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Abstract

An element α ∈ Fqn is normal over Fq if {α, αq, . . . , αqn−1} is a basis for Fqn over Fq. It is well-known that

α ∈ Fqn is normal over Fq if and only if the polynomials gα(x) = αxn−1 + αqxn−2 + · · ·+ αq
n−2

x+ αq
n−1

and xn − 1 are relatively prime over Fqn , that is, the degree of their greatest common divisor in Fqn [x]
is 0. An element α ∈ Fqn is k-normal over Fq if the greatest common divisor of the polynomials gα(x)
and xn − 1 in Fqn [x] has degree k; so an element which is normal in the usual sense is 0-normal. This
paper introduces and characterizes k-normal elements, establishes a formula and numerical bounds for the
number of k-normal elements and demonstrates the existence of primitive 1-normal elements.
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1. Introduction

Let q be a prime power and n ∈ N. An element α ∈ Fqn yields a normal basis for Fqn over Fq if

B = {α, αq, . . . , αqn−1} is a basis for Fqn over Fq; such an α is a normal element of Fqn over Fq. For any

α ∈ Fqn and 0 ≤ i ≤ n− 1, αq
i

is the i-th conjugate of α. Since αq
n

= α for all α ∈ Fqn , any element of B
and its distinct conjugates comprise all of B, and we say that α ∈ B generates B.

Normal bases are widely used in applications such as cryptography and signal processing due to the
efficiency of exponentiation. In particular, q-th powers of field elements represented using a normal basis
are given by a cyclic shift. For further details, see [9].

The existence of normal elements over every finite field extension is well-known [11, Theorem 2.35]. In
addition, the existence of primitive normal elements, normal elements of Fqn over Fq which also generate
the multiplicative group F∗qn , was established in [1] and [2] for sufficiently large q and n. The so-called
“Primitive Normal Basis Theorem” was established for all q and n in [10] and a proof without the use of
a computer was later given in [3].

An element α ∈ Fqn [x] is normal if and only if the polynomial gα(x) = αxn−1 +αqxn−2 + · · ·+αq
n−2

x+

αq
n−1

and xn − 1 are relatively prime over Fqn [11, Theorem 2.39]. With this as motivation, we define
k-normal elements as those elements for which the greatest common divisor of gα and xn− 1 over Fqn has
degree k. Thus, elements which are normal in the usual sense are 0-normal.

Additional motivation for studying k-normal elements is given by the observation that they implicitly
arise during the process of constructing quasi-normal bases of finite fields [12]. These bases are a class of
Fq-bases of Fqn which offer efficient multiplication in Fqn .

The structure of this paper is as follows. In Section 2, we introduce and characterize k-normal elements.
In Section 3, we give a formula for the number of k-normal elements in terms of the Euler Phi function
for polynomials. Section 4 contains numerical bounds on the number of k-normal elements. Finally, we
establish the existence of primitive 1-normal elements for sufficiently large qn in Section 5.
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2. Introducing k-normal elements

A well-known criterion for checking whether an element generates a normal basis is given by the following
theorem.

Theorem 2.1. [11, Theorem 2.39] For α ∈ Fqn , {α, αq, . . . , αqn−1} is a normal basis for Fqn over Fq if

and only if the polynomials xn − 1 and αxn−1 + αqxn−2 + · · ·+ αq
n−1

in Fqn [x] are relatively prime.

Motivated by this, we make the following definition.

Definition 2.2. Let α ∈ Fqn . Denote by gα(x) the polynomial
∑n−1
i=0 α

qixn−1−i ∈ Fqn [x]. If gcd(xn −
1, gα(x)) over Fqn has degree k (where 0 ≤ k ≤ n− 1), then α is a k-normal element of Fqn over Fq.

Using this terminology, a normal element of Fqn over Fq is 0-normal.
It is well known that the number of normal elements of Fqn is Φq(x

n − 1), where Φq is the Euler Phi
function for polynomials [11, Theorem 3.73]. Numerical bounds on the density of normal elements in Fqn
are given in [7].

We next give a characterization of k-normal elements in terms of the rank of a Sylvester matrix. We
require the following terminology.

Definition 2.3. Let F be a field and let f, g ∈ F[x] with f(x) =
∑

0≤j<n fjx
j and g(x) =

∑
0≤j<m gjx

j

with all fj , gj ∈ F. The Sylvester matrix Sf,g is the (m+ n)× (m+ n) matrix given by:

Sf,g =



fn fn−1 . . . f1 f0 . . . . . .
0 fn . . . . . . . . . f0 . . .
...

...
...

...
...

0 . . . fn . . . . . . . . . f0
gm gm−1 . . . g1 g0 . . .
0 gm gm−1 . . . . . . g0 . . .
...

...
...

...
...

0 . . . gm . . . . . . . . . g0


The determinant of the Sylvester matrix Sf,g is the resultant, denoted R(f, g), of f and g. We have
R(f, g) = 0 if and only if f, g ∈ F[x] have a common divisor of positive degree. For more details, see [8].

Lemma 2.4. Let F be a field. For two non-zero polynomials f, g ∈ F[x],

rank(Sf,g) = deg(f) + deg(g)− deg(gcd(f, g)).

Proof. By [8, Exercise 6.16], dim(ker(Sf,g)) = deg(gcd(f, g)). The result follows by applying the Rank-
Nullity Theorem and rearranging.

We now provide our first characterization of k-normal elements (we note that this result may also be
obtained as a consequence of Theorem 1 of [5]).

Theorem 2.5. Let α ∈ Fqn and let

Aα =


α αq αq

2

. . . αq
n−1

αq
n−1

α αq . . . αq
n−2

...
...

...
...

...

αq αq
2

αq
3

. . . α

 . (1)

Then α is k-normal over Fq if and only if rank(Aα) = n− k.
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Proof. We prove that gcd(xn − 1, gα(x)) (over Fqn) has degree k if and only if the matrix Aα has rank

n− k. The Sylvester matrix Sf,gα with f(x) = xn − 1 and gα(x) = αxn−1 + αqxn−2 + · · ·+ αq
n−1

can be
converted, by a sequence of column operations, into the block matrix(

In−1 0n−1,n
0n,n−1 Aα

)
where 0i,j is the i × j all-zero matrix and In−1 is the (n − 1) × (n − 1) identity matrix. From this block
decomposition, it follows that

rank(Sf,gα) = rank(Aα) + rank(In−1) = rank(Aα) + (n− 1).

By Lemma 2.4,
rank(Sf,gα) = n+ (n− 1)− deg(gcd(f, gα)).

Combining these two expressions yields

deg(gcd(f, gα)) = n− rank(Aα),

as required.

The following are immediate consequences of Theorem 2.5. First, let f ∈ Fqn [x] have degree n. Denote
the reverse (or reciprocal) polynomial of f by f∗(x) = xnf(1/x).

Corollary 2.6. Let α ∈ Fqn . Then

(i) gcd(xn − 1, gα(x)) = gcd(xn − 1, g∗α(x));

(ii) if α is k-normal over Fq, then any conjugate of α is k-normal over Fq.

3. The number of k-normal elements

In this section, we establish a formula for the number of k-normal elements. First, we review some
terminology (more details can be found in [11, Chapter 4]).

A polynomial of the form L(x) =
∑d
i=0 αix

qi with coefficients in Fqn is a q-polynomial over Fqn (or a
linearized polynomial over Fqn). Given a non-zero q-polynomial L over Fqn , a root α of L is a q-primitive
root over Fqn if it is not a root of any non-zero q-polynomial of lower degree. Conversely, the monic q-
polynomial over Fqn of least positive degree having α as a root is the minimal q-polynomial of α over Fqn .

The polynomials l(x) =
∑d
i=0 αix

i and L(x) =
∑d
i=0 αix

qi over Fqn are q-associates of each other. If Fqs
contains all the roots of L, then these roots form a subspace of the vector space Fqs over Fq.

We now consider q-polynomials over Fq. A finite dimensional vector space M over Fq is a q-modulus
if it is contained in some extension field of Fq and has the property that the q-th power of every element
of M also lies in M. From [11, Theorem 3.65], the monic polynomial L is a q-polynomial over Fq if and
only if each root of L has the same multiplicity (1 or a power of q) and its roots form a q-modulus.

Following [10], the Fq-Order of an element γ is defined to be the (unique) monic polynomial f(x) =∑
fix

i ∈ Fq[x] of least degree such that
∑
fiγ

qi = 0. Thus, if γ is a q-primitive root of a monic q-
polynomial L over Fq and l is the q-associate of L, then γ has Fq-Order l and we write Ord(γ) = l. Clearly
Ord(γ) divides xn − 1 if and only if γ ∈ Fqn .

Lemma 3.1. Let α ∈ Fqn . Let Aα be the matrix given by Equation (1). Denote by M the vector space

Span{α, αq, . . . , αqn−1} over Fq. Then rank Aα = dim(M).

Proof. The column-space of Aα is given by Span{C0, C1, . . . , Cn−1}, where each column Ci is given by the

transpose of
[
αq

i

, (αq
i

)q
n−1

, (αq
i

)q
n−2

, . . . , (αq
i

)q
]
. Suppose M has dimension m as a vector space over Fq;

then a basis for the column-space of Aα is given by the set of m columns of Aα whose first entries are the
basis elements of M . Conversely, given a basis of the column-space of Aα, a basis of M is immediately
obtainable by taking the first entry of each column.
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Theorem 3.2. Let α ∈ Fqn . Then the following three properties are equivalent:

(i) α is k-normal over Fq;

(ii) α gives rise to a basis {α, αq, . . . , αqn−k−1} of a q-modulus of degree n− k over Fq;

(iii) deg(Ord(α)) = n− k.

Proof. Let α ∈ Fqn . We prove (i)⇒ (ii)⇒ (iii)⇒ (i). For (i)⇒ (ii), suppose that α ∈ Fqn is k-normal.
By Theorem 2.5, the matrix Aα has rank n − k, and so by Lemma 3.1, the vector space M also has

dimension n− k over Fq. It may be verified that {α, αq, . . . , αqn−k−1} forms a basis for M . If β ∈M then
βq ∈M , and so M is a q-modulus of dimension n− k over Fq.

For (ii)⇒ (iii), suppose B = {α, αq, . . . , αqn−k−1} is the basis of a q-modulus N of dimension n−k over
Fq. Let L(x) =

∏
β∈N (x−β); then by [11, Theorem 3.65], L is a (monic) q-polynomial of degree qn−k over

Fq. Since α ∈ N , L has α as a root. Since the elements of B are linearly independent, α cannot satisfy a
q-polynomial of degree less than qn−k. Hence α is a q-primitive root of L, and Ord(α) = l where l is the
q-associate of L, of degree n− k.

Finally, for (iii)⇒ (i), suppose Ord(α) has degree n−k, that is α is a q-primitive root of a q-polynomial

L over Fq of degree qn−k. Then {α, αq, . . . , αqn−k−1} forms a basis for M . By Lemma 3.1, Aα has rank
n− k and thus α is k-normal over Fq.

The following result, due to Ore [13], allows us to use the preceding theorem to obtain a formula for
the number of k-normal elements.

Lemma 3.3. Let f ∈ Fq[x] be monic and relatively prime to x. Then the number of α in the algebraic
closure of Fq with Ord(α) = f equals Φq(f).

Theorem 3.4. The number of k-normal elements of Fqn over Fq equals 0 if there is no h ∈ Fq[x] of degree
n− k dividing xn − 1; otherwise it is given by ∑

h|xn−1,
deg(h)=n−k

Φq(h), (2)

where divisors are monic and polynomial division is over Fq.

Proof. Using criteria (iii) of Theorem 3.2, combined with Ore’s result from Lemma 3.3, the total number
of k-normal elements α ∈ Fqn over Fq is given by∑

h|xn−1,
deg(h)=n−k

Φq(h).

We emphasize that the factorization of xn − 1 in Equation (2) is the Fq-factorization of xn − 1. We
further note that when k = 0, that is, when counting the number of normal elements, the above summation
reduces to Φq(x

n − 1), as expected.

4. Bounds on the number of k-normal elements

Suppose f ∈ Fq[x] has degree n and let κ(f) = q−nΦq(f) where, as usual, Φq denotes Euler’s Phi
function for polynomials over Fq. The measure κ(xn − 1) gives the density of normal elements over Fq.
Bounds on κ(f), for general f , are obtained in [7]. Additionally, lower bounds for the density of normal
elements are given in [7] as well as an upper-bound on the density of normal elements for infinitely many
n. These results are improved in [6] for the specific polynomial f(x) = xn − 1.

Recall from Theorem 3.4, that the number of k-normal elements is given by∑
h|xn−1,

deg(h)=n−k

Φq(h).
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Suppose L and U are lower and upper bounds, respectively, for Φq(h), where h is any monic divisor of
xn − 1 over Fq with degree n− k. Thus,∑

h|xn−1,
deg(h)=n−k

L ≤
∑

h|xn−1,
deg(h)=n−k

Φq(h) ≤
∑

h|xn−1,
deg(h)=n−k

U.

Let cn−k be the number of divisors of xn − 1 with degree n− k. Then

cn−kL ≤ |{α ∈ Fqn : α is k-normal over Fq}| ≤ cn−kU.

By [11, Theorem 2.45(i)], if n is a positive integer not divisible by the characteristic of Fq, we have
xn − 1 =

∏
d|nQd(x), where Qd is the d-th cyclotomic polynomial. The polynomial Qd has degree φ(d),

where φ is the Euler totient function. Thus cn−k can be determined by the number of ways of writing n−k
as the sum of terms of the form φ(d), where d is a divisor n.

We note that cn−k could be 0. For example, if the factorization of xn − 1 into irreducibles over Fq is
xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1), then cn = cn−1 = c1 = 1, and cj = 0, for all other j.

4.1. Lower bounds

We state the explicit lower bound in [7] for κ(f), for any f ∈ Fq[x].

Theorem 4.1. [7] For any f ∈ Fq[x] of degree n with f(0) 6= 0, if n ≥ q, then

κ(f) ≥ 1

e0.83(1 + logq(n))
,

and if n < q, then κ(f) > 1/e.

Thus, for any h of degree n − k, κ(h) ≥ 1/
(
e0.83(1 + logq(n− k))

)
. However, the lower bound on the

density of normal elements was improved in [6] by considering the particular case f(x) = xn − 1.

Theorem 4.2. [6] There is a constant c such that, for all q, n ≥ 2,

κ(xn − 1) ≥ c 1√
logq(n)

.

This bound is not explicit, but it is shown to be optimal in the sense that

lim inf
n→∞

κ(xn − 1) ≥ 0.28477√
logq(n)

.

We use a multiplicative form of Φq(f), which can be found in [11, Theorem 3.69].

Theorem 4.3. Let f ∈ Fq[x] and suppose f has complete factorization f =
∏t
i=1 f

ei
i over Fq (that is, the

irreducible factors fi, fj are distinct when i 6= j). Then

κ(f) =

t∏
i=1

(
1− 1

qni

)
,

where ni is the degree of fi, and n ≥ 1 is the degree of f .

We follow [6, Section 3] to give a strong lower bound on the number of k-normal elements. First, denote
by Iq(d; f) the number of irreducible factors of f having degree d, and denote by I∗q (d; f) the number of
irreducible factors of f , not counting the single factor x, having degree d. In most cases, Iq = I∗q .
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For the remainder of this section, let f be any divisor of xn − 1 of degree n− k. We define the values

A
(f)
q,n,k to be the set of those degrees d ∈ {1, 2, . . . , n− k} for which

I∗q (d; f) >
qd − 1

2d2

and B
(f)
q,n,k to be the set of those degrees d ∈ {1, 2, . . . , n− k} for which I∗q (d, f) ≤ qd−1

2d2 .

We show that we can ignore the contribution from the entries in B
(f)
q,n,k. The proof is very similar to [6,

Lemma 8]; the difference in our case is that we consider any f dividing xn − 1 rather than xn − 1 itself,

and our sets A
(f)
q,n,k and B

(f)
q,n,k replace the sets Aq,n and Bq,n, respectively, from [6].

Lemma 4.4. Let f,A
(f)
q,n,k and B

(f)
q,n,k be defined as above. Then

κ(f) ≥


e−ζ(2)/2 ≈ 0.43935 if A

(f)
q,n,k = ∅,

e−γ · e
(|A(f)

q,n,k
|−1)∣∣∣A(f)

q,n,k

∣∣∣ otherwise,

where γ is Euler’s constant and ζ is the zeta function.

The remaining lemmata in [6, Section 3] provide upper-bounds for |Aq,n|
(

respectively,
∣∣∣A(f)

q,n,k

∣∣∣). The

proofs of our case also follow directly from [6] and so we state our analogous results without proof.

Lemma 4.5. For any finite set of natural numbers A, denote by lcmd∈A the least common multiple of the
elements of A. We have the following three assertions:

1. I∗q (d, f) ≤ gcd(qd − 1, n)/d,

2. n ≥ lcm
d∈A(f)

q,n,k

(qd − 1)/
∏

d∈A(f)
q,n,k

(2d),

3. if A is a finite set of natural numbers, then lcmd∈A(qd − 1)/
∏
d∈A

(2d) ≥ qc|A|
2−o(|A|2), where c =

ζ(6)/(2ζ(2)ζ(3)) ≈ 0.25726.

We now combine all of the previous results to give a lower-bound on the number of k-normal elements.

Theorem 4.6. There is a constant c such that for all q ≥ 2 and n > qc, the number of k-normal elements
of Fqn over Fq is at least

0.28477 · qn−k cn−k√
logq(n)

.

Proof. (Sketch) First, suppose A
(f)
q,n,k = ∅. Then, we have that κ(f) ≥ e−ζ(2)/2, and so

Φq(f) ≥ qn−ke−ζ(2)/2 ≈ 0.43935qn−k.

Thus, the number of k-normal elements in this case is at least 0.43935qn−kcn−k, where cn−k is the number
of ways of writing n− k as the sum of terms of the form φ(d), where d is a divisor of n.

The proof of the case when A
(f)
q,n,k 6= ∅ follows from [6]. Where our proof differs from [6] is that we

apply Lemma 4.5 to the set A
(f)
q,n,k, where f is a divisor of xn − 1. This corresponds to the set Aq,n and

the polynomial f(x) = xn − 1. Hence, as in [6], we get the expression

κ(f) ≥ e−γ
√
c′

1

logq(n)
,

where e−γ
√
c′ > 0.28477. Summing over all such f and expanding κ(f)qn−k = Φq(f) gives that the number

of k-normal elements is at least 0.28477 · cn−kqn−k/ logq(n).
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4.2. Upper bounds for infinitely many n

Upper bounds for κ(xn − 1) are given in [6, 7] for an infinite family of n. In general, non-trivial upper
bounds for κ(xn−1) are not known. In order to obtain upper-bounds on the number of k-normal elements,
we note that if h divides xn − 1, then Φq(h) ≤ Φq(x

n − 1).

Theorem 4.7. Let
nk = lcm1≤d≤k(qd − 1),

then for every prime power q and any integer k,

κ(xnk − 1) < 0.61910
1√

logq(nk)
.

Corollary 4.8. For any integer k, let nk be as in Theorem 4.7. Then the number of k-normal elements
of Fqnk is at most

0.61910 · qn−k cnk−k√
logq(nk)

.

5. Primitive k-normal elements

An important extension of the normal basis theorem is the primitive normal basis theorem, which
establishes that a normal basis {α, αq, . . . , αqn−1} for Fqn over Fq always exists with α primitive. We ask
whether an analogous claim can be made about k-normal elements for certain values of k. In particular,
when k = 1, does there always exist a primitive 1-normal element of Fqn over Fq? We use the methods
introduced in Carlitz [1] and Davenport [4] and then refined in Lenstra and Schoof [10] to determine the
existence of primitive 1-normal elements. In this section, we closely follow [10].

For given q and n, let f be a monic divisor of xn−1 of degree n−1 and define A = {α ∈ Fqn : Ord(α) =
xn − 1}, Aζ = {α ∈ Fqn : Ord(α) = (xn − 1)/(x − ζ)} and B = {α ∈ F∗qn : ord(α) = qn − 1}. We also

use the following terminology: for a divisor m of qn − 1, we call α ∈ Fqn m-free if α = βd for any divisor
d of m implies d = 1. Furthermore, for any divisor M of xn − 1, we call α M -free if α = H(β), where H
is the q-associate of a divisor h of (xn − 1)/Ord(α), implies h = 1. Normal elements are those which are
(xn − 1)-free and primitive elements are those which are (qn − 1)-free. In what follows, we are interested
in elements that are simultaneously (qn − 1)-free and xn−1

x−ζ -free for some appropriate ζ.

We define additive and multiplicative characters which determine when an element is (qn − 1)-free and
f -free, respectively. We note that the multiplicative characters of Fqn form a Fq[x]-module by defining
λf (α) = λ(f ◦α), where the composition is given by x ◦α = αq. Thus, we define Ord(λ) as the annihilator
of λ.

For α ∈ F∗qn , we define

ω(α) =
∑

d|qn−1

µ(d)

φ(d)

∑
χ,ord(χ)=d

χ(α),

where µ is the Möbius function, and we also define

Ω1(α) =
∑
g|f

M(g)

Φq(g)

∑
λ,Ord(λ)=g

λ(α),

where M is the Möbius function for polynomials.

Lemma 5.1. [10] Let q, n and ω be defined as above. Then, for α ∈ F∗qn , ω(α) = 0, if α 6∈ B.

Lemma 5.2. Let q, n and Ω1 be defined as above. Then, for α ∈ Fqn , Ω1(α) = 0 if α 6∈ A ∪Aζ .

7



Proof. We note that exactly Φq(g) characters have Fq-Order g, see [13], and re-write Ω1 as the product

Ω1(α) =
∏

`|f,` irred

1− 1

Φq(`)

∑
λ,Ord(λ)=`

λ(α)


=

∏
`|f,` irred

Φq(`) + 1

Φq(`)
− 1

Φq(`)

∑
λ,λ`=1

λ(α)

 .

The set {λ : λ` = 1} can be identified with the dual of the subgroup Fqn/(` ◦ Fqn); in particular, it is a
group and ∑

λ`=1

λ(α) =

{
Φq(`) + 1 if α = ` ◦ β, β ∈ Fqn ,
0 otherwise.

We extend the characters to all of Fqn by defining χ(0) = 0 for χ 6= 1 and 1(0) = 1.

Theorem 5.3. There exists a primitive 1-normal element of Fqn over Fq for sufficiently large q and n.

Proof. We note that there are gcd(n, q − 1) roots ζ ∈ Fq of xn − 1, but Lemma 5.2 does not depend on
the choice of ζ (except for the choice of f). In order to prove existence of primitive 1-normal elements, it
is enough to show the existence of at least one element which is (qn − 1)-free and xn−1

x−ζ -free, for some ζ,

but not (xn − 1)-free. Suppose now that f(x) = xn−1
x−ζ for a fixed n-th root of unity ζ. Thus, there exists a

primitive 1-normal element if for some such f we have∑
α∈Fqn

ω(α)Ω1(α)−
∑
α∈Fqn

ω(α)Ω(α) 6= 0,

where, as in [10],

Ω(α) =
∑

g|xn−1

M(g)

Φq(g)

∑
λ,Ord(λ)=g

λ(α).

Suppose there is no primitive f -free element of Fqn over Fq. Then

0 =
∑

d|qn−1

∑
g|f

µ(d)M(g)

φ(d)Φq(g)

∑
χ,ord(χ)=d

∑
λ,Ord(λ)=g

τ(χ, λ)

−
∑

d|qn−1

∑
g|xn−1

µ(d)M(g)

φ(d)Φq(g)

∑
χ,ord(χ)=d

∑
λ,Ord(λ)=g

τ(χ, λ),

where τ(χ, λ) =
∑
α∈Fqn χ(α)λ(α). As in [10], the Gauss sum τ satisfies

τ(1, 1) = qn,

τ(1, λ) = 0 for λ 6= 1,

τ(χ, 1) = 0 for χ 6= 1

and |τ(χ, λ)| = qn/2 if χ 6= 1 and λ 6= 1. Removing the trivial characters gives

−qn =
∑

d|qn−1,
d 6=1

∑
g|f,g 6=1

µ(d)M(g)

φ(d)Φq(g)

∑
χ,ord(χ)=d

∑
λ,Ord(λ)=g

τ(χ, λ)

−
∑

d|qn−1,
d6=1

∑
g|xn−1,
g 6=1

µ(d)M(g)

φ(d)Φq(g)

∑
χ,ord(χ)=d

∑
λ,Ord(λ)=g

τ(χ, λ)

=−
∑

d|qn−1,
d6=1

∑
g|xn−1
g-f,g 6=1

µ(d)M(g)

φ(d)Φq(g)

∑
χ,ord(χ)=d

∑
λ,Ord(λ)=g

τ(χ, λ).
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Let s be the number of distinct prime factors of qn−1 and let t be the number of monic irreducible factors
of f . Taking absolute values we find, as in [3],

qn ≤ qn/2
∑

d|qn−1,
d 6=1

∑
g|xn−1
g-f,g 6=1

|µ(d)M(g)|

≤ qn/2(2s − 1)(2t − 1).

By [3, Lemma 3.3], we have 2s ≤ cs(qn − 1)1/4 where cs is a constant at most 4.9. Furthermore, deg(f) =
n− 1 and so t ≤ n− 1. Thus,

qn < 5qn/2 · qn/4 · 2n−1,

which is a contradiction if 5 · 2n−1 < qn/4; for example, when q > 25 and n > 8.

6. Conclusions and open problems

In this paper, we have generalized the concept of normal elements to that of k-normal elements, with the
classical normal elements being 0-normal. We have characterized k-normal elements and given a formula
for the number of such elements in terms of Euler’s Phi function for polynomials. We have also given
both upper and lower numerical bounds on their number. The primitive normal basis theorem proves the
existence of primitive 0-normal elements over any finite field; we have obtained an asymptotic result which
establishes the existence of primitive 1-normal elements.

Here we present some problems, motivated both by theoretical considerations and by data obtained
through computer search of small finite fields.

Problem 6.1. For which values of q, n and k can “nice” explicit formulae (in q and n) be obtained for
the number of k-normal elements of Fqn over Fq?

This question is closely related to being able to determine the factorization of xn − 1 into irreducibles
over Fq.

Problem 6.2. Show that primitive 1-normal elements exist for all degrees n over all finite fields (with or
without a computer).

Table 1 gives the number of k-normal and primitive k-normal elements over some small finite fields.

q = 2, n = 6
k # k-norm. # pr. k-norm.

0 24 18
1 12 12
2 18 5
3 3 0
4 5 0
5 1 0

q = 5, n = 6
k # k-norm. # pr. k-norm.

0 9216 2568
1 4608 1320
2 1344 360
3 384 71
4 64 0
5 8 0

q = 5, n = 7
k # k-norm. # pr. k-norm.

0 62496 31248
1 15624 7811
2 0 0
3 0 0
4 0 0
5 0 0
6 4 0

Table 1: Number of k-normal and primitive k-normal elements over some small finite fields.

Problem 6.3. Determine the values of k such that there exist primitive k-normal elements over any finite
field.

For example, we can immediately show that there are no primitive (n− 1)-normal elements of Fqn over
Fq. Suppose α is a primitive (n− 1)-normal element of Fqn over Fq. Then, α satisfies (x− β) ◦ α = 0 for
some β ∈ Fq. Thus (x − β) ◦ α = αq − βα = 0 and αq−1 ∈ Fq. The multiplicative order of α therefore
divides (q − 1)2, which is a contradiction for n ≥ 2.
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Primitive elements of degree n over Fq are (qn−1)-free, and for any divisor N of qn−1, elements having
order not properly dividing N are N -free. If f is a divisor of xn−1, there is an additive (polynomial) analog;
elements which are f -free have Fq-Order which is not a proper divisor of f . Character sum estimates for
the number of (N, f)-free elements are given in [3].

Another direction of research is a relaxation of the primitive condition, yielding elements of “high
order”.

Problem 6.4. Determine the existence of high-order k-normal elements α ∈ Fqn over Fq, where “high
order” means ord(α) = N with N a large positive divisor of qn − 1.
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