Existence theorems for r-primitive elements in finite fields

Stephen D. Cohen

Abstract

Let $r \mid q-1$. An element of \mathbb{F}_{q} is r-primitive if it has order $(q-1) / r$. Thus, a primitive element is 1primitive and an r-primitive element is the r th power of a primitive element of \mathbb{F}_{q}. We describe some existence theorems for general r-primitive elements and, in particular, analogues for 2-primitive elements of the following complete existence theorems for primitive elements. Theorem A (1990). For any $n \geq 2$ and $a \in \mathbb{F}_{q}$ (necessarily with $a \neq 0$ if $n=2$) there exists a primitive $\alpha \in \mathbb{F}_{q^{n}}$ with trace a over \mathbb{F}_{q}, except when $a=0, n=3, q=4$. Theorem B (1983). Every line in $\mathbb{F}_{q^{2}}$ contains a primitive element. (A line in $\mathbb{F}_{q^{2}}$ is a set of the form $\left\{\beta(\gamma+a): a \in \mathbb{F}_{q}\right\}$, for some nonzero $\beta \in \mathbb{F}_{q^{2}}, \gamma \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$.) Joint work with Giorgos Kapetanakis.

