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Extended-Affine Equivalence

F and G: F§ — F3*
Affine equivalence:

G=AoFoB

for some affine permutations A and B.

Extended-affine equivalence (EA-equivalence):

G=AoFoB+C

for some affine permutations A and B, and some affine function C'.



Two different problems

EA-recovery:
Given F' and G, find, if they exist, three affine mappings A, B and C such that
G=AoFoB-+C.

EA-testing:
Given { Fj }o<;<pe. partition this set in such a way that two functions in distinct subsets

are not EA-equivalent.

— testing EA-equivalence between a set of 20,000+ 8-bit quadratic APN functions
[Yu-Wang-Li 14|[Beierle-Leander 20]



Outline

1. A new algorithm for EA-recovery for quadratic functions
e Jacobian matrices for Boolean functions
e A new algorithm

e Complexity analysis and differential spectrum

2. A new algorithm for EA-testing for quadratic APN functions



EA-recovery



Known Algorithms for EA-recovery

Affine equivalence (C = 0):
e Guess-and-determine [Biryukov et al 2003]
only when F' and GG are bijective.

@ (n322"’)
e Rank table [Dinur 2018]
only whendeg FF > n — 1

O (n32n)
Extended-affine equivalence (any C):
partial results when A(x) = « + a, B(x) = x + b [Budaghyan-Kazymyrov 2012]
Here: solve EA-recovery when deg F' = 2

@, (n2w22n> for APN functions (worst case)



Differential uniformity and APN functions

F :TFy — Fy® coordinates = (F1,..., Fmy).

Derivative of F':
AgF : x — F(x + a) + F(x)
Differential properties of F' [Nyberg 93]
dp(a,b) = #{x € Fy : AgF(x) = b}

e Differential spectrum: {0f(a,b),a € Fy,b € FJ*}
e Differential uniformity:

= b
O(F) = max dp(a,b)

e Functions with optimal differential uniformity:

O(F) > 2" 7™, with equality for Perfect-Nonlinear (PN) functions.
When m > n,

O0(F') > 2, with equality for Almost Perfect-Nonlinear (APN) functions.



Jacobian matrix

F : F§ — F5* with coordinates (F1,...,Fm) (e1,...,epn) = canonical basis of F&y.

Jacobian matrix of F':
Ae, Fi(x) -+ A, Fi(x)
JacF(x) := : i
A Frn(xz) -+ Ae, Fm(x)
When the coordinates of F' are in ANF, it is similar to

OF, OF,

aFm o o o 8Fm

Linear part of the Jacobian matrix when deg F' = 2:

Jacj, F'(x) := JacF(x) 4+ Jac F'(0)



Jacobian matrices of EA-equivalent quadratic functions

Proposition. Let F' and G be two EA-equivalent quadratic functions:
G=AoFoB+C
Then, for all & € Fg
Jacyy, G(x) = Ao - Jacyy F(B(z)) - Bo

where Ag and B are the matrices corresponding to the linear parts of A and B.



EA-recovery for quadratic functions

We can assume wlog that B and C' are linear.

AoFoB(x)+C(x) =Ag: F(Box +b) +a+ Cox + c

e The constant part of B can be included in C since

F(Bgx + b) = F(Bgx) + \AbF(B()ZB)J

affine

e The constant parts of C' and of Ay F'(Bgx) can be included in a.



Algorithm for EA-recovery: basic steps

Ve € FY, Ay’ - Jacy, G(x) = Jacy, F(Box) - By

Search for pairs (v;, w;) such that Byv; = w;.

Choose v; and w; such that Jacy;, G(v;) and Jacy;, F'(w;) have the same rank.

Solve the linear system

0

Ws

V1 1,...
Voo i€ {l,...,5)

{ X - Jacyy G(v;) — Jacyy F(w;) - Y

For each solution Ay = X1 and Bg = Y, compute

a = G(0)+ AgF(0)
Cox = G(x)+ AgF(Bgx) + a
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Algorithm for EA-recovery: basic steps

Ve € FY, Ay’ - Jacy, G(x) = Jacy, F(Box) - By

Search for pairs (v;, w;) such that Byv; = w;.

Choose v; and w; such that Jacy;, G(v;) and Jacy;, F'(w;) have the same rank.

What is the rank distribution of all Jac);, F'(x)?

Solve the linear system

0

Ws

Vi e {1,...
Voo i€ {L,...,s5}

{ X - Jacyy G(v;) — Jacyy F(w;) - Y

How many pairs (v;, w;) do we need?
For each solution Ay = X1 and Bg = Y, compute

a = G(0)+ AgF(0)
Cox = G(x)+ AgF(Bgx) + a
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Rank distribution of a quadratic function

R(F)[r] := {u € Fy | rank(Jacyj, F(u)) = r}

Proposition. For any 7, 0 < r < min(m,n),

#R(F)[r] =27"#{(a,b) : ép(a,b) =2"""}

Sketch of proof. For any given u € ¥,

Jacjip F(u) « ¢ = Jacyj, F'(x) - u = Ay F(x) + Ay F(0)

Corollary.
F is APN iff Jacyy, F'(x) has rank (n — 1) for all x # 0.
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How many pairs w; = Bgv; are needed?

Rank of

|
o

Y ‘v

|
S

{ X - Jacy, G(v) — Jacyj, F(w) - Y
(m? 4 n?) unknowns, (m + 1)n equations

rank <r(m+4+n—7r)+ (n—r1r)
where r = rankJacy;, F'(w).
— In practice, the rank corresponds to this bound.
For s pairs (v;, w;)
S
rank < Z ri(m4+n—r;))+ (n—r;)

=1
— In practice, the rank is slightly lower.
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Experimental results

m n m?+mn? s Ranksof Jacyy, F(w;) Expected rank Observed rank

72 1 3 30 30

6 6 72 1 4 34 34

6 6 72 (3,3) 60 50. .. 54
72 (3,4) 64 56. . .57
72 (4,4) 68 60. .. 61
72 3 (3,4,4) 72 69...72
72 3 (4,4,4) 72 66. .. 72

In most cases, s = 3 pairs (v;, w;) are enough.



Complexity
R := min #{u € Fy | rank(Jacy, F'(u)) = r}
0<r<min(m,n)
In many cases, the number of candidates for (v1, w1), ..., (vs, ws) is roughly R®.

@ max(n, m)“2" + (m? + n?)¥

computation of the rank tables

S
dT
nb of guesses

e For random quadratic functions,
R is small and s = 3.

e For quadratic APN functions,
R =2" —1 and s = 2,

O (22nn2w>
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Examples of running times

Implementation with SageMath

https://github.com/alaincouvreur/EA_equivalence_for_quadratic_functions

m n Rank distribution Number of guesses Time (seconds)
1,0,0,2,18,43,0] 21 0.68
1,0,0,1,24,38,0] 386 5.36
1,0,0,0,27,36, 0] 4605 61.1

6 38 [1,0,0,0,9,96,150] 127 15.5

6 8 [1,0,1,12,98, 144] 24 13.8

6 [1,0,0,0,0,63,0] 11067 195.1
6 [1,0,0,0,3,60,0] 318 53.4
8 8 [1,0,0,0,0,6,93,156,0] 95 20.3

8§ 8 [1,0,0,0,1,13,104,137,0] 36 15.3




EA-testing
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EA-testing

Problem:
Given {Fj}o<;<pg. partition this set in such a way that two functions in distinct subsets

are not EA-equivalent.

— testing EA-equivalence between a set of 20,000+ 8-bit quadratic APN functions
[Yu-Wang-Li 14|[Beierle-Leander 20]

Using EA-invariants:
e Compute EA-invariant(s) and use it for each Fj as a bucket label

e Solve the EA-recovery problem for each pair (Fj, Fj) in the same bucket.
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Examples of EA-invariants

Invariant Condition

Extended Walsh spectrum

Differential spectrum

[ -rank m=n
A-rank m=n

# Subspaces with dim n in the Walsh zeroes

[Browning et al. 09]
[Browning et al. 09]
[Canteaut-Perrin19]

Algebraic degree
Thickness spectrum
Zk—spectrum, k even

# of subspaces in non-bent components deg(F) =2

[Canteaut-Perrin19]
[Kaleyski 20]
[Budaghyan et al. 20]
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Orthoderivatives of quadratic functions

Definition. Let F' : Fy — F3 with deg F' = 2.
A function 7 : Fg — Fg is an orthoderivative for F' if

Ve,a € Fy : w(a) - (AgF(x) + AgF(0)) =0

Orthoderivative of quadratic APN functions.
F is APN if and only if it has a unique orthoderivative 7t such that w(0) = O and
7(x) # 0 for all x # O.
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Orthoderivatives of EA-equivalent quadratic APN functions

Proposition. Let F' and GG be two EA-equivalent quadratic APN functions:

G=AoFoB+C
Then,
TG = (Ag)_loWFoBO

where Ag and By are the linear parts of A and B.

Any invariant under affine equivalence applied to 7w is an EA-invariant for F'.
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Invariants of quadratic APN functions based on orthoderivatives

Any invariant under affine equivalence applied to g is an EA-invariant for F'.

Such invariants have by far the finest grained.

13 classes of 6-bit quadratic APN functions (Banff list).

The differential spectra of the 13 orthoderivatives are all different.

¢ | Linearity rrankA Differential Spectrum of 7p

1 16 1102 94 | {0 :2205,2:1764,8: 63}

2 16 1146 94 | {0:2583,2:1008,4 : 378,8 : 63}

3 16 1158 96 | {0:2454,2:1176,4 :370,6 : 30,10 : 2}
4 16 1166 94 | {0 :2338,2:1428,4:210,6:56}

5 16 1166 96 | {0:2373,2:1428,4:168,8: 63}

6 16 1168 96 | {0:2442,2:1229,4:303,6:51,8: 7}

7 32 1170 96 | {0:2401,2:1371,4:195,6: 50,14 : 15}

8 16 1170 96 | {0:2426,2:1255,4:297,6: 49,8 : 5}

9 16 1170 96 | {0:2439,2:1235,4:297,6:57,8: 4}
10 16 1170 96 | {0:2422,2:1271,4:279,6:53,8:7}
11 16 1172 96 | {0:2385,2:1339,4 :258,6:45,8:2,12: 3}
12 16 1172 96 | {0:2404,2:1307,4:261,6:53,8:7}
13 16 1174 96 | {0 :2414,2:1271,4:303,6:37,8:7}
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Invariants of quadratic APN functions based on orthoderivatives

8-bit quadratic APN functions.

21,102 distinct quadratic APN functions from [Yu-Wang-Li 14][Beierle-Leander 20]

The differential and the extended Walsh spectra of their orthoderivatives are different

— All of them belong to different EA-classes (running time: a few minutes)
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Conclusions

New algorithms for solving EA-recovery and EA-testing for quadratic functions.

Open problem.

Find general algorithms that could be applied to functions of any degree.
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