The other with the
second square from the left in the top row pruned.

Exercise 7.7. Figure 7.5 shows two five-by-five chessboards, each having a single square

pruned. One can be tiled by dominoes and the other cannot. Which is which?

The pattern of black and white squares on a chessboard is an example of a sort of

artificial parity; if we number the squares of the board appropriately then the odd squares

will be white and the even squares will be black. We are used to chessboards having this

alternating black/white pattern on them, but nothing about these tiling problems required

that structure8 If we were used to monochromatic chessboards, we might never solve the

previous two problems — unless of course we invented the colouring scheme in order to

solve them. An odd-by-odd chessboard has more squares of one colour than of the other.

An odd-by-odd chessboard needs to have a square pruned in order for it to be possible for

it to be tiled by dominoes — but if the wrong coloured square is pruned it will still be

impossible. Each domino covers two squares — one of each colour! (So the pruned board

must have the same number of white squares as black.)

We’ll close this section with another example of the technique of counting in two ways.

A magic square of order n is a square n× n array containing the numbers 1, 2, 3, . . . , n2.

The numbers must be arranged in such a way that every row and every column sum to

the same number — this value is known as the magic sum.

For example, the following is an order 3 magic square.

1 6 8

5 7 3

9 2 4

8Nothing about chess requires this structure either, but it does let us do some error checking. For instance,
bishops always end up on the same colour they left from and knights always switch colours as they move.
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The definition of a magic square requires that the rows and columns sum to the same

number but says nothing about what that number must be. It is conceivable that we

could produce magic squares (of the same order) having different magic sums. This is

conceivable, but in fact the magic sum is determined completely by n.

Theorem 7.3. A magic square of order n has a magic sum equal to n3 + n

2 .

Proof. We count the total of the entries in the magic square in two ways. The sum of all

the entries in the magic square is

S = 1 + 2 + 3 + . . .+ n2.

Using the formula for the sum of the first k positive integers (
k∑
i=1

i = k2+k
2 ) and evaluating

at n2 gives

S = n4 + n2

2 .

On the other hand, if the magic sum is M , then each of the n rows has numbers in it

which sum to M so

S = nM.

By equating these different expressions for S and solving for M , we obtain

nM = n4 + n2

2 ,

implying that

M = n3 + n

2 .

7.2.1 Exercises

1. A walking tour of Königsberg such as is described in this section, or more generally,

a circuit through an arbitrary graph that crosses each edge precisely once and begins

and ends at the same node is known as an Eulerian circuit. An Eulerian path

also crosses every edge of a graph exactly once but it begins and ends at distinct

nodes. For each graph in Figure 7.6, determine whether an Eulerian circuit or path

is possible, and if so, draw it.
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Figure 7.6: Graphs for exercise 1.

Figure 7.7: Five tetronominoes

2. Complete the proof of the fact that “Every graph has an even number of odd nodes.”

3. Provide an argument as to why an 8× 8 chessboard with two squares pruned from

diagonally opposite corners cannot be tiled with dominoes.

4. Prove that, if n is odd, any n× n chessboard with a square the same colour as one

of its corners pruned can be tiled by dominoes.

5. Figure 7.7 shows five tetrominoes (familiar to players of the video game Tetris) that

are relatives of dominoes made up of four small squares.

All together these five tetrominoes contain 20 squares so it is conceivable that they

could be used to tile a 4× 5 chessboard. Prove that this is actually impossible.

6. State necessary and sufficient conditions for the existence of an Eulerian circuit in a
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Figure 7.8: Hexagonal array

graph.

7. State necessary and sufficient conditions for the existence of an Eulerian path in a

graph.

8. Construct magic squares of order 4 and 5.

9. A magic hexagon of order 2 would consist of filling-in the numbers from 1 to 7 in

the hexagonal array shown in Figure 7.8. The magic condition means that each of

the 9 “lines” of adjacent hexagons would have the same sum. Is this possible?

10. Is there a magic hexagon of order 3?
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pigeonholes

Figure 7.9: Pigeonholes in an old-fashioned roll top desk could be used to sort letters.

7.3 The pigeonhole principle

The word “pigeonhole” can refer to a hole in which a pigeon roosts (i.e. pretty much what

it sounds like) or a series of roughly square recesses in a desk in which one could sort

correspondence (see Figure 7.9).

Whether you prefer to think of roosting birds or letters being sorted, the first and eas-

iest version of the pigeonhole principle is that if you have more “things” than you have

“containers”, there must be a container holding at least two things.

If we have six pigeons who are trying to roost in a coop with five pigeonholes, two birds

will have to share.

If we have seven letters to sort and there are six pigeonholes in our desk, we will have to

put two letters in the same compartment.

The “things” and the “containers” don’t necessarily have to be interpreted in the strict

sense that the “things” go into the “containers.” For instance, a nice application of the

pigeonhole principle is that if there are at least 13 people present in a room, some pair of
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people will have been born in the same month. In this example, the things are the people

and the containers are the months of the year.

The abstract way to phrase the pigeonhole principle is:

Theorem 7.4. If f is a function such that |Dom(f)| > |Rng(f)| then f is not injective.

The proof of this statement is an easy example of proof by contradiction so we’ll include

it here.

Proof. Suppose to the contrary that f is a function with |Dom(f)| > |Rng(f)| and

that f is injective. Of course f is onto its range, so since we are presuming that f is

injective it follows that f is a bijection between Dom(f) and Rng(f). Therefore (since

f provides a one-to-one correspondence) |Dom(f)| = |Rng(f)|. This clearly contradicts

the statement that |Dom(f)| > |Rng(f)|.

For a statement with an almost trivial proof, the pigeonhole principle is very powerful. We

can use it to prove a host of existential results — some are fairly silly, others very deep.

Here are a few examples:

• There are two people (who are not bald) in New York City having exactly the same

number of hairs on their heads.

• There are two books in (insert your favourite library) that have the same number of

pages.

• Given n married couples (so 2n people) if we choose n+ 1 people we will be forced

to choose both members of some couple.

• Suppose we select n + 1 numbers from the set {1, 2, 3, . . . , 2n}, we will be forced

to have chosen two numbers such that one is divisible by the other.

We can come up with stronger forms of the pigeonhole principle by considering pigeonholes

with capacities. Suppose we have six pigeonholes in a desk, each of which can hold 10
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letters. What number of letters will guarantee that one of the pigeonholes is full? The

largest number of letters we could have without having 10 in some pigeonhole is 9 ·6 = 54,

so if there are 55 letters we must have 10 letters in some pigeonhole.

More generally, if we have n containers, each capable of holding m objects, than if there

are n · (m − 1) + 1 objects placed in the containers, we will be assured that one of the

containers is at capacity. The ordinary pigeonhole principle is the special case m = 2 of

this stronger version.

There is an even stronger version, which ordinarily is known as the “strong form of the

pigeonhole principle.” In the strong form, we have pigeonholes with an assortment of

capacities.

Theorem 7.5. If there are n containers having capacities m1,m2,m3, . . . ,mn, and there

are 1 +
n∑
i=1

(mi− 1) objects placed in them, then for some i, container i has (at least) mi

objects in it.

Proof. If no container holds its full capacity, then the largest the total of the objects could

be is
n∑
i=1

(mi − 1).

7.3.1 Exercises

1. The statement that there are two non-bald New Yorkers with the same number of

hairs on their heads requires some careful estimates to justify it. Please justify it.

2. A mathematician, who always rises earlier than her spouse, has developed a scheme

— using the pigeonhole principle — to ensure that she always has a matching pair

of socks. She keeps only blue socks, green socks and black socks in her sock drawer

— 10 of each. So as not to wake her husband she must select some number of socks

from her drawer in the early morning dark and take them with her to the adjacent

bathroom where she dresses. What number of socks does she choose?

3. If we select 1001 numbers from the set {1, 2, 3, . . . , 2000} it is certain that there

will be two numbers selected such that one divides the other. We can prove this fact
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by noting that every number in the given set can be expressed in the form 2k ·m

where m is an odd number and using the pigeonhole principle. Write up this proof.

4. Given any set of 53 integers, show that there are two of them having the property

that either their sum or their difference is evenly divisible by 103.

5. Prove that if 10 points are placed inside a square of side length 3, there will be 2

points within
√

2 of one another.

6. Prove that if 10 points are placed inside an equilateral triangle of side length 3, there

will be 2 points within 1 of one another.

7. Prove that in a simple graph (an undirected graph with no loops or parallel edges)

having n ≥ 2 nodes, there must be two nodes having the same degree.
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7.4 The algebra of combinations

Earlier in this chapter, we determined the number of k-subsets of a set of size n. These

numbers, denoted by C(n, k) = nCk =
(n
k

)
and determined by the formula n!

k!(n−k)! ,

are known as binomial coefficients. It seems likely that you will have already seen the

arrangement of these binomial coefficients into a triangular array — known as Pascal’s

triangle, but if not. . .

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

etc.

The thing that makes this triangle so nice and that leads to the strange name “binomial

coefficients” for the number of k-combinations of an n-set is that you can use the triangle

to (very quickly) compute powers of binomials.

A binomial is a polynomial with two terms. Things like (x + y), (x + 1) and (x7 + x3)

all count as binomials but to keep things simple just think about (x + y). If you need

to compute a large power of (x + y) you can just multiply it out, for example, think of

finding the sixth power of (x+ y).

We can use the F.O.I.L rule to find (x+ y)2 = x2 + 2xy + y2. Then

(x+ y)3 = (x+ y) · (x+ y)2 = (x+ y) · (x2 + 2xy + y2)

You can compute that last product either by using the distributive law or the table method:
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x2 +2xy +y2

x

+y

Either way, the answer should be (x+ y)3 = x3 + 3x2y + 3xy2 + y3.

Finally, the sixth power is the square of the cube thus

(x+ y)6 = (x+ y)3 · (x+ y)3

= (x3 + 3x2y + 3xy2 + y3) · (x3 + 3x2y + 3xy2 + y3)

For this product, I wouldn’t even think about the distributive law; I’d jump to the table

method right away:

x3 +3x2y +3xy2 +y3

x3

+3x2y

+3xy2

+y3

In the end, you should obtain

x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6.

Now all of this is a lot of work and it’s really much easier to notice the form of the answer:

The exponent on x starts at 6 and descends with each successive term down to 0. The

exponent on y starts at 0 and ascends to 6. The coefficients in the answer are the numbers

in the sixth row of Pascal’s triangle.

Finally, the form of Pascal’s triangle makes it really easy to extend. A number in the

interior of the triangle is always the sum of the two above it (on either side). Numbers

that aren’t in the interior of the triangle are always 1.
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We showed rows 0 through 6 above. Rows 7 and 8 are

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1.

With this information in hand, it becomes nothing more than a matter of copying down

the answer to compute

(x+ y)8 = x8 + 8x7y + 28x6y2 + 56x5y3 + 70x4y4 + 56x3y5 + 28x2y6 + 8xy7 + y8.

Exercise 7.8. Given the method using Pascal’s triangle for computing (x + y)n we can

use substitution to determine more general binomial powers. Find (x4 + x2)5.

All of the above hinges on the fact that one can compute a binomial coefficient by

summing the two that appear to either side and above it in Pascal’s triangle. This fact is

the fundamental relationship between binomial coefficients — it is usually called Pascal’s

formula.

Theorem 7.6. For all natural numbers n and k with 0 < k ≤ n,(
n

k

)
=
(
n− 1
k

)
+
(
n− 1
k − 1

)
.

We are going to give two proofs. The first proof is a combinatorial argument.

Proof. There are
(n
k

)
subsets of size k of the set N = {1, 2, 3, . . . , n}. We will partition

these k-subsets into two disjoint cases: those that contain the final number, n, and those

that do not.

Let

A = {S ⊆ N : |S| = k ∧ n /∈ S}

and let

B = {S ⊆ N : |S| = k ∧ n ∈ S}.

Since the number n is either in a k-subset or it isn’t, these sets are disjoint and exhaustive.

So the addition rule tells us that (
n

k

)
= |A|+ |B|.
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The set A is really just the set of all k-subsets of the (n− 1)-set {1, 2, 3, . . . , n− 1}, so

|A| =
(n−1
k

)
.

Any of the sets in B can be obtained by adjoining the element n to a k− 1 subset of the

(n− 1)-set {1, 2, 3, . . . , n− 1}, so |B| =
(n−1
k−1
)
.

Substituting gives us the desired result.

The second proof is algebraic in nature.

Proof. Consider the sum

(
n− 1
k

)
+
(
n− 1
k − 1

)
.

Applying the formula we deduced in Section 7.1, we get

(
n− 1
k

)
+
(
n− 1
k − 1

)

= (n− 1)!
k!(n− 1− k)! + (n− 1)!

(k − 1)!((n− 1)− (k − 1))!

= (n− 1)!
k!(n− k − 1)! + (n− 1)!

(k − 1)!(n− k)!

A common denominator for these fractions is k!(n − k)!. (We will have to multiply the

top and bottom of the first fraction by (n − k) and the top and bottom of the second
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fraction by k.) Hence,
(n− 1)!

k!(n− k − 1)! + (n− 1)!
(k − 1)!(n− k)!

= (n− k)(n− 1)!
k!(n− k)(n− k − 1)! + k(n− 1)!

k(k − 1)!(n− k)!

= (n− k)(n− 1)!
k!(n− k)! + k(n− 1)!

k!(n− k)!

= (n− k)(n− 1)! + k(n− 1)!
k!(n− k)!

= (n− k + k)(n− 1)!
k!(n− k)!

= (n)(n− 1)!
k!(n− k)!

= n!
k!(n− k)! .

We recognize the final expression as the definition of
(n
k

)
, so we have proved that(

n− 1
k

)
+
(
n− 1
k − 1

)
=
(
n

k

)
.

There are quite a few other identities concerning binomial coefficients that can also be

proved in (at least) two ways. We will provide one or two other examples and leave the

rest to you in the exercises for this section.

Theorem 7.7. For all natural numbers n and k with 0 < k ≤ n,

k ·
(
n

k

)
= n ·

(
n− 1
k − 1

)
.

Let’s try a purely algebraic approach first.

Proof. Using the formula for the value of a binomial coefficient we get

k ·
(
n

k

)
= k · n!

k!(n− k)! .

We can do some cancellation to obtain

k ·
(
n

k

)
= n!

(k − 1)!(n− k)! .
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Finally, we factor-out an n to obtain

k ·
(
n

k

)
= n · (n− 1)!

(k − 1)!(n− k)! .

Since (n− k) = (n− 1)− (k − 1), we have

k ·
(
n

k

)
= n · (n− 1)!

(k − 1)!((n− 1)− (k − 1))! = n ·
(
n− 1
k − 1

)

as desired.

A combinatorial argument usually involves counting something in two ways. What could

that something be? Well, if you see a product in some formula, you should try to imagine

what the multiplication rule would say in that particular circumstance.

Proof. Consider the collection of all subsets of size k taken from N = {1, 2, 3, . . . , n} in

which one of the elements has been marked to distinguish it from the others in some way.9

We can count this collection in two ways using the multiplication rule.

Firstly, we could select a k-subset in
(n
k

)
ways and then from among the k elements of

the subset we could select one to be marked. By this analysis, there are
(n
k

)
· k elements

in our collection.

Secondly, we could select an element from the n-set which will be the “marked” element

of our subset, and then choose the additional k − 1 elements from the remaining n − 1

elements of the n-set. By this analysis, there are n ·
(n−1
k−1
)
elements in the collection we

have been discussing.

Thus,

k ·
(
n

k

)
= n ·

(
n− 1
k − 1

)
as desired.

9For example, a committee of k individuals one of whom has been chosen as chairperson, is an example of
the kind of entity we are discussing.
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The final result that we’ll talk about actually has (at least) three proofs. One of which

suffers from the fault that it is “like swatting a fly with a sledge hammer.”

The result concerns the sum of all the numbers in some row of Pascal’s triangle.

Theorem 7.8. For all natural numbers n and k with 0 < k ≤ n,

n∑
k=0

(
n

k

)
= 2n.

Our sledge hammer is a powerful result known as the Binomial Theorem which is a

formalized statement of the material we began this section with.

Theorem 7.9 (The Binomial Theorem). For all natural numbers n, and real numbers x

and y,

(x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk.

We won’t be proving this result just now. But, the following proof is a proof of the

previous theorem using this more powerful result.

Proof. Substitute x = y = 1 in the Binomial Theorem.

Our second proof will be combinatorial. Let us re-iterate that a combinatorial proof usually

consists of counting some collection in two different ways. The formula we have in this

example contains a sum, so we should search for a collection of things that can be counted

using the addition rule.

Proof. The set of all subsets of N = {1, 2, 3, . . . , n}, which we denote by P(N), can be

partitioned into n+ 1 sets based on the sizes of the subsets,

P(N) = S0 ∪ S1 ∪ S2 ∪ . . . ∪ Sn,

where Sk = {S :S ⊆ N ∧ |S| = k} for 0 ≤ k ≤ n. Since no subset of N can appear

in two different parts of the partition (a subset’s size is unique) and every subset of N
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Figure 7.10: Pascal’s tetrahedron

appears in one of the parts of the partition (the sizes of subsets are all in the range from

0 to n), the addition principle tells us that

|P(N)| = |S0|+ |S1|+ |S2|+ . . .+ |Sn|.

We have previously proved that |P(N)| = 2n and we know that |Sk| =
(n
k

)
. It follows

that

2n =
(
n

0

)
+
(
n

1

)
+
(
n

2

)
+ . . .+

(
n

n

)
.

7.4.1 Exercises

1. Use the Binomial Theorem (with x = 1000 and y = 1) to calculate 10016.

2. Find (2x+ 3)5.

3. Find (x2 + y2)6.

4. Figure 7.10 shows a 3-dimensional analog of Pascal’s triangle that we might call

“Pascal’s tetrahedron.” What would the next layer look like?

5. The student government at Lagrange High consists of 24 members chosen from

amongst the general student body of 210. Additionally, there is a steering com-



344 CHAPTER 7. PROOF TECHNIQUES III — COMBINATORICS

mittee of 5 members chosen from amongst those in student government. Use the

multiplication rule to determine two different formulas for the total number of pos-

sible governance structures.

6. Prove the identity (
n

k

)
·
(
k

r

)
=
(
n

r

)
·
(
n− r
k − r

)
combinatorially.

7. Prove the Binomial Theorem:

∀n ∈ N, ∀x, y ∈ R, (x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk.
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Hints to exercises

7.1.1

1. a. 1008

b. 94

c. 99

d. 10

e. 18

f. 16

2. 300

3. 1800

4. Just apply the definition.

5. 6 + 62 + 63 + 64 + 65 + 66 = 55986

6. 15

7.
(9

4
)

8. There are 2n subsets for an n-element set.

9.
(n

2
)

10. mn functions

11. 2mn relations

7.2.1

1. The graph in top left and the one in the bottom right have an Eulerian circuit. The

graph in the top right has an Eulerian path. The graph in the bottom left has neither

an Eulerian path nor an Eulerian circuit.
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2. Let G be a graph with m edges and n nodes v1, . . . , vn. Suppose that v1, . . . , vr are

all the odd nodes. Theorem 7.2 gives
r∑
i=1

deg(vi) +
n∑

i=r+1
deg(vi) = 2m.

Since deg(vi) is even for i = r + 1, . . . , n, we see that
r∑
i=1

deg(vi) is even, implying

that r is even since deg(vi) is odd for i = 1, . . . , r.

3. Each domino will cover one white square and one black square. However, pruning

from diagonally opposite corners removes two squares of the same colour, yielding

30 squares of one colour and 32 squares of the other colour. Thus, no tiling with

dominoes can cover all the squares.

4. Let the board size be (2k + 1) × (2k + 1) for some nonnegative integer k. After

removing a square the same colour as one of its corners, there remain (2k+ 1)2− 1

square to tile and there are 2k2 + 2k squares of each colour. We number the rows

from 1 to 2k + 1 starting from the top. We consider two cases.

Case 1. The pruned square is in an odd-numbered row. Observe that the row with

the pruned square must have an even number of squares to the left of the pruned

square and an even number of squares tot he right of the pruned square. Thus,

this row can be tiled horizontally with dominoes. Now, there are an even number of

rows above the pruned square as well as an even number of rows below the pruned

square. We can tile these rows two rows at a time with 2k + 1 dominoes laid down

vertically from left to right.

Case 2. The pruned square is in row r where r is even. Start tiling row r − 1

horizontally from left to right. Cover the last square of row r − 1 and the square

right below by laying down a domino vertically. Now, row r will have an even number

of untiled squares on the right of the pruned square and an odd number of untiled

squares on the left of the pruned square. Tile row r horizontally from right to left,

skipping over the pruned square. Tile the leftmost square of row r and the square

below it by laying down a domino vertically. This leaves an even number of squares

in row r+1 to tile horizontally. The number of rows above row r−1 and that below
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row r + 1 are even and can be tiled easily.

5. In a 4 × 5 chessboard, there are 10 white squares and 10 black squares. Of the

five tetrominoes, four will cover exactly two squares of each colour. However, the

T piece must cover three of the same colour and one of the other colour. Thus,

a tiling of the chessboard using the five tetrominoes will cover nine squares of one

colour and elevent of the colour, contradicting that there are 10 white squares and

10 black squares on the chessboard.

6. A connected graph has an Eulerian circuit if and only if every node has even degree.

7. A connected graph has an Eulerian path if and only if there are exactly two nodes

of odd degree.

8. A magic square of order 4:

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

A magic square of order 5:

1 15 24 8 17

23 7 16 5 14

20 4 13 22 6

12 21 10 19 3

19 18 2 11 2

9. No.

10. Yes.

7.3.1

1. The average person has roughly 100,000 hairs. It is safe to assume that no person

has ten times this number of hairs. Hence, an upper bound for the number of hairs

on a head would be one million. As the population of New York is roughly 8.53

million as of 2017, by the pigeonhole principle, there must be more than one person

with the same number of hairs on their heads.

2. Four.
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3. Let A denote the set {1, 2, 3, . . . , 2000}. Let O denote the set of odd numbers in

A. Define a function f : A → O as follows: for an x ∈ A, f(x) = m where m is

an odd natural number such that x = 2km for some nonnegative integer k. (Note

that k and m are unique by the Fundamental Theorem of Arithmetic.) Now, for any

subset C ⊆ A, |f(C)| ≤ |O| = 1000. Thus, if |C| = 1001, there must exist distinct

u, v ∈ C such that f(u) = f(v), implying that u = 2km and v = 2k′m for some

odd natural number m and nonnegative integers k and k′. If k ≤ k′, then u divides

v. Otherwise, v divides u.

4. Define S0, S1, . . . , S51 as follows: S0 = {0} and Si = {i, 103− i} for i = 1, . . . , 51.

Note that if x is an integer, then its remainder when divided by 103 must be in Sj
for some j ∈ {0, . . . , 51}. If there are 53 integers, then by the pigeonhole principles,

two of them will have remainders in the same Sk for some k. It is easy to see that

either the sum or the difference of these two numbrs will be evenly divisible by 103.

5. Divide the square into nine smaller squares, each with side length 1. Since there are

10 points placed in the square, by the pigeonhole principle, there must be two points

that are in the same smaller square. The result now follows because the maximum

distance between two points in a square of side length 1 is
√

2.

6. Try something similar to the previous question.

7. It is actually easier to prove this by induction on the number of edges in the graph.

To prove this using the pigeonhole principle, note that it suffices to prove the result

for connected graphs. (A graph is connected if there is a path from one node to any

other node.) A simple induction shows that, in a connected graph, the number of

nodes must be at least one more than the number of edges. If there are m edges,

then 1, 2, . . . ,m are the only possible values for the degree (0 is not possible since

the graph is connected and has at least two nodes) but at least m+ 1 degree values

coming from the nodes.

7.4.1
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1. Using the Binomial Theorem, we have

10016 = (1000 + 1)6

=
6∑
i=0

(
6
i

)
10006−i · 1i

= 10006 + 6 · 10005 + 15 · 10004 + 20 · 10003 + 15 · 10002 + 6 · 1000 + 1

= 1006015020015006001.

2. 2x5 + 30x4 + 180x3 + 540x2 + 810x+ 243

3. x12 + 6x10y2 + 15x8y4 + 20x6y6 + 15x4y8 + 6x2y10 + y12

4. The next layer looks like

1

4 4

6 10 6

4 10 10 4

1 4 6 4 1

5. There are
(210

24
)
possible student governments. For each student government, there

are
(24

5
)
possible steering committees. Thus, the total number of possible gover-

nance structures is
(210

24
)(24

5
)
. Another way to obtain the formula is that there are a

total of
(210

5
)
steering commmittees that can be formed from all the student mem-

bres. Once the steering committee is chosen, there are
(210−5

24−5
)
ways to complete a

student government starting with the steering committee. Hence, there are a total

of
(210

5
)(205

19
)
possible governance structures.

6. Use a similar argument as in the previous question.

7. Use induction on n. At some point, you will probably need the following identity:(
n

k − 1

)
+
(
n

k

)
=
(
n+ 1
k

)

for 1 ≤ k ≤ n.
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Chapter 8

Cardinality

The very existence of flame-throwers proves that some time, somewhere, some-

one said to themselves, “You know, I want to set those people over there on

fire, but I’m just not close enough to get the job done.”

—George Carlin

8.1 Equivalent sets

We have seen several interesting examples of equivalence relations already, and in this

section we will explore one more: we’ll say two sets are equivalent if they have the same

number of elements. Usually, an equivalence relation has the effect that it highlights one

characteristic of the objects being studied while ignoring all the others. Equivalence of

sets brings the issue of size (a.k.a. cardinality) into sharp focus while, at the same time,

it forgets all about the many other features of sets. Sets that are equivalent (under the

relation we are discussing) are sometimes said to be equinumerous1.

A couple of examples may be in order.

• If A = {1, 2, 3} and B = {a, b, c}, then A and B are equivalent.

• Since the empty set is unique — ∅ is the only set having no elements — it follows

that there are no other sets equivalent to it.
1Perversely, there are also those who use the term equipollent to indicate that sets are the same size. This

term actually applies to logical statements that are deducible from one another.

351
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• Every singleton set2 is equivalent to every other singleton set.

These examples seem relatively self-evident. Unfortunately, that very self-evidence may

tend to make you think that this notion of equivalence isn’t all that interesting — noth-

ing could be further from the truth. The notion of equivalence of sets becomes really

interesting when we study infinite sets. Once we have the right definition in hand, we will

be able to prove some truly amazing results. For instance, the sets N and Q turn out to

be equivalent. Since the naturals are wholly contained in the rationals this is (to say the

least) counter-intuitive. Coming up with the “right” definition for this concept is crucial.

We could make the following definition:

Definition 8.1. (Well. . . not quite.) For all sets A and B, we say A and B are equivalent,

and write A ≡ B iff |A| = |B|.

The problem with this definition is that it is circular. We’re trying to come up with an

equivalence relation so that the equivalence classes will represent the various cardinalities

of sets (i.e. their sizes) and we define the relation in terms of cardinalities. We won’t get

anything new from this.

Georg Cantor was the first person to develop the modern notion of the equivalence of sets.

His early work used the notion implicitly, but when he finally developed the concept of

one-to-one correspondences in an explicit way, he was able to prove some amazing facts.

The phrase “one-to-one correspondence” has a fairly impressive ring to it, but one can

discover what it means by just thinking carefully about what it means to count something.

Consider the solmization syllables used for the notes of the major scale in music; they

form the set {do, re, mi, fa, so, la, ti}. What are we doing when we count this set (and

presumably come up with a total of seven notes)? We first point at do while saying “one”,

then point at re while saying “two,” etc. In a technical sense, we are creating a one-to-

one correspondence between the set containing the seven syllables and the special set

{1, 2, 3, 4, 5, 6, 7}. You should notice that this one-to-one correspondence is by no means

unique. For instance, we could have counted the syllables in reverse — a descending scale,

or in some funny order — a little melody using each note once. The fact that there are
2Recall that a singleton set is a set having just one element.
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seven syllables in the solmization of the major scale is equivalent to saying that there exists

a one-to-one correspondence between the syllables and the special set {1, 2, 3, 4, 5, 6, 7}.

Saying “there exists” in this situation may seem a bit weak since in fact there are 7! = 5040

correspondences, but “there exists” is what we really want here. What exactly is a one-

to-one correspondence? Well, we’ve actually seen such things before — a one-to-one

correspondence is really just a bijective function between two sets. We’re finally ready to

write a definition that Georg Cantor would approve of.

Definition 8.2. For all sets A and B, we say A and B are equivalent, and write A ≡ B

iff there exists a one-to-one and onto function f , with Dom(f) = A and Rng(f) = B.

Somewhat more succinctly, one can just say the sets are equivalent iff there is a bijection

between them.

We are going to ask you to prove that the above definition defines an equivalence relation

in the exercises for this section. In order to give you a bit of a jump start on that proof

we’ll outline what the proof that the relation is symmetric should look like.

To show that the relation is symmetric, we must assume that A and B are

sets with A ≡ B and show that this implies that B ≡ A. According to the

definition above, this means that we’ll need to locate a function (that is one-

to-one) from B to A. On the other hand, since it is given that A ≡ B, the

definition tells us that there actually is an injective function, f , from A to B.

The inverse function f−1 would do exactly what we’d like (namely form a map

from B to A) assuming that we can show that f−1 has the right properties.

We need to know that f−1 is a function (remember that in general the inverse

of a function is only a relation) and that it is one-to-one. That f−1 is a function

is a consequence of the fact that f is one-to-one. That f−1 is one-to-one is a

consequence of the fact that f is a function.

The above is just a sketch of a proof. In the exercise, you’ll need to fill in the rest of the

details as well as provide similar arguments for reflexivity and transitivity.

For each possible finite cardinality k, there are many, many sets having that cardinality,

but there is one set that stands out as the most basic — the set of numbers from 1 to k.
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For each cardinality k > 0, we use the symbol Nk to indicate this set:

Nk = {1, 2, 3, . . . , k}.

The finite cardinalities are the equivalence classes (under the relation of set equivalence)

containing the empty set and the sets Nk.

Of course there are also infinite sets! The prototype for an infinite set would have to be the

entire set N. The long-standing tradition is to use the symbol ℵ0
3 for the cardinality of sets

having the same size as N, alternatively, such sets are known as “countable.” One could

make a pretty good argument that it is the finite sets that are actually countable! After

all it would literally take forever to count the natural numbers! We have to presume that

the people who instituted this terminology meant for “countable” to mean “countable,

in principle” or “countable if you’re willing to let me keep counting forever” or maybe

“countable if you can keep counting faster and faster and are capable of ignoring the speed

of light limitations on how fast your lips can move.” Worse yet, the term “countable” has

come to be used for sets whose cardinalities are either finite or the size of the naturals.

If we want to refer specifically to the infinite sort of countable set most mathematicians

use the term denumerable (although this is not universal) or countably infinite.

Finally, there are sets whose cardinalities are bigger than the naturals. In other words,

there are sets such that no one-to-one correspondence with N is possible. We don’t mean

that people have looked for one-to-one correspondences between such sets and N and

haven’t been able to find them — we literally mean that it can’t be done; and it is has

been proved that it can’t be done! Sets having cardinalities that are this ridiculously huge

are known as uncountable.

8.1.1 Exercises

1. Name four sets in the equivalence class of {1, 2, 3}.

2. Prove that set equivalence is an equivalence relation.

3The Hebrew letter (capital) aleph with a subscript zero — usually pronounced “aleph naught.”
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3. Construct a Venn diagram showing the relationships between the sets of sets which

are finite, infinite, countable, denumerable and uncountable.

4. Place the sets N, R, Q, Z, Z×Z, C, N2007 and ∅; somewhere on the Venn diagram

above. (Note to students (and graders): there are no wrong answers to this question,

the point is to see what your intuition about these sets says at this point.)
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8.2 Examples of set equivalence

There is an ancient conundrum about what happens when an irresistible force meets an

immovable object. In a similar spirit, there are sometimes heated debates among young

children concerning which super-hero will win a fight. Can Wolverine take Batman? What

about the Incredible Hulk versus the Thing? Certainly Superman is at the top of the heap

in this ordering. Or is he? Would the man of steel even engage in a fight with a female

super-hero, say Wonder Woman? (Remember the 1950’s sensibilities of Clark Kent’s alter

ego.)

To many people, the current topic will seem about as sensible as the schoolyard discussions

just alluded to. We are concerned with knowing whether one infinite set is bigger than

another, or are they the same size. There are generally three reasons that people disdain to

consider such questions. The first is that, like super-heros, infinite sets are just products

of the imagination. The second is that there can be no difference because “infinite is

infinite” — once you get to the size we call infinity, you can’t add something to that to

get to a bigger infinity. The third is that the answers to questions like this are not going

to earn me big piles of money so “who cares?”

Point one is actually pretty valid. Physicists have determined that we appear to inhabit

a universe of finite scope, containing a finite number of subatomic particles, so in reality

there can be no infinite sets. Nevertheless, the axioms we use to study many fields in

mathematics guarantee that the objects of consideration are indeed infinite in number.

Infinity appears as a concept even when we know it can’t appear in actuality. Point two,

the “there’s only one size of infinity” argument is wrong. We’ll see an informal argument

showing that there are at least two sizes of infinity, and a more formal theorem that shows

there is actually an infinite hierarchy of infinities in Section 8.3

Point three, “who cares?” is in some sense the toughest of all to deal with. Hopefully

you’ll enjoy the clever arguments to come for their own intrinsic beauty. But, if you can

figure a way to make big piles of money using this stuff that would be nice too.

Let’s get started.
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Which set is bigger — the natural numbers, N or the set, E≥0, of non-negative even

numbers? Both are clearly infinite, so the “infinity is infinity” camp might be lead to

the correct conclusion through invalid reasoning. On the other hand, the non-negative

even numbers are contained in the natural numbers so there’s a pretty compelling case

for saying the evens are somehow smaller than the naturals.

The mathematically rigorous way to show that these sets have the same cardinality is by

displaying a one-to-one correspondence. Given a non-negative even number, how can we

produce a natural to pair it with? And, given a natural how can we produce a non-negative

even number to pair with it? The map f : N −→ E≥0 defined by f(x) = 2x is clearly a

function, and just about as clearly, injective4. Is the map f also a surjection? In other

words, is every non-negative even number the image of some natural under f?

Given some non-negative even number e, we need to be able to come up with an x such

that f(x) = e. Well, since e is an even number, by the definition of “even” we know that

there is an integer k such that e = 2k and since e is either zero or positive it follows that

k must also be either 0 or positive. It turns out that k is actually the x we are searching

for. Put more succinctly, every non-negative even number 2k has a preimage, k, under

the map f . So f maps N surjectively onto E≥0. Now the sets we’ve just considered,

N = {0, 1, 2, 3, 4, 5, 6, . . .}

and

E≥0 = {0, 2, 4, 6, 8, 10, 12, . . .}

both have the feature that they can be listed — at least in principle. There is a first

element, followed by a second element, followed by a third element, etc., in each set. The

next set we’ll look at, Z, can’t be listed so easily. To list the integers we need to let the

dot-dot-dots go both forward (towards positive infinity) and backwards (towards negative

infinity),

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

To show that the integers are actually equinumerous with the natural numbers (which
4If x and y are different numbers that map to the same value, then f(x) = f(y) so 2x = 2y. But we can cancel

the 2’s and derive that x = y, which is a contradiction.
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is what we’re about to do — and by the way, isn’t that pretty remarkable?) we need,

essentially, to figure out a way to list the integers in a singly infinite list. Using the symbol

± we can arrange for a singly infinite listing, and if you think about what the symbol ±

means you’ll probably come up with

Z = {0, 1,−1, 2,−2, 3,−3, . . .}.

This singly infinite listing of the integers does the job we’re after in a sense – it displays a

one-to-one correspondence with N. In fact, any singly infinite listing can be thought of as

displaying a one-to-one correspondence with N — the first entry (or should we say zeroth

entry?) in the list is corresponded with 0, the second entry is corresponded with 1, and

so on.

0 1 2 3 4 5 6 7 . . .

l l l l l l l l

0 1 −1 2 −2 3 −3 4 . . .

To make all of this precise, we need to be able to explicitly give the one-to-one corre-

spondence. It isn’t enough to have a picture of it — we need a formula. Notice that the

negative integers are all paired with even naturals and the positive integers are all paired

with odd naturals. This observation leads us to a piecewise definition for a function that

gives the bijection we seek

f(x) =

 −x/2 if x is even,

(x+ 1)/2 if x is odd.

By the way, notice that since 0 is even, it falls into the first case, and fortunately that

formula gives the “right” value.

Exercise 8.1. The inverse function, f−1, must also be defined piecewise, but based on

whether the input is negative or not. Define the inverse function.

The examples we’ve done so far have shown that the integers, the natural numbers and

the even naturals all have the same cardinality. This is the first infinite cardinal number,

known as ℵ0. In a certain sense, we could view both of the equivalences we’ve shown
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as demonstrating that 2 · ∞ = ∞. Our next example will lend credence to the rule:

∞ ·∞ =∞.

The Cartesian product of two finite sets (the set of all ordered pairs with entries from

the sets in question) has cardinality equal to the product of the cardinalities of the sets.

What do you suppose will happen if we let the sets be infinite? For instance, what is the

cardinality of N× N?

Consider this: the subset of ordered pairs that start with a 0 can be thought of as a copy

of N sitting inside this Cartesian product. In fact, the subset of ordered pairs starting

with any particular number gives another copy of N inside N × N. There are infinitely

many copies of N sitting inside of N × N! This just really ought to get us to a larger

cardinality. The surprising result that it doesn’t involves an idea sometimes known as

“Cantor’s Snake” — a trick that allows us to list the elements of N×N in a singly infinite

list5. You can visualize the set N×N as the points having integer coordinates in the first

quadrant (together with the origin and the positive x and y axes). This set of points and

the path through them known as Cantor’s snake is shown in Figure 8.1.

The diagram in Figure 8.1 gives a visual form of the one-to-one correspondence we seek.

In tabular form we would have something like the following.

0 1 2 3 4 5 6 7 8 . . .

l l l l l l l l l

(0, 0) (0, 1) (1, 0) (0, 2) (1, 1) (2, 0) (0, 3) (1, 2) (2, 1) . . .

We need to produce a formula. In truth, we should really produce two formulas. One that

takes an ordered pair (x, y) and produces a number n. Another that takes a number n

and produces an ordered pair (x, y). The number n tells us where the pair (x, y) lies in our

infinite listing. There is a problem though: the second formula (that gives the map from

N to N×N) is really hard to write down — it’s easier to describe the map algorithmically.

A simple observation will help us to deduce the various formulas. The ordered pairs along

the y-axis (those of the form (0, something)) correspond to triangular numbers. In fact
5Cantor’s snake was originally created to show that Q≥0 and N are equinumerous. This function was introduced

in the exercises for Section 6.5. The version we are presenting here avoids certain complications.
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(5, 0) (6, 0)(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)

(5, 1) (6, 1)(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(5, 2) (6, 2)(0, 2) (1, 2) (2, 2) (3, 2) (4, 2)

(5, 3) (6, 3)(0, 3) (1, 3) (2, 3) (3, 3) (4, 3)

(5, 4) (6, 4)(0, 4) (1, 4) (2, 4) (3, 4) (4, 4)

(5, 5) (6, 5)(0, 5) (1, 5) (2, 5) (3, 5) (4, 5)

(5, 6) (6, 6)(0, 6) (1, 6) (2, 6) (3, 6) (4, 6)

Figure 8.1: Cantor’s snake winds through the set N×N encountering its elements one after the
other.
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the pair (0, n) will correspond to the n-th triangular number, T (n) = (n2 + n)/2. The

ordered pairs along the descending slanted line starting from (0, n) all have the feature

that the sum of their coordinates is n (because as the x-coordinate is increasing, the

y-coordinate is decreasing). So, given an ordered pair (x, y), the number corresponding

to the position at the upper end of the slanted line it is on (which will have coordinates

(0, x + y)) will be T (x + y), and the pair (x, y) occurs in the listing exactly x positions

after (0, x+ y). Thus, the function f : N× N −→ N is given by

f(x, y) = x+ T (x+ y) = x+ (x+ y)2 + (x+ y)
2 .

To go the other direction — that is, to take a position in the listing and derive an ordered

pair — we need to figure out where a given number lies relative to the triangular numbers.

For instance, try to figure out what (x, y) pair position number 13 will correspond with.

Well, the next smaller triangular number is 10 which is T (4), so 13 will be the number of

an ordered pair along the descending line whose y-intercept is 4. In fact, 13 will be paired

with an ordered pair having a 3 in the x-coordinate (since 13 is 3 larger than 10) so it

follows that f−1(13) = (3, 1).

Of course we need to generalize this procedure. One of the hardest parts of finding that

generalization is finding the number 4 in the above example (when we just happen to

notice that T (4) = 10 ). What we’re really doing there is inverting the function T (n).

Finding an inverse for T (n) = (n2 + n)/2 was the essence of one of the exercises in

Section 6.6. The parabola y = (x2 +x)/2 has roots at 0 and −1 and is scaled by a factor

of 1/2 relative to the “standard” parabola y = x2. Its vertex is at (−1/2,−1/8). The

graph of the inverse relation is, of course, obtained by reflecting through the line y = x

and by considering scaling and horizontal/ vertical translations we can deduce a formula

for a function that gives a right inverse for T ,

T−1(x) =
√

2x+ 1
4 −

1
2 .

So, given n, a position in the listing, we calculate A =
⌊√

2n+ 1
4 −

1
2

⌋
. The x-coordinate

of our ordered pair is n − T (A) and the y-coordinate is A − x. It is not pretty, but the

above discussion can be translated into a formula for f−1.
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Figure 8.2: Projection from a point can be used to show that intervals of different lengths contain
the same number of points.

When restricted to the appropriate sets (f ’s domain is restricted to N × N and f−1’s

domain is restricted to N), these functions are two-sided inverses for one another. That

fact is sufficient to prove that f is bijective.

So far we have shown that the sets E≥0, N, Z and N×N all have the same cardinality —

ℵ0. We plan to provide an argument that there actually are other infinite cardinals in the

next section. Before leaving the present topic (examples of set equivalence) we’d like to

present another nice technique for deriving the bijective correspondences we use to show

that sets are equivalent — geometric constructions. Consider the set of points on the line

segment [0, 1]. Now consider the set of points on the line segment [0, 2]. This second line

segment, being twice as long as the first, must have a lot more points on it. Right?

Well, perhaps you’re getting used to this sort of thing. . . The interval [0, 1] is a subset of

the interval [0, 2], but since both represent infinite sets of points it’s possible they actually

have the same cardinality. We can prove that this is so using a geometric technique. We

position the line segments appropriately and then use projection from a carefully chosen

point to develop a bijection. Imagine both intervals as lying on the x-axis in the x-y plane.

Shift the smaller interval up one unit so that it lies on the line y = 1. Now, use projection

from the point (0, 2), to visualize the correspondence see Figure 8.2

By considering appropriate projections we can prove that any two arbitrary intervals (say

[a, b] and [c, d]) have the same cardinalities! It also isn’t all that hard to derive a formula
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Figure 8.3: Vertical projection provides a bijective correspondence between an interval and a
semi-circle.

for a bijective function between two intervals:

f(x) = c+ (x− a)(d− c)
(b− a) .

There are other geometric constructions which we can use to show that there are the

same number of points in a variety of entities. For example, consider the upper half of the

unit circle (Remember the unit circle from trigonometry? All the points (x, y) satisfying

x2 +y2 = 1.) This is a semi-circle having a radius of 1, so the arclength of said semi-circle

is π. It isn’t hard to imagine that this semi-circular arc contains the same number of points

as an interval of length π, and we’ve already argued that all intervals contain the same

number of points. . . But, a nice example of geometric projection — vertical projection

(a.k.a. π1) — can be used to show that (for example) the interval (−1, 1) and the portion

of the unit circle lying in the upper half-plane are equinumerous.

Once the bijection is understood geometrically it is fairly simple to provide formulas. To

go from the semi-circle to the interval, we just forget about the y-coordinate:

f(x, y) = x.

To go in the other direction we need to recompute the missing y-value:

f−1(x) = (x,
√

1− x2).

Now we’re ready to put some of these ideas together in order to prove something really

quite remarkable. It may be okay to say that line segments of different lengths are
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equinumerous — although ones intuition still balks at the idea that a line a mile long only

has the same number of points on it as a line an inch long (or, if you prefer, make that

a centimeter versus a kilometer). Would you believe that the entire line — that is the

infinitely extended line — has no more points on it than a tiny little segment? You should

be ready to prove this one yourself.

Exercise 8.2. Find a point such that projection from that point determines a one-to-one

correspondence between the portion of the unit circle in the upper half plane and the line

y = 1.

In the exercises from Section 8.1, you were supposed to show that set equivalence is

an equivalence relation. Part of that proof should have been showing that the relation

is transitive, and that really just comes down to showing that the composition of two

bijections is itself a bijection. If you didn’t make it through that exercise, give it another try

now. Whether or not you can finish that proof, it should be evident what that transitivity

means to us in the current situation. Any pair of line segments are the same size — a

line segment (i.e. an interval) and a semi-circle are the same size — the semi-circle and

an infinite line are the same size — transitivity tells us that an infinitely extended line has

the same number of points as (for example) the interval (0, 1).

8.2.1 Exercises

1. Prove that positive numbers of the form 3k + 1 are equinumerous with positive

numbers of the form 4k + 2.

2. Prove that f(x) = c + (x− a)(d− c)
(b− a) provides a bijection from the interval [a, b]

to the interval [c, d].

3. Prove that any two circles are equinumerous (as sets of points).

4. Determine a formula for the bijection from (−1, 1) to the line y = 1 determined by

vertical projection onto the upper half of the unit circle, followed by projection from

the point (0, 0).

5. It is possible to generalize the argument that shows a line segment is equivalent to
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a line to higher dimensions. In two dimensions we would show that the unit disk

(the interior of the unit circle) is equinumerous with the entire plane R × R. In

three dimensions we would show that the unit ball (the interior of the unit sphere)

is equinumerous with the entire space R3 = R×R×R. Here we would like you to

prove the two-dimensional case.

Gnomonic projection is a style of map rendering in which a portion of a sphere is

projected onto a plane that is tangent to the sphere. The sphere’s center is used

as the point to project from. Combine vertical projection from the unit disk in the

x-y plane to the upper half of the unit sphere x2 + y2 + z2 = 1, with gnomonic

projection from the unit sphere to the plane z = 1, to deduce a bijection between

the unit disk and the (infinite) plane.
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8.3 Cantor’s theorem

Many people believe that the result known as Cantor’s theorem says that the real numbers,

R, have a greater cardinality than the natural numbers, N. That isn’t quite right. In

fact, Cantor’s theorem is a much broader statement, one of whose consequences is that

|R| > |N|. Before we go on to discuss Cantor’s theorem in full generality, we’ll first

explore it, essentially, in this simplified form. Once we know that |R| 6= |N|, we’ll be

in a position to explore a lot of interesting issues relative to the infinite. In particular,

this result means that there are at least two cardinal numbers that are infinite — thus

the “infinity is infinity” idea will be discredited. Once we have the full power of Cantor’s

theorem, we’ll see just how completely wrong that concept is.

To show that some pair of sets are not equivalent, it is necessary to show that there

cannot be a one-to-one correspondence between them. Ordinarily, one would try to argue

by contradiction in such a situation. That is what we’ll need to do to show that the reals

and the naturals are not equinumerous. We’ll presume that they are in fact the same size

and try to reach a contradiction.

What exactly does the assumption that R and N are equivalent mean? It means there

is a one-to-one correspondence, that is, a bijective function from R to N. In a nutshell,

it means that it is possible to list all the real numbers in a singly-infinite list. Now, it is

certainly possible to make an infinite list of real numbers (since N ⊆ R, by listing the

naturals themselves we are making an infinite list of reals!). The problem is that we would

need to be sure that every real number is on the list somewhere. Since we’ve used a

geometric argument to show that the interval (0, 1) and the set R are equinumerous, it

will be sufficient to presume that there is an infinite list containing all the numbers in the

interval (0, 1).

Exercise 8.3. Notice that, for example, π−3 is a real number in (0, 1). Make a list of 10

real numbers in the interval (0, 1). Make sure that at least five of them are not rational.

In the previous exercise, you’ve started the job, but we need to presume that it is truly

possible to complete this job. That is, we must presume that there really is an infinite list
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containing every real number in the interval (0, 1).

Once we have an infinite list containing every real number in the interval (0, 1), we have

to face up to a second issue. What does it really mean to list a particular real number?

For instance if e− 2 is in the seventh position on our list, is it OK to write “e− 2” there

or should we write “0.7182818284590452354. . . ”? Clearly it would be simpler to write

“e−2” but it isn’t necessarily possible to do something of that kind for every real number

— on the other hand, writing down the decimal expansion is a problem too; in a certain

sense, “most” real numbers in (0, 1) have infinitely long decimal expansions. There is also

another problem with decimal expansions; they aren’t unique. For example, there is really

no difference between the finite expansion 0.5 and the infinitely long expansion 0.49.

Rather than writing something like “e−2” or “0.7182818284590452354. . . ”, we are going

to in fact write “0.1011011111100001010100010110001010001010. . . ”. In other words,

we are going to write the base-2 expansions of the real numbers in our list. Now, the

issue of non-uniqueness is still there in binary, and in fact if we were to stay in base-10

it would be possible to plug a certain gap in our argument — but the binary version of

this argument has some especially nice features. Every binary (or for that matter decimal)

expansion corresponds to a unique real number, but it doesn’t work out so well the other

way around — there are sometimes two different binary expansions that correspond to the

same real number.

There is a lovely fact that we are not going to prove (you may get to see this result proved

in a course in Real Analysis) that points up the problem. Whenever two different binary

expansions represent the same real number, one of them is a terminating expansion (it

ends in infinitely many 0’s) and the other is an infinite expansion (it ends in infinitely many

1’s). We won’t prove this fact, but the gist of the argument is a proof by contradiction

— you may be able to get the point by studying Figure 8.4. (Try to see how it would be

possible to find a number in between two binary expansions that didn’t end in all-zeros

and all-ones.)

So, instead of showing that the set of reals in (0, 1) can’t be put in one-to-one correspon-

dence with N, what we’re really going to do is show that their binary expansions can’t
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.0

.00 .01 .10 .11

.1

.101 .111.110.011 .100.010.001.000

Figure 8.4: The base-2 expansions of reals in the interval [0, 1] are the leaves of an infinite tree.

be put in one-to-one correspondence with N. Since there are an infinite number of reals

that have two different binary expansions, this doesn’t really do the job as advertised at

the beginning of this section. (Perhaps you are getting used to our wily ways by now —

yes, this does mean that we’re going to ask you to do the real proof in the exercises.)

The set of binary numerals, {0, 1}, is an instance of a mathematical structure known as

a field; basically, that means that it’s possible to add, subtract, multiply and divide (but

not divide by 0) with them. We are only mentioning this fact so that you’ll understand

why the set {0, 1} is often referred to as F2. We’re only mentioning that fact so that

you’ll understand why we call the set of all possible binary expansion F∞2 . Finally, we’re

only mentioning that fact so that we’ll have a succinct way of expressing this set. Now

we can refer to the set of all possible infinitely-long binary sequences as F∞2 .

Suppose we had a listing of all the elements of F∞2 . We would have an infinite list of

things, each of which is itself an infinite list of 0’s and 1’s.

So what? We need to proceed from here to find a contradiction.

This argument that we’ve been edging towards is known as Cantor’s diagonalization argu-

ment. The reason for this name is that our listing of binary representations looks like an
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enormous table of binary digits and the contradiction is deduced by looking at the diagonal

of this infinite-by-infinite table. The diagonal is itself an infinitely long binary string — in

other words, the diagonal can be thought of as a binary expansion itself. If we take the

complement of the diagonal, (switch every 0 to a 1 and vice versa) we will also have a

thing that can be regarded as a binary expansion and this binary expansion can’t be one

of the ones on the list! This bit-flipped version of the diagonal is different from the first

binary expansion in the first position, it is different from the second binary expansion in

the second position, it is different from the third binary expansion in the third position,

and so on. The very presumption that we could list all of the elements of F∞2 allows us

to construct an element of F∞2 that could not be on the list!

This argument has been generalized many times, so this is the first in a class of things

known as diagonal arguments. Diagonal arguments have been used to settle several

important mathematical questions. There is a valid diagonal argument that even does

what we’d originally set out to do: prove that N and R are not equinumerous. Strangely,

the argument can’t be made to work in binary, and since you’re going to be asked to write

it up in the exercises, we want to point out one of the potential pitfalls. If we were to

use a diagonal argument to show that (0, 1) isn’t countable, we would start by assuming

that every element of (0, 1) was written down in a list. For most real numbers in (0, 1) we

could write out their binary representation uniquely, but for some we would have to make

a choice: should we write down the representation that terminates, or the one that ends in

infinitely-many 1’s? Suppose we choose to use the terminating representations, then none

of the infinite binary strings that end with all 1’s will be on the list. It’s possible that the

thing we get when we complement the diagonal is one of these (unlisted) binary strings so

we don’t necessarily have a contradiction. If we make the other choice — use the infinite

binary representation when we have a choice — there is a similar problem. You may think

that our use of binary representations for real numbers was foolish in light of the failure

of the argument to “go through” in binary. Especially since, as we’ve alluded to, it can be

made to work in decimal. The reason for our apparent stubbornness is that these infinite

binary strings do something else that’s very nice. An infinitely long binary sequence can

be thought of as the indicator function of a subset of N. For example, .001101010001 is
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the indicator of {2, 3, 5, 7, 11}.

Exercise 8.4. Complete the table.

binary expansion subset of N

.1 {0}

.0111

{2, 4, 6}

.01

{3k + 1 : k ∈ N}

The set, F∞2 , we’ve been working with is in one-to-one correspondence with the power set

of the natural numbers, P(N). When viewed in this light, the proof we did above showed

that the power set of N has an infinite cardinality strictly greater than that of N itself. In

other words, P(N) is uncountable.

What Cantor’s theorem says is that this always works. If A is any set, and P(A) is its

power set then |A| < |P(A)|. In a way, this more general theorem is easier to prove than

the specific case we just handled.

Theorem 8.1 (Cantor). For all sets A, A is not equivalent to P(A).

Proof. Suppose that there is a set A that can be placed in one-to-one correspondence

with its power set. Then there is a bijective function f : A −→ P(A). We will deduce

a contradiction by constructing a subset of A (i.e. a member of P(A)) that cannot be in

the range of f .

Let S = {x ∈ A :x /∈ f(x)}.

If S is in the range of f , there is a preimage y such that S = f(y). But, if such a y exists

then the membership question, y ∈ S, must either be true or false. If y ∈ S, then because

S = f(y), and S consists of those elements that are not in their images, it follows that

y /∈ S. On the other hand, if y /∈ S then y /∈ f(y) so (by the definition of S) it follows

that y ∈ S. Either possibility leads to the other, which is a contradiction.
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Cantor’s theorem guarantees that there is an infinite hierarchy of infinite cardinal numbers.

Let’s put it another way. People have sought a construction that, given an infinite set,

could be used to create a strictly larger set. For instance, the Cartesian product works

like this if our sets are finite — A × A is strictly bigger than A when A is a finite set.

But, as we’ve already seen, this is not necessarily so if A is infinite (remember the “snake”

argument that N and N×N are equivalent). The real import of Cantor’s theorem is that

taking the power set of a set does create a set of larger cardinality. So we get an infinite

tower of infinite cardinalities, starting with ℵ0 = |N|, by successively taking power sets.

ℵ0 = |N| < |P(N)| < |P(P(N))| < |P(P(P(N)))| < . . .

8.3.1 Exercises

1. Determine a substitution rule – a consistent way of replacing one digit with another

along the diagonal so that a diagonalization proof showing that the interval (0, 1)

is uncountable will work in decimal. Write up the proof.

2. Can a diagonalization proof showing that the interval (0, 1) is uncountable be made

workable in base-3 (ternary) notation?

3. In the proof of Cantor’s theorem, we construct a set S that cannot be in the image

of a presumed bijection from A to P(A). Suppose A = {1, 2, 3} and f determines

the following correspondences: 1 ←→ ∅, 2 ←→ {1, 3} and 3 ←→ {1, 2, 3}. What

is S?

4. An argument very similar to the one embodied in the proof of Cantor’s theorem is

found in the Barber’s paradox. This paradox was originally introduced in the popular

press in order to give laypeople an understanding of Cantor’s theorem and Russell’s

paradox. It sounds somewhat sexist to modern ears. (For example, it is presumed

without comment that the barber is male.)

In a small town there is a barber who shaves those men (and only those

men) who do not shave themselves. Who shaves the barber?

Explain the similarity to the proof of Cantor’s theorem.
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5. Cantor’s theorem, applied to the set of all sets leads to an interesting paradox. The

power set of the set of all sets is a collection of sets, so it must be contained in the

set of all sets. Discuss the paradox and determine a way of resolving it.

6. Verify that the final deduction in the proof of Cantor’s theorem,

(y ∈ S =⇒ y /∈ S) ∧ (y /∈ S =⇒ y ∈ S),

is truly a contradiction.
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8.4 Dominance

We’ve said a lot about the equivalence relation determined by Cantor’s definition of set

equivalence. We’ve also, occasionally, written things like |A| < |B|, without being par-

ticularly clear about what that means. It’s now time to come clean. There is actually

a (perhaps) more fundamental notion used for comparing set sizes than equivalence —

dominance. Dominance is an ordering relation on the class of all sets. One should probably

really define dominance first and then define set equivalence in terms of it. We haven’t

followed that plan for (at least) two reasons. First, many people may want to skip this

section — the results of this section depend on the difficult Cantor-Bernstein-Schröder

theorem6. Second, we will later take the view that dominance should really be considered

to be an ordering relation on the set of all cardinal numbers — i.e. the equivalence classes

of the set equivalence relation — not on the collection of all sets. From that perspective,

set equivalence really needs to be defined before dominance.

One set is said to dominate another if there is a function from the latter into the former.

More formally, we have the following:

Definition 8.3. If A and B are sets, we say “A dominates B” and write |A| > |B| iff

there is an injective function f with domain B and codomain A.

It is easy to see that this relation is reflexive and transitive. The Cantor-Bernstein-Schröder

theorem proves that it is also anti-symmetric — which means dominance is an ordering

relation. Be advised that there is an abuse of terminology here that one must be careful

about — what are the domain and range of the “dominance” relation? The definition

would lead us to think that sets are the things that go on either side of the “dominance”

relation, but the notation is a bit more honest, “|A| > |B|” indicates that the things

really being compared are the cardinal numbers of sets (not the sets themselves). Thus

anti-symmetry for this relation is

(|A| > |B|) ∧ (|B| > |A|) =⇒ (|A| = |B|).

6This theorem has been known for many years as the Schröder-Bernstein theorem, but, lately, has had Cantor’s
name added as well. Since Cantor proved the result before the other gentlemen, this is fitting. It is also known
as the Cantor-Bernstein theorem (leaving out Schröder) which doesn’t seem very nice.
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In other words, if A dominates B and vice versa, then A and B are equivalent sets — a

strict interpretation of anti-symmetry for this relation might lead to the conclusion that

A and B are actually the same set, which is clearly an absurdity.

Naturally, we want to prove the Cantor-Bernstein-Schröder theorem (which we’re going

to start calling the C-B-S theorem for brevity), but first it’ll be instructive to look at some

of its consequences. Once we have the C-B-S theorem we get a very useful shortcut for

proving set equivalences. Given sets A and B, if we can find injective functions going

between them in both directions, we’ll know that they’re equivalent. So, for example, we

can use C-B-S to prove that the set of all infinite binary strings and the set of reals in (0,

1) really are equinumerous (in case you had some remaining doubt. . . )

It is easy to dream up an injective function from (0, 1) to F∞2 : just send a real number

to its binary expansion, and if there are two, make a consistent choice — let’s say we’ll

take the non-terminating expansion.

There is a cute thought-experiment called Hilbert’s Hotel that will lead us to a technique

for developing an injective function in the other direction. Hilbert’s Hotel has ℵ0 rooms.

If any countable collection of guests show up there will be enough rooms for everyone.

Suppose you arrive at Hilbert’s hotel one dark and stormy evening and the “No Vacancy”

light is on — there are already a denumerable number of guests there — every room is full.

The clerk sees you dejectedly considering your options, trying to think of another hotel

that might still have rooms when, clearly, a very large convention is in town. He rushes

out and says “My friend, have no fear! Even though we have no vacancies, there is always

room for one more at our establishment.” He goes into the office and makes the following

announcement on the PA system. “Ladies and Gentlemen, in order to accommodate an

incoming guest, please vacate your room and move to the room numbered one higher.

Thank you.” There is an infinite amount of grumbling, but shortly you find yourself

occupying room number 1.

To develop an injection from F∞2 to (0, 1) we’ll use “room number 1” to separate the

binary expansions that represent the same real number. Move all the digits of a binary

expansion down by one, and make the first digit 0 for (say) the terminating expansions
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and 1 for the non-terminating ones. Now consider these expansions as real numbers —

all the expansions that previously coincided are now separated into the intervals (0, 1/2)

and (1/2, 1). Notice how funny this map is, there are now many, many, (infinitely-many)

real numbers with no preimages. For instance, only a subset of the rational numbers in

(0, 1/2) have preimages. Nevertheless, the map is injective, so C-B-S tells us that F∞2
and (0, 1) are equivalent.

There are quite a few different proofs of the C-B-S theorem. The one Cantor himself

wrote relies on the axiom of choice. The axiom of choice was somewhat controversial

when it was introduced, but these days most mathematicians will use it without qualms.

What it says (essentially) is that it is possible to make an infinite number of choices.

More precisely, it says that if we have an infinite set consisting of non-empty sets, it is

possible to select an element out of each set. If there is a definable rule for picking such

an element (as is the case, for example, when we selected the nonterminating decimal

expansion whenever there was a choice in defining the injection from (0, 1) to F∞2 ) the

axiom of choice isn’t needed.

The usual axioms for set theory were developed by Zermelo and Frankel, so you may hear

people speak of the ZF axioms. If, in addition, we want to specifically allow the axiom

of choice, we are in the ZFC axiom system. If it’s possible to construct a proof for a

given theorem without using the axiom of choice, almost everyone would agree that that

is preferable. On the other hand, a proof of the C-B-S theorem, which necessarily must

be able to deal with uncountably infinite sets, will have to depend on some sort of notion

that will allow us to deal with huge infinities.

The proof we will present here7 is attributed to Julius König. König was a contemporary

of Cantor’s who was (initially) very much respected by him. Cantor came to dislike

König after the latter presented a well-publicized (and ultimately wrong) lecture claiming

the continuum hypothesis was false. Apparently, the continuum hypothesis was one of

Cantor’s favourite ideas, because he seems to have construed König’s lecture as a personal

attack. Anyway. . .

7We first encountered this proof in a Wikipedia article. See http://en.wikipedia.org/wiki/
Cantor-Bernstein-Schroeder_theorem.

http://en.wikipedia.org/wiki/Cantor-Bernstein-Schroeder_theorem
http://en.wikipedia.org/wiki/Cantor-Bernstein-Schroeder_theorem
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Figure 8.5: Hypotheses for proving the Cantor-Bernstein-Schröder theorem: two sets with injec-
tive functions going both ways.

König’s proof of C-B-S doesn’t use the axiom of choice, but it does have its own

strangeness: a function that is not necessarily computable — that is, a function for which

(for certain inputs) it may not be possible to compute an output in a finite amount of

time! Except for this oddity, König’s proof is probably the easiest to understand of all the

proofs of C-B-S. Before we get too far into the proof, it is essential that we understand

the basic setup. The C-B-S states that whenever A and B are sets and there are injective

functions f : A −→ B and g : B −→ A, then it follows that A and B are equivalent.

Saying A and B are equivalent means that we can find a bijective function between them.

So, to prove C-B-S, we hypothesize the two injections and somehow we must construct

the bijection.

Figure 8.5 has a presumption in it — that A and B are countable — which need not be
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the case. Nevertheless, it gives us a good picture to work from. The basic hypotheses,

that A and B are sets and we have two functions, one from A into B and another from B

into A, are shown. We will have to build our bijective function in a piecewise manner. If

there is a non-empty intersection between A and B, we can use the identity function for

that part of the domain of our bijection. So, without loss of generality, we can presume

that A and B are disjoint.

We can use the functions f and g to create infinite sequences, which alternate back and

forth between A and B, containing any particular element. Suppose a ∈ A is an arbitrary

element. Since f is defined on all of A, we can compute f(a). Now since f(a) is an

element of B, and g is defined on all of B, we can compute g(f(a)), and so on. Thus,

we get the infinite sequence

a, f(a), g(f(a)), f(g(f(a))), . . .

If the element a also happens to be the image of something under g (this may or may not

be so — since g isn’t necessarily onto) then we can also extend this sequence to the left.

Indeed, it may be possible to extend the sequence infinitely far to the left, or, this process

may stop when one of f−1 or g−1 fails to be defined.

. . . g−1(f−1(g−1(a))), f−1(g−1(a)), g−1(a), a, f(a), g(f(a)), f(g(f(a))), . . .

Now, every element of the disjoint union of A and B is in one of these sequences. Also,

it is easy to see that these sequences are either disjoint or identical. Taking these two

facts together it follows that these sequences form a partition of A ∪ B. We’ll define a

bijection φ : A −→ B by deciding what it must do on these sequences. There are four

possibilities for how the sequences we’ve just defined can play out. In extending them to

the left, we may run into a place where one of the inverse functions needed isn’t defined

— or not. We say a sequence is an A-stopper, if, in extending to the left, we end up on

an element of A that has no preimage under g (see Figure 8.6). Similarly, we can define

a B-stopper. If the inverse functions are always defined within a given sequence there are

also two possibilities; the sequence may be finite (and so it must be cyclic in nature) or

the sequence may be truly infinite.
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Figure 8.6: An A-stopper is an infinite sequence that terminates to the left in A.



8.4. DOMINANCE 379

Finally, here is a definition for φ.

φ(x) =

 g−1(x) if x is in a B-stopper.

f(x) otherwise.

Notice that if a sequence is either cyclic or infinite, it doesn’t matter whether we use f

or g−1 since both will be defined for all elements of such sequences. Also, certainly f will

work if we are in an A-stopper. The function we’ve just created is perfectly well-defined,

but it may take arbitrarily long to determine whether we have an element of a B-stopper,

as opposed to an element of an infinite sequence. We cannot determine whether we’re in

an infinite versus a finite sequence in a prescribed finite number of steps.

8.4.1 Exercises

1. How could the clerk at the Hilbert Hotel accommodate a countable number of new

guests?

2. Let F be the collection of all real-valued functions defined on the real line. Find

an injection from R to F . Do you think it is possible to find an injection going the

other way? In other words, do you think that F and R are equivalent? Explain.

3. Fill in the details of the proof that dominance is an ordering relation. (You may

simply cite the C-B-S theorem in proving anti-symmetry.)

4. We can inject Q into Z by sending ±a
b
to ±2a3b. Use this and another obvious

injection to (in light of the C-B-S theorem) reaffirm the equivalence of these sets.



380 CHAPTER 8. CARDINALITY

8.5 The continuum hypothesis

The word “continuum” in the title of this section is used to indicate sets of points that have

a certain continuity property. For example, in a real interval it is possible to move from

one point to another, in a smooth fashion, without ever leaving the interval. In a range of

rational numbers this is not possible, because there are irrational values in between every

pair of rationals. There are many sets that behave as a continuum — the intervals (a, b)

or [a, b], the entire real line R, the x-y plane R×R, a volume in 3-dimensional space (or

for that matter the entire space R3). It turns out that all of these sets have the same

size.

The cardinality of the continuum, denoted c, is the cardinality of all of the sets above.

In the previous section, we mentioned the continuum hypothesis and how angry Cantor

became when someone (König) tried to prove it was false. In this section, we’ll delve a

little deeper into what the continuum hypothesis says and even take a look at CH’s big

brother, GCH. Before doing so, it seems like a good idea to look into the equivalences

we’ve asserted about all those sets above which (if you trust us) have the cardinality c.

We’ve already seen that an interval is equivalent to the entire real line but the notion

that the entire infinite Cartesian plane has no more points in it than an interval one inch

long defies our intuition. Our conception of dimensionality leads us to think that things

of higher dimension must be larger than those of lower dimension. This preconception

is false as we can see by demonstrating that a 1 × 1 square can be put in one-to-one

correspondence with the unit interval. Let S = {(x, y) : 0 < x < 1 ∧ 0 < y < 1} and let

I be the open unit interval (0, 1). We can use the Cantor-Bernstein-Schröder theorem to

show that S and I are equinumerous — we just need to find injections from I to S and

vice versa.

Given an element r in I we can map it injectively to the point (r, r) in S. To go in the

other direction, consider a point (a, b) in S and write out the decimal expansions of a and



8.5. THE CONTINUUM HYPOTHESIS 381

b:

a = 0.a1a2a3a4a5 . . .

b = 0.b1b2b3b4b5 . . .

as usual, if there are two decimal expansions for a and/or b we will make a consistent

choice — say the infinite one.

From these decimal expansions, we can create the decimal expansion of a number in I by

interleaving the digits of a and b. Let

s = 0.a1b1a2b2a3b3 . . .

be the image of (a, b). If two different points get mapped to the same value s then both

points have x and y coordinates that agree in every position of their decimal expansion

(so they must really be equal). It is a little bit harder to create a bijective function

from S to I (and thus to show the equivalence directly, without appealing to C-B-S).

The problem is that, once again, we need to deal with the non-uniqueness of decimal

representations of real numbers. If we make the choice that, whenever there is a choice

to be made, we will use the non-terminating decimal expansions for our real numbers

there will be elements of I not in the image of the map determined by interleaving digits

(for example 0.15401050902060503 . . . is the interleaving of the digits after the decimal

point in π = 3.141592653 . . . and 1/2 = 0.5, this is clearly an element of I but it can’t

be in the image of our map since 1/2 should be represented by 0.49 according to our

convention. If we try other conventions for dealing with the non-uniqueness it is possible

to find other examples that show simple interleaving will not be surjective. A slightly more

subtle approach is required.

Presume that all decimal expansions are non-terminating (as we can, WLOG) and use the

following approach: Write out the decimal expansion of the coordinates of a point (a, b)

in S. Form the digits into blocks with as many 0’s as possible followed by a non-zero

digit. Finally, interleave these blocks.

For example if

a = 0.124520047019902 . . .
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and

b = 0.004015648000031 . . .

we would separate the digits into blocks as follows:

a = 0.1 2 4 5 2 004 7 01 9 9 02 . . .

and

b = 0.004 01 5 6 4 8 00003 1 . . .

and the number formed by interleaving them would be

s = 0.10042014556240048 . . .

We’ve shown that the unit square, S, and the unit interval, I, have the same cardinality.

These arguments can be extended to show that all of R×R also has this cardinality (c).

So now let’s turn to the continuum hypothesis.

We mentioned earlier in this chapter that the cardinality of N is denoted ℵ0. The fact

that that capital letter aleph is wearing a subscript ought to make you wonder what

other aleph-sub-something-or-others there are out there. What is ℵ1? What about ℵ2?

Cantor presumed that there was a sequence of cardinal numbers (which is itself, of course,

infinite) that give all of the possible infinities. The smallest infinite set that anyone seems

to be able to imagine is N, so Cantor called that cardinality ℵ0. What ever the “next”

infinite cardinal is, is called ℵ1. It’s conceivable that there actually isn’t a “next” infinite

cardinal after ℵ0 — it might be the case that the collection of infinite cardinal numbers

isn’t well-ordered! In any case, if there is a “next” infinite cardinal, what is it? Cantor’s

theorem shows that there is a way to build some infinite cardinal bigger than ℵ0 — just

apply the power set construction. The continuum hypothesis just says that this bigger

cardinality that we get by applying the power set construction is that “next” cardinality

we’ve been talking about.

To re-iterate, we’ve shown that the power set of N is equivalent to the interval (0, 1)

which is one of the sets whose cardinality is c. So the continuum hypothesis, the thing

that got Georg Cantor so very heated up, comes down to asserting that ℵ1 = c.
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There really should be a big question mark over that. A really big question mark. It turns

out that the continuum hypothesis lives in a really weird world. . . To this day, no one has

the least notion of whether it is true or false. But wait! That’s not all! The real weirdness

is that it would appear to be impossible to decide. Well, that’s not so bad — after all,

we talked about undecidable sentences way back in the beginning of Chapter 2. Okay,

so here’s the ultimate weirdness. It has been proved that one can’t prove the continuum

hypothesis. It has also been proved that one can’t disprove the continuum hypothesis.

Having reached this stage in a book about proving things, I hope that the last two sentences

in the previous paragraph caused some thought along the lines of “well, ok, with respect

to what axioms?” to run through your head. So, if you did think something along those

lines, pat yourself on the back. And if you didn’t, then recognize that you need to start

thinking that way — things are proved or disproved only in a relative way, it depends what

axioms you allow yourself to work with. The usual axioms for mathematics are called ZFC;

the Zermelo-Frankel set theory axioms together with the axiom of choice. The “ultimate

weirdness” we’ve been describing about the continuum hypothesis is a result due to a

gentleman named Paul Cohen that says “CH is independent of ZFC.” More pedantically,

it is impossible to either prove or disprove the continuum hypothesis within the framework

of the ZFC axiom system.

It would be really nice to end this chapter by mentioning Paul Cohen, but there is one

last thing we’d like to accomplish — explain what GCH means.

The generalized continuum hypothesis says that the power set construction is basically

the only way to get from one infinite cardinality to the next. In other words, GCH says

that not only does P(N) have the cardinality known as ℵ1, but every other aleph number

can be realized by applying the power set construction a bunch of times. Some people

would express this symbolically by writing

∀n ∈ N, ℵn+1 = 2ℵn .
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Hints to exercises

8.1.1

1. Any set with exactly three natural numbers is in the equivalence class of {1, 2, 3}.

2. Use the fact that A and B are equivalent precisely when there is a bijection from A

to B.

3. This exercise is more interesting if countable means finite or the size of the naturals.

4. There are only two uncountable sets in the list.

8.2.1

1. f(n) = 4
(
n−1

3
)

+ 2 is a bijection from {3k + 1 : k ∈ N} to {4k + 2 : k ∈ N}.

2. One can show injectivity by showing that the function is strictly increasing. For

surjectivity, note that every element in [c, d] can be written as (1 − λ)c + λd for

some λ ∈ [0, 1].

3. Use the fact that every point on a circle on the x-y plane with radius r centered at

(p, q) can be written as (p+ r cos θ, q + r sin θ) for some θ ∈ [0, 2π).

4. If a ∈ (−1, 1), then the vertical projection onto the upper half of the unit circle is the

point (a,
√

1− a2) whose projection from the point (0, 0) is given by the intersection

of the lines defined by y = 1 and ay −
√

1− a2x = 0.

5. f(x, y) =
(

x√
1−x2−y2

, y√
1−x2−y2

, 1
)

is a bijection from the unit disc in the x-y

plane to the plane z = 1 in R3.

8.3.1

1. There are different ways to do this. One way is to replace an odd digit with 0 and

an even digit with 1. The number thus constructed is different from every number

on the list.

2. Yes.

3. Since S is defined as {x ∈ A :x /∈ f(x)}, we can go through each x in A one
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by one to see if x /∈ f(x). Now, f(1) = ∅ and 1 /∈ ∅. So 1 ∈ S. f(2) = {1, 3}

and 2 /∈ {1, 3}. So 2 ∈ S. f(3) = {1, 2, 3} but 3 ∈ {1, 2, 3}. So 3 /∈ S. Thus,

S = {1, 2}.

4. Let U denote the set of all men. Let P (x, y) denote the proposition that x shaves

y. Thus, a man x shaves himself if and only if P (x, x) is true. Such a barber exists if

and only if the following statement holds: ∃x ∈ U,∀y ∈ U, P (x, y) ⇐⇒ ¬P (y, y).

How does one obtain a contradiction from this?

5. Can the set of all sets contain the power set of itself?

6. Let P denote the proposition y ∈ S. Then ¬P is y /∈ S. The contradiction should

now be easy to see.

8.4.1

1. First, move the guest in room i to room 2i for i = 1, 2, 3, . . . all at the same time,

thus leaving rooms 1, 3, 5, . . . vacant. Then, move new guest i to room 2i − 1 for

i = 1, 2, 3, . . . .

2. For each real number α, let fα denote the function that maps α to 1 and every

other real number to 0. Then fα = fβ if and only if α = β. Then g : R→ F given

by g(α) = fα for every α ∈ Reals is an injection.

R and F are not equivalent. To see this, try to construct an injection from P(R)

to F.

3. Dominance is reflexive since the identity function is an injection from a set to itself.

Dominance is transitive because if f is an injection from A to B and g is an injection

from B to C, then g ◦ f is an injection from A to C. Dominance is anti-symmetric

because if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B| by the Cantor-Bernstein-

Schröder theorem.

4. An injection from Z to Q is given by the identity function.
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Chapter 9

Proof techniques IV — Magic

If you can keep your head when all about you are losing theirs, it’s just possible

you haven’t grasped the situation.

—Jean Kerr

The famous mathematician Paul Erdös is said to have believed that God has a Book in

which all the really elegant proofs are written. The greatest praise that a collaborator1

could receive from Erdös was that they had discovered a “Book proof.” It is not easy or

straightforward for a mere mortal to come up with a Book proof but notice that, since

the Book is inaccessible to the living, all the Book proofs of which we are aware were

constructed by ordinary human beings. In other words, it’s not impossible!

The title of this final chapter is intended to be whimsical — there is no real magic involved

in any of the arguments that we’ll look at. Nevertheless, if you reflect a bit on the mental

processes that must have gone into the development of these elegant proofs, perhaps

you’ll agree that there is something magical there.

At a minimum we hope that you’ll agree that they are beautiful — they are proofs from

the Book2.

Acknowledgment: Several of the topics in this section were unknown to the author until

he visited the excellent mathematics website maintained by Alexander Bogomolny at http:
1The collaborators of Paul Erdös were legion. His collaborators, and their collaborators, and their collaborators,

etc. are organized into a tree structure according to their so-called Erdös number.
2There is a lovely book entitled Proofs from the Book, Aigner, Hofmann, and Ziegler (2014) that has a nice

collection of Book proofs.
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//www.cut-the-knot.org/

9.1 Morley’s miracle

Probably you have heard of the impossibility of trisecting an angle. (Hold on for a quick

rant about the importance of understanding your hypotheses. . . ) What’s actually true

is that you can’t trisect a generic angle if you accept the restriction of using the old-

fashioned tools of Euclidean geometry: the compass and straight-edge. There are a lot of

constructions that can’t be done using just a straight-edge and compass – angle trisection,

duplication of a cube3, squaring a circle, constructing a regular heptagon, et cetera.

If you allow yourself to use a ruler — i.e. a straight-edge with marks on it (indeed you

really only need two marks a unit distance apart) — then angle trisection can be done

via what is known as a neusis construction. Nevertheless, because of the central place of

Euclid’s Elements in mathematical training throughout the centuries, and thereby, a very

strong predilection towards that which is possible via compass and straight-edge alone, it

is perhaps not surprising that a perfectly beautiful result that involved trisecting angles

went undiscovered until 1899, when Frank Morley stated his Trisector Theorem. There is

much more to this result than we will state here — so much more that the name “Morley’s

Miracle” that has been given to the Trisector theorem is truly justified — but even the

simple, initial part of this beautiful theory is arguably miraculous! To learn more about

Morley’s theorem and its extension, see Guy (2007).

So, let’s state the theorem.

Start with an arbitrary triangle 4ABC. Trisect each of its angles to obtain a diagram

something like that in Figure 9.1.

The six angle trisectors that we’ve just drawn intersect one another in quite a few points.

Exercise 9.1. You could literally count the number of intersection points between the
3Duplicating the cube is also known as the Delian problem — the problem comes from a pronouncement by

the oracle of Apollo at Delos that a plague afflicting the Athenians would be lifted if they built an altar to Apollo
that was twice as big as the existing altar. The existing altar was a cube, one meter on a side, so they carefully
built a two meter cube — but the plague raged on. Apparently what Apollo wanted was a cube that had double
the volume of the present altar — it’s side length would have to be 3√2 ≈ 1.25992 and since this was Greece and
it was around 430 B.C. and there were no electronic calculators, they were basically just screwed.

http://www.cut-the-knot.org/
http://www.cut-the-knot.org/
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BA

C

Figure 9.1: The setup for Morley’s Miracle — start with an arbitrary triangle and trisect each of
its angles.

A B

C

Figure 9.2: A triangle is formed whose vertices are the intersections of the adjacent trisectors of
the angles of 4ABC.

angle trisectors on the diagram, but you should also be able to count them (perhaps we

should say “double-count them”) combinatorially. Give it a try!

Among the points of intersection of the angle trisectors, there are three that we will single

out — the intersections of adjacent trisectors. In Figure 9.2, the intersection of adjacent

trisectors are indicated, additionally, we have connected them together to form a small

triangle in the center of our original triangle.

Are you ready for the miraculous part? Okay, here goes!

Theorem 9.1. The points of intersection of the adjacent trisectors in an arbitrary triangle

4ABC form the vertices of an equilateral triangle.

In other words, that little blue triangle in Figure 9.2 that kind of looks like it might be

equilateral actually does have all three sides equal to one another. Furthermore, it doesn’t

matter what triangle we start with, if we do the construction above we’ll get a perfect
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60◦ − 60◦ − 60◦ triangle in the middle!

Sources differ, but it is not clear whether Morley ever proved his theorem. The first valid

proof (according to Guy (2007) was published in 1909 by Satyanarayana (1909). There

are now many other proofs known, for instance the cut-the-knot website exposits no fewer

than nine different proofs. The proof by Satyanarayana used trigonometry. The proof we’ll

look at here is arguably the shortest ever produced and it is due to John Conway. It is

definitely a “Book proof”!

Let us suppose that an arbitrary triangle 4ABC is given. We want to show that the

triangle whose vertices are the intersections of the adjacent trisectors is equilateral —

this triangle will be referred to as the Morley triangle. Let’s also denote by A, B and C

the measures of the angles of 4ABC. (This is what is generally known as an “abuse of

notation” — we are intentionally confounding the vertices (A, B and C) of the triangle

with the measure of the angles at those vertices.) It turns out that it is fairly hard to reason

from our knowledge of what the angles A, B and C are to deduce that the Morley triangle

is equilateral. How does the following plan sound: suppose we construct a triangle, that

definitely does have an equilateral Morley triangle, whose angles also happen to be A, B

and C. Such a triangle would be similar4 to the original triangle 4ABC — if we follow

the similarity transform from the constructed triangle back to 4ABC, we will see that

their Morley triangles must coincide; thus if one is equilateral so is the other!

One of the features of Conway’s proof that leads to its great succinctness and beauty is

his introduction of some very nice notation. Since we are dealing with angle trisectors,

let a, b and c be angles such that 3a = A, 3b = B and 3c = C. Furthermore, let a

superscript star denote the angle that is π/3 (or 60◦ if you prefer) greater than a given

angle. So, for example,

a? = a+ π/3

and

a?? = a+ 2π/3.

4In Geometry, two objects are said to be similar if one can be made to exactly coincide with the other after
a series of rigid translations, rotations and scalings. In other words, they have the same shape if you allow for
differences in scale and are allowed to slide them around and spin them about as needed.

http://www.cut-the-knot.org/
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a

a

a
c??

c?

b? a?
c?

c c c

a??b?b?? a?

b

b

b

Figure 9.3: Conway’s proof involves putting these pieces together to obtain a triangle (with an
equilateral Morley triangle) that is similar to 4ABC.

Now, notice that the sum a + b + c must be π/3. This is an immediate consequence of

A+B +C = π which is true for any triangle in the plane. It follows that by distributing

two stars amongst the three numbers a, b and c, we will come up with three quantities

which sum to π. In other words, there are Euclidean triangles having the following triples

as their vertex angles:

(a, b, c??) (a, b?, c?)

(a, b??, c) (a?, b?, c)

(a??, b, c) (a?, b, c?)

Exercise 9.2. What would a triangle whose vertex angles are (0?, 0?, 0?) be?

In a nutshell, Conway’s proof consists of starting with an equilateral triangle of unit side

length, adding appropriately scaled versions of the six triangles above and ending up with

a figure (having an equilateral Morley triangle) similar to 4ABC. The generic picture is

given in Figure 9.3. Before we can really count this argument as a proof, we need to say

a bit more about what the phrase “appropriately scaled” means. In order to appropriately

scale the triangles (the small acute ones) that appear green in Figure 9.3, we have a

relatively easy job — just scale them so that the side opposite the trisected angle has

length one; that way they will join perfectly with the central equilateral triangle.

The triangles (these are the larger obtuse ones) that appear purple in Figure 9.3 are a

bit more puzzling. Ostensibly, we have two different jobs to accomplish — we must scale

them so that both of the edges that they will share with green triangles have the correct

lengths. How do we know that this won’t require two different scaling factors? Conway

also developed an elegant argument that handles this question as well. Consider the purple
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a b

b?

c? c?

a?

Figure 9.4: The scaling factor for the obtuse triangles in Conway’s puzzle proof is determined so
that the segments constructed in there midsts have unit length.

a

a
a

b?

c?
b??

c cc

c??

b
b
b

a? b? a??

c?

a?

Figure 9.5: Triangle for exercise 1

triangle at the bottom of the diagram in Figure 9.3 — it has vertex angles (a, b, c??). It

is possible to construct triangles similar (via reflections) to the adjacent green triangles

(a, b?, c?) and (a?, b, c?) inside of triangle (a, b, c??). To do this just construct two lines

that go through the top vertex (where the angle c?? is) that cut the opposite edge at the

angle c? in the two possible senses — these two lines will coincide if it should happen

that c? is precisely π/2 but generally there will be two and it is evident that the two line

segments formed have the same length. We scale the purple triangle so that this common

length will be 1. See Figure 9.4.

Exercise 9.3. If it should happen that c? = π/2, what can we say about C?

Of course, the other two obtuse triangles can be handled in a similar way.

Exercises

1. What value should we get if we sum all of the angles that appear around one of the

interior vertices in the finished diagram shown in Figure 9.5? Verify that all three

have the correct sum.

2. In this section, we talked about similarity. Two figures in the plane are similar if it

is possible to turn one into the other by a sequence of mappings: a translation, a

rotation and a scaling.
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Geometric similarity is an equivalence relation. To fix our notation, let T (x, y)

represent a generic translation, R(x, y) a rotation and S(x, y) a scaling – thus

a generic similarity is a function from R2 to R2 that can be written in the form

S(R(T (x, y))).

Discuss the three properties of an equivalence relation (reflexivity, symmetry and

transitivity) in terms of geometric similarity.
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Figure 9.6: An infinite number of checkers occupying the integer lattice points such that y ≤ 0

9.2 Five steps into the void

In this section, we’ll talk about another Book proof also due to John Conway. This proof

serves as an introduction to a really powerful general technique — the idea of an invariant.

An invariant is some sort of quantity that one can calculate that itself doesn’t change as

other things are changed. Of course different situations have different invariant quantities.

The setup here is simple and relatively intuitive. We have a bunch of checkers on a

checkerboard — in fact, we have an infinite number of checkers, but not filling up the

whole board, they completely fill an infinite half-plane which we could take to be the set

S = {(x, y) :x ∈ Z ∧ y ∈ Z ∧ y ≤ 0}.

See Figure 9.6.

Think of these checkers as an army and the upper half-plane is “enemy territory.” Our

goal is to move one of our soldiers into enemy territory as far as possible. The problem is

that our “soldiers” move the way checkers do, by jumping over another man (who is then

removed from the board). It’s clear that we can get someone into enemy territory — just

take someone in the second row and jump a guy in the first row. It is also easy enough

to see that it is possible to get a man two steps into enemy territory — we could bring

two adjacent men a single step into enemy territory, have one of them jump the other and
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then a man from the front rank can jump over him.

Exercise 9.4. The strategy just stated uses four men (in the sense that they are removed

from the board — five if you count the one who ends up two steps into enemy territory

as well). Find a strategy for moving someone two steps into enemy territory that is more

efficient — that is, involves fewer jumps.

Exercise 9.5. Determine the most efficient way to get a man three steps into enemy

territory. An actual checkers board and pieces (or some coins, or rocks) might come in

handy.

We’ll count the man who ends up some number of steps above the x-axis, as well as all

the pieces who get jumped and removed from the board as a measure of the efficiency of

a strategy. If you did the last exercise correctly, you should have found that eight men are

the minimum required to get three steps into enemy territory. So far, the number of men

required to get a given distance into enemy territory seems to always be a power of 2.

Number of steps Number of men

1 2

2 4

3 8

As a picture is sometimes literally worth one thousand words, we include here three figures

illustrating the moves necessary to put a scout 1, 2 and 3 steps into the void.

In order to show that eight men are sufficient to get a scout three steps into enemy

territory, we show that it is possible to reproduce the configuration that can place a man

two steps in — shifted up by one unit.

You may be surprised to learn that the pattern of 8 men which are needed to get someone

three steps into the void can be re-created — shifted up by one unit — using just 12 men.

This means that we can get a man four steps into enemy territory using 12+8 = 20 men.

You were expecting 16 weren’t you? (I know I was!)

Exercise 9.6. Determine how to get a marker four steps into the void.
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Figure 9.7: One man is sacrificed in order to move a scout one step into enemy territory.

1
2

3

Figure 9.8: Three man are sacrificed in order to move a scout two steps into enemy territory.

1 2 3 4

Figure 9.9: Eight men are needed to get a scout three steps into the void.
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Figure 9.10: The taxicab distance to (0, 5).

The real surprise is that it is simply impossible to get a man five steps into enemy territory.

So the sequence we’ve been looking at actually goes

2, 4, 8, 20,∞.

The proof of this surprising result works by using a fairly simple, but clever, strategy. We

assign a numerical value to a set of men that is dependent on their positions — then we

show that this value never increases when we make “checker jumping” moves — finally we

note that the value assigned to a man in position (0, 5) is equal to the value of the entire

original set of men (that is, with all the positions in the lower half-plane occupied). This

is a pretty nice strategy, but how exactly are we going to assign these numerical values?

A man’s value is related to his distance from the point (0, 5) in what is often called “the

taxicab metric.” We don’t use the straight-line distance, but rather determine the number

of blocks we will have to drive in the north-south direction and in the east-west direction

and add them together. The value of a set of men is the sum of their individual values.

Since we need to deal with the value of the set of men that completely fills the lower

half-plane, we are going to have to have most of these values be pretty tiny! To put it

in a more mature and dignified manner: the infinite sum of the values of the men in our

army must be convergent.
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AfterBefore

rk+2

rk+1

rk

Figure 9.11: In making a checker-jump move, two men valued rk+1 and rk+2 are replaced by a
single man valued rk.

We’ve previously seen geometric series which have convergent sums. Recall the formula

for such a sum is
∞∑
k=0

ark = a

1− r ,

where a is the initial term of the sum and r is the common ratio between terms.

Conway’s big insight was to associate the powers of some number r with the positions on

the board — rk goes on the squares that are distance k from the target location. If we

have a man who is actually at the target location, he will be worth r0 or 1. We need to

arrange for two things to happen: the sum of all the powers of r in the initial setup of the

board must be less than or equal to 1, and checker-jumping moves should result in the

total value of a set of men going down or (at worst) staying the same. These goals push

us in different directions: In order for the initial sum to be less than 1, we would like to

choose r to be fairly small. In order to have checker-jumping moves we need to choose r

to be (relatively) larger. Is there a value of r that does the trick? Can we find a balance

between these competing desires?

Think about the change in the value of our invariant as a checker jumping move gets

made. See Figure 9.11.

If we choose r so that rk+2 + rk+1 ≤ rk, then the checker-jumping move will at worst

leave the total sum fixed. Note that so long as r < 1, a checker-jumping move that takes

us away from the target position will certainly decrease the total sum.

As is often the case, we’ll analyze the inequality by looking instead at the corresponding
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equality. What value of r makes rk+2 + rk+1 = rk? The answer is that r must be a root

of the quadratic equation x2 + x− 1.

Exercise 9.7. Do the algebra to verify the previous assertion.

Exercise 9.8. Find the value of r that solves the above equation.

Hopefully you used the quadratic formula to solve the previous exercise. You should of

course have found two solutions, −1.618033989 . . . and 0.618033989 . . ., these decimal

approximations are actually −φ and 1/φ, where φ = 1 +
√

5
2 is the famous “golden ratio”.

If we are hoping for the sum over all the occupied positions of rk to be convergent, we need

|r| < 1, so the negative solution is extraneous and so the inequality rk+2 + rk+1 ≤ rk

is true in the interval [1/φ, 1).

Next, we want to look at the value of this invariant when “men” occupy all of the positions

with y ≤ 0. By looking at Figure 9.10, you can see that there is a single square with value

r5, there are three squares with value r6, there are five squares with value r7, etc. The

sum, S, of the values of all the initially occupied positions is

S = r5 ·
∞∑
k=0

(2k + 1)rk.

We have previously seen how to solve for the value of an infinite sum involving powers of

r. In the expression above we have powers of r but also multiplied by odd numbers. Can

we solve something like this?

Let’s try the same trick that works for a geometric sum. Let

T =
∞∑
k=0

(2k + 1)rk = 1 + 3r + 5r2 + 7r3 + . . . .

Note that

rT =
∞∑
k=0

(2k + 1)rk+1 = r + 3r2 + 5r3 + 7r4 + . . .

and it follows that

T − rT = 1 + 2
∞∑
k=1

rk = 1 + 2r + 2r2 + 2r3 + 2r4 + . . .
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A bit more algebra (and the formula for the sum of a geometric series) leads us to

T = 1
1− r

(
1 + 2r

1− r

)
,

which simplifies to

T = 1 + r

(1− r)2 .

Finally, recall that we are really interested in S = r5 · T , or

S = r5 + r6

(1− r)2 .

It is interesting to proceed from this expression for S, using the fact that r satisfies

x2 = 1− x, to obtain the somewhat amazing fact that S = 1.

The fact that S = 1 has an extraordinary consequence. In order to get a single checker

to the position (0, 5), we would need to use everybody !

For a set consisting of just a single checker positioned at (0, 5), the value of our invariant

is 1. On the other hand, the set consisting of the entire army lined up on and below

the x-axis also yields a 1. Every checker move either does not change the value of the

invariant or reduces it. The best we could possibly hope for is that there would be no

need for moves of the sort that reduce the invariant — nevertheless we still could not get

a man to (0, 5) in a finite number of moves.

Exercises

1. Do the algebra (and show all your work!) to prove that invariant defined in this

section actually has the value 1 for the set of all the men occupying the x-axis and

the lower half-plane.

2. “Escape of the clones” is a nice puzzle originally proposed by Maxim Kontsevich.

The game is played on an infinite checkerboard restricted to the first quadrant —

that is the squares may be identified with points having integer coordinates (x, y)

with x > 0 and y > 0. The “clones” are markers (checkers, coins, small rocks,

whatever. . . ) that can move in only one fashion — if the squares immediately

above and to the right of a clone are empty, then it can make a “clone move.” The
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clone moves one space up and a copy is placed in the cell one to the right. We begin

with three clones occupying cells (1, 1), (2, 1) and (1, 2) — we’ll refer to those three

checkerboard squares as “the prison.” The question is this: can these three clones

escape the prison?

You must either demonstrate a sequence of moves that frees all three clones or

provide an argument that the task is impossible.
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Figure 9.12: Four triangles with nine matchsticks.

9.3 Monge’s circle theorem

There’s a nice sequence of matchstick puzzles that starts with “Use nine non-overlapping

matchsticks to form four triangles (all of the same size.” It’s not that hard, and after a

while most people come up with what is shown in Figure 9.12.

The kicker comes when you next ask them to “use six matches to form four (equal sized)

triangles.” There’s a picture of the solution to this new puzzle at the end of this section.

The answer involves thinking three-dimensionally, so — with that hint — give it a try for

a while before looking at the answer.

Monge’s circle theorem has nothing to do with matchsticks, but it is a sweet example of

a proof that works by moving to a higher dimension. People often talk about “thinking

outside of the box” when discussing critical thinking, but the mathematical idea of moving

to a higher dimension is even more powerful. When we have a “box” in 2-dimensional

space which we then regard as sitting in a 3-dimensional space we find that the box doesn’t

even have an inside or an outside anymore! We get “outside the box” by literally erasing

the notion that there is an inside of the box!

The setup for Monge’s circle theorem consists of three arbitrary circles drawn in the plane.

Well, to be honest they can’t be entirely arbitrary — we can’t allow a circle that is entirely

inside another circle. Because, if a circle was entirely inside another, there would be no

external tangents and Monge’s circle theorem is about external tangents.

I could probably write a few hundred words to explain the concept of external tangents
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Figure 9.13: The setup for Monge’s circle theorem: three arbitrarily placed circles — we are also
showing the external tangents to one pair of circles.

to a pair of circles, or you could just have a look at Figure 9.13. So, uhmm, just have a

look. . .

Notice how the external tangents5 to two of the circles meet in a point? Unless the circles

just happen to have exactly the same size (And what are the odds of that?) this is going

to be the case. Each pair of external tangents are going to meet in a point. There are

three such pairs of external tangents and so they determine three points. I suppose, since

these three points are determined in a fairly complicated way from three arbitrarily chosen

circles, that we would expect the positions of the three points to be pretty unpredictable.

Monge’s circle theorem says that that isn’t so.

Theorem 9.2 (Monge’s Circle Theorem). If three circles of different radii in the Euclidean

plane are chosen so that no circle lies in the interior of another, the three pairs of external

tangents to these circles meet in points which are collinear.

Figure 9.14 illustrates a complete example of Monge’s Circle theorem in action. There

are three arbitrary circles. There are three pairs of external tangents. The three points

determined by the intersection of the pairs of external tangents lie on a line (shown dashed

in the figure).

5The reason I keep saying “external tangents” is that there are also internal tangents.
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Figure 9.14: An example of Monge’s circle theorem. The three pairs of external tangents to the
circles intersect in points which are collinear.

We won’t even try to write-up a formal proof of the circle theorem. Not that it can’t be

done — it’s just that you can probably get the point better via an informal discussion.

The main idea is simply to move to 3-dimensional space. Imagine the original flat plane

containing our three arbitrary circles as being the plane z = 0 in Euclidean 3-space.

Replace the three circles by three spheres of the same radius and having the same centers

— clearly the intersections of these spheres with the plane z = 0 will be our original circles.

While pairs of circles are encompassed by two lines (the external tangents that we’ve been

discussing so much), when we have a pair of spheres in 3-space, they are encompassed by

a cone which lies tangent to both spheres6. Notice that the cones that lie tangent to a

pair of spheres intersect the plane precisely in those infamous external tangents.

Well, okay, we’ve moved to 3-d. We’ve replaced our circles with spheres and our external

tangents with tangent cones. The points of intersection of the external tangents are now

the tips of the cones. But, what good has this all done? Is there any reason to believe

that the tips of those cones lie in a line?

Actually, yes! There is a plane that touches all three spheres tangentially. Actually, there

are two such planes, one that touches them all on their upper surfaces and one that

touches them all on their lower surfaces. Oh damn! There are actually lots of planes that

are tangent to all three spheres but only one that lies above the three of them. That plane

intersects the plane z = 0 in a line — nothing fancy there; any pair of non-parallel planes
6As before, when the spheres happen to have identical radii, we get a degenerate case — the cone becomes

a cylinder.
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Figure 9.15: Six matchstick (actually, pencils are a lot easier to hold) can be arranged three-
dimensionally to create four triangles.

will intersect in a line (and the only way the planes we are discussing would be parallel is

if all three spheres just happened to be the same size). But that plane also lies tangent

to the cones that envelope our spheres and so that plane (as well as the plane z = 0)

contains the tips of the cones!

Exercises

1. There is a scenario where the proof we have sketched for Monge’s circle theorem

doesn’t really work. Can you envision it? Hint: consider two relatively large spheres

and one that is quite small.
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