MATH 1002 Practice Problems - Sequences and Series.

Sequences.

Definition. Let f be a real-valued function and k an integer. The ordered set of values of f at the integers k, k+1, k+2, ..., is called a **sequence**, denoted by $\{f(k), f(k+1), f(k+2), ...\}$ or simply by $\{f(n)\}_{n=k}^{\infty}$. It is customary to write a_n for f(n), so the sequence is expressed as $\{a_k, a_{k+1}, a_{k+2}, ...\}$ or as $\{a_n\}_{n=k}^{\infty}$.

Definition. $\lim_{n \to \infty} a_n = L$ iff for any $\epsilon > 0$ there exists a real number N such that $|a_n - L| < \epsilon$ for all $n \ge N$.

Definition. If $\lim_{n\to\infty} a_n = L$ (finite), then the sequence is said to converge. Otherwise, it diverges.

Definition. $\lim_{n\to\infty} a_n = \infty$ means that for any number K > 0 there exists a number N > 0 such that $a_n \ge K$ for all $n \ge N$.

Theorem. $\lim_{n \to \infty} a_n = 0$ iff $\lim_{n \to \infty} |a_n| = 0$.

Theorem. If $\lim_{x\to\infty} f(x) = L$ and $a_n = f(n)$, then $\lim_{n\to\infty} a_n = L$. The converse is not true.

PRACTICE:

Section 16: 16.3, 16.6 (a-d);

Section 17: 17.5.

Definition. $\{a_n\}$ is increasing for $n \ge k$ if $a_{n+1} \ge a_n$ for all $n \ge k$. It is decreasing for $n \ge k$ if $a_n \ge a_{n+1}$ for all $n \ge k$. $\{a_n\}$ is monotone for $n \ge k$ if it is either increasing or decreasing for all $n \ge k$.

Definition. $\{a_n\}$ is bounded above if \exists a number $M \in \mathbb{R}$ such that $M \ge a_n$ for all n. It is bounded below if \exists a number $K \in \mathbb{R}$ such that $a_n \ge K$ for all n. $\{a_n\}$ is bounded if it is bounded above and bounded below.

Theorem. If $\{a_n\}$ is increasing and bounded above for all $n \ge k$, then $\{a_n\}$ converges.

Theorem. If $\{a_n\}$ is decreasing and bounded below for all $n \ge k$, then $\{a_n\}$ converges.

Theorem (Monotone Convergence). If $\{a_n\}$ is monotone and bounded for all $n \ge k$, then $\{a_n\}$ converges.

PRACTICE:

Section 18: 18.1 (a, b);

18.3 (a) Hint: show that the sequence is bounded above by 2.

18.3 (b) Hint: show that the sequence is bounded below by 1.

18.3 (c) Hint: show that the sequence is bounded above by 3.

18.3 (d) Hint: show that the sequence is bounded above by 3.

Series.

Definition. Let
$$\{a_n\}_{n=1}^{\infty}$$
 be a sequence. We define another sequence $\{s_n\}_{n=1}^{\infty}$ as follows:
 $s_1 = a_1;$
 $s_2 = a_1 + a_2;$
 $s_3 = a_1 + a_2 + a_3;$

$$s_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{k=1}^n a_k$$

 $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n a_k \text{ is denoted by } \sum_{n=1}^\infty a_n, \text{ and called a series. The series converges is the sequence } \left\{s_n\right\} \text{ of partial sums converges. Otherwise, the series diverges. If } \lim_{n \to \infty} s_n = s, \text{ we write } \sum_{n=1}^\infty a_n = s \text{ and call } s \text{ the sum of the series.}$

Example. Consider the geometric series $\sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + ...$, where a and r are constants. It is divergent if $|r| \ge 1$. It is convergent if |r| < 1 and its sum is

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$$

Theorem. If the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$. (The converse is not true in general).

Theorem (The Test for Divergence). If $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

PRACTICE:

Section 32: 32.1, 32.2, 32.4 (b,d), 32.5 (a, b, c, d, e, g, h, i, j), 32.9.

Theorem (The p-series). The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $1 \ge p$.

Theorem (The Comparison Test). Let $b_n \ge a_n \ge 0$ for all $n \ge k$.

(a) If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

(b) If
$$\sum_{n=1}^{\infty} a_n$$
 diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.

Theorem (The Limit Comparison Test). Suppose that $a_n \ge 0$ and $b_n \ge 0$ for all $n \ge k$.

(a) If $\lim_{n\to\infty} \frac{a_n}{b_n} > 0$ (and finite), then either both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge, or they both diverge.

(b) If
$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0$$
 and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

(c) If
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$$
 and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges

PRACTICE:

1. Determine whether the series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$
.
(b) $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$.
(c) $\sum_{n=1}^{\infty} \frac{3}{n^3 + 5}$.
(d) $\sum_{n=1}^{\infty} \frac{5}{3 + 2^n}$.
(e) $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n\sqrt{n}}$.
(f) $\sum_{n=1}^{\infty} \frac{n+1}{n^3}$.
(g) $\sum_{n=1}^{\infty} \frac{4+3^n}{2^n}$.
(h) $\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^4 + 1}$.

(i)
$$\sum_{n=1}^{\infty} \frac{1}{n^3 - n}$$
.
(g) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$.

Alternating Series. Absolute Convergence.

Definition. An alternating series is a series of the form $\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 \dots$, with $b_n > 0$ for all n.

The Alternating Series Test. If $b_n \ge b_{n+1}$ for all n, and $\lim_{n\to\infty} b_n = 0$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ converges.

Definition. A series $\sum_{n=1}^{\infty} a_n$ is said to converge **absolutely**, if $\sum_{n=1}^{\infty} |a_n|$ converges. If $\sum_{n=1}^{\infty} a_n$ converges but not absolutely, it is said to converge **conditionally**.

The Ratio Test. Let
$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|, \ L \ge 0.$$

If $L < 1$, then $\sum_{n=1}^{\infty} a_n$ converges absolutely.
If $L > 1$, then $\sum_{n=1}^{\infty} a_n$ diverges.

If L = 1, then the test is inconclusive.

The Root Test. Let $L = \lim_{n \to \infty} |a_n|^{1/n}, \ L \ge 0.$

If L < 1, then $\sum_{n=1}^{\infty} a_n$ converges absolutely. If L > 1, then $\sum_{n=1}^{\infty} a_n$ diverges.

If L = 1, then the test is inconclusive.

PRACTICE:

Section 33: 33.3 (a,d,e,m,n,o), 33.5 (a - h).

Power Series.

Definition. Let a and c_n , (n = 0, 1, 2, ...) be real numbers. Then a series of the form $\sum_{n=0}^{\infty} c_n (x-a)^n$ is called a **power series about the point** a. If it converges absolutely for |x-a| < R and diverges for |x-a| > R, then R is called its **radius of convergence**.

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right|.$$

PRACTICE:

Section 34: 34.1, 34.3 (a,b,c,d,f,j,k), 34.5 (a,b,c).

Taylor and Maclaurin Series.

If f has a power series representation at x = a, that is, if

$$\sum_{n=0}^{\infty} c_n (x-a)^n, \qquad |x-a| < R,$$

then its coefficients are given by the formula

$$c_n = \frac{f^{(n)}(a)}{n!}.$$

This power series is also called the **Taylor series of** f about a. When x = 0, it is called the **Maclaurin series of** f.

Corollary. The Taylor series of f about a is unique.

Taylor's Theorem . Let f and its first n derivatives be continuous on $[x_1, x_2]$ and differentiable on (x_1, x_2) , and let $a \in [x_1, x_2]$. Then for each $x \in [x_1, x_2]$ with $x \neq a$ there exists a point cbetween x_1 and x_2 such that

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$
$$= \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1} = T_n(x) + R_n(x).$$

 $T_n(x)$ is called the *n*-th degree Taylor polynomial of f about a, $R_n(x)$ is called the remainder, or error.

The series converges to f iff $\lim_{n\to\infty} R_n = 0$.

PRACTICE:

1. Find the Maclaurin series and the radius of convergence of f:

(a) $(1+x)^{-3}$. (b) $\ln(1+x)$.

- 2. Find the Taylor series and the radius of convergence for $f(x) = 1 + x + x^2$ about a = 2:
- **3.** Find the 3-d degree Taylor polynomial for $f(x) = \sqrt{x}$ about a = 4.
- 4. Evaluate the indefinite integral as an infinite series.

(a)
$$\int \frac{\sin x}{x} dx.$$
 (b) $\int e^{x^3} dx.$

5. Use series to approximate the definite integral within |error| < 0.001.

(a)
$$\int_0^1 \sin x^2 dx$$
 (b) $\int_0^{1/2} x^2 e^{-x^2} dx$

6. Use series to evaluate the limit.

(a)
$$\lim_{x \to 0} \frac{x - Arctan(x)}{x^3}$$
. (b) $\lim_{x \to 0} \frac{\sin(x) - x + \frac{1}{6}x^3}{x^5}$.

Answers:

1. (a)
$$1 - 3x + \frac{4 \cdot 3}{2!}x^2 - \frac{5 \cdot 4 \cdot 3}{3!}x^3 + \frac{6 \cdot 5 \cdot 4 \cdot 3}{4!}x^4 - \dots = 1 - 3x + \frac{4 \cdot 3 \cdot 2}{2 \cdot 2!}x^2 - \frac{5 \cdot 4 \cdot 3 \cdot 2}{2 \cdot 3!}x^3 + \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{2 \cdot 4!}x^4 - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n (n+2)! x^n}{2(n!)} = \sum_{n=0}^{\infty} \frac{(-1)^n (n+2)(n+1) x^n}{2}.$$
 (R = 1.)

1. (b)
$$x - \frac{1}{2}x^2 + \frac{2}{6}x^3 - \frac{6}{24}x^4 + \dots = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n}x^n$$
. (R = 1.)

2.
$$7 + 5(x - 2) + (x - 2)^2$$
. Since $a_n = 0$ for large $n, R = \infty$.

3.
$$2 + \frac{x-4}{2^2} - \frac{(x-4)^2}{2^6} + \frac{(x-4)^3}{2^9}$$
.
4. (a) $C + \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)(2n+1)!}$. (b) $C + \sum_{n=0}^{\infty} \frac{x^{3n+1}}{(3n+1)n!}$.
5. (a) $\frac{13}{42} \approx 0.3095$. (b) ≈ 0.0354 .

6. (a)
$$\frac{1}{3}$$
. (b) $\frac{1}{120}$.

Binomial Series.

If α is any real number and |x| < 1, then

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-3)}{3!} x^3 + \dots$$

This power series is a special case of the Maclaurin series and is called the **binomial series** of f.

PRACTICE:

1. Use the binomial series to expand the function as a power series (give the first four terms):

(a)
$$\frac{1}{(1+x)^4}$$
. (b) $\frac{1}{(2+x)^3}$. (c) $(1+x^2)^{1/3}$.

2. Use the binomial series to find the Maclaurin series of $f(x) = \frac{1}{\sqrt{1+x^3}}$. Then use the series to evaluate $f^{(9)}(0)$.

Answers:

1. (a)
$$1 - 4x + 10x^2 - 20x^3 + \dots$$

(b) $\frac{1}{8} - \frac{3}{8}x + \frac{3}{8}x^2 - \frac{5}{32}x^3 + \dots$

(c)
$$1 + \frac{1}{3}x^2 - \frac{1}{9}x^4 + \frac{5}{51}x^6 - \dots$$

2.
$$1 + \sum_{n=1}^{\infty} \frac{(-1)^n 1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{2^n \cdot n!} x^{3n}.$$

The coefficient of x^9 (corresponding to n = 3) is $\frac{f^{(9)}(0)}{9!}$, so $f^{(9)}(0) = -\frac{9! \cdot 5}{8 \cdot 2} = -113,400$.

Parametric Curves.

PRACTICE:

1. Sketch the curve by using parametric equations to plot points. Indicate with an arrow the direction in which the curve is traced as t increases. Eliminate the parameter to find a Cartesian equation of the curve.

(a)
$$x = t^2$$
, $y = 6 - 3t$.
(b) $x = \sqrt{t}$, $y = 1 - t$.

- (c) $x = 3\cos t$, $y = 4\sin t$, $\frac{\pi}{2} \ge t \ge -\frac{\pi}{2}$ (d) $x = e^t$, $y = e^{-t}$.
- 2. Find the length of the curve.
- (a) $x = e^t \cos t$, $y = e^t \sin t$, $\pi \ge t \ge 0$. $(\sqrt{2}(e^{\pi} 1))$ (b) $x = e^t + e^{-t}$, y = 5 - 2t, $3 \ge t \ge 0$. $(e^3 - e^{-3})$ (c) $x = e^t - t$, $y = 4e^{t/2}$, $3 \ge t \ge -8$. $(e^3 - e^{-8} + 11)$
- 3. Find the area above the x-axis and below the parametric curve

$$x = 1 + e^t, \quad y = t^2, \quad 2 \ge t \ge 0.$$
 (10 $e^2 - 2$)