Algebraic curves through Fernando Torres' lens

Herivelto Borges

Universidade de São Paulo

Carleton Finite Fields eSeminar A tribute to **Fernando Torres** Dec 2020

Picture by Cícero Carvalho

Fernando Torres: in the begginng

• Fernando Torres was born in Tarma-Peru in June 23, 1961.

- 2

2/28

Fernando went to Elementary and Middle school in Tarma, at

- the school Niño Jesús en Praga and San Vicente de Paúl. He went to high school in Lima, at
- the Santo Tomás de Aquino school.
- After finishing high school, Fernando went to the Pontificia Universidad Católica del Perú - PUCP, where he got his
 - Undergraduate degree in Mathematics in 1985.
 - Masters degree in Mathematics in 1988.

- He finished his Ph.D in 1993.
- Arnaldo Garcia was his Ph.D. advisor.

Fernando went to Elementary and Middle school in Tarma, at

- the school Niño Jesús en Praga and San Vicente de Paúl. He went to high school in Lima, at
- the Santo Tomás de Aquino school.
- After finishing high school, Fernando went to the Pontificia Universidad Católica del Perú - PUCP, where he got his
 - Undergraduate degree in Mathematics in 1985.
 - Masters degree in Mathematics in 1988.

- He finished his Ph.D in 1993.
- Arnaldo Garcia was his Ph.D. advisor.

Fernando went to Elementary and Middle school in Tarma, at

- the school Niño Jesús en Praga and San Vicente de Paúl. He went to high school in Lima, at
 - the Santo Tomás de Aquino school.

After finishing high school, Fernando went to the Pontificia Universidad Católica del Perú - PUCP, where he got his

- Undergraduate degree in Mathematics in 1985.
- Masters degree in Mathematics in 1988.

- He finished his Ph.D in 1993.
- Arnaldo García was his Ph.D. advisor.

Fernando went to Elementary and Middle school in Tarma, at

- the school Niño Jesús en Praga and San Vicente de Paúl. He went to high school in Lima, at
 - the Santo Tomás de Aquino school.

After finishing high school, Fernando went to the Pontificia Universidad Católica del Perú - PUCP, where he got his

- Undergraduate degree in Mathematics in 1985.
- Masters degree in Mathematics in 1988.

- He finished his Ph.D in 1993.
- Arnaldo García was his Ph.D. advisor.

• the school Niño Jesús en Praga and San Vicente de Paúl. He went to high school in Lima, at

• the Santo Tomás de Aquino school.

After finishing high school, Fernando went to the Pontificia Universidad Católica del Perú - PUCP, where he got his

- Undergraduate degree in Mathematics in 1985.
- Masters degree in Mathematics in 1988.

- He finished his Ph.D in 1993.
- Arnaldo García was his Ph.D. advisor

• the school Niño Jesús en Praga and San Vicente de Paúl. He went to high school in Lima, at

• the Santo Tomás de Aquino school.

After finishing high school, Fernando went to the Pontificia Universidad Católica del Perú - PUCP, where he got his

- Undergraduate degree in Mathematics in 1985.
- Masters degree in Mathematics in 1988.

- He finished his Ph.D in 1993.
- Arnaldo Garcia was his Ph.D. advisor

• the school Niño Jesús en Praga and San Vicente de Paúl. He went to high school in Lima, at

• the Santo Tomás de Aquino school.

After finishing high school, Fernando went to the Pontificia Universidad Católica del Perú - PUCP, where he got his

- Undergraduate degree in Mathematics in 1985.
- Masters degree in Mathematics in 1988.

- He finished his Ph.D in 1993.
- Arnaldo Garcia was his Ph.D. advisor

• the school Niño Jesús en Praga and San Vicente de Paúl. He went to high school in Lima, at

• the Santo Tomás de Aquino school.

After finishing high school, Fernando went to the Pontificia Universidad Católica del Perú - PUCP, where he got his

- Undergraduate degree in Mathematics in 1985.
- Masters degree in Mathematics in 1988.

In August of 1988, Fernando came to Brazil, and started his Ph.D at IMPA.

• He finished his Ph.D in 1993.

• Arnaldo Garcia was his Ph.D. advisor.

• the school Niño Jesús en Praga and San Vicente de Paúl. He went to high school in Lima, at

• the Santo Tomás de Aquino school.

After finishing high school, Fernando went to the Pontificia Universidad Católica del Perú - PUCP, where he got his

- Undergraduate degree in Mathematics in 1985.
- Masters degree in Mathematics in 1988.

In August of 1988, Fernando came to Brazil, and started his Ph.D at IMPA.

- He finished his Ph.D in 1993.
- Arnaldo Garcia was his Ph.D. advisor.

- Fernando remained at IMPA in 1994, on a postdoctoral fellowship.
- In 1995 and 1996 he was in the math department at ICTP, in Trieste.
- In 1997 he went to Essen, Germany, and this was his last year as a postdoc.
- In 1998 he became a faculty in the University of Campinas (Unicamp).
- During his time at Unicamp he went abroad several times, especially to Italy and Spain, where he made many friends and collaborated with many mathematicians.
- Fernando became a full Professor in 2015.
- In May 28th, 2020, Fernando passed away.

・ロット 全部 とうせい きゅう

- Fernando remained at IMPA in 1994, on a postdoctoral fellowship.
- In 1995 and 1996 he was in the math department at ICTP, in Trieste.
- In 1997 he went to Essen, Germany, and this was his last year as a postdoc.
- In 1998 he became a faculty in the University of Campinas (Unicamp).
- During his time at Unicamp he went abroad several times, especially to Italy and Spain, where he made many friends and collaborated with many mathematicians.
- Fernando became a full Professor in 2015.
- In May 28th, 2020, Fernando passed away.

・ロット (雪) (山) (山)

- Fernando remained at IMPA in 1994, on a postdoctoral fellowship.
- In 1995 and 1996 he was in the math department at ICTP, in Trieste.
- In 1997 he went to Essen, Germany, and this was his last year as a postdoc.
- In 1998 he became a faculty in the University of Campinas (Unicamp).
- During his time at Unicamp he went abroad several times, especially to Italy and Spain, where he made many friends and collaborated with many mathematicians.
- Fernando became a full Professor in 2015.
- In May 28th, 2020, Fernando passed away.

- Fernando remained at IMPA in 1994, on a postdoctoral fellowship.
- In 1995 and 1996 he was in the math department at ICTP, in Trieste.
- In 1997 he went to Essen, Germany, and this was his last year as a postdoc.
- In 1998 he became a faculty in the University of Campinas (Unicamp).
- During his time at Unicamp he went abroad several times, especially to Italy and Spain, where he made many friends and collaborated with many mathematicians.
- Fernando became a full Professor in 2015.
- In May 28th, 2020, Fernando passed away.

- Fernando remained at IMPA in 1994, on a postdoctoral fellowship.
- In 1995 and 1996 he was in the math department at ICTP, in Trieste.
- In 1997 he went to Essen, Germany, and this was his last year as a postdoc.
- In 1998 he became a faculty in the University of Campinas (Unicamp).
- During his time at Unicamp he went abroad several times, especially to Italy and Spain, where he made many friends and collaborated with many mathematicians.
- Fernando became a full Professor in 2015.
- In May 28th, 2020, Fernando passed away.

- Fernando remained at IMPA in 1994, on a postdoctoral fellowship.
- In 1995 and 1996 he was in the math department at ICTP, in Trieste.
- In 1997 he went to Essen, Germany, and this was his last year as a postdoc.
- In 1998 he became a faculty in the University of Campinas (Unicamp).
- During his time at Unicamp he went abroad several times, especially to Italy and Spain, where he made many friends and collaborated with many mathematicians.
- Fernando became a full Professor in 2015.
- In May 28th, 2020, Fernando passed away.

- Fernando remained at IMPA in 1994, on a postdoctoral fellowship.
- In 1995 and 1996 he was in the math department at ICTP, in Trieste.
- In 1997 he went to Essen, Germany, and this was his last year as a postdoc.
- In 1998 he became a faculty in the University of Campinas (Unicamp).
- During his time at Unicamp he went abroad several times, especially to Italy and Spain, where he made many friends and collaborated with many mathematicians.
- Fernando became a full Professor in 2015.
- In May 28th, 2020, Fernando passed away.

• Fernando published over 50 articles, and co-authored, together with G. Korchmáros and J.W.P. Hirschfeld, the famous book

• Stéfani Concolato Vieira, 2020+ ϵ

- Matheus Bernardini de Souza, 2017.
- Wanderson Tenório, 2017.
- Steve Vicentim, 2016.
- Paulo César Cavalcante de Oliveira 2016.
- Arnoldo Rafael Teheran Herrera, 2014.
- Beatriz Casulari da Motta Ribeiro, 2011.
- Rafael Peixoto, 2011.
- Alonso Sepúlveda Castellanos, 2008.
- Guilherme Chaud Tizziotti, 2008.
- Juan Elmer Villanueva Zevallos, 2008.
- Ercílio Carvalho da Silva, 2004

- Stéfani Concolato Vieira, 2020+ ϵ
- Matheus Bernardini de Souza, 2017.
- Wanderson Tenório, 2017.
- Steve Vicentim, 2016.
- Paulo César Cavalcante de Oliveira 2016.
- Arnoldo Rafael Teheran Herrera, 2014.
- Beatriz Casulari da Motta Ribeiro, 2011.
- Rafael Peixoto, 2011.
- Alonso Sepúlveda Castellanos, 2008.
- Guilherme Chaud Tizziotti, 2008.
- Juan Elmer Villanueva Zevallos, 2008.
- Ercílio Carvalho da Silva, 2004

- Stéfani Concolato Vieira, 2020+ ϵ
- Matheus Bernardini de Souza, 2017.
- Wanderson Tenório, 2017.
- Steve Vicentim, 2016.
- Paulo César Cavalcante de Oliveira 2016.
- Arnoldo Rafael Teheran Herrera, 2014.
- Beatriz Casulari da Motta Ribeiro, 2011.
- Rafael Peixoto, 2011.
- Alonso Sepúlveda Castellanos, 2008.
- Guilherme Chaud Tizziotti, 2008.
- Juan Elmer Villanueva Zevallos, 2008.
- Ercílio Carvalho da Silva, 2004

- Stéfani Concolato Vieira, 2020+ ϵ
- Matheus Bernardini de Souza, 2017.
- Wanderson Tenório, 2017.
- Steve Vicentim, 2016.
- Paulo César Cavalcante de Oliveira 2016
- Arnoldo Rafael Teheran Herrera, 2014.
- Beatriz Casulari da Motta Ribeiro, 2011.
- Rafael Peixoto, 2011.
- Alonso Sepúlveda Castellanos, 2008.
- Guilherme Chaud Tizziotti, 2008.
- Juan Elmer Villanueva Zevallos, 2008.
- Ercílio Carvalho da Silva, 2004

- Stéfani Concolato Vieira, 2020+ ϵ
- Matheus Bernardini de Souza, 2017.
- Wanderson Tenório, 2017.
- Steve Vicentim, 2016.
- Paulo César Cavalcante de Oliveira 2016.
- Arnoldo Rafael Teheran Herrera, 2014
- Beatriz Casulari da Motta Ribeiro, 2011.
- Rafael Peixoto, 2011.
- Alonso Sepúlveda Castellanos, 2008.
- Guilherme Chaud Tizziotti, 2008.
- Juan Elmer Villanueva Zevallos, 2008.

6/28

- Stéfani Concolato Vieira, 2020+ ϵ
- Matheus Bernardini de Souza, 2017.
- Wanderson Tenório, 2017.
- Steve Vicentim, 2016.
- Paulo César Cavalcante de Oliveira 2016.
- Arnoldo Rafael Teheran Herrera, 2014.
- Beatriz Casulari da Motta Ribeiro, 2011.
- Rafael Peixoto, 2011.
- Alonso Sepúlveda Castellanos, 2008.
- Guilherme Chaud Tizziotti, 2008.
- Juan Elmer Villanueva Zevallos, 2008.

A D A A B A A B A A B A

6/28

- Stéfani Concolato Vieira, 2020+ ϵ
- Matheus Bernardini de Souza, 2017.
- Wanderson Tenório, 2017.
- Steve Vicentim, 2016.
- Paulo César Cavalcante de Oliveira 2016.
- Arnoldo Rafael Teheran Herrera, 2014.
- Beatriz Casulari da Motta Ribeiro, 2011.
- Rafael Peixoto, 2011
- Alonso Sepúlveda Castellanos, 2008.
- Guilherme Chaud Tizziotti, 2008.
- Juan Elmer Villanueva Zevallos, 2008.

A D A A B A A B A A B A

6/28

- Stéfani Concolato Vieira, 2020+ ϵ
- Matheus Bernardini de Souza, 2017.
- Wanderson Tenório, 2017.
- Steve Vicentim, 2016.
- Paulo César Cavalcante de Oliveira 2016.
- Arnoldo Rafael Teheran Herrera, 2014.
- Beatriz Casulari da Motta Ribeiro, 2011.
- Rafael Peixoto, 2011.
- Alonso Sepúlveda Castellanos, 2008.
- Guilherme Chaud Tizziotti, 2008.
- Juan Elmer Villanueva Zevallos, 2008.

イロト 不得下 イヨト イヨト

6/28

- Stéfani Concolato Vieira, 2020+ ϵ
- Matheus Bernardini de Souza, 2017.
- Wanderson Tenório, 2017.
- Steve Vicentim, 2016.
- Paulo César Cavalcante de Oliveira 2016.
- Arnoldo Rafael Teheran Herrera, 2014.
- Beatriz Casulari da Motta Ribeiro, 2011.
- Rafael Peixoto, 2011.
- Alonso Sepúlveda Castellanos, 2008.
- Guilherme Chaud Tizziotti, 2008.
- Juan Elmer Villanueva Zevallos, 2008.

イロト 不得下 イヨト イヨト

6/28

- Stéfani Concolato Vieira, 2020+ ϵ
- Matheus Bernardini de Souza, 2017.
- Wanderson Tenório, 2017.
- Steve Vicentim, 2016.
- Paulo César Cavalcante de Oliveira 2016.
- Arnoldo Rafael Teheran Herrera, 2014.
- Beatriz Casulari da Motta Ribeiro, 2011.
- Rafael Peixoto, 2011.
- Alonso Sepúlveda Castellanos, 2008.
- Guilherme Chaud Tizziotti, 2008.
- Juan Elmer Villanueva Zevallos, 2008.

イロト 不得下 イヨト イヨト

6/28

- Stéfani Concolato Vieira, 2020+ ϵ
- Matheus Bernardini de Souza, 2017.
- Wanderson Tenório, 2017.
- Steve Vicentim, 2016.
- Paulo César Cavalcante de Oliveira 2016.
- Arnoldo Rafael Teheran Herrera, 2014.
- Beatriz Casulari da Motta Ribeiro, 2011.
- Rafael Peixoto, 2011.
- Alonso Sepúlveda Castellanos, 2008.
- Guilherme Chaud Tizziotti, 2008.
- Juan Elmer Villanueva Zevallos, 2008.
- Ercílio Carvalho da Silva, 2004

・ロット (雪) (キヨマ (ヨマ

- Stéfani Concolato Vieira, 2020+ ϵ
- Matheus Bernardini de Souza, 2017.
- Wanderson Tenório, 2017.
- Steve Vicentim, 2016.
- Paulo César Cavalcante de Oliveira 2016.
- Arnoldo Rafael Teheran Herrera, 2014.
- Beatriz Casulari da Motta Ribeiro, 2011.
- Rafael Peixoto, 2011.
- Alonso Sepúlveda Castellanos, 2008.
- Guilherme Chaud Tizziotti, 2008.
- Juan Elmer Villanueva Zevallos, 2008.
- Ercílio Carvalho da Silva, 2004

イロト 不得下 イヨト イヨト

Fernando's Ph.D. thesis

Weierstrass points and double cover of curves (1993)

It is well known that if \mathcal{Y} is a curve of genus $g \geq 2$, then the following are equivalent:

- J² is a hyperelliptic curve;
- stitute events is (S_i) if that thus $K \ni S$ through a states even ((S) $R \ni L \oplus R$). ((S) $R \ni L \oplus R$)

(iii) there exists a point $P\in \mathcal{Y}$ such that $w(P)=\left(\begin{smallmatrix} 0\\ -2 \end{smallmatrix} \right)$.

Weierstrass points and double cover of curves (1993)

It is well known that if \mathcal{Y} is a curve of genus $g \geq 2$, then the following are equivalent:

- (i) \mathcal{Y} is a hyperelliptic curve;
- (ii) there exists a point $P \in \mathcal{Y}$ such that H(P) is hyperelliptic (i.e. $2 \in H(P)$)

(iii) there exists a point $P \in \mathcal{Y}$ such that $w(P) = \begin{pmatrix} g \\ 2 \end{pmatrix}$

Weierstrass points and double cover of curves (1993)

It is well known that if \mathcal{Y} is a curve of genus $g \geq 2$, then the following are equivalent:

- (i) \mathcal{Y} is a hyperelliptic curve;
- (ii) there exists a point $P \in \mathcal{Y}$ such that H(P) is hyperelliptic (i.e. $2 \in H(P)$)

(iii) there exists a point $P \in \mathcal{Y}$ such that $w(P) = \begin{pmatrix} g \\ 2 \end{pmatrix}$

Weierstrass points and double cover of curves (1993)

It is well known that if \mathcal{Y} is a curve of genus $g \geq 2$, then the following are equivalent:

- (i) \mathcal{Y} is a hyperelliptic curve;
- (ii) there exists a point $P \in \mathcal{Y}$ such that H(P) is hyperelliptic (i.e. $2 \in H(P)$)

(iii) there exists a point $P \in \mathcal{Y}$ such that $w(P) = \begin{pmatrix} g \\ 2 \end{pmatrix}$.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 7/28

Fernando's thesis

- Let \mathcal{X} be a curve (algebraic, projective, non-singular, irreducible) defined over an algebraically closed field of characteristic zero.
 - Fernando's definition: Let γ be a non-negative integer. A curve \mathcal{X} is called γ -hyperelitic curve when \mathcal{X} is a double cover of a genus γ curve.
- A numerical semigroup $H \subset \mathbb{M}_0$ is called γ -hyperelitic if the following holds:
- Let \mathcal{X} be a curve (algebraic, projective, non-singular, irreducible) defined over an algebraically closed field of characteristic zero.
 - Fernando's definition: Let γ be a non-negative integer. A curve \mathcal{X} is called γ -hyperelitic curve when \mathcal{X} is a double cover of a genus γ curve.
- A numerical semigroup $H \subset \mathbb{M}_0$ is called γ -hyperelitic if the following holds:

• Let \mathcal{X} be a curve (algebraic, projective, non-singular, irreducible) defined over an algebraically closed field of characteristic zero.

Fernando's definition: Let γ be a non-negative integer. A curve \mathcal{X} is called γ -hyperelitic curve when \mathcal{X} is a double cover of a genus γ curve.

• A numerical semigroup $H \subset \mathbb{N}_0$ is called γ -hyperelitic if the following holds.

(i) H has exactly γ even elements in the interval [2, 4γ].
(ii) 4γ + 2 ∈ H

• Let \mathcal{X} be a curve (algebraic, projective, non-singular, irreducible) defined over an algebraically closed field of characteristic zero.

Fernando's definition: Let γ be a non-negative integer. A curve \mathcal{X} is called γ -hyperelitic curve when \mathcal{X} is a double cover of a genus γ curve.

• A numerical semigroup $H \subset \mathbb{N}_0$ is called γ -hyperelitic if the following holds.

(i) *H* has exactly γ even elements in the interval $[2, 4\gamma]$.

• Let \mathcal{X} be a curve (algebraic, projective, non-singular, irreducible) defined over an algebraically closed field of characteristic zero.

Fernando's definition: Let γ be a non-negative integer. A curve \mathcal{X} is called γ -hyperelitic curve when \mathcal{X} is a double cover of a genus γ curve.

• A numerical semigroup $H \subset \mathbb{N}_0$ is called γ -hyperelitic if the following holds.

(i) H has exactly γ even elements in the interval [2, 4γ].
(ii) 4γ + 2 ∈ H

Theorem (Torres 1995)

Let \mathcal{X} be a curve of genus $g \geq 6\gamma + 4$, for some $\gamma \in \mathbb{Z}_{\geq 0}$. Then the following are equivalent.

- (i) \mathcal{X} is γ -hyperelliptic
- (ii) There exists $P \in \mathcal{X}$ such that H(P) is γ -hyperelliptic
- (iii) There exists a base-point-free complete linear series of \mathcal{X} of projective dimension $2\gamma + 1$ and degree $6\gamma + 2$.

Theorem (Torres 1995)

Let \mathcal{X} be a curve of genus $g \geq 6\gamma + 4$, for some $\gamma \in \mathbb{Z}_{\geq 0}$. Then the following are equivalent.

(i) \mathcal{X} is γ -hyperelliptic

(ii) There exists $P \in \mathcal{X}$ such that H(P) is γ -hyperelliptic

iii) There exists a base-point-free complete linear series of \mathcal{X} of projective dimension $2\gamma + 1$ and degree $6\gamma + 2$.

Theorem (Torres 1995)

Let \mathcal{X} be a curve of genus $g \geq 6\gamma + 4$, for some $\gamma \in \mathbb{Z}_{\geq 0}$. Then the following are equivalent.

- (i) \mathcal{X} is γ -hyperelliptic
- (ii) There exists $P \in \mathcal{X}$ such that H(P) is γ -hyperelliptic

ii) There exists a base-point-free complete linear series of X of projective dimension 2γ + 1 and degree 6γ + 2.

Theorem (Torres 1995)

Let \mathcal{X} be a curve of genus $g \geq 6\gamma + 4$, for some $\gamma \in \mathbb{Z}_{\geq 0}$. Then the following are equivalent.

- (i) \mathcal{X} is γ -hyperelliptic
- (ii) There exists $P \in \mathcal{X}$ such that H(P) is γ -hyperelliptic
- (iii) There exists a base-point-free complete linear series of \mathcal{X} of projective dimension $2\gamma + 1$ and degree $6\gamma + 2$.

Theorem (Torres 1995)

Let \mathcal{X} be a curve of genus g, and let $\gamma \in \mathbb{Z}_{\geq 1}$ be such that

$$g \geq \begin{cases} 30, & \text{if } \gamma = 1\\ \binom{12\gamma-6}{2} + 1, & \text{if } \gamma \geq 2 \end{cases}$$

Then the following are equivalent.

- (i) \mathcal{X} is γ -hyperelliptic
- (ii) There exists $P \in \mathcal{X}$ such that $(g-2\gamma) \to (g-2\gamma)$
- (iii) There exists $P \in \mathcal{X}$ such that $\binom{g-2\gamma}{2} \leq w(P) \leq \binom{g-2\gamma}{2}$

Theorem (Torres 1995)

Let \mathcal{X} be a curve of genus g, and let $\gamma \in \mathbb{Z}_{\geq 1}$ be such that

$$g \geq \begin{cases} 30, & \text{if } \gamma = 1\\ \binom{12\gamma-6}{2} + 1, & \text{if } \gamma \geq 2 \end{cases}$$

Then the following are equivalent.

- (i) \mathcal{X} is γ -hyperelliptic
- (ii) There exists P ∈ X such that ^(g-2γ)₂ ≤ w(P) ≤ (^{g-2γ}₂) + 2γ²
 (iii) There exists P ∈ X such that (^{g-2γ}₂) ≤ w(P) ≤ (^{g-2γ+2}₂)

Theorem (Torres 1995)

Let \mathcal{X} be a curve of genus g, and let $\gamma \in \mathbb{Z}_{\geq 1}$ be such that

$$g \geq \begin{cases} 30, & \text{if } \gamma = 1\\ \binom{12\gamma-6}{2} + 1, & \text{if } \gamma \geq 2 \end{cases}$$

Then the following are equivalent.

- (i) \mathcal{X} is γ -hyperelliptic
- (ii) There exists $P \in \mathcal{X}$ such that $\binom{g-2\gamma}{2} \le w(P) \le \binom{g-2\gamma}{2} + 2\gamma^2$

(iii) There exists $P \in \mathcal{X}$ such that $\binom{g-2\gamma}{2} \leq w(P) \leq \binom{g-2\gamma+2}{2}$

Theorem (Torres 1995)

Let \mathcal{X} be a curve of genus g, and let $\gamma \in \mathbb{Z}_{\geq 1}$ be such that

$$g \geq \begin{cases} 30, & \text{if } \gamma = 1\\ \binom{12\gamma-6}{2} + 1, & \text{if } \gamma \geq 2 \end{cases}$$

Then the following are equivalent.

(i) \mathcal{X} is γ -hyperelliptic

(ii) There exists
$$P \in \mathcal{X}$$
 such that $\binom{g-2\gamma}{2} \le w(P) \le \binom{g-2\gamma}{2} + 2\gamma^2$

(iii) There exists $P \in \mathcal{X}$ such that $\binom{g-2\gamma}{2} \leq w(P) \leq \binom{g-2\gamma+2}{2}$

 <u>Seminal paper</u>: Stöhr, K.O. and Voloch, J.F.: Weierstrass points and curves over finite fields. Proc London Math. Soc.52, 1 – 19(1986)

It gives a new proof to the Riemann-Hypothesis for curves over finite fields, and in several circumstances, it improves the famous Hasse-Well bound:

$$N \le 1 + q + 2g\sqrt{q}.\tag{1}$$

 <u>Seminal paper</u>: Stöhr, K.O. and Voloch, J.F.: Weierstrass points and curves over finite fields. Proc London Math. Soc.52, 1 – 19(1986)

It gives a new proof to the Riemann-Hypothesis for curves over finite fields, and in several circumstances, it improves the famous Hasse-Well bound:

$$N \le 1 + q + 2g\sqrt{q}.\tag{1}$$

 <u>Seminal paper</u>: Stöhr, K.O. and Voloch, J.F.: Weierstrass points and curves over finite fields. Proc London Math. Soc.52, 1 – 19(1986)

It gives a new proof to the Riemann-Hypothesis for curves over finite fields, and in several circumstances, it improves the famous Hasse-Well bound:

 <u>Seminal paper</u>: Stöhr, K.O. and Voloch, J.F.: Weierstrass points and curves over finite fields. Proc London Math. Soc.52, 1 – 19(1986)

It gives a new proof to the Riemann-Hypothesis for curves over finite fields, and in several circumstances, it improves the famous Hasse-Well bound:

$$N \le 1 + q + 2g\sqrt{q}.\tag{1}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで 11/28 Let \mathcal{X} be a curve of genus g, and let $\mathcal{D} = g_d^r$ be a base-point-free \mathbb{F}_q -linear series on \mathcal{X} . Associated to a point $P \in \mathcal{X}$ we have the Hermitian P-invariants

 $j_0(P) = 0 < j_1(P) < \ldots < j_r(P) \le d$

of \mathcal{D} , also called the (\mathcal{D}, P) -orders.

• This sequence is the same, namely,

 $q_1 < q_2 < \dots < q_n$

for all but finitely many points $P \in \mathcal{X}$.

Let \mathcal{X} be a curve of genus g, and let $\mathcal{D} = g_d^r$ be a base-point-free \mathbb{F}_q -linear series on \mathcal{X} . Associated to a point $P \in \mathcal{X}$ we have the Hermitian P-invariants

$$j_0(P) = 0 < j_1(P) < \ldots < j_r(P) \le d$$

of \mathcal{D} , also called the (\mathcal{D}, P) -orders.

for all but finitely many points $P \in \mathcal{X}$

Let \mathcal{X} be a curve of genus g, and let $\mathcal{D} = g_d^r$ be a base-point-free \mathbb{F}_q -linear series on \mathcal{X} . Associated to a point $P \in \mathcal{X}$ we have the Hermitian P-invariants

$$j_0(P) = 0 < j_1(P) < \ldots < j_r(P) \le d$$

of \mathcal{D} , also called the (\mathcal{D}, P) -orders.

• This sequence is the same, namely,

$$\epsilon_0 < \epsilon_1 < \cdots < \epsilon_r,$$

for all but finitely many points $P \in \mathcal{X}$.

In addition to the order-sequence $\epsilon_0, \epsilon_1, \cdots, \epsilon_r$, there exists another sequence of nonnegative integers

$$\nu_0 < \nu_1 < \cdots < \nu_{r-1},$$

called **Frobenius orders** (of \mathcal{D}), which is such that

$$\{\nu_0,...,\nu_{r-1}\} = \{\epsilon_0,...,\epsilon_r\} \setminus \{\epsilon_I\},\$$

for some suitable $I \in \{1, \ldots, r\}$.

The Stöhr-Voloch theorem

Theorem

Let \mathcal{X} be an irreducible, nonsingular, projective, algebraic curve of genus g defined over \mathbb{F}_q , equipped with a base-point-free linear series $\mathcal{D} = g_d^r$ over \mathbb{F}_q . If \mathcal{D} has order-sequence $(\epsilon_0, ..., \epsilon_r)$, and \mathbb{F}_q -Frobenius order-sequence $(\nu_0, ..., \nu_{r-1})$, then the number N of \mathbb{F}_q -rational points of \mathcal{X} satisfies

$$N \le \frac{(\nu_1 + \dots + \nu_{r-1})(2g - 2) + (q + r)d}{\sum_{i=1}^r (\epsilon_i - \nu_{i-1})}.$$
 (2)

- \bullet Determination of the possible genera of maximal curves over \mathbb{F}_{q^2}
- Determination of explicit equations for maximal curves over \mathbb{F}_{q^2} .
- \bullet Classification of maximal curves over \mathbb{F}_{q^2} of a given genus.

The main ingredient of Fernando's approach was the systematic study of the Frobenius linear series

$$\mathcal{D} = |(q+1)P_0|,$$

- \bullet Determination of the possible genera of maximal curves over \mathbb{F}_{q^2}
- Determination of explicit equations for maximal curves over \mathbb{F}_{q^2} .
- Classification of maximal curves over \mathbb{F}_{q^2} of a given genus.

The main ingredient of Fernando's approach was the systematic study of the Frobenius linear series

$$\mathcal{D} = |(q+1)P_0|,$$

- \bullet Determination of the possible genera of maximal curves over \mathbb{F}_{q^2}
- Determination of explicit equations for maximal curves over \mathbb{F}_{q^2} .
- Classification of maximal curves over \mathbb{F}_{q^2} of a given genus.

The main ingredient of Fernando's approach was the systematic study of the Frobenius linear series

$$\mathcal{D} = |(q+1)P_0|,$$

- \bullet Determination of the possible genera of maximal curves over \mathbb{F}_{q^2}
- Determination of explicit equations for maximal curves over \mathbb{F}_{q^2} .
- Classification of maximal curves over \mathbb{F}_{q^2} of a given genus.

The main ingredient of Fernando's approach was the systematic study of the Frobenius linear series

$$\mathcal{D} = |(q+1)P_0|,$$

- \bullet Determination of the possible genera of maximal curves over \mathbb{F}_{q^2}
- Determination of explicit equations for maximal curves over \mathbb{F}_{q^2} .
- Classification of maximal curves over \mathbb{F}_{q^2} of a given genus.

The main ingredient of Fernando's approach was the systematic study of the Frobenius linear series

$$\mathcal{D} = |(q+1)P_0|,$$

Let us consider the set

 $\mathbf{M}(q^2) := \{g \in \mathbf{N} : g \text{ is the genus of an } \mathbb{F}_{q^2} \text{ -maximal curve } \}$

The full description of the above set is a hard problem even for small values of q.

The two first important results regarding ${f M}\left(q^2
ight)$ are

- \bigcirc (lhars-1981) M $(q^2) \subseteq [0,q(q-1)/2].$
- (Rück and Stichtenoth-1994) Up to isomorphism, the Hormitian curve

$\mathcal{H}:y^q+y=x^{q+1}$

over \mathbb{F}_{q^2} is the unique \mathbb{F}_{q^2} -maximal of genus $g = \frac{q(q-1)}{q}$

Let us consider the set

 $\mathbf{M}(q^2) := \{g \in \mathbf{N} : g \text{ is the genus of an } \mathbb{F}_{q^2} \text{ -maximal curve } \}$

The full description of the above set is a hard problem even for small values of q.

The two first important results regarding $\mathbf{M}(q^2)$ are

- (Ihara-1981) $\mathbf{M}(q^2) \subseteq [0, q(q-1)/2].$
- (Rück and Stichtenoth-1994) Up to isomorphism, the Hermitian curve

$$\mathcal{H}: y^q + y = x^{q+1}$$

over \mathbb{F}_{q^2} is the unique \mathbb{F}_{q^2} -maximal of genus $g = \frac{q(q-1)}{2}$.

Let us consider the set

 $\mathbf{M}(q^2) := \{g \in \mathbf{N} : g \text{ is the genus of an } \mathbb{F}_{q^2} \text{ -maximal curve } \}$

The full description of the above set is a hard problem even for small values of q.

The two first important results regarding $\mathbf{M}(q^2)$ are

- (Ihara-1981) $\mathbf{M}(q^2) \subseteq [0, q(q-1)/2].$
- (Rück and Stichtenoth-1994) Up to isomorphism, the Hermitian curve

$$\mathcal{H}: y^q + y = x^{q+1}$$

over \mathbb{F}_{q^2} is the unique \mathbb{F}_{q^2} -maximal of genus $g = \frac{q(q-1)}{2}$.

In 1995, results by Stichtenoth and Xing gave rise to the following question

If the curve A is an θ_{q} -maximal of genus g, then either either $\frac{1}{2} = \frac{1}{2} \frac{(1-1)^2}{2}$, or $\frac{(1-1)^2}{2} = \frac{1}{2} \frac{(1-1)^2}{2}$.

The important ingredients of their proof was the study of the linear system

$$\mathcal{D} = g_{q+1}^{r+1} := |(q+1)P_0|$$

In 1995, results by Stichtenoth and Xing gave rise to the following question

• Is is true that $\mathbf{M}(q^2) \subseteq [0, (q-1)^2/4] \cup \{q(q-1)/2\}?$

If the curve X is an \mathbb{F}_q -maximal of genus g, then either $g = \frac{14\frac{1}{2}}{2}$ or $g \leq \frac{(q-1)^2}{2}$

The important ingredients of their proof was the study of the linear system

$$\mathcal{D} = g_{q+1}^{r+1} := |(q+1)P_0|$$

In 1995, results by Stichtenoth and Xing gave rise to the following question

• Is is true that $\mathbf{M}(q^2) \subseteq [0, (q-1)^2/4] \cup \{q(q-1)/2\}?$

If the curve X is an \mathbb{F}_q -maximal of genus g, then either $g = \frac{14\frac{1}{2}}{2}$ or $g \leq \frac{(q-1)^2}{2}$

The important ingredients of their proof was the study of the linear system

$$\mathcal{D} = g_{q+1}^{r+1} := |(q+1)P_0|$$

In 1995, results by Stichtenoth and Xing gave rise to the following question

• Is is true that $\mathbf{M}(q^2) \subseteq [0, (q-1)^2/4] \cup \{q(q-1)/2\}?$

Theorem (Fuhrmann-Torres (1996))

If the curve \mathcal{X} is an \mathbb{F}_{q^2} -maximal of genus g, then either $g = \frac{q(q-1)}{2}$ or $g \leq \frac{(q-1)^2}{4}$

The important ingredients of their proof was the study of the linear system

$$\mathcal{D} = g_{q+1}^{r+1} := |(q+1)P_0|$$

In 1995, results by Stichtenoth and Xing gave rise to the following question

• Is is true that $\mathbf{M}(q^2) \subseteq [0, (q-1)^2/4] \cup \{q(q-1)/2\}?$

Theorem (Fuhrmann-Torres (1996))

If the curve \mathcal{X} is an \mathbb{F}_{q^2} -maximal of genus g, then either $g = \frac{q(q-1)}{2}$ or $g \leq \frac{(q-1)^2}{4}$

The important ingredients of their proof was the study of the linear system

$$\mathcal{D} = g_{q+1}^{r+1} := |(q+1)P_0|$$

In 1995, results by Stichtenoth and Xing gave rise to the following question

• Is is true that $\mathbf{M}(q^2) \subseteq [0, (q-1)^2/4] \cup \{q(q-1)/2\}?$

Theorem (Fuhrmann-Torres (1996))

If the curve \mathcal{X} is an \mathbb{F}_{q^2} -maximal of genus g, then either $g = \frac{q(q-1)}{2}$ or $g \leq \frac{(q-1)^2}{4}$

The important ingredients of their proof was the study of the linear system

$$\mathcal{D} = g_{q+1}^{r+1} := |(q+1)P_0|$$

Theorem (Fuhrmann-Garcia-Torres (1997))

If q is odd, then any \mathbb{F}_{q^2} -maximal of genus $g = (q-1)^2/4$ is \mathbb{F}_{q^2} -isomorphic to the curve

$$y^q + y = x^{(q+1)/2}$$

Theorem (Fuhrmann-Garcia-Torres (1997))

If q is odd, then any \mathbb{F}_{q^2} -maximal of genus $g = (q-1)^2/4$ is \mathbb{F}_{q^2} -isomorphic to the curve

$$y^q + y = x^{(q+1)/2}$$

Theorem (Fuhrmann-Garcia-Torres (1997))

If q is odd, then any \mathbb{F}_{q^2} -maximal of genus $g = (q-1)^2/4$ is \mathbb{F}_{q^2} -isomorphic to the curve

$$y^q + y = x^{(q+1)/2}$$

Theorem (Abdon-Torres 1998)

If q is even, and
$$\mathcal{X}$$
 is an \mathbb{F}_{q^2} -maximal curve of genus
 $g = \left\lfloor \frac{(q-1)^2}{4} \right\rfloor$, then \mathcal{X} is \mathbb{F}_{q^2} -isomorphic to
 $u^{q/2} + u^{q/4} + \dots + u - x^{q+1}$

provided that q/2 is a Weierstrass non-gap at some point of the \mathcal{X} .

Theorem (Korchmáros-Torres (2002))

The genus g of an \mathbb{F}_{q^2} -maximal curve satisfies either

$$g \leq \lfloor \left(q^2 - q + 4\right)/6 \rfloor$$
 or $g = \lfloor \frac{(q-1)^2}{4} \rfloor$ or $g = (q-1)q/2$.

To finish this part, I want to point out that one of Fernando's most recent results regarding the set $\mathbf{M}(q^2)$ can be found in

(Arakelias-Talazolian-Torres) On the spectrum for the genera of maximal curves over small Fields. Adv. Math. Commun. 12 (2018), 343–449.

Theorem (Korchmáros-Torres (2002))

The genus g of an \mathbb{F}_{q^2} -maximal curve satisfies either

$$g \leq \lfloor \left(q^2 - q + 4\right)/6 \rfloor$$
 or $g = \lfloor \frac{(q-1)^2}{4} \rfloor$ or $g = (q-1)q/2$.

To finish this part, I want to point out that one of Fernando's most recent results regarding the set $\mathbf{M}(q^2)$ can be found in

(Arakelias-Talazolian-Torres) On the spectrum for the genera of maximal curves over small Fields. Adv. Math. Commun. 12 (2018), 343–449.

Theorem (Korchmáros-Torres (2002))

The genus g of an \mathbb{F}_{q^2} -maximal curve satisfies either

$$g \leq \lfloor \left(q^2 - q + 4\right)/6 \rfloor$$
 or $g = \lfloor \frac{(q-1)^2}{4} \rfloor$ or $g = (q-1)q/2$.

To finish this part, I want to point out that one of Fernando's most recent results regarding the set $\mathbf{M}(q^2)$ can be found in

• (Arakelian-Tafazolian-Torres) On the spectrum for the genera of maximal curves over small Fields. Adv. Math. Commun. 12 (2018), 143–149.

Natural Embedding Theorem

Theorem (Korchmáros-Torres (2001))

Every \mathbb{F}_{q^2} -maximal curve is \mathbb{F}_{q^2} -isomorphic to a curve of degree q+1 lying on a non-degenerate Hermitian variety $\mathcal{H}_{m,q} \subseteq \mathbb{P}^m$.

Natural Embedding Theorem

Theorem (Korchmáros-Torres (2001))

Every \mathbb{F}_{q^2} -maximal curve is \mathbb{F}_{q^2} -isomorphic to a curve of degree q+1 lying on a non-degenerate Hermitian variety $\mathcal{H}_{m,q} \subseteq \mathbb{P}^m$.

Natural Embedding Theorem

Theorem (Korchmáros-Torres (2001))

Every \mathbb{F}_{q^2} -maximal curve is \mathbb{F}_{q^2} -isomorphic to a curve of degree q+1 lying on a non-degenerate Hermitian variety $\mathcal{H}_{m,q} \subseteq \mathbb{P}^m$.

Theorem (Korchmáros-Torres (2001))

Every \mathbb{F}_{q^2} -maximal curve is \mathbb{F}_{q^2} -isomorphic to a curve of degree q+1 lying on a non-degenerate Hermitian variety $\mathcal{H}_{m,q} \subseteq \mathbb{P}^m$.

Let \mathcal{X} be a non-singular, projective, geometrically irreducible, algebraic curve of genus g over \mathbb{F}_q . Let $D = P_1 + \cdots + P_n$ and

G be \mathbb{F}_q -rational divisors on \mathcal{X} , where P_1, \ldots, P_n are pairwise distinct rational points on \mathcal{X} , not in the support of G. Let $\mathcal{L}(G)$ be the Riemann-Roch space associated to G; The \mathbb{F}_q -vector space

 $C_{\mathcal{L}}(D,G) := \{ (f(P_1), \dots, f(P_n)) \mid f \in \mathcal{L}(G) \} \subseteq \mathbb{F}_q^n \}$

is an [n, k, d]-code with parameters

 $k = \ell(G) - \ell(G - D)$ and $d \ge n - \deg G$

Some challenging problems are

- \sim Computation of the parameters |k, d|

Let \mathcal{X} be a non-singular, projective, geometrically irreducible, algebraic curve of genus g over \mathbb{F}_q . Let $D = P_1 + \cdots + P_n$ and G be \mathbb{F}_q -rational divisors on \mathcal{X} , where P_1, \ldots, P_n are pairwise distinct rational points on \mathcal{X} , not in the support of G. Let $\mathcal{L}(G)$ be the Riemann-Roch space associated to G; The \mathbb{F}_q -vector space

 $C_{\mathcal{L}}(D,G) := \{ (f(P_1), \dots, f(P_n)) \mid f \in \mathcal{L}(G) \} \subseteq \mathbb{F}_q^n \}$

is an [n, k, d]-code with parameters

 $k = \ell(G) - \ell(G - D)$ and $d \ge n - \deg G$

Some challenging problems are

- \sim Computation of the parameters |k, d|

Let \mathcal{X} be a non-singular, projective, geometrically irreducible, algebraic curve of genus g over \mathbb{F}_q . Let $D = P_1 + \cdots + P_n$ and G be \mathbb{F}_q -rational divisors on \mathcal{X} , where P_1, \ldots, P_n are pairwise distinct rational points on \mathcal{X} , not in the support of G. Let $\mathcal{L}(G)$ be the Riemann-Roch space associated to G; The \mathbb{F}_q -vector space

$$C_{\mathcal{L}}(D,G) := \{ (f(P_1), \dots, f(P_n)) \mid f \in \mathcal{L}(G) \} \subseteq \mathbb{F}_q^n$$

is an [n, k, d]-code with parameters

$$k = \ell(G) - \ell(G - D)$$
 and $d \ge n - \deg G$

Some challenging problems are

- Computation of the parameters |k|

Let \mathcal{X} be a non-singular, projective, geometrically irreducible, algebraic curve of genus g over \mathbb{F}_q . Let $D = P_1 + \cdots + P_n$ and G be \mathbb{F}_q -rational divisors on \mathcal{X} , where P_1, \ldots, P_n are pairwise distinct rational points on \mathcal{X} , not in the support of G. Let $\mathcal{L}(G)$ be the Riemann-Roch space associated to G; The \mathbb{F}_q -vector space

$$C_{\mathcal{L}}(D,G) := \{ (f(P_1), \dots, f(P_n)) \mid f \in \mathcal{L}(G) \} \subseteq \mathbb{F}_q^n$$

is an [n, k, d]-code with parameters

$$k = \ell(G) - \ell(G - D)$$
 and $d \ge n - \deg G$

Some challenging problems are

• Computation of the parameters [k, d].

• Construction of codes with large minimum distance d.

Let \mathcal{X} be a non-singular, projective, geometrically irreducible, algebraic curve of genus g over \mathbb{F}_q . Let $D = P_1 + \cdots + P_n$ and G be \mathbb{F}_q -rational divisors on \mathcal{X} , where P_1, \ldots, P_n are pairwise distinct rational points on \mathcal{X} , not in the support of G. Let $\mathcal{L}(G)$ be the Riemann-Roch space associated to G; The \mathbb{F}_q -vector space

$$C_{\mathcal{L}}(D,G) := \{ (f(P_1), \dots, f(P_n)) \mid f \in \mathcal{L}(G) \} \subseteq \mathbb{F}_q^n$$

is an [n, k, d]-code with parameters

$$k = \ell(G) - \ell(G - D) \quad \text{ and } \quad d \ge n - \deg G$$

Some challenging problems are

- Computation of the parameters [k, d].
- Construction of codes with large minimum distance d.

21/28

- Oarvalho, G.; Munuera, G.; da Silva, E.; Torres, E. Nearorders and codes: JEEE Trans. Inform. Theory 53(5)(2007), 1919 – 1924
 - Munuers, G.; Torres, P.: A note on the order bound on the minimum distance of A.G codes and acute semigroups. Adv. Math. Commun. 2(2)(2008), 175 – 181
- Geil, O.; Munuers, C.; Ruano, D.; Torres, F.: On the order bounds for one-point A.G. codes. Adv. Math. Commun. 5(3) (2011), 489 – 504.
- Munuers, C.; Sepülveda, A.; Torres, P.: Castle curves and codes. Adv. Math. Commun. 3(2009), no. 4,399-408

- Carvalho, C.; Munuera, C.; da Silva, E.; Torres, F..Near orders and codes. IEEE Trans. Inform. Theory 53(5)(2007), 1919 1924
- Munuera, C.; Torres, F.: A note on the order bound on the minimum distance of AG codes and acute semigroups. Adv. Math. Commun. 2(2)(2008),175 – 181
- Geil, O.; Munuera, C.; Ruano, D.; Torres, F.. On the order bounds for one-point AG codes. Adv. Math. Commun. 5(3)(2011), 489 - 504.
- Munuera, C.; Sepúlveda, A.; Torres, F.. Castle curves and codes. Adv. Math. Commun. 3(2009), no. 4,399-408

- Carvalho, C.; Munuera, C.; da Silva, E.; Torres, F..Near orders and codes. IEEE Trans. Inform. Theory 53(5)(2007), 1919 1924
- Munuera, C.; Torres, F.: A note on the order bound on the minimum distance of AG codes and acute semigroups. Adv. Math. Commun. 2(2)(2008), 175 – 181
- Geil, O.; Munuera, C.; Ruano, D.; Torres, F.: On the order bounds for one-point AG codes. Adv. Math. Commun. 5(3)(2011), 489 - 504.
- Munuera, C.; Sepúlveda, A.; Torres, F.. Castle curves and codes. Adv. Math. Commun. 3(2009), no. 4,399 - 408

- Carvalho, C.; Munuera, C.; da Silva, E.; Torres, F..Near orders and codes. IEEE Trans. Inform. Theory 53(5)(2007), 1919 1924
- Munuera, C.; Torres, F.. A note on the order bound on the minimum distance of AG codes and acute semigroups. Adv. Math. Commun. 2(2)(2008), 175 - 181
- Geil, O.; Munuera, C.; Ruano, D.; Torres, F.. On the order bounds for one-point AG codes. Adv. Math. Commun. 5(3)(2011), 489 504.
- Munuera, C.; Sepúlveda, A.; Torres, F.: Castle curves and codes. Adv. Math. Commun. 3(2009), no. 4,399 - 408

- Carvalho, C.; Munuera, C.; da Silva, E.; Torres, F..Near orders and codes. IEEE Trans. Inform. Theory 53(5)(2007), 1919 1924
- Munuera, C.; Torres, F.. A note on the order bound on the minimum distance of AG codes and acute semigroups. Adv. Math. Commun. 2(2)(2008), 175 - 181
- Geil, O.; Munuera, C.; Ruano, D.; Torres, F.. On the order bounds for one-point AG codes. Adv. Math. Commun. 5(3)(2011), 489 504.
- Munuera, C.; Sepúlveda, A.; Torres, F.. Castle curves and codes. Adv. Math. Commun. 3(2009), no. 4,399-408

- Munuera, C.; Tenório, W.; Torres, F.. Quantum error-correcting codes of Castle type. Quantum Inf. Process. 15 (2016), no. 10,4071 - 4088
- Munuera, C.: Tenório, W.; Torres, F.. Locally recoverable codes from algebraic curves with separated variables. Adv. in Mathematics of Communications 14(2), 2020, 265 - 27
- Farrán, J. I.; Munuera, C.; Tizziotti, G.; Torres, F., Gröbner basis for norm-trace codes. J. Symbolic Comput. 48(2013), 54 - 63.
- Munuera, C.; Sepúlveda, A.; Torres, F. Generalized Hermitian codes. Des. Codes Cryptogr. 69(2013), no. 1,123 – 130.

- Munuera, C.; Tenório, W.; Torres, F.. Quantum error-correcting codes of Castle type. Quantum Inf. Process. 15 (2016), no. 10,4071 - 4088
- Munuera, C.: Tenório, W.; Torres, F.. Locally recoverable codes from algebraic curves with separated variables. Adv. in Mathematics of Communications 14(2), 2020, 265 - 27
- Farrán, J. I.; Munuera, C.; Tizziotti, G.; Torres, F..
 Gröbner basis for norm-trace codes. J. Symbolic Comput. 48(2013), 54 - 63.
- Munuera, C.; Sepúlveda, A.; Torres, F. Generalized Hermitian codes. Des. Codes Cryptogr. 69(2013), no. 1,123 – 130.

- Munuera, C.; Tenório, W.; Torres, F.: Quantum error-correcting codes of Castle type. Quantum Inf. Process. 15 (2016), no. 10,4071 - 4088
- Munuera, C.: Tenório, W.; Torres, F.. Locally recoverable codes from algebraic curves with separated variables. Adv. in Mathematics of Communications 14(2), 2020, 265 - 27
- Farrán, J. I.; Munuera, C.; Tizziotti, G.; Torres, F..
 Gröbner basis for norm-trace codes. J. Symbolic Comput. 48(2013), 54 - 63.
- Munuera, C.; Sepúlveda, A.; Torres, F. Generalized Hermitian codes. Des. Codes Cryptogr. 69(2013), no. 1,123 – 130.

- Munuera, C.; Tenório, W.; Torres, F.. Quantum error-correcting codes of Castle type. Quantum Inf. Process. 15 (2016), no. 10,4071 - 4088
- Munuera, C.: Tenório, W.; Torres, F.. Locally recoverable codes from algebraic curves with separated variables. Adv. in Mathematics of Communications 14(2), 2020, 265 - 27
- Farrán, J. I.; Munuera, C.; Tizziotti, G.; Torres, F..
 Gröbner basis for norm-trace codes. J. Symbolic Comput. 48(2013), 54 - 63.
- Munuera, C.; Sepúlveda, A.; Torres, F. Generalized Hermitian codes. Des. Codes Cryptogr. 69(2013), no. 1,123 - 130.

An (n, d)-arc \mathcal{K} is a set of n points of the projective plane PG(2, q) over \mathbb{F}_q such that no line meets \mathcal{K} in more than d points and there exists a line that meets \mathcal{K} in exactly d points.

The arc is called **complete** if it is not contained in a (n + 1, d)-arc; that is to say, if for every point P of $PG(2, q) \setminus \mathcal{K}$ there is a line through P meeting \mathcal{K} in d points.

FACT: (n, d)-arcs give rise linear codes with parameters [n, 3, n - d]

An (n, d)-arc \mathcal{K} is a set of n points of the projective plane PG(2, q) over \mathbb{F}_q such that no line meets \mathcal{K} in more than d points and there exists a line that meets \mathcal{K} in exactly d points.

The arc is called **complete** if it is not contained in a (n+1, d)-arc; that is to say, if for every point P of $PG(2, q) \setminus \mathcal{K}$ there is a line through P meeting \mathcal{K} in d points.

An (n, d)-arc \mathcal{K} is a set of n points of the projective plane PG(2, q) over \mathbb{F}_q such that no line meets \mathcal{K} in more than d points and there exists a line that meets \mathcal{K} in exactly d points.

The arc is called **complete** if it is not contained in a (n+1, d)-arc; that is to say, if for every point P of $PG(2, q) \setminus \mathcal{K}$ there is a line through P meeting \mathcal{K} in d points.

• FACT: (n, d)-arcs give rise linear codes with parameters [n, 3, n - d]

- Plane curves of degree d in PG(2,q) are natural sources of (n,d)-arcs
- The Hermitian curve $y^q + y = x^{q+1}$ gives rise to a complete $(q^3 + 1, q + 1)$ -arc in $PG(2, q^2)$.
- Non-singular \mathbb{F}_{q^2} -maximal curves give rise to complete $(1+q^2+2q,3)$ -arc in $PG(2,q^2)$.
- Question: Which curves of degree d and with n rational points give rise to a complete (n, d)-arc in PG(2, q)?

- Plane curves of degree d in PG(2,q) are natural sources of (n,d)-arcs
- The Hermitian curve $y^q + y = x^{q+1}$ gives rise to a complete $(q^3 + 1, q + 1)$ -arc in $PG(2, q^2)$.
- Non-singular \mathbb{F}_{q^2} -maximal curves give rise to complete $(1+q^2+2q,3)$ -arc in $PG(2,q^2)$.
- Question: Which curves of degree d and with n rational points give rise to a complete (n, d)-arc in PG(2, q)?

- Plane curves of degree d in PG(2,q) are natural sources of (n,d)-arcs
- The Hermitian curve $y^q + y = x^{q+1}$ gives rise to a complete $(q^3 + 1, q + 1)$ -arc in $PG(2, q^2)$.
- Non-singular \mathbb{F}_{q^2} -maximal curves give rise to complete $(1+q^2+2q,3)$ -arc in $PG(2,q^2)$.
- Question: Which curves of degree d and with n rational points give rise to a complete (n, d)-arc in PG(2, q)?

- Plane curves of degree d in PG(2,q) are natural sources of (n,d)-arcs
- The Hermitian curve $y^q + y = x^{q+1}$ gives rise to a complete $(q^3 + 1, q + 1)$ -arc in $PG(2, q^2)$.
- Non-singular \mathbb{F}_{q^2} -maximal curves give rise to complete $(1+q^2+2q,3)$ -arc in $PG(2,q^2)$.
- Question: Which curves of degree d and with n rational points give rise to a complete (n, d)-arc in PG(2, q)?

- M. Giulietti, F. Pambianco, F. Torres and E. Ughi, On complete arcs arising from plane curves, Des. Codes Cryptogr. 25(2002), 237 – 246.
- H. Borges, B. Motta, F. Torres, Complete arcs arising from a generalization of the Hermitian curve, Acta Arith., 164(2014)101 – 118

- M. Giulietti, F. Pambianco, F. Torres and E. Ughi, On complete arcs arising from plane curves, Des. Codes Cryptogr. 25(2002), 237 – 246.
- H. Borges, B. Motta, F. Torres, Complete arcs arising from a generalization of the Hermitian curve, Acta Arith., 164(2014)101 - 118

Other important results by Fernando

- There are many other important results by Fernando that were not reported here.
- The same is true for his endless list of important collaborators: A. Cossidente, R. Pellikaan, M. Bernadini, J. Villanueva, D. Bartoli, M. Montanucci, A. Kazemifard, J.J. Moyano-Fernández, ...

Other important results by Fernando

- There are many other important results by Fernando that were not reported here.
- The same is true for his endless list of important collaborators: A. Cossidente, R. Pellikaan, M. Bernadini, J. Villanueva, D. Bartoli, M. Montanucci, A. Kazemifard, J.J. Moyano-Fernández, ...

One of his many happy moments:

We express our profound gratitude for each moment that we were privileged to live and work with you, Fernando.

28 / 28