Existence theorems for *r*-primitive elements in finite fields

Stephen D. Cohen

Abstract

Let r|q-1. An element of \mathbb{F}_q is r-primitive if it has order (q-1)/r. Thus, a primitive element is 1primitive and an r-primitive element is the rth power of a primitive element of \mathbb{F}_q . We describe some existence theorems for general r-primitive elements and, in particular, analogues for 2-primitive elements of the following *complete* existence theorems for primitive elements.

Theorem A (1990). For any $n \ge 2$ and $a \in \mathbb{F}_q$ (necessarily with $a \ne 0$ if n = 2) there exists a primitive $\alpha \in \mathbb{F}_{q^n}$ with trace a over \mathbb{F}_q , except when a = 0, n = 3, q = 4.

Theorem B (1983). Every line in \mathbb{F}_{q^2} contains a primitive element. (A line in \mathbb{F}_{q^2} is a set of the form $\{\beta(\gamma + a) : a \in \mathbb{F}_q\}$, for some nonzero $\beta \in \mathbb{F}_{q^2}, \gamma \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$.)

Joint work with Giorgos Kapetanakis.