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Abstract
We investigate the set M∗ of numbers which occur as Mahler mea-

sures of integer polynomials and the subset M of Mahler measures of
algebraic numbers (that is, of irreducible integer polynomials). We
prove that every number α of degree d in M∗ is the Mahler measure
of a separable integer polynomial of degree at most

∑
1≤r≤d/2

(
d
r

)
with

all its roots lying in the Galois closure F of Q(α), and every unit in
M is the Mahler measure of a unit in F of degree at most

(
d

bd/2c
)

over
Q. We use this to show that some numbers considered earlier by D.W.
Boyd are not Mahler measures. We also investigate the set of numbers
which occur as Mahler measures of both reciprocal and nonreciprocal
algebraic numbers. In particular, we describe all cubic units in this
set and show that the smallest Pisot number is not the measure of a
reciprocal number.

2000 Mathematics Subject Classification: 11R06, 11R32, 12D10.
Keywords: Mahler measure, Galois extension, reciprocal numbers, Pisot
numbers.

1 Introduction

Let f(X) be a nonzero complex polynomial. We shall define the large roots
of f(X) to be those roots with absolute value strictly greater than 1. The
Mahler measure M(f) of f(X) is defined to be the absolute value of the
product of the leading coefficient of f(X) and all large roots of f(X). It is a
multiplicative measure (namely, M(fg) = M(f)M(g)) and has many inter-
esting properties (for example, Mahler [15] showed that M(f) is a geometric
mean of the values of f over the unit circle).
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We shall be interested in the case where f(X) ∈ Z[X]. In this case, the
complex roots of f(X) come in complex conjugate pairs and so M(f) is (up
to a plus or minus sign) equal to the product of the leading coefficient and the
large roots of f(X). In particular, α := M(f) is algebraic over Q and lies in
the splitting field F of f(X) in C. Following [3] we shall call such an algebraic
number a Mahler measure. An important class of Mahler measures are those
which arise from polynomials f(X) which are irreducible over Z[X]. If β is
algebraic over Q then its minimal polynomial over Z is a polynomial f(X)
irreducible over Z[X] determined up to a factor of ±1. Without ambiguity
we can set M(β) := M(f). We denote the set of all Mahler measures of
algebraic numbers by M and the set of all Mahler measures M(f) (where
f ranges over possibly reducible polynomials) by M∗. Clearly, M ⊆ M∗.
By the multiplicative property of Mahler measures, M∗ is a monoid under
multiplication generated by M. As we shall see below (Theorem 10), M is
not a monoid and so M 6= M∗.

A natural question is to ask how we can determine whether a particular
algebraic number is a Mahler measure. A number of necessary conditions are
known (see, for example, [3], [4], [5], [9] and Lemma 2 below). The numbers
of degree at most 3 lying in M∗ are characterized completely by Theorem
9. Although a characterization of Mahler measures of higher degrees seems
difficult, the next result (together with Lemma 2(x)) shows that, in principle,
this problem can be solved for any specified α.

Theorem 1 Suppose that α is an algebraic number of degree d, and F is the
Galois closure of Q(α) over Q. If α ∈M∗ then α = M(f) for some separable
polynomial f(X) ∈ Z[X] of degree at most

∑
1≤r≤d/2

(
d
r

)
whose roots lie in F.

Moreover, if α ∈M is a unit then α = M(β) for some unit β ∈ F of degree
at most

(
d

bd/2c

)
.

Theorem 1 follows from Lemma 2(vii), Theorem 4 and Corollary 8 below.
The second part of the theorem can be written in a stronger form: if α ∈
M, and its norm N(α) is not divisible by a dth power of an integer > 1,
then α = M(β) for some β ∈ F of degree at most

(
d

bd/2c

)
. (Indeed, in this

case Lemma 2(vii) shows that the leading and the constant coefficients of
the minimal polynomial for β are relatively prime.) However, we have not
determined whether α := 3(3 +

√
5)/2 belongs to M (see [9]), although

α = M(3(X2 − 3X + 1)) ∈M∗.
An important subclass of Mahler measures consists of measures M(β)
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arising from reciprocal algebraic numbers; that is, where the minimal poly-
nomial f(X) of β is reciprocal (both β and β−1 are roots). In general, a
polynomial f(X) of degree n is called reciprocal if f(X) = ±Xnf(X−1). It
has long been known (especially in connection with D.H. Lehmer’s question
[13] on whether there is a nonempty interval (1, 1 + δ) free of values of M∗)
that Mahler measures arising from reciprocal algebraic numbers are of im-
portance. For example, C.J. Smyth [18] showed that β is reciprocal whenever
M(β) < θ0 = 1.32471 . . .. Here θ0 is a root of X3−X − 1 and is the smallest
Pisot number (see [17]). We denote by R the set of all M(β) where β is a
reciprocal algebraic number, and denote by N the set of all M(β) where β is
not reciprocal. Clearly, R∪N = M. It is possible for a Mahler measure to lie
in both sets, so R∩N is nonempty. For example, the number α := 5 + 2

√
6

is the unique large root of the reciprocal polynomial X2 − 10X + 1 and so
α ∈ R. On the other hand β := 2 +

√
2 +

√
3 +

√
6 has minimal polynomial

X4 + 8X3 + 2X2 − 8X + 1 and M(β) = α so we also have α ∈ N .
In the next section we summarize some earlier results on Mahler measures.

In Section 3 we prove Theorem 1 and also some more precise results. Section
4 includes applications and examples. In Section 5 we investigate properties
of the set R∩N and conclude by giving a general construction of reciprocal
units whose Mahler measures are nonreciprocal.

2 Some known results on Mahler measures

We summarize some basic properties of Mahler measures.

Lemma 2 (i) Every α ∈M∗ is a Perron number; that is, α is a real positive
algebraic number > 1 such that every algebraic conjugate α′ of α over Q with
α′ 6= α satisfies α > |α′|. Moreover, if α ∈ M∗, then |α′| > α−1 unless
α′ = ±α−1. Conversely, if α is a Perron number, then there is a positive
integer n such that nα ∈M.

(ii) Suppose that f(X) and g(X) are nonzero polynomials such that g(X) =
±Xkf(±X l) for some integers k, l with l 6= 0. Then M(f) = M(g). In par-
ticular, the Mahler measures of a polynomial and of its reciprocal polynomial
are equal.

(iii) If f(X) ∈ Z[X] has leading coefficient an and roots ξ1, . . . , ξn (not
necessarily distinct), then anξi1 · · · ξik is an algebraic integer for any subset
{i1, . . . , ik} of {1, . . . , n}. In particular, every Mahler measure is an algebraic

3



integer.
(iv) Suppose that α, β and γ are Perron numbers and α = βγ. Then

β, γ ∈ Q(α). In particular, this holds for Mahler measures by (i).
(v) Let f(X) and g(X) be polynomials in Z[X] with f(X) irreducible.

Suppose that K is a finite Galois extension of Q which contains the split-
ting field of f(X)g(X), and that α := M(fg) = M(f)M(g). Then each
automorphism x ∈ Gal(K/Q(α)) maps the set of large roots of f(X) onto
itself.

(vi) Suppose that β is an algebraic number of degree n whose minimal
polynomial over Q has s large roots. If M(β) has degree d, then n divides
sd.

(vii) Let α = M(β) for some algebraic number β with minimal polynomial
f(X) = anX

n+. . .+a0 ∈ Z[X] where an 6= 0. If α is algebraic of degree d ≥ 2,
then N(α) = (±an)dN(β)r = ±ad−r

n ar
0 for some integer r with 0 < r < d. In

particular, α is a unit if and only if β is a unit.
(viii) If f(X) = anX

n + . . . + a0 ∈ Z[X] with an nonzero, then M(f) ≥
max(|an| , |a0|). In particular, any nonunit in M∗ is at least 2.

(ix) Given any bound B > 1 and degree d, there are only finitely many
Mahler measures α of degree d with α ≤ B.

(x) Suppose that α ∈ M∗. Then, for each integer n ≥ 0, there are only
finitely many f(X) ∈ Z[X] of degree n such that M(f) = α.

Proof. (i) See [1], [14], [4], [8] and [9].
(ii) This is well known. Its proof follows from the representation of the

Mahler measure of a polynomial as an integral over the unit circle (see [15]).
(iii) This is a classical result which dates back to Dedekind and Kronecker

(see [11, Part 0], or [12, p. 91]).
(iv) (See [14, Section 5].) Consider any finite Galois extension K of Q(α)

containing β and γ. If β, say, did not lie in Q(α), then there would be a
Q(α)-automorphism of K which maps β and γ, respectively, onto β′ and γ′

with β 6= β′ and α = β′γ′. Since β and γ are Perron numbers, this gives the
contradiction: α = |β′| |γ′| < βγ = α.

(v) Enumerate the roots ξ1, . . . , ξn of f(X) so that ξ1, . . . , ξk are the large
roots. Then M(f) = ±anξ1 · · · ξk where an is the leading coefficient of f(X).
Let ξi 7→ ξi′ denote the permutation of the roots of f(X) induced by x. Since
x fixes M(f) by (iv), therefore ξ1 · · · ξk = ξ1′ · · · ξk′ , and this can only occur
when ξ1′ , . . . , ξk′ are the large roots of f(X).

(vi) and (vii) See [4] and [9].
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(viii) The first statement follows at once from (ii) and the definition of
M(f). As a consequence, if α ∈M is not a unit, then α = M(β) where β is
not a unit by (vii), and hence α ≥ 2. Any nonunit α ∈ M∗ is a product of
elements of M at least one of which is nonunit.

(ix) Parts (i) and (iii) show that if α is a Mahler measure of degree d and
1 < α ≤ B then α is a root of a monic integer polynomial whose coefficients
are majorized by those of (X + B)d. In particular, for each d and B, there
are only finitely many such Mahler measures.

(x) Suppose that α = M(f) where f(X) has degree n. Then (viii)
shows that the leading coefficient f(X) is bounded in absolute value by α
and similarly this is true for each root. Thus the coefficients of f(X) are
majorized by those of α(X + α)n. There are only a finite number of integer
polynomials with this property.

3 Basal polynomials

If α = M(f) for some f(X) ∈ Z[X], then we say that f(X) realizes the
Mahler measure α. In general, there will be infinitely many polynomials
which realize α. Lemma 2(ii) shows that, if α is realized by a polynomial of
degree n, then α is also realized by a polynomial of degree n such that each of
its irreducible factors has at most half its roots large. We call f(X) ∈ Z[X]
a basal polynomial (for α) when it is a polynomial of least degree such that
α = M(f) and at most half the roots of each irreducible factor of f(X) are
large. If α ∈ M, then f(X) is a basal irreducible polynomial for α if it is of
least degree among the irreducible polynomials which realize α and at most
half of its roots are large. (We often omit “for α”, because if a polynomial
is basal then it is basal for only one number α.) Evidently, if f(X) is basal,
then all of its irreducible factors are also basal. Each Mahler measure is
realized by at least one basal polynomial, but it can be realized by more
than one; for example, f(X) and f(−X) have the same measure and, for
each positive integer m ≥ 3, M(mX−m′) = m for each integer m′ satisfying
1 ≤ |m′| ≤ m. We shall see that basal polynomials satisfy some very specific
conditions.

Throughout the rest of the paper we shall use the following notation.
For any finite set Λ we shall use Λ to denote the product of the elements in
Λ. If F is a Galois extension of Q, and G := Gal(F/Q), then G acts as a
permutation group on F . We shall use standard notations: γx will denote the
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image of γ ∈ F under x ∈ G, Γx := {γx | γ ∈ Γ} for any subset Γ ⊆ F , γH

is the orbit of γ under a subgroup H of G, and Hγ := {x ∈ H | γx = γ} and
H{Γ} := {x ∈ H | Γx = Γ} are stabilizers of a point and a set. The “orbit-
stabilizer lemma ” states that

∣∣γH
∣∣ = |G : Gγ|. (For general properties about

permutation groups see [22] or [6].)

Lemma 3 Let f(X) ∈ Z[X] be an irreducible polynomial of degree n with
leading coefficient an and constant coefficient a0. Let F be a finite Galois
extension of Q which contains the set Ω := {ξ1, . . . , ξn} of roots of f(X) and
let G be the Galois group Gal(F/Q). Suppose that Σ := {∆1, . . . , ∆m} is a
system of blocks for the action of G on Ω with the properties:

(a) for some t, ∆1 ∪ . . . ∪∆t is the set of all large roots of f(X);
(b) the size m of the block system is minimal with respect to condition

(a).
Put δi := ∆̄i for each i, and g(X) := an

∏m
i=1 (X − δi).

Then g(X) ∈ Z[X] has degree m with leading coefficient an and constant
coefficient a0 and M(g) = M(f). Moreover, g(X) is not a product of two
polynomials of degrees ≥ 1.

Proof. Property (a) shows that |δi| > 1 if and only if ∆i consists of
large roots. Define an equivalence relation on Σ by ∆i ∼ ∆j ⇔ δi = δj.
This relation is invariant under the action of G and so taking unions of ∆i

with the same value of δi gives another system of blocks for G. From the
observation made at the beginning of this proof, this new system of blocks
satisfies condition (a). Hence condition (b) shows that the relation ∼ must
be equality. Therefore all of the δi are distinct.

Since G acts transitively on Σ, it also acts transitively on {δ1, . . . , δm}.
Thus g(X) is a polynomial of degree m over Q and is not a product of two
polynomials of degree ≥ 1. Lemma 2(iii) shows that every coefficient of
g(X) is an algebraic integer, and so g(X) ∈ Z[X] with leading coefficient an.
The constant coefficient of g(X) is an

∏
j δj = an

∏
i ξi = a0. Finally, from

the property noted at the beginning of this proof we have M(g) = M(f).

Theorem 4 Let E ⊆ C be a finite Galois extension of Q. Let f(X) ∈ Z[X]
with M(f) ∈ E.

(i) If f(X) is a basal polynomial, then all the roots of f(X) lie in E;
(ii) If f(X) is basal irreducible polynomial and the leading and constant

coefficients of f(X) are relatively prime (in particular, if f(X) is monic),
then all roots of f(X) lie in E.
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Remark The point in (ii) is that f(X) has least degree as an irreducible
polynomial which realizes the given Mahler measure. It is conceivable that
some reducible polynomial of smaller degree may have the same Mahler mea-
sure.

Proof. By Lemma 2(iv) and the fact that the Mahler measure is a
multiplicative function, it is enough in (i) to consider the case where f(X)
is irreducible. Thus suppose that f(X) is irreducible, let F be the splitting
field of f(X) over E, and let Ω := {ξ1, . . . , ξn} be the set of roots of f(X).
Put G := Gal(F/Q) and H := Gal(F/E). Then H is normal in G because
E is a normal extension of Q. Because H is normal in G, the set of H-orbits
on Ω is a system of blocks for G (see, for example, [6, Theorem 1.6A]). Now
applying Lemma 3 to f(X) we see that in both cases (i) and (ii) we must
have m = n since f(X) is basal (in case (ii) the primality condition ensures
that g(X) has no nontrivial factor of degree 0 and so is irreducible). Thus
the H-orbits on Ω must have length 1. This implies that H is trivial, and
so F = E as required.

Open Problem Does the conclusion of Theorem 4(ii) remain true if we
drop the assumption that the leading and constant coefficients are relatively
prime?

In connection with this problem, the following example shows that some
care must be taken. The irreducible polynomial f(X) := 2X2 + X + 4 has
two large (complex) roots, say ξ1 and ξ2, and M(f) = 2ξ1ξ2 = 4. The
construction in Lemma 3 with m = 1 gives the polynomial g(X) = 2(X − 2)
which is not irreducible. Of course, in this case f(X) is not a basal irreducible
polynomial.

Theorem 4 appears in a slightly different form in a short unpublished
note by David Cantor which he kindly sent to the first named author. The
remaining material in the note by Cantor considers the kind of problem dealt
with in the theorem below, but in a less precise form. We are indebted to
David Cantor for permission to include this material.

Theorem 5 Suppose α is a nonrational Mahler measure with minimal poly-
nomial g(X) ∈ Z[X]. Let F be the splitting field of g(X), Σ := {α =
α1, . . . , αd} be the set of roots of g(X) in F , and G := Gal(F/Q). Suppose
that f(X) is a nonconstant irreducible factor in Z[X] of a basal polynomial
for α, or that f(X) is a basal irreducible polynomial for α with the leading
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coefficient and constant coefficient relatively prime. Put n := deg f . Then,
for each large root ξ of f(X), there exists a subset Γ ⊆ Σ such that

(i) Gξ = G{Γ};
(ii)

∣∣G : G{Γ}
∣∣ = n;

(iii) f(X) has exactly n |Γ| /d large roots.

Proof. By Theorem 4 f(X) splits into linear factors over F . Let Ω be
the set of roots of f(X), and ∆ ⊆ Ω be the set of large roots. Note that
∆ 6= ∅ by the hypotheses on f(X), and that Gα ≤ G{∆} by Lemma 2(v).

Next define U := {u ∈ G | ξ ∈ ∆u} and Γ := {αu | u ∈ U}. Note
that, if v ∈ G, then αv ∈ Γ implies αv = αu for some u ∈ U , and hence
v ∈ Gαu ⊆ G{∆}u ⊆ U by the definition of U . Hence, for all u ∈ G,

ξ ∈ ∆u ⇔ u ∈ U ⇔ αu ∈ Γ.

Put H := G{∆}, K := Gξ and L := G{Γ}. Then it is clear that HU = U =
UL, and L ≥ K because ΓK = (αU)K = αU = Γ.

We claim that in fact L = K. Since f(X) is irreducible over Q, G acts
transitively on Ω. Now Λ := ξL is a block of imprimitivity for G on Ω.
Indeed, if x ∈ G and Λ ∩ Λx 6= ∅, then ξL ∩ ξLx 6= ∅; hence x ∈ LKL ⊆ L,
and so Λ = Λx. Thus Ω is a union of disjoint blocks of the form Λx (x ∈ G).
Moreover, ∆ is a union of complete blocks since ∆ = {ξu−1 | u ∈ U} by
the transitivity of G on Ω, and U−1 = LU−1 is a union of right cosets of
L from above. We can therefore apply Lemma 3 and the hypotheses on
f(X) to conclude that the blocks must have size 1. Thus ξL = {ξ} and so
L ≤ Gξ = K. Since we already saw that K ≤ L, we conclude that K = L
as required.

This proves (i). Now (ii) follows because n = |G : Gξ| by the transitivity
of G on Ω. Finally, the definition of U shows that |∆| |Gξ| = |U | = |Γ| |Gα|
and so n |Γ| = |G : Gξ| |Γ| = |G : Gα| |∆| = d |∆| proving (iii).

We shall denote the subset Γ ⊆ Σ defined in the proof of Theorem 5 by
Γ(f, ξ). We can be more explicit about the dependence of this set on the
choice of the large root ξ. Note that by definition α ∈ Γ(f, ξ′) for each large
root ξ′ of f(X).

Corollary 6 Under the hypotheses of Theorem 5 suppose that ξ′ is also a
large root of f(X). Then there exists x ∈ G such that ξx = ξ′ and Γ(f, ξ′) =
Γ(f, ξ)x. Conversely, for each x ∈ G such that α ∈ Γ(f, ξ)x, ξx is a large
root of f(X) and Γ(f, ξ)x = Γ(f, ξx).
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Proof. Put Γ := Γ(f, ξ) and Γ′ := Γ(f, ξ′). With the notation of the
proof of the theorem, since ξ′ ∈ ∆, there exists x ∈ U such that ξ′ = ξx

because of the transitivity of G on Ω. Now ξ′ ∈ ∆u ⇒ ux−1 ∈ U ⇒ αu ∈ Γx

and so Γx = Γ′. Conversely, given x ∈ G such that α ∈ Γx, we have
αx−1 ∈ Γ ⇒ x−1 ∈ U ⇒ ξx ∈ ∆, and so ξx is a large root. Moreover, x ∈ U
by the definition of U , so Γx = Γ(f, ξx) from what we have just proved.

Theorem 7 Suppose that the Mahler measure α has the minimal polynomial
g(X) of degree d over Q. Let Σ be the set of roots of g(X), F be the splitting
field of g(X), and G := Gal(F/Q). Let f(X) = f1(X) . . . fm(X) be a basal
polynomial for α where each fi(X) is irreducible over Z[X], or f(X) = f1(X)
is a basal irreducible polynomial with the leading and constant coefficients
relatively prime. Let ∆i be the set of large roots of fi(X), and let Γi :=
Γ(fi, ξi) for some ξi ∈ ∆i. Then |Γi| ≤ d/2 for each i, and Γi and Γj lie in
different G-orbits whenever i 6= j.

Proof. By Theorem 5(iii) we have |Γi| = |∆i| d/(deg fi) ≤ d/2 since
the irreducible factors of a basal polynomial have at most half their roots
large. This proves the first statement. In proving the second statement we
can simplify notation; it is enough to show that Γ1 and Γ2 are not in the
same G-orbit.

Suppose on the contrary that Γ1 = Γx
2 for some x ∈ G. Then as in

Theorem 5 we have ξ1 ∈ ∆u
1 ⇒ αu ∈ Γ1 = Γx

2 ⇒ αux−1 ∈ Γ2 ⇒ ξx
2 ∈ ∆u

2 . In
particular, taking u = 1 we see that ξx

2 is a large root of f2(X). Theorem
5(i) also shows that Gξ1 = G{Γ1} = x−1G{Γ2}x = x−1Gξ2x because Γ1 = Γ2.
Let T be a set of right coset representatives for Gξ1 (= x−1Gξ2x) in G, and
put ηt = ξt

1ξ
xt
2 (t ∈ T ). Let c be the leading coefficient of f1(X)f2(X). Then

h(X) := c
∏
t∈T

(X − ηt)

is G-invariant, and so its coefficients are in Q. Lemma 2(iii) shows that
the coefficients of h(X) are algebraic integers; hence h(X) ∈ Z[X]. Since
ξt
1 ∈ ∆1 ⇒ αt−1 ∈ Γ1 = Γx

2 ⇒ ξxt
2 ∈ ∆2, ηt is a large root of h(X) if and

only if ξt
1 and ξxt

2 are both large. Thus ξt
1 (respectively, ξxt

2 ) runs over ∆1

(respectively, ∆2) as t runs over T . Hence M(h) = c∆1∆2 = M(f1f2). Since
deg h = deg f1 = deg f2, this contradicts the minimality of the choice of
f(X). Thus we conclude that Γ1 and Γ2 lie in different G-orbits as claimed.
This proves the theorem.
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Corollary 8 Let α be an algebraic integer of degree d. If α ∈ M∗ then
every basal polynomial for α has distinct roots and its degree is at most∑

1≤r≤d/2

(
d
r

)
. If α ∈ M then every basal irreducible polynomial for α in

which the leading and constant coefficients are relatively prime has degree at
most

(
d

bd/2c

)
.

Proof. We use the notation of the theorem. Every basal polynomial
f(X) has distinct roots because the irreducible factors of f(X) are distinct.
Theorem 5(ii) and the orbit-stabilizer lemma show that the degree of fi(X)
is equal to the size of the orbit of Γi under G. Because these orbits are
disjoint for distinct fi(X), the sum of the degrees of the fi(X) for which
|Γi| = r is at most the number of r-subsets of Σ, namely

(
d
r

)
. Since this

binomial coefficient is largest when r = bd/2c, the bounds on the degrees for
both cases now follow.

4 Applications of the main results

We shall use the following notation. A polynomial f(X) is said to be of type
(n, m) if it has degree n and exactly m large roots. Under the hypotheses
of Theorem 5, G acts transitively on the set Ω of roots of f(X) and ξx = ξy

for x, y ∈ G if and only if x and y lie in the same right coset of Gξ in G.
Similarly, Γx = Γy if and only if x and y lie in the same right coset of G{Γ}.
Since Gξ = G{Γ} by Theorem 5(i), we can unambiguously label the roots
ξx of f(X) by the sets Γx in the orbit of Γ. Then the action of G on Ω is
described simply by its action on the subsets in the G-orbit of Γ. It is a little
simpler to enumerate the roots Σ = {α = α1, . . . , αd} and to denote the root
ξx by ξi1...ir when Γx = {αi1 , . . . , αir} (the order of the indices is disregarded).
Then the permutation

(
1 2 ... d
1′ 2′ ... d′

)
which describes the action of an element y

(αy
i = αi′ for i = 1, . . . , d), can be applied directly to the indices of the roots

in Ω. If ∆ is the set of large roots of f(X), then Corollary 6 shows that
ξx ∈ ∆ if and only if α1 = α ∈ Γx, so the large roots of f(X) are those with
indices containing 1.

Example 1 Under the hypotheses of Theorem 7, assume we are in the
“generic” case where G is isomorphic to the full symmetric group Sd (ac-
cording to a classical theorem of van der Waerden this happens for “almost
all” g(X)). If we fix an enumeration α = α1, . . . , αd of Σ, then we can use
ordinary permutation notation to denote the elements of G; a permutation
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x ∈ Sd acts on F by mapping αi into αix . Since Sd has a single orbit of
length

(
d
r

)
on the set of r-subsets of {1, . . . , d}, Theorems 5 and 7 show that

in this case each irreducible factor of a basal polynomial for α has degree
(

d
r

)
for some r ≤ d/2, and exactly

(
d
r

)
r/d =

(
d−1
r−1

)
large roots; thus it has type

(
(

d
r

)
,
(

d−1
r−1

)
). In this case no two irreducible factors can have the same degree.

Example 2 The table below give the types of potential irreducible factors
of a basal polynomial for an algebraic integer α of degree d ≤ 5 where G
is the Galois group of the minimal polynomial for α. Using the notation of
Theorem 7 the degrees n are classified according to the size r of Γ. The
entries under r are the types (n, m) of irreducible polynomial factors where
n runs over the sizes of the orbits of G on r-sets, and m := |∆| is given by
Theorem 5(iii).

d G r = 1 r = 2
2 S2 (2, 1)
3 S3, A3 (3, 1)
4 S4, A4 (4, 1) (6, 3)

〈(1234), (13)〉 , 〈(1234)〉 (4, 1) (4, 2), (2, 1)
〈(12)(34), (13)(24)〉 (4, 1) (2, 1), (2, 1), (2, 1)

5 S5, A5, 〈(12345), (2354)〉 (5, 1) (10, 4)
〈(12345), (25)(34)〉 , 〈(12345)〉 (5, 1) (5, 2), (5, 2)

For example, for d = 4 there are (up to permutation isomorphism) five differ-
ent transitive groups. The third of these is the dihedral group 〈(1234), (13)〉
generated by the permutations (1234) and (13). It has one orbit of length
4 on the set of 1-subsets, and two orbits of lengths 4 and 2, respectively, on
the set of 2-subsets. In this case the potential irreducible factors of a basal
polynomial are of types (4, 1), (4, 2) or (2, 1).

The following theorem enables us to determine whether a given algebraic
integer of degree d is a Mahler measure realizable by an irreducible polyno-
mial of type (d, 1). In particular, it gives necessary and sufficient conditions
for an algebraic integer of degree ≤ 3 to be in M∗. Note that for an irre-
ducible polynomial of type (2, 1) or (3, 1) the large root is necessarily a Pisot
number since no irreducible polynomial of degree > 1 can have a single root
on the unit circle.

11



Theorem 9 Let α > 1 be a real root of the irreducible monic polynomial
g(X) := Xd + ad−1X

d−1 + . . . + a0 ∈ Z[X]. Then α = M(f) for some
irreducible polynomial f(X) ∈ Z[X] of type (d, 1) if and only if for some
integer c > 0 we have ci | ad−i−1 (i = 1, . . . , d− 1), the integers

c, ad−1, ad−2/c, . . . , a0/c
d−1

have no common factor > 1, and α/c is the only large root of g(cX).

Proof. First suppose that such an integer c exists. Then the divisibility
conditions show that f(X) := g(cX)/cd−1 ∈ Z[X] is irreducible and has
leading coefficient c. Now the condition on g(cX) shows that f(X) has a
single large root and M(f) = c(α/c) = α.

Conversely, suppose that α = M(f) where f(X) ∈ Z[X] has leading
coefficient c and a single large root ξ. Then α = ±cξ. Replacing f(X)
by f(−X) if necessary, we may assume that ξ = α/c. Hence α is a root
of f(X/c)cd−1. Since the latter is monic with integer coefficients and is
irreducible by hypothesis, therefore g(X) = f(X/c)cd−1. Thus ξ is the unique
large root of g(cX) and the divisibility conditions on the coefficients of g(X)
are easily verified.

Example 3 A Mahler measure α of degree 2 or 3 is not necessarily the only
large root of its minimal polynomial. For example, the minimal polynomial
for α :=

√
13 + 1 is X2 − 2X − 12 which has two large roots. However

3 | 12 and α/3 is the unique large root of the polynomial 3X2 − 2X − 4, so
M(3X2 − 2X − 4) = α.

Example 4 Consider the generic case of d = 4 (so G ∼= S4) with r = 2. If
f(X) is a basal irreducible polynomial of degree 6 then the roots of f(X)
can denoted by ξij (1 ≤ i < j ≤ 4). If f(X) has leading coefficient c,
then α = α1 = ±cξ12ξ13ξ14 and so, by applying Galois mappings, α2 =
±cξ12ξ23ξ24, α3 = ±cξ13ξ23ξ34 and α4 = ±cξ14ξ24ξ34.

Example 5 Consider the irreducible polynomial g(X) := X6−X4−X3−
X2 + 1. It has a unique large root θ1 := 1.40126 . . ., so M(g) = θ1. Maple
shows that the Galois group over Q of the splitting field for g(X) is isomorphic
to 〈(135)(246), (14)(25), (15)(24)〉. This group has one orbit (of length 6) on
1-subsets, two orbits (of lengths 3 and 12) on 2-subsets, and three orbits (of
lengths 4, 4 and 12) on 3-subsets. The orbit-stabilizer lemma and Theorem
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5(ii) show that every irreducible factor of a basal polynomial for θ1 must
have degree 6, 3, 12 or 4. Since M(g) = θ1, a basal polynomial for θ1 has
degree at most 6. Thus, if g(X) is not basal, then Theorem 5(iii) shows there
exists a basal polynomial for θ1 of type (3, 1) since 3 · 2/6 = 1 or (4, 2) since
4 · 3/6 = 2. The former is impossible because θ1 has degree 6 and hence
cannot be the root of a cubic, so consider the second possibility. A simple
search shows that f(X) := X4−X +1 has two large roots (a pair of complex
conjugates) and M(f) = θ1.

The last example may seem somewhat surprising at first, because it shows
that a basal polynomial for a Salem number of degree 6 is of smaller degree
4. However, it is easy to see that if we start with any totally complex non-
reciprocal quartic unit β whose Galois group is isomorphic to S4 (as it was
in the previous example where β4 − β + 1 = 0) we always obtain a Salem
number α = M(β) of degree 6.

We conclude this section with a theorem which answers a question raised
in [9].

Theorem 10 M 6= M∗. Indeed, if α > 1 and β > 1 are two quadratic
units such that Q(α) ∩Q(β) = Q, then αβ ∈M∗ \M.

Proof. The algebraic conjugates of α and β are ±1/α and ±1/β, respec-
tively, for some choice of signs. Hence α = M(α) and β = M(β), and so
αβ ∈M∗. On the other hand, the condition Q(α) ∩Q(β) = Q implies that
Q(α, β) is a Galois extension of Q whose Galois group is the Klein 4-group.

Now suppose that αβ ∈M contrary to what is claimed. As a product of
units, αβ is also a unit and so by Theorem 4(ii) a basal irreducible polynomial
f(X) which realizes αβ splits into linear factors in Q(α, β). By the table in
Example 2, f(X) is of type (4, 1) or (2, 1). The latter case is impossible,
because αβ is of degree 4. The algebraic conjugates of αβ are αβ, ±α/β,
±β/α and ±1/αβ for suitable choice of signs, and exactly two of these have
absolute value > 1. Thus the type (4, 1) is also impossible. We have a
contradiction and conclude αβ /∈M as required.

5 Reciprocal and nonreciprocal measures

Our main interest in the present section is to investigate the set R∩N of
Mahler measures which are realizable both by reciprocal irreducible polyno-
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mials and also by nonreciprocal irreducible polynomials. We begin with a
theorem which relates to the reciprocal case. Clearly an irreducible reciprocal
polynomial of degree > 1 is of even degree.

Theorem 11 Suppose that α > 1 is a Mahler measure which is algebraic of
degree d over Q. Let F be the splitting field of the minimal polynomial of α
over Q, and put G := Gal(F/Q).

(i) If there is a basal polynomial f(X) for α which is reciprocal, then each
irreducible factor h(X) of f(X) is reciprocal and deg h 6= 1.

(ii) If there is a basal polynomial f(X) for α which is reciprocal and G ∼=
Sd (the generic case), then d is even and f(X) is an irreducible polynomial
of type (n, n/2) times a constant where n =

(
d

d/2

)
.

(iii) In the generic case, if a reciprocal polynomial f(X) is a basal poly-
nomial for α then f(X) has no root of absolute value 1.

Proof. (i) Let h(X) ∈ Z[X] be an irreducible nonreciprocal factor of
f(X). Then its reciprocal is another irreducible factor of f(X). Since they
both have the same Mahler measure by Lemma 2(ii), in a factorization of
f(X) we can replace the polynomial reciprocal to h(X) by h(X) to get an-
other basal polynomial for α. But this latter polynomial is divisible by h(X)2

which is contrary to Corollary 8. Finally, if h(X) had degree 1 then h(X) has
the form ±X ± 1 which has Mahler measure 1 contradicting the hypothesis
that f(X) is basal.

(ii) Let h(X) ∈ Z[X] be a nonconstant irreducible factor of f(X) and
let Ω denote the set of roots of h(X). Theorem 4 shows that Ω ⊂ F . By
(i) h(X) is reciprocal and has degree > 1. Thus G acts transitively and the
sets {ξ, ξ−1} (ξ ∈ Ω) form a system of blocks. Thus, with the notation
of Theorem 5 with h(X) in place of f(X), G{Γ} (= Gξ) is not a maximal
subgroup of G. However, it is well known (and easily proved) that when G
is the full symmetric group on a set Σ of size d then G{Γ} is maximal in G
for Γ ⊆ Σ except when |Γ| = 0, d/2 or d (much more is proved, for example,
in [6, Section 5.2]). Thus we conclude that |Γ| = d/2 and that h(X) has
(deg h) |Γ| /d = (deg h)/2 large roots by Theorem 7.

Hence we have shown that d is even, and exactly half of the roots of every
irreducible factor of f(X) are large. Since G ∼= Sd, Example 1 then shows
that every nonconstant irreducible factor of f(X) is of type

((
d
r

)
,
(

d−1
r−1

))
with(

d
r

)
= 2

(
d−1
r−1

)
. The latter condition implies that r = d/2. The same example

shows that there can only be one irreducible factor of this type, so the claim

14



follows.
(iii) By (ii) f(X) is of type (n, n/2). Thus half the roots are large, and

the other half are reciprocals of these.

Example 6 The polynomial g(X) := X5 − X2 − 1 is given as an example
in [4]. It has one real root α := 1.19385 . . ., two complex roots of absolute
value 1.08646 . . . and two of absolute value 0.84238 . . .. Thus if α is a Mahler
measure then it must be realized by a reciprocal polynomial by the theorem
of Smyth quoted in the Introduction. The conditions of Lemma 2(i) do not
rule out the possibility that α is a Mahler measure, and that possibility was
left open in [4]. However, using Maple we find that the Galois group of the
splitting field F of g(x) is isomorphic to S5. Since d = 5 is odd, Theorem
11 shows that α cannot have a reciprocal basal polynomial, and so α is not
a Mahler measure. A similar argument shows that in the generic case no
algebraic integer α of odd degree with 1 < α < θ0 = 1.32471 . . . can be a
Mahler measure.

We now look at properties of elements of R∩N . We begin with a simple
method of constructing elements of this set.

Theorem 12 Let α be a unit whose minimal polynomial is reciprocal with
no root on the unit circle. Then for infinitely many integers m > 0 we have
M(α)m ∈ R ∩N .

Proof. Let f(X) of degree n be the minimal polynomial for α over Q,
Ω := {α = α1, . . . , αn} be the roots of f(X), and let K be the splitting field.
Choose a monic polynomial g(X) ∈ Z[X] of degree p with the following
properties: (a) p is an odd prime not dividing [K : Q]; (b) g(0) = 1 but
g(X) is not reciprocal; (c) g(X) mod 2 is irreducible over the field F2 of two
elements; (d) for some prime q, g(X) mod q is a product of an irreducible
quadratic and p − 2 distinct linear factors over Fq. Conditions (b)-(d) are
easily satisfied using the Chinese remainder theorem. Let Γ := {γ1, . . . , γp}
be the roots of g(X), L be its splitting field and E be the splitting field of
f(X)g(X).

First note that a theorem of Frobenius (see, for example, [21, Section 61])
shows that (c) and (d) imply that the Galois group H := Gal(L/Q) acting
on Γ contains an element which acts as a p-cycle and another which acts as a
2-cycle. Since p is prime this implies that H is isomorphic to the symmetric
group on Γ. In particular, g(X) is irreducible and condition (b) implies that
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its roots are units and nonreciprocal. Since K ∩L is a intersection of Galois
extensions, it is also Galois and not equal to L by (a). The only normal
subgroups of Sp are 1, Sp and the alternating group Ap of index 2. Thus by
Galois theory we see that [K ∩ L : Q] = 1 or 2. We claim that γiγ

ε
j /∈ K ∩ L

when ε = ±1, except in the case where i = j and ε = −1. Indeed γ2
i /∈ K∩L

because Q(γi) has degree p over Q. Also since H acts 2-transitively on Γ,
the elements of the form γiγ

ε
j (with 1 ≤ i < j ≤ p) with fixed ε = ±1 are

conjugates. Clearly there are at least p − 1 distinct elements of this form
(and three if p = 3), so γiγ

ε
j /∈ K ∩ L.

Now with a suitable choice of the prime p above, we can choose infinitely
many integers N > 0 satisfying the following conditions: the numbers αNp

i

(i = 1, . . . , n) are distinct and

|αi|N > max(|γ1|−1 , . . . , |γp|−1 , |γ1| , . . . , |γp|)

if and only if αi is a large root. The first condition is satisfied if we avoid
choosing Np as a multiple of d whenever αi/αj is a primitive dth root of 1
for some d > 0. The second condition is satisfied by all sufficiently large N
because we are assuming that f(X) has no root on the unit circle. Note that
the first condition implies that αNp is a reciprocal unit of degree n, and so
M(α)Np = M(αNp) ∈ R.

Now let G := Gal(E/Q) and assume that N satisfies the two conditions
above. Since the stabilizers Gαi

and Gγj
have index n and p, respectively, in

G, and p and n are relatively prime by (a), therefore
∣∣G : Gαi

∩Gγj

∣∣ = np.
Thus G acts transitively on the set Ω× Γ of np pairs and hence on the set

∆ :=
{
αN

i γj | i = 1, . . . , n and j = 1, . . . , p
}

On the other hand, the latter set consists of np distinct elements because
αN

i γj = αN
k γl implies that γjγ

−1
l ∈ K ∩ L, and then j = l and i = k because

the αN
i are distinct. Put β := αN

1 γ1, and note that β is also a unit. Moreover
β is not reciprocal since αN

1 γ1α
N
i γj 6= 1 because γ1γj /∈ K ∩ L from above.

Hence M(β) ∈ N . Since α is a unit and f(X) has no root on the unit circle,
exactly half the roots of f(X) are large. Thus by the choice of N we have

M(β) = M(α)Np
(∏p

j=1 |γi|
)n/2

= M(α)Np. This shows that M(α)Np ∈ N
and completes the proof.

In particular, how small can the elements of R∩N be? Since all Mahler
measures are algebraic integers, the smallest rational element is an integer.
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Clearly 1 /∈ N . On the other hand, R ∩ N contains every integer m ≥ 2
since

M(m) = M((m + m′ + i
√

(3m + m′)(m−m′))/2m) = m

where m′ < m is a positive integer such that the polynomial mx2 − (m +
m′)x + m is irreducible.

In general, in trying to find lower bounds for R ∩ N , Lemma 2(viii)
shows that it is enough to consider the units. Every quadratic unit is a root
of polynomial of the form X2 −mX ± 1 (m ∈ Z). It is now easy to verify
that (3+

√
5)/2 is the smallest quadratic element in R∩N (it is the Mahler

measure of itself and of the nonreciprocal number ω(1 +
√

5)/2 where ω is a
primitive cube root of 1). We now look at the cubic units in R∩N . Theorem
9 shows that we can restrict ourselves to Pisot numbers.

Theorem 13 Let β be a cubic Pisot unit. Then β ∈ R if and only if
β = |α|2 > 1 where α is a totally complex reciprocal unit of degree 6 and
Q(α) is normal over Q. Moreover, such β is not totally real.

Proof. Let β = β1, β2 and β3 be the roots of the minimal polynomial
g(X) of β over Q. If β = |α|2 where α has the form described, then the
minimal polynomial h(X) of α has roots α, ᾱ, α−1, ᾱ−1, γ and γ−1 for some
γ with γ̄ = γ−1. Then |γ| = 1 and the only large roots of h(X) are α and
ᾱ. Because β is a unit, α is also a unit, so the leading coefficient of h(X) is
1. This shows that β = |α|2 = M(α) and β ∈ R as required.

Conversely, suppose that β ∈ R, so β = M(ξ) for some reciprocal ξ.
Because β is a unit, ξ is also a unit by Lemma 2(vii). Suppose that the
minimal polynomial f(X) of ξ over Q has degree n, Ω := {ξ = ξ1, . . . , ξn} is
the set of its roots, and K is its splitting field over Q. Let ∆ be the set of
large roots of f(X). Since ξ is a unit, β = ε∆̄ for some ε = ±1, and we can
assume |∆| ≤ n/2 by Lemma 2(ii).

If ∆1 = ∆, ∆2 and ∆3 are the images of ∆ under G := Gal(K/Q), then
β2 := ε∆̄2 and β3 := ε∆̄2 are the conjugates of β. Since G acts transitively
on Ω, each root of f(X) appears in the same number l of the sets ∆1, ∆2

and ∆3. Thus nl = 3 |∆|. Since |∆| ≤ n/2, we conclude that l = 1 and
so the three sets form a partition of Ω. Thus {∆1, ∆2, ∆3} is a system of
blocks of imprimitivity for G acting on Ω. Put ∆−1

i := {η−1 | η ∈ ∆i}. Then{
∆−1

1 , ∆−1
2 , ∆−1

3

}
is also a system of blocks because f(X) is reciprocal. The

partition given by the nonempty sets among ∆ij := ∆i ∩∆−1
j (i, j = 1, 2, 3)
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is therefore also a system of blocks. Clearly ∆11 = ∅ and so ∆ii = ∅ for all
i by transitivity of G. On the other hand, since β is a Pisot number, β2

and β3 have absolute values < 1, and so ∆12 and ∆13 are nonempty. Thus
transitivity shows that ∆ij 6= ∅ for all i 6= j, and so the system has six blocks
each of size n/6 and these are permuted transitively by G.

Put αij := ∆̄ij for i 6= j, and note that αij = α−1
ji . We first show that the

αij are distinct. Indeed, if this was not true, then by the transitivity of G we
would have α12 = αij for some (i, j) 6= (1, 2). Since ∆1 is the set of large roots,
the only possibility is α12 = α13. But then transitivity of G on {∆1, ∆2, ∆3}
shows that α23 = α21 = α−1

12 = α−1
13 = α31 = α32. This implies β2 = β3 which

is a contradiction. Thus the αij are distinct and h(X) :=
∏

i6=j(X − αij)
is an irreducible polynomial of degree 6. Since the ξi are units, the same is
true for the αij, and so h(X) ∈ Z[X]. Now h(X) is a reciprocal polynomial
(α−1

ij = αji) and |αij| ≤ 1 for i 6= 1, so β = εα12α13 = M(α) where α := α12.

Now observe that both ∆23 and ∆32 are disjoint from ∆1 ∪∆−1
1 , and so

those sets consist of roots of absolute value 1. Thus α23 = α−1
32 = ᾱ32 is not

real (because α23 6= α32) and has absolute value 1. We claim that α12 is not
real. Indeed, otherwise α21, α13 and α31 are all real. But then β1 and β2 are
not real, and so must be complex conjugate roots of g(X). But this implies
α21 = α31 contrary to the fact that the αij are distinct. Thus α = α12 is not
real and its complex conjugate must be the other large root α13. This shows
that β = αᾱ and all the roots of h(X) are nonreal, and so the first claim of
the lemma is proved. We also see that β2 and β3 are complex conjugates and
so β is not totally real.

Finally we show that Q(α) is normal over Q. Indeed, for each x ∈
Gal(K/Q(α)) we have ∆x

12 = ∆12 (because the αij are distinct) and so ∆1∩∆x
1

and ∆2∩∆x
2 are nonempty. Thus x must fix the two blocks ∆1 and ∆2 (and

hence also ∆3). Hence x fixes β1, β2 and β3, and so by Galois theory Q(α)
contains the splitting field L of g(X). On the other hand, since g(X) has a
pair of complex roots, Gal(L/Q) ∼= S3. Therefore a comparison of degrees
shows that Q(α) = L and therefore Q(α) is normal over Q. This completes
the proof.

Corollary 14 The smallest cubic number in R is the root α = 1.83928 . . .
of X3 −X2 −X − 1.

Proof. By Lemma 2(viii) it is enough to consider units and so the theo-
rem on Pisot units applies. In [2, p. 1373] Boyd lists the irreducible reciprocal
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polynomials of degree 6 with Mahler measure less than 2. A simple compu-
tation with Maple shows that X6 +X5 +2X4 +3X3 +2X2 +X +1 is the only
polynomial on the list which has a Galois group of order 6, and its Mahler
measure is α.

In particular, Corollary 14 implies that θ0 /∈ R and thus answers a ques-
tion raised in [3]. From the comments preceding Theorem 13 we see that
1.83928 . . . is the smallest element of degree at most 3 in R∩N . The root
θ1 = 1.40126 . . . of X6 −X4 −X3 −X2 + 1 which occurs in Example 5 is a
Salem number and the smallest element of R∩N known to us.

Open Lehmer-type Problem Is θ1 the smallest element in R∩N ?

Smyth’s result quoted in the Introduction shows that infN = θ0 =
1.32471 . . .. The theorem below gives a slightly better lower bound for
inf(R∩N ).

Theorem 15 inf(R∩N ) ≥ θ2 = 1.32497 . . . where θ2 is the largest real root
of 4X8 − 5X6 − 2X4 − 5X2 + 4. (Note that θ2 /∈ R ∩N because it is not a
Mahler measure by Lemma 2(vii).)

Proof. The proof uses results of Smyth [18], [19], and a result of one
of the authors [7] combined with the corollary above. Smyth’s proof of the
lower bound for M(α), where α is not reciprocal, is based on considering the
quotient of the minimal polynomial of α and of its reciprocal. Expanding
this quotient as a formal power series in X we get the expression 1 + bkX

k +
blX

l + . . . . Assume first that l ≥ 2k. In his thesis [19] Smyth showed then
that either M(α) = θ0 or M(α) > θ0 + 0.00029 > 1.325. On the other hand,
if l < 2k, then Theorem 1 of [7] implies that M(α) is greater than the largest
real root θ2 = 1.32497 . . . of 4X8− 5X6− 2X4− 5X2 + 4. Hence the interval
(θ0, θ2) contains no nonreciprocal measures. Since θ0 is a cubic Pisot number,
the corollary above shows that θ0 /∈ R. Since N contains no elements smaller
than θ0, we have inf(R∩N ) ≥ θ2.

Example 7 (Compare with [3, Theorem 2].) The set R∩N contains units
of every even degree. Indeed, suppose that ζ is a Pisot number with norm
N(ζ) = 1 and degree 2r > 2, and let f(X) ∈ Z[X] be its minimal polynomial.
Let ζ1 = ζ, ζ2, . . . , ζ2r be the roots of f(X) and suppose that we are in the
generic case (the Galois group of the splitting field of f(X) acts as the full
symmetric group on the set of roots). It is known that in this case the
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multiplicative relations between the roots are all consequences of the trivial
relation ζ1ζ2 . . . ζ2r = 1 (see, for example, [20]). Put m :=

(
2r−2
r−1

)
. Then

ζm has 2r distinct conjugates ζm
i (i = 1, . . . , 2r) and is not reciprocal, so

ζm = M(ζm) ∈ N . On the other hand, because f(X) is generic, α :=
ζ1ζ2 . . . ζr has

(
2r
r

)
conjugates ζi1ζi2 . . . ζir (1 ≤ i1 < i2 < . . . < ir ≤ 2r).

These include ζr+1ζr+2 . . . ζ2r = α−1, and so α is reciprocal. Moreover, one of
these conjugate has absolute value > 1 if and only if i1 = 1, so M(α) = ζm

and hence ζm is also in R .

It is also observed in [10] that the product of half conjugates of the small-
est known Salem number σ = 1.17628 . . . is a nonreciprocal number of degree
16. This number has 8 conjugates on the circle |z| = σ and eight on |z| = 1/σ,
so σ8 ∈ R ∩N .

Another example can be constructed as follows. Take a cubic Pisot unit
ζ with a nonreal conjugate ζ2 (so the Galois group of the field generated
by the conjugates of ζ has order 6). Then ζ/ζ2 is reciprocal and so ζ3 =
M(ζ3) = M(ζ/ζ2) ∈ R ∩N .

All this is related to the fact, first discovered by Boyd [3], [5], that numbers
in R are not necessarily reciprocal. One way to prove this is to construct
reciprocal α with M(α) of odd degree. This can be accomplished as follows.

Theorem 16 Let d ≥ 2. There is a reciprocal unit of degree d whose Mahler
measure is of odd degree (and so nonreciprocal) if and only if d is even but
not a power of 2.

Proof. It is shown in [3] that, if γ is a real but not totally real unit of
odd degree r with dihedral Galois group Dr and γ2 is a conjugate of γ, then
γ/γ2 is reciprocal, and M(γ/γ2) is of odd degree. Assume that d is even but
not a power of 2. Write d = 2mr with odd r > 1. Choose γ as above and put
α := (γ/γ2)

1/2m−1
. Then α is a reciprocal unit of degree 2m−12r = d with

Mahler measure M(α) = M(γ/γ2) of odd degree.
We now show that there is a nonreciprocal unit α with minimal polyno-

mial f(X) of degree 2m such that M(α) is of odd degree d. Indeed, since α is
reciprocal, M(α) is not rational (see [8]), so the set ∆ of large roots of f(X)
has size < 2m. However Lemma 2(vii) shows that 2m divides |∆| d. Since d
is odd this is a contradiction.

In [5] Boyd gives a method of constructing units in R which are not
reciprocal. We can describe a general method of producing such units. Let
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γ be an arbitrary unit of degree r with minimal polynomial f(X) ∈ Z[X] and
let γ = γ1, . . . , γr be the roots of f(X). For simplicity we assume that f(X) is
generic. As we noted earlier, in this case every multiplicative relation between
the roots is a consequence of the trivial relation γ1 . . . γr = ε where ε =
N(γ) = ±1. Now set β := γk1

1 . . . γkr
r where the integers k1, . . . , kr are chosen

so that for some permutation k1′ , . . . , kr′ we have β−1 = γ
k1′
1 . . . γ

kr′
r . Because

f(X) is generic, this means that β−1 is conjugate to β and so β is reciprocal.
Now α := M(β) has the form ±γs1

1 . . . γsr
r for some integers s1, . . . , sr which

can be calculated from the ki when we have sufficient information about the
sizes of the roots γi. For “most” choices of k1, · · · , kr, α is not reciprocal. In
specific cases (see the examples below) we can prove that α is not reciprocal
using the fact that the only relations between the roots are the trivial ones.

Two methods involving Pisot units with norm 1 considered by Boyd in
[5] essentially correspond to the cases where r is even, and either k1 = k2 =
· · · = kr/2 = 2, kr/2+1 = · · · = kd = 0, or k1 = 2, k2 = · · · = kr−1 = 1,
kr = 0. (In the latter case, the fact that the Galois group is the dihedral
group Dr and not Sr makes no difference.) For a Pisot unit γ, Boyd [5]
noted that β is of degree

(
r

br/2c

)
, and α = M(β) is a power of γ and so of

degree r. His second example also gives a nonreciprocal number α ∈ R which
has smaller degree than β. One may get an impression that this is always the
case. However, using the general scheme above we can construct examples
where β is reciprocal, α = M(β) is not reciprocal, and the ratio deg α/ deg β
is arbitrarily large. We also construct an example where β and α have the
same degree.

Example 8 Consider the polynomial f(X) := Xr − X − 1 where r ≥ 3 is
odd. It is readily verified that this polynomial has one real root γ > 1 and
(r − 1)/2 pairs of complex conjugate roots. We shall enumerate these roots
γ1 = γ, γ2, . . . , γr in order of decreasing absolute values. It is known that
Galois group of f(X) is the full symmetric group Sr (see [16, p. 42]) and so,
as we have noted before, every multiplicative relation between the roots is
a consequence of the trivial relation γ1γ2 · · · γr = 1. In particular, not more
than two roots can have the same absolute value (else we would obtain a
relation between these roots). Hence |γi/γj| > 1 if and only if either: i = 1
and j > 1; or i = 2l or 2l + 1 (for some l ≥ 1) and j > 2l + 1. We now take
β := γ1/γ2. It is then easy to show that

α := M(β) = γ2r−3
1 (γ2γ3)

2r−6(γ4γ5)
2r−10 . . . (γr−3γr−2)

4
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using the relation above. Since Sr is 2-transitive, β has r(r − 1) algebraic
conjugates, one of which is β−1. Thus β is reciprocal of degree r(r − 1).
Similarly, since the only relations between the γi are trivial, α has degree
r!/2(r−1)/2 but is not reciprocal. Thus α ∈ R but is not reciprocal, and
deg α/ deg β is unbounded as r →∞. (Similarly, taking a unit γ with Galois
group Sr whose all conjugates except for two smallest in absolute value are
real we will get a reciprocal β = γ1/γ2 of degree r(r − 1) and nonreciprocal
α = M(β) of degree r!/2 instead of r!/2(r−1)/2.)

Example 9 In particular, consider f(X) := X5−X−1. It has one real root
γ1 = 1.16730 . . ., a complex pair γ2 = γ̄3 = 0.18123 . . . + i1.08395 . . . outside
the unit circle, and a complex pair γ4 = γ̄5 = −0.76488 . . . + i0.35247 . . .
inside the unit circle. Put β := γ2

1γ
2
2γ3. Using the fact that f(X) is generic,

it is readily checked that β has
(
5
1

)(
4
2

)
= 30 conjugates and that one of these is

β−1 = γ3γ
2
4γ

2
5 . We can verify that that 13 of these conjugates have absolute

value > 1 and that

α := M(β) = γ21
1 (γ2γ3)

15(γ4γ5)
8 = γ13

1 (γ2γ3)
7

Now a similar argument shows that α also has 30 conjugates but is not
conjugate to its inverse. Thus α ∈ R but is not reciprocal, and deg α =
deg β = 30.
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TEV Vilnius, VSP Utrecht, 1997, 11–21.

[8] A. Dubickas, Mahler measures close to an integer, Canad. Math. Bull.
45 (2002), 196–203.

[9] A. Dubickas, On numbers which are Mahler measures, Monatsh. Math.
(to appear).

[10] A. Dubickas and C.J. Smyth, On the Remak height, the Mahler mea-
sure, and conjugate sets of algebraic numbers lying on two circles, Proc.
Edinburgh Math. Soc. 44 (2001) 1–17.

[11] H.M. Edwards, Divisor Theory, Birkhauser, Boston, Mass., 1990.

[12] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Akad.
Verlag. M.B.H., Leipzig, 1923 (reprinted, Chelsea, New York, 1948).

[13] D.H. Lehmer, Factorization of certain cyclotomic functions, Ann. of
Math. (2) 34 (1933), 461–479.

[14] D.A. Lind, The entropies of topological Mahler shifts and a related class
of algebraic integers, Ergod. Theory and Dynamical Sys. 4 (1984), 283–
300.

23



[15] K. Mahler, On some inequalities for polynomials in several variables, J.
London Math. Soc. 37 (1962) 341–344.

[16] J.-P. Serre, Topics in Galois theory, Jones and Bartlett, Boston, Mass.,
1992.

[17] C.L. Siegel, Algebraic integers whose conjugates lie in the unit circle,
Duke Math. J. 11 (1944), 597–602.

[18] C.J. Smyth, On the product of conjugates outside the unit circle of an
algebraic integer, Bull. London Math. Soc. 3 (1971), 169–175.

[19] C.J. Smyth, Topics in the theory of numbers, Ph. D. Thesis, University
of Cambridge, 1972.

[20] C.J. Smyth, Additive and multiplicative relations connecting conjugate
algebraic numbers, J. Number Theory 23 (1986), 243–254.

[21] B.L. van der Waerden, Modern Algebra, Frederick Ungar Publ., New
York, 1948.

[22] H. Wielandt, Finite Permutation Groups, Academic Press, New York,
1964.

John D. Dixon
School of Mathematics and Statistics
Carleton University
Ottawa ON K1S 5B6
Canada
email: jdixon@math.carleton.ca
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