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A function f : Fn
2 → Fn

2 is called almost perfect nonlinear (APN) if f(x + a) + f(x) = b
for all a, b has at most 2 solutions. One may also formulate this as follows: there is no 4-set
{x, y, z, w} ∈ Fn

2 such that

f(x) + f(y) + f(z) + f(w) = 0 (1)

which is sometimes called the Rodier condition.
Several relaxations of APN functions have been introduced: a function f is called partially

APN [1] if f(y) + f(z) + f(y + z) 6= 0 for all y, z 6= 0, y 6= z. That means that the APN
property 1 is satisfied for x = 0 only. Another popular relaxation are differentially 4-uniform
functions where f(x + a) + f(x) = b has at most 4 solutions.

In my talk, I will discuss the question about the number of 4-sets {x, y, z, w} ∈ Fn
2 such

that f(x) + f(y) + f(z) + f(w) = 0 for certain functions f : Fn
2 → Fm

2 where m ≤ n [3, 2].
This gives rise to a design theoretic interpretation of the APN property and can be used

to show, in a purely combinatorial way, that partially APN permutations exist for all n,
thanks to [4].
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