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MATH 1002 Practice Problems - Sequences and Series.

=========================================================

Sequences.

Definition. Let f be a real-valued function and k an integer. The ordered set of values of f at
the integers k, k+1, k+2, ..., is called a sequence, denoted by {f(k), f(k+1), f(k+2), ...}
or simply by f(n)

∞

n=k
. It is customary to write an for f(n), so the sequence is expressed

as {ak, ak+1, ak+2, ...} or as an
∞

n=k
.

Definition. lim
n→∞ an = L iff for any 6 > 0 there exists a real number N such that |an−L| < 6

for all n ≥ N .

Definition. If lim
n→∞ an = L (finite), then the sequence is said to converge. Otherwise, it

diverges.

Definition. lim
n→∞ an =∞ means that for any number K > 0 there exists a number N > 0

such that an ≥ K for all n ≥ N .

Theorem. lim
n→∞ an = 0 iff lim

n→∞ |an| = 0.

Theorem. If lim
x→∞ f(x) = L and an = f(n), then lim

n→∞ an = L. The converse is not true.

PRACTICE:

Section 16: 16.3, 16.6 (a-d );

Section 17: 17.5.

===========================================================

Definition. {an} is increasing for n ≥ k if an+1 ≥ an for all n ≥ k. It is decreasing for
n ≥ k if an ≥ an+1 for all n ≥ k. {an} is monotone for n ≥ k if it is either increasing or
decreasing for all n ≥ k.

Definition. {an} is bounded above if ∃ a number M ∈ R such that M ≥ an for all n. It
is bounded below if ∃ a number K ∈ R such that an ≥ K for all n. {an} is bounded if
it is bounded above and bounded below.

Theorem. If {an} is increasing and bounded above for all n ≥ k, then {an} converges.

Theorem. If {an} is decreasing and bounded below for all n ≥ k, then {an} converges.

Theorem (Monotone Convergence). If {an} is monotone and bounded for all n ≥ k, then
{an} converges.



PRACTICE:

Section 18: 18.1 (a, b);

18.3 (a) Hint: show that the sequence is bounded above by 2.
18.3 (b) Hint: show that the sequence is bounded below by 1.
18.3 (c) Hint: show that the sequence is bounded above by 3.
18.3 (d) Hint: show that the sequence is bounded above by 3.

=========================================================

Series.

Definition. Let an
∞

n=1
be a sequence. We define another sequence sn

∞

n=1
as follows:

s1 = a1;
s2 = a1 + a2;
s3 = a1 + a2 + a3;
.
.

sn = a1 + a2 + a3 + ...+ an =
n

k=1

ak.

lim
n→∞ sn = lim

n→∞

n

k=1

ak is denoted by
∞

n=1

an, and called a series. The series converges is the

sequence sn of partial sums converges. Otherwise, the series diverges. If lim
n→∞ sn = s, we

write
∞

n=1

an = s and call s the sum of the series.

Example. Consider the geometric series
∞

n=0

arn = a+ ar + ar2 + ..., where a and r are

constants. It is divergent if |r| ≥ 1. It is convergent if |r| < 1 and its sum is

∞

n=0

arn =
a

1− r .

Theorem. If the series
∞

n=1

an converges, then lim
n→∞ an = 0. (The converse is not true in

general).

Theorem (The Test for Divergence). If lim
n→∞ an W= 0, then the series

∞

n=1

an is divergent.

PRACTICE:

Section 32: 32.1, 32.2, 32.4 (b,d), 32.5 (a, b, c, d, e, g, h, i, j), 32.9.

––––––––––––––––––––––––-



Theorem (The p-series). The p-series
∞

n=1

1

np
is convergent if p > 1 and divergent if 1 ≥ p.

Theorem (The Comparison Test). Let bn ≥ an ≥ 0 for all n ≥ k.

(a) If
∞

n=1

bn converges, then
∞

n=1

an converges.

(b) If
∞

n=1

an diverges, then
∞

n=1

bn diverges.

Theorem (The Limit Comparison Test). Suppose that an ≥ 0 and bn ≥ 0 for all n ≥ k.

(a) If lim
n→∞

an
bn
> 0 (and finite), then either both

∞

n=1

an and
∞

n=1

bn converge, or they both

diverge.

(b) If lim
n→∞

an
bn
= 0 and

∞

n=1

bn converges, then
∞

n=1

an converges.

(c) If lim
n→∞

an
bn
=∞ and

∞

n=1

bn diverges, then
∞

n=1

an diverges.

PRACTICE:

1. Determine whether the series is convergent or divergent.

(a)
∞

n=1

ne−n
2

.

(b)
∞

n=1

lnn

n2
.

(c)
∞

n=1

3

n3 + 5
.

(d)
∞

n=1

5

3 + 2n
.

(e)
∞

n=1

cos2 n

n
√
n
.

(f)
∞

n=1

n+ 1

n3
.

(g)
∞

n=1

4 + 3n

2n
.

(h)
∞

n=1

n2 + 1

n4 + 1
.



(i)
∞

n=1

1

n3 − n .

(g)
∞

n=1

1

n2 + 1
.

––––––––––––

Alternating Series. Absolute Convergence.

Definition. An alternating series is a series of the form
∞

n=1

(−1)n−1 bn = b1 − b2 + b3 − b4...,
with bn > 0 for all n.

The Alternating Series Test. If bn ≥ bn+1 for all n, and lim
n→∞ bn = 0, then the alternating

series
∞

n=1

(−1)n−1 bn converges.

Definition. A series
∞

n=1

an is said to converge absolutely, if
∞

n=1

|an| converges. If
∞

n=1

an

converges but not absolutely, it is said to converge conditionally.

The Ratio Test. Let L = lim
n→∞

an+1
an

, L ≥ 0.

If L < 1, then
∞

n=1

an converges absolutely.

If L > 1, then
∞

n=1

an diverges.

If L = 1, then the test is inconclusive.

The Root Test. Let L = lim
n→∞ |an|

1/n, L ≥ 0.

If L < 1, then
∞

n=1

an converges absolutely.

If L > 1, then
∞

n=1

an diverges.

If L = 1, then the test is inconclusive.

PRACTICE:

Section 33: 33.3 (a,d,e,m,n,o), 33.5 (a - h).

–––––––––––––––––––––––––—



Power Series.

Definition. Let a and cn, (n = 0, 1, 2, ...) be real numbers. Then a series of the form
∞

n=0

cn(x− a)n is called a power series about the point a. If it converges absolutely

for |x− a| < R and diverges for |x− a| > R, then R is called its radius of convergence.

R = lim
n→∞

cn
cn+1

.

PRACTICE:

Section 34: 34.1, 34.3 (a,b,c,d,f,j,k), 34.5 (a,b,c).

–––––––––––––––––––––––––—

Taylor and Maclaurin Series.

If f has a power series representation at x = a, that is, if

∞

n=0

cn(x− a)n, |x− a| < R,

then its coefficients are given by the formula

cn =
f (n)(a)

n!
.

This power series is also called the Taylor series of f about a. When x = 0, it is called
the Maclaurin series of f .

Corollary. The Taylor series of f about a is unique.

Taylor’s Theorem . Let f and its first n derivatives be continuous on [x1, x2] and differentiable
on (x1, x2), and let a ∈ [x1, x2]. Then for each x ∈ [x1, x2] with x W= a there exists a point c
between x1 and x2 such that

f(x) = f(a) + f (a)(x− a) + f (a)
2!

(x− a)2 + ...+ f
(n)(a)

n!
+
f (n+1)(c)

(n+ 1)!
(x− a)n+1

=
n

k=0

f (k)(a)

k!
(x− a)k + f

(n+1)(c)

(n+ 1)!
(x− a)n+1 = Tn(x) +Rn(x).

Tn(x) is called the n-th degree Taylor polynomial of f about a, Rn(x) is called the
remainder, or error.

The series converges to f iff lim
n→∞Rn = 0.



PRACTICE:

1. Find the Maclaurin series and the radius of convergence of f :

(a) (1 + x)−3. (b) ln(1 + x).

2. Find the Taylor series and the radius of convergence for f(x) = 1 + x+ x2 about a = 2:

3. Find the 3-d degree Taylor polynomial for f(x) =
√
x about a = 4.

4. Evaluate the indefinite integral as an infinite series.

(a)
sinx

x
dx. (b) ex

3

dx.

5. Use series to approximate the definite integral within |error| < 0.001.

(a)
1

0
sinx2 dx (b)

1/2

0
x2 e−x

2

dx.

6. Use series to evaluate the limit.

(a) lim
x→0

x−Arctan(x)
x3

. (b) lim
x→0

sin(x)− x+ 1
6
x3

x5
.

Answers:

1. (a) 1− 3x+ 4 · 3
2!
x2 − 5 · 4 · 3

3!
x3 +

6 · 5 · 4 · 3
4!

x4 − ... = 1− 3x+ 4 · 3 · 2
2 · 2! x

2 − 5 · 4 · 3 · 2
2 · 3! x3+

+
6 · 5 · 4 · 3 · 2

2 · 4! x4 − ... =
∞

n=0

(−1)n(n+ 2)!xn
2(n!)

=
∞

n=0

(−1)n(n+ 2)(n+ 1)xn
2

. (R = 1.)

1. (b) x− 1
2
x2 +

2

6
x3 − 6

24
x4 + ... = x− x

2

2
+
x3

3
− x

4

4
+ ... =

∞

n=0

(−1)n−1
n

xn. (R = 1.)

2. 7 + 5(x− 2) + (x− 2)2. Since an = 0 for large n, R =∞.

3. 2 +
x− 4
22
− (x− 4)

2

26
+
(x− 4)3
29

.

4. (a) C +
∞

n=0

(−1)n x2n+1
(2n+ 1)(2n+ 1)!

. (b) C +
∞

n=0

x3n+1

(3n+ 1)n!
.

5. (a)
13

42
≈ 0.3095. (b) ≈ 0.0354.

6. (a)
1

3
. (b)

1

120
.



–––––––––––––––––––––––––—

Binomial Series.

If α is any real number and |x| < 1, then

(1 + x)α = 1 + αx+
α(α− 1)
2!

x2 +
α(α− 1)(α− 3)

3!
x3 + ...

This power series is a special case of the Maclaurin series and is called the binomial series
of f .

PRACTICE:

1. Use the binomial series to expand the function as a power series (give the first four terms):

(a)
1

(1 + x)4
. (b)

1

(2 + x)3
. (c) (1 + x2)1/3.

2. Use the binomial series to find the Maclaurin series of f(x) =
1√
1 + x3

. Then use the series

to evaluate f (9)(0).

Answers:

1. (a) 1− 4x+ 10x2 − 20x3 + ...

(b)
1

8
− 3
8
x+

3

8
x2 − 5

32
x3 + ...

(c) 1 +
1

3
x2 − 1

9
x4 +

5

51
x6 − ...

2. 1 +
∞

n=1

(−1)n 1 · 3 · 5 · ...(2n− 1)
2n · n! x3n.

The coefficient of x9 (corresponding to n = 3) is
f (9)(0)

9!
, so f (9)(0) = −9! · 5

8 · 2 = −113, 400.

–––––––––––––––––––––––––—



Parametric Curves.

PRACTICE:

1. Sketch the curve by using parametric equations to plot points. Indicate with an arrow
the direction in which the curve is traced as t increases. Eliminate the parameter to find a
Cartesian equation of the curve.

(a) x = t2, y = 6− 3t. (b) x =
√
t, y = 1− t.

(c) x = 3 cos t, y = 4 sin t,
π

2
≥ t ≥ −π

2
(d) x = et, y = e−t.

2. Find the length of the curve.

(a) x = et cos t, y = et sin t, π ≥ t ≥ 0. (
√
2(eπ − 1))

(b) x = et + e−t, y = 5− 2t, 3 ≥ t ≥ 0. (e3 − e−3)

(c) x = et − t, y = 4et/2, 3 ≥ t ≥ −8. (e3 − e−8 + 11)

3. Find the area above the x-axis and below the parametric curve

x = 1 + et, y = t2, 2 ≥ t ≥ 0. (10e2 − 2)


