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Notations

Notations

Fq finite field of q elements and characteristic p,

Fq algebraic closure of Fq,

M(r) the set of monic polynomials of Fq[T ] of degree r .

Let λ := 1λ1 . . . rλr be such that r = λ1 + 2λ2 + · · ·+ rλr .

f ∈ M(r) has factorization pattern λ if it has λi irreducible factors
of degree i in Fq[T ] for 1 ≤ i ≤ r .

For A ⊂ M(r), we denote

Tλ(A) := |{f ∈ A : f has factorization pattern λ}|.
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Factorization patterns on linear families

[Cohen, Acta Arith. 17, 1970] For fixed r ,

Tλ(M(r)) = T (λ) qr +O(qr−
1
2 ),

where T (λ) is the proportion of elements in the r th symmetric
group with cycle pattern λ.

Examples

If λ := (0, . . . , 0, 1) (irreducible polynomials), then

T (λ) =
1

r
and Tλ(M(r)) ≈ qr

r
(Gauss).

For λ := (r , 0, . . . , 0) (linear factors),

T (λ) =
1

r !
and Tλ(M(r)) ≈ qr

r !
.
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Factorization patterns on linear families

We call A ⊂ M(r) uniformly distributed if

Tλ(A) ∼ T (λ)|A|.

[Cohen, J. London Math. Soc. 6, 1972] Let p > r . Then the
following linear families A ⊂ M(r) are uniformly distributed:

The elements of M(r) with s coefficients preassigned
(assuming A 6⊂ Fq[T l ] for any l > 1);

Cr (f , g) := {h ∈ M(r) : h ≡ f mod g}, where f , g ∈ Fq[T ]
are relatively prime with deg f < r .
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Factorization patterns on linear families

[Bank et al, Duke J Math 164, 2015] For any characteristic p, the
following linear families A ⊂ M(r) are uniformly distributed:

The elements of M(r) with the first r − s ≥ 3 consecutive
coefficients preassigned;

Cr (f , g) := {h ∈ M(r) : h ≡ f mod g}, where f , g ∈ Fq[T ]
are relatively prime with deg f ≤ r − 4.

[Cesaratto, M, Pérez, Combinatorica 37, 2017] For characteristic
p > 2, let As ⊂ M(r) be set of f ∈ M(r) with the first r − s ≥ 3
consecutive coefficients preassigned. Then

|Tλ(As)−T (λ)qs | ≤ qs−1

(
2T (λ)rs

(r − 1)!

(r − s)!
q

1
2 +20T (λ)r2s2 (r − 1)!2

(r − s)!2

)
.
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Factorization patterns on nonlinear families

Problem 2.2 of [Gao, Howell, Panario, Proc. Fq4, 1999] asks for
estimates on the number of polynomials of a given degree with a
given factorization pattern lying in nonlinear families:

for m < r , indeterminates A := (Ar−1, . . . ,A0) over Fq, and
G1, . . . ,Gm ∈ Fq[A], consider the algebraic variety

W = {a ∈ Fr
q : G1(a) = 0, . . . ,Gm(a) = 0},

and the family

A := {T r + ar−1T
r−1 + · · ·+ a0 ∈ M(r) : (ar−1, . . . , a0) ∈W }.

[Chatzidakis et al., J. Reine Angew. Math. 427, 1992]
[Fried et al., Israel J. Math. 85, 1994] Let n := dimW . There is a
constant d ≥ 0 such that, for large q,

|Tλ(A)| = dT (λ)qn +O(qn−
1
2 ).
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Factorization patterns on nonlinear families

Aims:

provide a general criterion for a nonlinear family A ⊂ M(r) to
be uniformly distributed (in the sense of Cohen);

find explicit estimates on |Aλ| for any factorization pattern λ.

For a fixed k, let Fq[Ak ] := Fq[Ar−1, . . . ,Ak+1,Ak−1, . . . ,A0], let
G1, . . . ,Gm ∈ Fq[Ak ] and W := {G1 = 0, . . . ,Gm = 0}. Let

A := {T r +ar−1T
r−1 +· · ·+a0 ∈ M(r) : Gi (ak) = 0 (1 ≤ i ≤ m)}.

For the weight wt : Fq[Ak ]→ N0, wt(Aj) := r − j (0 ≤ j ≤ r − 1),
denote by Gwt

1 , . . . ,Gwt
m the components of highest weight of

G1, . . . ,Gm. Let (∂G/∂Ak) be the Jacobian matrix of G1, . . . ,Gm

with respect to Ak . Assume that G1, . . . ,Gm satisfy the
conditions:

(H1) G1, . . . ,Gm form a regular sequence of Fq[Ak ].

(H2) (∂G/∂Ak) has full rank on every point of W .

(H3) Gwt
1 , . . . ,Gwt

m satisfy (H1) and (H2).
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Factorization patterns on nonlinear families

Let Fq[T ]r be the set of monic polynomials of Fq[T ] of degree r .
For B ⊂ Fq[T ]r , the discriminant locus D(B) of B is

D(B) := {f ∈ B: f not square–free}
:= {f ∈ B : Disc(f ) := Res(f , f ′) = 0}.

(see [Fried, Smith, Acta Arith 44, 1984] and [M, Pérez, Privitelli,
Acta Arith 165, 2014] for the study of discriminant loci).

Our next conditions require that the discriminant intersects well
W , and the same happens on the highest weight:

(H4) D(W ) has codimension ≥ 1 in W .

(H5) D(V (Gwt
1 , . . . ,Gwt

m )) has codim ≥ 1 in V (Gwt
1 , . . . ,Gwt

m ).
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Factorization patterns on nonlinear families

We also need the first subdiscriminant locus S1(B) of B ⊂ Fq[T ]r :

S1(B) := {f ∈ D(B) : deg gcd(f , f ′) > 1}
:= {f ∈ D(B) : Subdisc(f ) := Subres(f , f ′) = 0}.

We require that D(W ) and S1(W ) intersect well W :

(H6) (A0 · S1)(W ) := {a0 ∈W : a0 = 0} ∪ S1(W ) has codimension
at least one in D(W ).
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Examples of linear and nonlinear families

Suppose that char(Fq) > 3. Let r ,m ∈ Z≥0 be such that
3 ≤ r −m and L1, . . . , Lm ∈ Fq[Ar−1, . . . ,A3] linear polynomials
which are linearly independent. In [Cesaratto, M, Pérez,
Combinatorica 37, 2017] the following linear family is considered:

A :=
{
T r + ar−1T

r−1 + · · ·+ a0 ∈ M(r) : Lj(ar−1, . . . , a3) = 0 ∀j
}
.

We have:

Lemma: L1, . . . , Lm satisfy hypotheses (H1)–(H6).
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Examples of linear and nonlinear families

In [Gao, Howell, Panario, Proc. Fq4, 1999] there are experimental
results on the number of irreducible polynomials on certain families
over Fq. In particular, the following family is considered.

Suppose that char(Fq) > 3. For s, r ∈ Z≥0 with 3 ≤ s ≤ r − 2, let

A := {T r + g(T )T + 1 : g ∈ Fq[T ] and deg g ≤ s − 1}.

Observe that A is isomorphic to the set of Fq–rational points of
the affine Fq–subvariety of Ar defined by

G1 := A0 − 1, G2 := As+1, . . . ,Gr−s := Ar−1.

Lemma: A satisfies hypotheses (H1)–(H6) are fulfilled.
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Examples of linear and nonlinear families

Let r , t1, . . . , tr ∈ Z≥0 with r even. Suppose that char(Fq) > 3
does not divide (r − 1)(r + 1)

(
(r − 1)r−1 + r r

)
. Consider the

polynomial G ∈ Fq[A1, . . . ,Ar ] defined in the following way:

G := det


Ar 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
A1 . . . . . . Ar 1


:=

∑
t1+2t2+...+rtr=r

(−1)∆(t1,...,tr ) (t1 + · · ·+ tr )!

t1! . . . tr !
At1
r · · ·A

tr
1 ,

where ∆(t1, t2, . . . , tr ) := r −
∑r

i=1 ti (this is the well–known
Trudi formula). Hr := G (Πr , . . . ,Π1) is critical in the study of
deep holes of the standard Reed–Solomon codes (see Cafure, M,
Privitelli, Adv. Math. Commun. 6, 2012).
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Examples of linear and nonlinear families

We consider the following family of polynomials:

AN := {T r+1 + arT
r + · · ·+ a0 ∈ M(r + 1) : G (ar , . . . , a1) = 0}.

Observe that AN may be seen as the set of Fq–rational points of
the Fq–variety W := V (G ) ⊂ Ar+1.

Lemma: AN satisfies hypotheses (H1)–(H6).
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Factorization patterns on nonlinear families

A simple example: consider λ := (r , 0, . . . , 0) and the family

As :=
{
T r + ar−1T

r−1 + · · ·+ a0 : ar−s−1, . . . , a0 ∈ Fq
}
.

Let X1, . . . ,Xr be indeterminates, X := (X1, . . . ,Xr ) and

G (X ,T ) := (T + X1) · · · (T + Xr ) = T r + Π1T
r−1 + · · ·+ Πr ,

where Π1, . . . ,Πr ∈Fq[X ] are the elementary symmetric polynomials.

f ∈ M(r) has pattern λ ⇔ ∃ x ∈ Fr
q with f = G (x ,T ).

G (x ,T ) ∈ As ⇔ Πj(x) = ar−j for 1 ≤ j ≤ s.

We conclude that

Tλ(As) ∼ 1

r !
·
∣∣{Π1 = ar−1, . . . ,Πs = ar−s} ∩ Fr

q

∣∣ .
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Factorization patterns on nonlinear families

Fix ar−1, . . . , ar−s ∈ Fq and consider the Fq–variety

V := {x ∈ Fr
q : Π1(x) = ar−1, . . . ,Πs(x) = ar−s}.

Fact: V is a complete intersection. In particular,

all the irreducible components of V have dimension r − s;

the degree of V is ≤ deg Π1 · · · deg Πs = s!.

To estimate |V (Fq)|, we need to prove that V is absolutely
irreducible (=irreducible as an Fq–variety). For this purpose, we
study its singular locus.
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Factorization patterns on nonlinear families

In Cesaratto, M, Pérez, Privitelli [J. Combin. Theory A 124, 2014],
M, Pérez, Privitelli [Acta Arith. 165, 2014], Cesaratto, M, Pérez
[Combinatorica 37, 2017] we study the singular locus of complete
intersections defined by symmetric polynomials.

Theorem: Singular points x := (x1, . . . , xr ) ∈ V correspond to
polynomials f ∈ As which are not square-free.

This leads us to consider the discriminant locus of As . Let
a := (ar−s−1, . . . , a0) ∈ Fr−s

q and let

fa := T r+ar−1T
r−1+· · ·+ar−sT

r−s+ar−s−1T
r−s−1+· · ·+a0 ∈ As .

Then the discriminant locus of As is

D(As) := {a ∈ Fr−s
q : fa is not square-free}.
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Factorization patterns on nonlinear families

Theorem (Fried, Smith [Acta Arith. 44, 1984]): Let
A(i1, . . . , is) ⊂ M(r) be the family of monic polynomials with fixed
coefficients ai1 , . . . , ais . There exists n(i1, . . . , is) ∈ N such that
D(A(i1, . . . , is)) is absolutely irreducible if gcd

(
n(i1, . . . , is), p

)
= 1.

In M, Pérez, Privitelli [Acta Arith. 165, 2014] we prove:

Theorem: For p > 2 and r − s ≥ 3, the discriminant locus D(As)
is absolutely irreducible.

Corollary: Sing(V ) has dimension ≤ dim(V )− 2.

Combining this result with explicit estimates for singular projective
complete intersections we obtain:

Theorem: For p > 2 y r − s ≥ 3, we have∣∣∣Tλ(As)− qr−s

r !

∣∣∣ ≤ (r + 2)!

r !
qr−s−

1
2 + 6

((s + 2)!)2

r !
qr−s−1.

(precise for s . r/2)
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Factorization patterns on nonlinear families

Our main result shows that:

any family A satisfying (H1)–(H6) is uniformly distributed
(in the sense of Cohen),

provides explicit estimates on |Aλ|.

More precisely, we have the following result:

Theorem: For m < r and a factorization pattern λ, we have∣∣|Aλ|−T (λ) qr−m
∣∣ ≤ qr−m−1

(
T (λ)(Dδ q

1
2 +14D2δ2 +r2δ)+r2δ

)
,

where δ :=
∏m

i=1 wt(Gi ) and D :=
∑m

i=1(wt(Gi )− 1).
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Average-case analysis of factorization

As an application of our theorem, we determine the average-case
analysis of the classical factorization algorithm applied to any
family A satisfying (H1)–(H6).

Problem: given f ∈ M(r), find the factorization of f as
f = f e1

1 · · · f err , where the fi ∈ Fq[T ] are irreducible, monic,
pairwise distinct and ei > 0.

The classical factorization algorithm roughly proceeds by the
following steps:

1 Elimination of repeated factors (ERF).

2 Distinct-degree factorization (DDF).

3 Equal-degree factorization (EDF).
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Average-case analysis of factorization

Let M(r) := r log r log log r , U(r) :=M(r) log r .

There exist τ1, τ2 > 0 such that:

multiplication of f , g ∈ M(r): τ1M(r) operations in Fq,

division with remainder of f , g ∈ M(r): τ1M(r) ops in Fq,

gcd of f , g ∈ M(r): τ2 U(r) operations in Fq.

Von zur Gathen, Gerhard [Modern computer algebra, CUP, 1999]:
On input f ∈ M(r), in worst-case, the classical factorization
algorithm performs O(rM(r) log(rq)) operations in Fq:

ERF: O(U(r) + r log(qp )) operations in Fq.

DDF: O(sM(r) log(rq)) operations in Fq,
where s = highest degree of the irreducible factors of f .

EDF: O((k log q + log r)M(r) log s) operations in Fq,
where s = number of irreducible factors of degree k of f .
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Average-case analysis of factorization

Flajolet, Gourdon, Panario [J. Algorithms 40, 2001]: average-case
analysis (based on the distribution of factorization patterns in
M(r)). Assuming that classical polynomial multiplication is used:

ERF: O(r2) operations in Fq.

DDF: O(r3 log q) operations in Fq.

EDF: O(r2 log q) operations in Fq.

We consider the uniform probability on A and the random variable
X : A → Z≥0, X (f ) = number of operations in Fq performed by
the classical factorization algorithm on input f .

Aim: To obtain an upper bound on

E [X ] :=
1

|A|
∑
f ∈A
X (f ).
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Average-case analysis of factorization

Recall that ERF(f e1
1 · · · f err ) = f1 · · · fr . Let X1 : A → Z≥0,

X1(f ) = number of operations in Fq of ERF(f ), and let

E [X1] :=
1

|A|
∑
f ∈A
X1(f ).

Let Asq = {f ∈ A : f is square-free} and Ansq := A \ Asq.

f ∈ Ansq ⇔ Disc(f ) = 0 ⇒ |Ansq| = O(qr−m−1).

For q � 0, |A| ≥ 1
2q

r−m ⇒ Prob[Asq] > 1/2.

Theorem: For q > 15δ
13/3
G , δG = deg(G1) · · · deg(Gm),

E [X1] ≤ c2 U(r) + c3 log
(q
p

)
δG

r3

q
,

where c2, c3 are constants independent of r and q.
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Average-case analysis of factorization

Next we consider DDF: DDF(ERF(f )) := (b(1), . . . , b(s)), where

b(k) = product of all irreducible factors of degree k of ERF(f ).

Let X2 : A → Z≥0, X2(f ) = number of operations in Fq of
DDF(ERF(f )), and

E [X2] :=
1

|A|
∑
f ∈A
X2(f ).

Theorem: For q > 15δ
13/3
G ,

E [X2] ≤ ξ
(
2 τ1 λ(q) + τ1 + τ2 log r

)
M(r) (r + 1)

(
1 + o(1)

)
,

where ξ ∼ 0.62432945 . . . is the Golomb constant.

Theorem: The probability that DDF outputs the complete
factorization of a random f ∈ A is(
e−γ+ e−γ

r +O( log r
r2 )
)(

1+o(1)
)
, e−γ ∼ 0.5614 . . . , γ Euler’s constant.
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Average-case analysis of factorization

Finally we consider EDF: if DDF(f ) = (b(1), . . . , b(s)), then
EDF(f ) factorizes each b(k). Let X3 : A → Z≥0, X3(f ) = number
of operations in Fq of EDF(DDF(ERF(f ))), and

E [X3] :=
1

|A|
∑
f ∈A
X3(f ) =

dr/2e∑
k=1

1

|A|
∑
f ∈A
X3,k(f )︸ ︷︷ ︸

E [X3,k ]

,

X3,k(f ) := Cost(EDF(b(k))).

Theorem: For q > 15δ
13/3
G ,

E [X3] = τM(r) log q (1 + o(1)),

where τ is a constant independent of q and r .
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Thanks!!!
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