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On the Waring Problem with
Multivariate Dickson Polynomials

Alina Ostafe, David Thomson, and Arne Winterhof

Abstract. We extend recent results of Gomez and Winterhof,
and Ostafe and Shparlinski on the Waring problem with univari-
ate Dickson polynomials in a finite field to the multivariate case.
We give some sufficient conditions for the existence of the Waring
number for multivariate Dickson polynomials, that is, the smallest
number g of summands needed to express any element of the finite
field as sum of g values of the Dickson polynomial. Moreover, we
prove strong bounds on the Waring number using a reduction to
the case of fewer variables and an approach based on recent ad-
vances in arithmetic combinatorics due to Glibichuk and Rudnev.

1. Introduction

For a finite field Fq of q elements and a parameter a ∈ Fq, the
values of the multivariate Dickson polynomials of the first kind, denoted

D
(i)
e (x1, . . . , xk, a), i = 1, . . . , k, where e is any positive integer, are

defined by the functional equations

D(i)
e (x1, . . . , xk, a) = si(u

e
1, . . . , u

e
k+1), x1, . . . , xk ∈ Fq,

where xi = si(u1, . . . , uk+1), si is the ith symmetric function in the
indeterminates u1, . . . , uk+1 and

u1 · · ·uk+1 = a,

see [11, Chapter 2.4].
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Equivalently, u1, . . . , uk+1 are the zeros of the polynomial

r(Z) = r(Z, x1, . . . , xk, a)

= Zk+1 − x1Z
k + · · ·+ (−1)kxkZ + (−1)k+1a =

k+1∏
i=1

(Z − ui)

in the indeterminate Z and ue
1, . . . , u

e
k+1 are the zeros of

re(Z) = re(Z, x1, . . . , xk, a)

= Zk+1 −D(1)
e (x1, . . . , xk, a)Zk + · · ·

+(−1)kD(k)
e (x1, . . . , xk, a)Z + (−1)k+1ae

=
k+1∏
i=1

(Z − ue
i ).

In particular, if the polynomial r(Z) is irreducible, then the roots are

the conjugates ui = uqi−1
, i = 1, . . . , k + 1, with a defining element u

of Fqk+1 = Fq(u), and the condition that

uuq · · ·uqk = u(qk+1−1)/(q−1) = a.

In general, the ui are in an extension field Fqj of Fq with 1 ≤ j ≤ k if
a = 0, and 1 ≤ j ≤ k + 1 if a 6= 0, respectively. Put ` = lcm{2, . . . , k}
if a = 0 and ` = lcm{2, . . . , k + 1} if a 6= 0. Then we have

(1) D(i)
e (x1, . . . , xk, a) = D

(i)
f (x1, . . . , xk, a) if e ≡ f mod q` − 1.

In this paper we will consider the Waring problem with the first
multivariate Dickson polynomials which have the values

D(1)
e (x1, . . . , xk, a) = ue

1 + · · ·+ ue
k+1, xi = si(u1, . . . , uk+1),

that is, the question of the existence and estimation of the smallest
positive integer g = ga(e, k, q) such that the equation

(2) D(1)
e (x1,1, . . . , x1,k, a) + · · ·+D(1)

e (xg,1, . . . , xg,k, a) = c, xi,j ∈ Fq,

is solvable for any c ∈ Fq. We call ga(e, k, q) the Waring number of

D
(1)
e and put ga(e, k, q) =∞ if such g does not exist.

By (1) we have

ga(e, k, q) = gae/d(d, k, q), where d = gcd(e, q` − 1).

More precisely, De(x1, . . . , xk, a) and Dd(x1, . . . , xk, a
e/d) have the same

value sets since on the one hand ue
1+ · · ·+ue

k+1 = (u
e/d
1 )d+ · · ·+(u

e/d
k+1)

d

and u
e/d
1 · · ·u

e/d
k+1 = ae/d, and on the other hand we have d = ex+ q`−1y

for some integers x and y, uq`−1
i = 1, and thus ud

1 + · · · + ud
k+1 =

(ux
1)e + · · · + (ux

k+1)
e with ux

1 · · ·ux
k+1 = aex/d = a. Since we focus on
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the case a = 1 (but present the results for an arbitrary a whenever it
is possible), we may assume from now on that

(3) e | q` − 1, e < q` − 1.

Note that for e = q`− 1 the value set of D
(1)
e contains only the element

k + 1 and only g(k + 1) is representable with exactly g summands. In
this case, ga(q

` − 1, k, q) =∞.
We note that the Waring number associated to the shifted Dickson

polynomial with values

D(1)
e (x1, . . . , xk, a) + d

for some d ∈ Fq is equal to ga(e, k, q). Indeed, if (2) has a solution for
any c ∈ Fq and fixed g, then so does

D(1)
e (x1,1, . . . , x1,k, a)+ · · ·+D(1)

e (xg,1, . . . , xg,k, a)+dg = c′, xi,j ∈ Fq,

where c′ = c + dg.
The existence of ga(e, k, q) is guaranteed when q = p is a prime by

the Cauchy-Davenport inequality

|A + B| ≥ min{|A|+ |B| − 1, p} for any A,B ⊆ Fp

with B the value set of D
(1)
e and A = Aj the set of sums of j values of

D
(1)
e . Since the value set of D

(1)
e contains at least two elements by (3),

we have either |Aj+1| > |Aj| or Aj+1 = Fp.
For q = pm with a prime p and m > 1, the existence was charac-

terized for a = 0 and k = 1 in [1] and for a = k = 1 in [10]. By [1,
Theorem G] we have

g0(e, 1, q) <∞ if and only if
q − 1

pt − 1
- e for all t | m with t 6= m,

or equivalently the eth powers generate Fq over Fp and do not fall into
a proper subfield.

Lemma 1. [10, Theorem 2.1] Let q = pm for a prime p and let m =
2k`0, where k is a nonnegative integer and `0 is odd. Then g1(e, 1, q) <
∞ if and only if at least one of the following two conditions is satisfied.

1.
q − 1

pt − 1
- e for all t | m with t 6= m, pm/2 − 1 - e if k ≥ 1,

and
q − 1

(2, p + 1)
- e if `0 > 1.

2.
q + 1

(2, p + 1)
- e,

q + 1

pt + 1
- e for all t | m, t < m, m/t odd.
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We note that there is a typo in [10, Theorem 2.1] where the expression
reads q + 1 instead of q − 1 in the last line of 1. Moreover, there is
a small gap in the proof which is filled in Theorem 10 of this paper,

namely that ga(e, k, q) <∞ if the value set of D
(1)
e contains a basis of

Fq.
In the univariate case for a = 0 we have De(X, a) = Xe, which cor-

responds to the classical Waring problem in finite fields where recently
quite substantial progress has been achieved, see [3, 4, 5, 6, 15]. A
survey of earlier results can also be found in [14].

However, recently it has become apparent that the methods of arith-
metic combinatorics provide a very powerful tool for the Waring prob-
lem and lead to results which are not accessible by other methods,
see [4, 5]. In particular, we have, by [4, Corollary 7],

g0(e, 1, q) ≤ 8 if e < q1/2.

In a recent work, Ostafe and Shparlinski [13] used a result of Glibichuk
and Rudnev [9] to show that, in the univariate case for a 6= 0, the
following inequality holds:

Lemma 2.

ga(e, 1, q) ≤ 16

holds for

1. any a ∈ F∗q and gcd(e, q − 1) ≤ 2−3/2(q − 2)1/2;

2. a that is a square in F∗q and gcd(e, q + 1) ≤ 2−3/2(q − 2)1/2.

Throughout this paper we use the following notation. Let m be
a positive integer, let p be a prime and let q = pm. The values
u1, . . . , uk+1 are in the algebraic closure of Fq (precisely, u1, . . . , uk+1

are in the splitting field of the polynomial r(Z)), and

xi = si(u1, . . . , uk, uk+1), uk+1 = a(u1 · · ·uk)−1,(4)

yi = si(v1, . . . , vk, vk+1), vk+1 = (v1 · · · vk)−1.

Furthermore, for any j ∈ N we denote by

Nmj(u) = uuq · · ·uqj−1

= u
qj−1
q−1

the Fqj norm over Fq and by

Trj(u) = u + uq + · · ·+ uqj−1

the Fqj trace over Fq.
In this paper we study the existence problem for g1(e, k, q), and get

bounds on ga(e, k, q) by reducing the case of k ≥ 2 variables to the case
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of fewer variables. We also use the same techniques of additive combi-
natorics as in [13] to prove bounds on ga(e, k, q) and extend the range
of nontrivial results. Our results become stronger with increasing k.

2. Preparations

Results on the value set. We consider the set

E =
{
D(1)

e (x1, . . . , xk, 1) : ui+1 = uqi

1 , i = 0, . . . , k,

Nmk+1(u1) = u
(qk+1−1)/(q−1)
1 = 1, u1 ∈ F∗qk+1

}
,

where the xi are defined by (4).
A simple remark is that E ⊆ Fq. Indeed, we have

(5) D(1)
e (x1, . . . , xk, 1) = ue

1+ueq
1 +· · ·+ueqk−1

1 +ueqk

1 = Trk+1(u
e
1) ∈ Fq.

Lemma 3. Let E be defined as above. Then,

#E ≥ (qk+1 − 1)

dd0(q − 1)
,

where d = qk−1 + (qk − 1)/(q − 1) and d0 = gcd(e, (qk+1 − 1)/(q − 1)).

Proof. To estimate #E , we notice that

D(1)
e (x1, . . . , xk, 1) = ue

1 + ueq
1 + · · ·+ ueqk−1

1 + u
−e(qk−1)/(q−1)
1

has degree d = qk−1 + (qk − 1)/(q − 1) as a rational function in ue
1.

Moreover, ue
1 takes any value at most d0 = gcd(e, (qk+1 − 1)/(q − 1))

times. Hence, D
(1)
e takes any value at most dd0 times. Since there

are (qk+1 − 1)/(q − 1) different u1 with Nmk+1(u1) = 1, the result
follows. �

Moreover, the value sets of different Dickson polynomials can coin-
cide.

Lemma 4. If ab−1 is a (k + 1)th power in Fq, the value sets of

D
(1)
e (X1, . . . , Xk, a) and D

(1)
e (X1, . . . , Xk, b) are the same and thus we

have
ga(e, k, q) = gb(e, k, q).

Proof. If ab−1 = ck+1, we have

D(1)
e (x1, . . . , xk, a) = ue

1 + · · ·+ ue
k+1

= ce((c−1u1)
e + · · ·+ (c−1uk+1)

e)

= ceDe(y1, . . . , yk, b)

for some y1, . . . , yk ∈ Fq since c−(k+1)u1 · · ·uk+1 = c−(k+1)a = b. �
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Reduction from k variables to fewer variables.

Theorem 5. For 1 ≤ k0 < k put `k0 = lcm(2, . . . , k0 + 1) if a 6= 0,
`k0 = lcm(2, . . . , k0) if a = 0 and ek0 = gcd(e, q`k0 − 1). Then we have

g0(e, k, q) ≤
⌈
g0(ek0 , k0, q)

bk/k0c

⌉
,

ga(e, k, q) = g1(e, k, q) ≤
⌈

g1(ek0 , k0, q)

b(k + 1)/(k0 + 1)c

⌉
if a = bk+1

for some b ∈ Fq, and otherwise

ga(e, k, q) ≤
⌈
g1(ek0 , k0, q)

bk/(k0 + 1)c

⌉
.

Proof. We start with the case a = 0, where

D(1)
e (x1, . . . , xk, 0) = ue

1 + · · ·+ ue
k.

Since k0 < k, we consider only those values with ui = 0 for i =
k0bk/k0c + 1, . . . , k + 1 and see that g0(e, k, q) is not larger than the
smallest g such that

gbk/k0c ≥ g0(e, k0, q) = g0(ek0 , k0, q) with 1 ≤ k0 < k,

which implies the first result.
By Lemma 4 we have ga(e, k, q) = g1(e, k, q) if a = bk+1 for some

b ∈ Fq.

For a = 1, we have D
(1)
e (x1, . . . , xk, a) = ue

1 + · · · + ue
k+1 with

u1 · · ·uk+1 = 1. We consider only those ui with

u(k0+1)i+1 · · ·u(k0+1)i+k0+1 = 1

for i = 0, . . . , b(k + 1)/(k0 + 1)c and u(k0+1)b(k+1)/(k0+1)c+1 = · · · =
uk+1 = 1. Hence, g1(e, k, q) is not larger than the smallest g with
gb(k + 1)/(k0 + 1)c ≥ g1(ek0 , k0, q) and the second result follows.

The third result follows if we take uk+1 = a, split the remaining
ui in groups of k0 + 1 elements with product 1 and put the remaining
ui = 1. �

Setting k0 = 1 in Theorem 5, together with the first condition of
Lemma 2, gives the following consequence.

Corollary 6. Suppose a ∈ F∗q and gcd(e, q − 1) < 2−3/2(q − 2)1/2

or gcd(e, q + 1) < 2−3/2(q − 2)1/2. Then,

ga(e, k, q) ≤
⌈

16

b(k + 1)/2c

⌉
if a = bk+1, k ≥ 1,
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and

ga(e, k, q) ≤
⌈

16

bk/2c

⌉
if a 6= bk+1, k ≥ 2.

Set products and sums. We recall the following result of A. Gli-
bichuk and M. Rudnev [9, Theorem 6].

Lemma 7. For any two sets A,B ⊆ Fq, with #A#B > 2q we have{
8∑

j=1

ajbj : aj ∈ A, bj ∈ B, j = 1, . . . , 8

}
= Fq.

We will need the following extension of the Cauchy-Davenport in-
equality.

Lemma 8. [12] Let B be a finite non-empty subset of an Abelian
group G. Then the following conditions are equivalent:

1. For every finite non-empty subset A of G, |A+B| ≥ min(|A|+
|B| − 1, |G|).

2. For every finite subgroup H of G, |H + B| ≥ min(|H|+ |B| −
1, |G|).

Lemma 9. For q = pm, let B be a basis of Fq over Fp. For any
subgroup H of Fq, |H + B| ≥ min(|H|+ |B| − 1, q).

Proof. We may restrict ourselves to the case {0} 6= H 6= Fq. Put
|H| = pj with 1 ≤ j < m. Then at least m − j elements of B are not
in H and H +B contains at least m− j + 1 different cosets H + b with
b ∈ B. Hence,

|H + B| ≥ (m− j + 1)pj ≥ pj + (m− j) + pj − 1

≥ pj + m− j + j − 1 = |H|+ |B| − 1,

which completes the proof. �

3. Existence of g1(e, k, q)

In this section we give conditions on the existence of g1(e, k, q).

Theorem 10. For k0 = 1, . . . , k+1 put `k0 = lcm(2, . . . , k0+1) and
ek0 = gcd(e, q`k0 −1). We have g1(e, k, q) <∞ if either e1 6= q2−1 and
one of the two conditions of Lemma 1 with e1 instead of e is satisfied
or there exists 2 ≤ k0 ≤ k + 1 such that ek0 6= q`k0 − 1 and

qk0 − 1

pt − 1
- gcd(e(q − 1), qk0 − 1) for all t | k0m with t < k0m.
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Proof. By Theorem 5 we have g1(e, k, q) <∞ if g1(ek0 , k0, q) <∞
for some 1 ≤ k0 ≤ k + 1. Taking k0 = 1, the first part of the theorem
follows directly from Lemma 1. For the second part it is enough to
consider the case k0 = k + 1. Let uj = uqj−1

, j = 1, 2, . . . , k + 1, where
Fqk+1 = Fq(u). This corresponds to the case that r(Z) is irreducible.

We have Nmk+1(u) = u(qk+1−1)/(q−1) = 1, that is, u is a (q− 1)th power
of an element of Fqk+1 . Now, we get De(x1, . . . , xk, 1) = Trk+1(u

e).
Note that the eth powers ue of elements in Fqk+1 of norm 1 are exactly
the (q− 1)eth powers in Fqk+1 and generate Fqk+1 over Fp if and only if

qk+1 − 1

pt − 1
- gcd(e(q−1), qk+1−1) for all t | (k+1)m with t < (k+1)m.

Under this condition, there is a basis {ue
1, . . . , u

e
(k+1)m} of Fqk+1 over Fp

with Nmk+1(u1) = · · · = Nmk+1(u(k+1)m) = 1. Hence,

{Trk+1(u
e
i ) : i = 1, . . . , (k + 1)m}

must contain a basis B of Fq over Fp since the trace is linear and
surjective, and the existence follows by Lemmas 8 and 9. �

4. Estimates for ga(e, k, q)

We prove the following estimates which follow from Theorem 5 and
the same argument as in [13, Theorem 1] using Lemma 7. We also
improve Corollary 6 in some cases.

Theorem 11. Let 1 ≤ k0 ≤ k be minimal such that

gcd
(
e, (qk0+1 − 1)/(q − 1)

)
≤ 3

8
√

2
q1/2.

If a is a (k + 1)th power in F∗q, then

ga(e, k, q) ≤
⌈

8(k0 + 1)

b(k + 1)/(k0 + 1)c

⌉
and otherwise if k > k0 + 1,

ga(e, k, q) ≤
⌈

8(k0 + 1)

bk/(k0 + 1)c

⌉
.

Proof. If a = bk+1, by Theorem 5 we may assume a = 1.
By Lemma 3 we see that

gcd(e, (qk0+1 − 1)/(q − 1)) ≤ 3

8
√

2
q1/2

implies
#E > 21/2q1/2
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since
3

8
√

2
q1/2 < 2−1/2

qk0+1 − 1

(2qk0 − qk0−1 − 1)q1/2
.

Thus, by Lemma 7 applied with the sets A = B = E , we see that for
any c ∈ Fq there are uj, vj ∈ Fqk0+1 with Nmk0+1(uj) = Nmk0+1(vj) = 1,
j = 1, . . . , 8 such that

8∑
j=1

Tr(ue
j)Tr(vej ) = c,

by (5). Since

Trk0+1(u
e
j)Trk0+1(v

e
j ) =

k0∑
i=0

Trk0+1(u
e
jv

eqi

j )

again by (5), we get

g1(e, k0, q) ≤ 8(k0 + 1)

if gcd(e, (qk0+1−1)/(q−1)) ≤ 3
8
√
2
q1/2. Theorem 5 completes the proof.

Note that we get the strongest bound if k0 is minimal. �

5. Final remarks

We remark that, using [8, Theorem 6], [13, Theorem 2] and The-
orem 5, one can obtain easily a generalisation of [13, Theorem 2] for

multivariate Dickson polynomials D
(1)
e , which we do not present here.

We note, however, if gcd(e, q − 1) < 0.75q2/3, from [13] we get

g1(e, k, q) ≤
⌈

92160

b(k + 1)/2c

⌉
.

For a = 0 a similar result as [13, Theorem 2] immediately follows
from the character sum bound of Chang and Bourgain. More precisely,
from [3, Theorem 1] it follows that for any ε > 0, if e ≤ q1−ε and
g0(e, 1, q) exists, there is a constant c(ε) such that g0(e, k, q) ≤ c(ε).

Furthermore, for a = 0 we easily get

g0(e, k, q) ≤
⌈

8k0
bk/k0c

⌉
if

gcd(e, qk0 − 1) < q1/2

for some 1 ≤ k0 ≤ k.
Moreover, we mention that

D(k)
e (x1, . . . , xk, a) = (u−11 a)e + · · ·+ (u−1k+1a)e = D(1)

e (y1, . . . , yk, a
k)
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for some y1, . . . , yk and thus the corresponding value sets and Waring
numbers are the same.

Finally, we mention that for very large e better results than ours
can be obtained using the Cauchy-Davenport theorem. For very small
e and k character sums are superior. See [2, 7, 10] for more details in
the case k = 1.

Acknowledgement. The authors would like to sincerely thank
the anonymous referee as well as D. Gomez and I. Shparlinski for their
generous comments regarding a previous draft of this work.
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[2] A. Bodin, P. Dèbes and S. Najib, ‘Irreducibility of hypersurfaces’, Commun.
Algebra, 37 (2009), 1884-1900.

[3] J. Bourgain and M.-C. Chang, ‘A Gauss sum estimate in arbitrary finite
fields’, C. R. Math. Acad. Sci. Paris, 342 (2006), 643–646.

[4] J. Cipra, ‘Waring’s number in a finite field’, Integers, 9 (2009), 435–440.
[5] J. Cipra, T. Cochrane and C. G. Pinner, ‘Heilbronn’s conjecture on Waring’s

number mod p’, J. Number Theory , 125 (2007), 289–297.
[6] T. Cochrane and C. Pinner, ‘Sum-product estimates applied to Waring’s

problem mod p’, Integers, 8 (2008), A46, 1–18.
[7] P. Deligne, ‘La conjecture de Weil I’, Publ. Math. IHES, 43 (1974), 273-307.
[8] A. Glibichuk, ‘Sums of powers of subsets of arbitrary finite fields’, Izv.

Ross. Akad. Nauk Ser. Mat. (in Russian), 75 (2011), 35–68; translation
in Izvestiya. Mathematics, 75, 253–285.

[9] A. Glibichuk and M. Rudnev, ‘On additive properties of product sets in an
arbitrary finite field’, J. d’Analyse Math., 108 (2009), 159–170.

[10] D. Gomez and A. Winterhof, ‘Waring’s problem in finite fields with Dick-
son polynomials’, Finite Fields: Theory and applications, Contemp. Math.,
v.477, Amer. Math. Soc., 2010, 185–192.

[11] R. Lidl, G. L. Mullen, and G. Turnwald, Dickson polynomials, Pitman Mono-
graphs and Surveys in Pure and Applied Math., Longman, London-Harlow-
Essex, 1993.

[12] H.B. Mann, ‘An addition theorem for sets of elements of an abelian group’,
Proc. Am. Math. Soc., 4 (1953), 423.

[13] A. Ostafe and I. E. Shparlinski, ‘On the Waring problem with Dickson poly-
nomials in finite fields’, Proc. Amer. Math. Soc., 139 (2011), 3815–3820.

[14] A. Winterhof, ‘On Waring’s problem in finite fields’, Acta Arith., 87 (1998),
171–177.

[15] A. Winterhof and C. van de Woestijne, ‘Exact solutions to Waring’s problem
in finite fields’, Acta Arith., 141 (2010), 171–190.



WARING PROBLEM WITH DICKSON POLYNOMIALS 11

Department of Computing, Macquarie University, Sydney NSW
2109, Australia

E-mail address: alina.ostafe@mq.edu.au

School of Mathematics and Statistics, Carleton University, 1125
Colonel By Dr., Ottawa ON, Canada, K1S 5B6

E-mail address: dthomson@math.carleton.ca

Johann Radon Institute for Computational and Applied Mathe-
matics, Austrian Academy of Sciences, Altenbergerstr. 69, A-4040
Linz, Austria

E-mail address: arne.winterhof@oeaw.ac.at


