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1 Introduction

Irreducible polynomials with few nonzero terms are important in efficient ap-
plications of digital communications systems such as coding theory, cryptog-
raphy and signal processing. Trinomials and pentanomials, polynomials with
three and five non-zero terms, respectively, over F2 have been studied in this
context. In general, it is unknown when a polynomial with a given number of
non-zero terms is irreducible. Therefore, results characterizing the irreducibil-
ity of such polynomials are important. Swan [14] gave the first result on the
reducibility of such polynomials over finite fields.

Swan’s theorem gives the parity of the number of irreducible factors of
trinomials over F2. Swan relies on a result which relates the discriminant of a
polynomial with its number of irreducible factors. This result was originally
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given by Pellet [12] for prime fields, and later by Stickelberger [13] for general
p-adic fields. As a corollary, Swan proves that there is no irreducible trinomial
over F2 of degree 8k, where k is any positive integer [14]. Swan’s theorem has
recently been used by Brent and Zimmerman [3] to reduce the number of cases
in a search for primitive trinomials over F2 of enormous degree.

Many results similar to Swan’s theorem concentrate on determining the
reducibility of polynomials over F2. Hales and Newhart [5] give a Swan-like
result for binary tetranomials. Bluher [2] gives a Swan-like theorem for binary
polynomials of the form xn +

∑
i∈S x

i + 1, where S ⊂ {i : i odd, 0 < i <
n/3}

⋃
{i : i ≡ n (mod 4), 0 < i < n}. Zhao and Cao [16] show that all binary

affine polynomials are reducible except for x2+x+1 and x4+x+1. Koepf and
Kim [7] give a Swan-like result for the so-called Type II binary pentanomials.

Some recent work has been conducted on the reducibility of polynomi-
als over finite fields of odd characteristic. Von zur Gathen [4] shows that
a polynomial over Fq, q odd, being squarefree with an odd number of irre-
ducible factors depends only on the values of n (mod m1), k (mod m2) and
k/ gcd(n, k) (mod q − 1), where m2 = p(q − 1) and m1 = lcm(4,m2). He then
analyzes the special case of trinomials over F3 and gives a table of conditions
for which a trinomial over F3 is squarefree and has an odd number of irre-
ducible factors. In this work, von zur Gathen poses some conjectures on the
distribution of irreducible trinomials over F3. One of these conjectures was
proven by Ahmadi, see [1]. Kim and Koepf [6] examine the parity of the num-
ber of the irreducible factors of compositions of some polynomials over finite
fields of odd characteristic. Loidreau [10] gives the parity of the number of
irreducible factors for any trinomial over F3 by examining the discriminant
using all possible congruences of n and k (mod 12). This type of analysis
holds for higher characteristic, but the number of cases grows quickly with the
characteristic, making a complete analysis for large q hard to achieve.

Sufficient and necessary conditions on the irreducibility of binomials over
finite fields Fq are well known, see [9, Theorem 3.75]. However, these results
require the factorization of q− 1. In this paper, we give a complete character-
ization of the parity of the number of irreducible factors of binomials over Fq,
q odd, that does not require the factorization of q − 1. We also give a partial
result on the reducibility of trinomials over Fq. Several cases are not covered
as they depend on unknown properties of the quadratic character. We consider
only monic polynomials with non-zero constant term. Thus, we denote these
binomials as xn +a ∈ Fq[x], a 6= 0, and the trinomials as xn +axk + b ∈ Fq[x],
ab 6= 0.

The structure of the paper is as follows: in Section 2 we present some back-
ground and preliminary results to give the parity of the number of irreducible
factors of polynomials over finite fields. In Section 3 we give conditions for com-
pletely determining the parity of the number of irreducible factors of binomials
over finite fields. In Section 4 we give conditions to determine the parity of
the number of irreducible factors of certain classes of trinomials over finite
fields. Then, in Section 5 we give Swan-like reducibility conditions for some
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other classes of polynomials for which the method in Section 3 and Section 4
applies.

2 Background results

We recall some important notions and results which are necessary for this
paper.

Definition 2.1 [9] Let D be an integral domain and let f be a monic polyno-
mial in D[x] with roots α1, α2, . . . , αn, counted with multiplicity. The discrim-
inant of f is given by

D(f) =
∏
i<j

(αi − αj)2.

The discriminant is a symmetric function in the roots of f and thus lies in D.
A polynomial f contains multiple roots if and only if D(f) = 0. If D(f) 6= 0
then we call f squarefree.

Proposition 2.2 [9] An alternate formula for the discriminant of f is

D(f) = (−1)
n(n−1)

2

n∏
i=1

f ′(αi).

Next is the result, due to Stickelberger, used in this paper which relates
the parity of the number of irreducible factors of a polynomial with its dis-
criminant.

Theorem 2.3 [12–14] Let p be an odd prime and suppose that f is a monic
polynomial of degree n with integral coefficients in a p-adic field F. Let f̄ be the
result of reducing the coefficients of f (mod p). Assume further that f̄ has no
repeated roots. If f̄ has r irreducible factors over the residue class field, then
r ≡ n (mod 2) if and only of D(f) is a square in F.

The main result used in this paper is the application of the above theorem,
due to Swan [14], to finite fields of odd characteristic.

Corollary 2.4 Let q be a power of an odd prime p and let Fq be the finite field
with q elements. Let g be a polynomial over Fq of degree n with no repeated
roots. Furthermore, let r be the number of irreducible factors of g over Fq.
Then r ≡ n (mod 2) if and only if D(g) is a square in Fq.

Swan extends the previous result to the case p = 2 by noting that a p-adic
integer a coprime to p, is a p-adic square if and only if a is a square (mod 4p).

Corollary 2.5 Let g be a polynomial of degree n over F2 with D(g) 6= 0 and
let f be a monic polynomial over the 2-adic integers such that g is the reduction
of f (mod 2). Furthermore, let r be the number of irreducible factors of g over
F2. Then r ≡ n (mod 2) if and only if D(f) ≡ 1 (mod 8).
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We observe that if a polynomial has an even number of irreducible factors
then it is reducible. However, if the polynomial has an odd number of irre-
ducible factors, we cannot say more. Therefore, Swan-like results are useful in
giving reducibility conditions for polynomials.

If f is a monic polynomial over Fq with f(0) 6= 0, we denote the monic
reverse of f by rev(f), where, if a0 is the constant term of f , rev(f(x)) =
a0
−1xnf(1/x). It is well known that a polynomial and its reverse have the

same number of irreducible factors [14]. If f defines the trinomial f(x) =
xn + xk + 1 ∈ F2[x], then the reverse is given by rev(f(x)) = xn + xn−k + 1.

We now summarize Swan’s Theorem characterizing the parity of the num-
ber of irreducible factors of a trinomial over F2.

Theorem 2.6 [14] Let n > k > 0 and assume that precisely one of n, k is odd.
Furthermore, let r be the number of irreducible factors of f(x) = xn+xk+1 ∈
F2[x]. Then r ≡ 0 (mod 2) is in the following cases:

– n even, k odd, n 6= 2k and nk/2 ≡ 0, 1 (mod 4);
– n odd, k even, k - 2n and n ≡ 3, 5 (mod 8);
– n odd, k even, k | 2n and n ≡ 1, 7 (mod 8).

In other cases f has an odd number of factors.

The case where n and k are both odd can be covered by making use of
the fact that the reverse of f has the same number of irreducible factors. If
both n and k are even the trinomial is a square and has an even number of
irreducible factors.

For practical applications the following corollary is important.

Corollary 2.7 No binary trinomial with degree a multiple of 8 is irreducible.

To determine whether D(f) is a square in a finite field we introduce the
quadratic character.

Definition 2.8 Let p be an odd prime and let q = pm,m ≥ 1. The quadratic
character, η, of α ∈ F∗q is given by

η(α) =

{
1 if α is a quadratic residue in Fq;
−1 otherwise.

The quadratic character is a homomorphism (and thus preserves multipli-
cation) from F∗q to the complex numbers. If q is prime, the quadratic character
is equivalent to the Legendre symbol (mod q).

Gauss’ lemma gives a computationally friendly method of calculating the
quadratic character. Let α ∈ F∗q , then η(α) = α(q−1)/2. Of particular interest
is the evaluation of the quadratic character at α = −1. We have

η(−1) =

{
1 if q ≡ 1 (mod 4);

−1 if q ≡ 3 (mod 4).

We note that q ≡ 3 (mod 4) if and only if p ≡ 3 (mod 4) and m ≡ 1 (mod 2).
In each of the following sections we further comment on other previous

works which are closely related to this paper.
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3 Binomials

Irreducible binomials over finite fields have been studied in [9, 11]. In [9] a
sufficient and necessary condition is given for when a binomial over Fq is
irreducible. In [11], given a finite field of characteristic p, the authors give
precisely for which degrees there exist irreducible binomials. Swan-like results
can give simple conditions to determine the parity of the number of irreducible
factors of a binomial over Fq. These conditions complement the irreducibility
criteria by providing an easy method of checking if a binomial over Fq is
reducible. First, we state the previous results outlined above.

Theorem 3.1 [9, Theorem 3.75] Let t ≥ 2 be an integer and a ∈ F∗q . Then
the binomial xt − a is irreducible in Fq[x] if and only if the following two
conditions hold: (i) each prime factor of t divides the order e of a in F∗q , but
not (q − 1)/e; (ii) q ≡ 1 (mod 4) if t ≡ 0 (mod 4).

We now state a theorem for a general q to determine for which degrees m
there are irreducible binomials over Fq.

Theorem 3.2 [11] Let Fq be a finite field of odd characteristic p, q ≥ 5.
There exists an irreducible binomial over Fq of degree m, m 6≡ 0 (mod 4),
if and only if every prime factor of m is also a prime factor of q − 1. For
m ≡ 0 (mod 4) then there exists an irreducible binomial over Fq of degree m if
and only if q ≡ 1 (mod 4) and every prime factor of m is also a prime factor
of q − 1.

The condition that q ≥ 5 in the above theorem is necessary due to the
small size of F3. Indeed, the only irreducible binomial over F3 is x2 + 1.

These results give sufficient and necessary conditions to determine the ir-
reducibility for binomials over Fq. However, the application of these theorems
requires knowledge of the factorization of q − 1, which may be large. Efficient
large integer factorization is a well-known hard problem, for a survey on the
subject see [8].

We focus now on Swan-like results for binomials over finite fields of odd
characteristic which do not require any such factorization. The results here
depend on the congruences of the degree, on the characteristic (mod 4) and
on the evaluation of the quadratic character. These results give the parity of
the number of irreducible factors of a given binomial and thus can prove only
reducibility. It is important to note, however, that the computation of the
quadratic character is simple and requires computing one power, rather than
integer factorization.

We present, as a lemma, the discriminant of a binomial.

Lemma 3.3 Let f(x) = xn + a. If α0, α1, . . . , αn−1 are the roots of f in the
splitting field of f ,

D(f) = (−1)n(n−1)/2
n−1∏
i=0

nαn−1i = (−1)n(n−1)/2nnan−1.
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By Corollary 2.4, if r is the number of irreducible factors of f , then n ≡
r (mod 2) if and only if η(D(f)) = 1.

Theorem 3.4 Let q be a power of an odd prime p and let f(x) = xn + a ∈
Fq[x], where a 6= 0 and p does not divide n. Let η be the quadratic character
of Fq and let D(f) be the discriminant of f . Then η(D(f)) = 1 if and only if
one of the following cases hold:

1. q ≡ 1 (mod 4), n ≡ 0 (mod 2) and a is a quadratic residue in Fq,
2. q ≡ 1 (mod 4), n ≡ 1 (mod 2) and n is a quadratic residue in Fq,
3. q ≡ 3 (mod 4), n ≡ 2 (mod 4) and a is a quadratic non-residue in Fq,
4. q ≡ 3 (mod 4), n ≡ 3 (mod 4) and n is a quadratic non-residue in Fq,
5. q ≡ 3 (mod 4), n ≡ 0 (mod 4) and a is a quadratic residue in Fq,
6. q ≡ 3 (mod 4), n ≡ 1 (mod 4) and n is a quadratic residue in Fq.

Proof. We know that D(f) is a square in Fq if and only if

η (D(f)) = η
(

(−1)n(n−1)/2
)
η (nn) η

(
an−1

)
= 1. (1)

Equation (1) holds if and only if each term in the product is 1 or if exactly
two terms in the product are −1. We analyze conditions under which these
cases hold.

Case 1. Two terms equal to −1

We immediately rule out the case where the final two terms in Equation (1)
are equal to −1 since if n ≡ 0 (mod 2) then η(nn) = ηn(n) = 1, and if
n ≡ 1 (mod 2) then η(an−1) = ηn−1(a) = 1. Therefore the first term must
equal −1, which occurs if and only if q ≡ 3 (mod 4) and n ≡ 2, 3 (mod 4).

Let q ≡ 3 (mod 4). If n ≡ 2 (mod 4) then the second term is always 1 and
η(D(f)) = 1 if and only if a is a quadratic non-residue. If n ≡ 3 (mod 4) then
the third term is always 1 and η(D(f)) = 1 if and only if n is a quadratic
non-residue.

Case 2. All terms equal to 1

We have from above that the first term of Equation (1) is 1 if and only if
q ≡ 1 (mod 4), or q ≡ 3 (mod 4) and n ≡ 0, 1 (mod 4).

Suppose q ≡ 1 (mod 4). If n ≡ 0 (mod 2), η(nn) = ηn(n) = 1 and
η(D(f)) = 1 if and only if a is a quadratic residue. If n ≡ 1 (mod 2), we have
η(an−1) = ηn−1(a) = 1 and so η(D(f)) = 1 if and only if n is a quadratic
residue.

Now, suppose q ≡ 3 (mod 4), then n ≡ 0, 1 (mod 4) and the reasoning is
identical to the previous case.

We can infer reducibility conditions on binomials from Theorem 3.4 by
observing the conditions in the statement of the theorem and the parity of
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the degree n of the binomial f . Thus, f is reducible if n is even and the
condition is met or if n is odd and the condition is not met. In all other
cases, f has an odd number of irreducible factors and we cannot say more.
Below, we give an example of these results and note that while these are
conditions on reducibility (and not irreducibility, which is the usual problem),
the computations are simple.

Corollary 3.5 Let q be a power of an odd prime p and let f(x) = xn + a ∈
Fq[x], where a 6= 0 and p does not divide n. Then f is reducible if n ≡ 0 (mod 4)
and a is a quadratic residue or if n ≡ 1 (mod 4) and n is a quadratic non-
residue.

4 Trinomials

In this section we are interested in trinomials xn + axk + b, ab 6= 0, over Fq
where q is a power of an odd prime p. The parity of the number of irreducible
factors of trinomials over Fq depends on the congruence q (mod 4) and also on
evaluation of the quadratic character of a, b, n and k in Fq. We analyze some
special congruences to give Swan-like results for general odd characteristic.
First, we present as a lemma, the discriminant of a trinomial as given by
Swan.

Lemma 4.1 [14] Let f(x) = xn + axk + b, with n > k > 0 and ab 6= 0. Let
d = gcd(n, k) so that k = dk1 and n = dn1. Then

D(xn + axk + b) = (−1)
n(n−1)

2 bk−1 ·[
nn1bn1−k1 + (−1)n1+1(n− k)n1−k1kk1an1

]d
. (2)

A sharp difference in analyzing the discriminant between extensions of
characteristic 2, which was covered by Vishne in [15], and in the odd charac-
teristic case covered in this paper, is in the p-adic analysis. For characteristic
2, Vishne requires evaluating the discriminant of a trinomial (mod 8R) where
R is a valuation ring of the 2-adic numbers. Vishne’s case is a direct analogue
of Swan’s proof over F2. In our case, since p is an odd prime, we consider the
discriminant as lying within the ground field.

Let p be an odd prime and let q = pm, for some m ≥ 1. We observe that the
formulas for the discriminants of binomials and trinomials, given in Lemma 3.3
and Lemma 4.1 respectively, remain unchanged when f is considered as a
polynomial over the extension field Fq.

We now give conditions under which the discriminant of a trinomial is a
quadratic residue in Fq. We recall that, by Corollary 2.4, if the discriminant
is a square then the degree of the trinomial and its number of irreducible
factors have like parity. With the large number of cases, we do not use the
notation of the quadratic character η and we simply comment on if the factors
in Equation (2) are quadratic residues.
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Theorem 4.2 Let p be an odd prime and let q = pm for some m ≥ 1. Let
f(x) = xn + axk + b, ab 6= 0, be a squarefree trinomial over Fq and let d =
gcd(n, k). We proceed in cases by analyzing congruences in Equation (2).

Case 1: d = gcd(n, k) ≡ 0 (mod 2)

D(f) is a square if and only if

1. q ≡ 1 (mod 4) and b is a quadratic residue in Fq;
2. q ≡ 3 (mod 4), n ≡ 0 (mod 4) and b is a quadratic residue in Fq;
3. q ≡ 3 (mod 4), n ≡ 2 (mod 4) and b is a quadratic non-residue in Fq.

Case 2: d ≡ 1 (mod 2) and p divides n

D(f) is a square if and only if

1. n ≡ 0 (mod 2)
(a) q ≡ 1 (mod 4);
(b) q ≡ 3 (mod 4) and n ≡ 0 (mod 4);

2. n ≡ k ≡ 1 (mod 2)
(a) q ≡ 1 (mod 4), a and k are both quadratic residues or non-residues in

Fq;
(b) q ≡ 3 (mod 4), n ≡ 1 (mod 4) and a and k are both quadratic residues

or non-residues in Fq;
(c) q ≡ 3 (mod 4), n ≡ 3 (mod 4) and exactly one of a and k is a quadratic

residue in Fq;
3. n ≡ 1 (mod 2), k ≡ 0 (mod 2)

(a) q ≡ 1 (mod 4), exactly two of a, b, k are quadratic residues in Fq or
none of a, b, k are quadratic residues in Fq;

(b) q ≡ 3 (mod 4), n ≡ 3 (mod 4) and exactly one of a, b, k are quadratic
residues in Fq or all of a, b, k are quadratic residues in Fq;

(c) q ≡ 3 (mod 4), n ≡ 1 (mod 4) and none of a, b, k are quadratic residues
in Fq or exactly two of a, b, k are quadratic residues in Fq.

Case 3: d ≡ 1 (mod 2) and p divides k, or p divides n− k

D(f) is a square if and only if

1. q ≡ 1 (mod 4), n ≡ 0 (mod 2) and b is a quadratic residue in Fq, or
q ≡ 3 (mod 4), n ≡ 0 (mod 2) and b is a quadratic non-residue in Fq;

2. q ≡ 1 (mod 4), n ≡ 1 (mod 2) and n is a quadratic residue in Fq, or
q ≡ 3 (mod 4), n ≡ 1 (mod 2) and n is a quadratic non-residue in Fq.

Proof. We proceed by cases.
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Case 1: d ≡ 0 (mod 2)

The last term in Equation (2) is a square and so D(f) a square if and only if

(−1)
n(n−1)

2 bk−1 is a square. Since d = gcd(n, k) is even, so are n and k and we
have the following cases.

1.1 If q ≡ 1 (mod 4), then −1 is a quadratic residue. Since k is even, bk−1 is a
square if and only if b is a quadratic residue.

1.2 If q ≡ 3 (mod 4) and n ≡ 0 (mod 4), then (−1)
n(n−1)

2 = 1 and the analysis
is the same as in Case 1.1.

1.3 If q ≡ 3 (mod 4) and n ≡ 2 (mod 4), then (−1)
n(n−1)

2 = −1 which is a
quadratic non-residue. The remainder of the analysis is similar to Case 1.1.

If d is odd, we can assume d = 1 by factoring the remaining d − 1 power,
which is a square. We then have the following cases.

Case 2: d ≡ 1 (mod 2) and p divides n

If p divides n then the last term in Equation (2) is (−1)2n1−k1+1kn1−k1kk1an1 .
Thus

D(f) ≡ (−1)2n1−k1+1+
n(n−1)

2 bk−1(ak)n1 (mod p).

We proceed by cases:

2.1 If n is even (hence k and k1 are odd, and n1 is even), D(f) is a square if

and only if (−1)
n(n−1)

2 is a square. This occurs if and only if q ≡ 1 (mod 4),
or q ≡ 3 (mod 4) and n ≡ 0 (mod 4).

2.2 If n is odd and k is odd (hence so are n1 and k1), D(f) is a square if and

only if (−1)
n(n−1)

2 ak is a square. The analysis is as before.
2.3 If n is odd and k is even (hence n1 is odd and k1 is even), D(f) is a square

if and only if (−1)
n(n−1)

2 +1abk is a square. The analysis is as before.

Case 3: d ≡ 1 (mod 2) and p divides k or p divides n− k

If p divides k then D(f) ≡ (−1)
n(n−1)

2 bk−k1+n1−1nn1 (mod p). Since k and k1
have like parity, we have:

3.1 If n is even (hence n1 is even), D(f) is a square if and only if (−1)
n(n−1)

2 b
is a square.

3.2 If n is odd (hence n1 is odd), D(f) is a square if and only if (−1)
n(n−1)

2 n
is a square.

An analysis similar to that found in Case 2 concludes this theorem.

Remark There are several trinomials over Fq not covered by Theorem 4.2.
Since each of a and b vary over F∗q and we need to consider the congruences
q (mod 4) and the reductions of n and k (mod p), the total number of cases



10

is 2p2(q − 1)2. Some of these cases are simple; for example, since f and its
reverse have the same number of irreducible factors, we need only consider half
of these trinomials. Furthermore, by Theorem 4.2, we determine the parity of
the number of irreducible factors of the trinomial if n and k are both even, or
if p divides n, k or n−k. Since the p dividing n−k case is not independent of
the congruences of n and k (mod p), we reduce the total number of cases on
congruences of n, k and n−k by between 2p and 3p. Thus, the total number of
remaining cases lies (strictly) between 3(p2− 3p)(q− 1)2/4 and 3(p2− 2p)(q−
1)2/4. If Rem(p) is the proportion of remaining cases, we have

3(p2 − 3p)(q − 1)2/4

2p(q − 1)2
=

3

8

(
1− 3

p

)
< Rem(p) <

3

8

(
1− 2

p

)
.

Theorem 4.2 covers a large proportion of the total number of trinomials when
p is small. For example, when p = 3 an upper bound on the proportion of
remaining cases is 1/8 = 12.5% and if p = 5 this bound is 9/40 = 22.5%.
When p becomes large, the bounds on the proportion of cases not covered by
Theorem 4.2 converge to 3/8 = 37.5%.

In the remaining cases, Theorem 4.2 does not apply if p does not divide n,
k or n−k. For example, we cannot conclude anything from Theorem 4.2 about
trinomials x4m+1 + x2 + 4 ∈ F5[x] when 5 does not divide 4m + 1 or 4m − 1
(that is, when m 6≡ ±1 (mod 5)). However, it is easy to check that trinomials
of this form have 2 as a root.

In the cases not covered, the confounding term is in the second line of
Equation (2):

nn1bn1−k1 + (−1)n1+1(n− k)n1−k1kk1an1 .

In particular, computing the discriminant in these cases relies on computing
the quadratic character in Fq. Given q, this calculation can easily be done by
computer; however as far as we know, general results on additive properties of
the quadratic character are unknown and likely hard.

As an example, we consider trinomials of the form xmp−x−a ∈ Fq[x], a 6= 0.
The special case of these trinomials when q is prime and m = 1 was studied
by Serret, see [9]. Serret proves a strong result that polynomials of this form
are irreducible over Fp. We consider the parity of the number of irreducible
factors of trinomials of the more general form xmp − x − a ∈ Fq[x], where m
is a positive integer.

Corollary 4.3 Let f(x) = xmp − x − a ∈ Fq[x], a 6= 0. Then f has an odd
number of irreducible factors if and only if m ≡ 1 (mod 4), m ≡ 3 (mod 4)
and q ≡ 1 (mod 4), or m ≡ 2 (mod 4) and q ≡ 3 (mod 4).

Proof. We break into cases based on the congruence of m (mod 4). For each
value of m (mod 4), we cite the cases that we apply from Theorem 4.2.

If m ≡ 1 (mod 4), D(f) satisfies one of Case 2.2a or 2.2c which shows that
f(x) always has an odd number of irreducible factors.
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If m ≡ 3 (mod 4) and q ≡ 1 (mod 4), then D(f) satisfies Case 2.2a and f
has an odd number of irreducible factors. If m ≡ 3 (mod 4) and q ≡ 3 (mod 4),
then D(f) fails to satisfy Case 2.2b and f has an even number of irreducible
factors.

If m ≡ 0 (mod 4) then D(f) satisfies either Case 2.1a or Case 2.1b and
thus f has an even number of irreducible factors for all q.

Suppose m ≡ 2 (mod 4). For q ≡ 1 (mod 4), D(f) satisfies Case 2.1a and
thus f has an even number of irreducible factors. For q ≡ 3 (mod 4), D(f)
fails to satisfy Case 2.1b and thus f has an odd number of irreducible factors.

5 Extensions

We now present some examples of polynomials for which we can apply the
methods used in this paper to comment on the parity of the number of irre-
ducible factors in each case. We note that when this work was well advanced,
we found that the subsequent examples were special cases of the article by Kim
and Koepf [6]. We leave these results here as further examples of Swan-like
results using the same method we used for the binomial and trinomial cases;
more information about these examples can be found in [6].

5.1 Affine polynomials over Fq, q odd

Let p be an odd prime and let q = ps, with s ≥ 1. A linearized polynomial over
Fq is a polynomial of the form L(x) =

∑n
i=0 cix

qi . An affine polynomial over
Fqm is a polynomial of the form L(x)−α where L(x) is a linearized polynomial
in Fq[x] and α ∈ Fqm .

Let A(x) be an affine polynomial over Fqm . Thus, A(x) = α + a1x
qi1 +

a2x
qi2 + · · · + anx

qin where α ∈ Fqm , a1, a2, . . . , an ∈ F∗q and 0 ≤ i1 < i2 <
· · · < in. We compute the discriminant of A(x) using the form

D(A) = (−1)
qin (qin−1)

2

qin∏
i=1

A′(αi),

where α1, . . . , αqin are the roots of A in an extension of Fq. We observe that
if i1 6= 0 then it is clear that A is a qth power and thus D(A) = 0. Now, we
suppose i1 = 0.

Theorem 5.1 Let p be an odd prime and let q = pm, for some m ≥ 1. Also,
let A(x) = α+ a1x+ a2x

qi2 + · · ·+ anx
qin be an affine polynomial over Fqm .

Then A(x) has an odd number of irreducible factors if and only if

1. q ≡ 1 (mod 4) and a1 is a quadratic residue in Fq,
2. q ≡ 3 (mod 4), in ≡ 0 (mod 2) and a1 is a quadratic residue in Fq,
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3. q ≡ 3 (mod 4), in ≡ 1 (mod 2) and a1 is a quadratic non-residue in Fq.

Proof. Let A(x) be as in the hypothesis. Then D(A) = (−1)q
in (qin−1)/2a1.

Thus D(A) is a square in Fq if and only if either both terms are quadratic
residues or both terms are quadratic non-residues in Fq.

If q ≡ 1 (mod 4) then D(A) is a square in Fq if and only if a1 is a quadratic
residue in Fq.

If q ≡ 3 (mod 4) then (−1)q
in (qin−1)/2 = 1 if and only if in is even. Thus,

D(A) is a square in Fq if and only if in is even and a1 is a quadratic residue
or if in is odd and a1 is a quadratic non-residue in Fq.

5.2 Composition with linearized polynomials

Let L(x) =
∑n
i=0 cix

qi be a linearized polynomial over Fq and let f = g ◦ L
for some g ∈ Fq[x], with deg(g) > 1. The discriminant of f is given by

D(f) = (−1)T (T−1)/2
T∏
i=1

f ′(αi)

= (−1)T (T−1)/2
T∏
i=1

g′(L(αi))L
′(αi),

where T = qn · deg(g) and the αi are the roots of f in an extension of Fq. If
c0 = 0, then D(f) = 0 and thus f has repeated roots.

If c0 6= 0 then 0 is a root of f with multiplicity 1. Thus

D(f) = g′(c0)cT0
∏
αi 6=0

g′ (L(αi)) ∈ Fq.

Since g′(c0), c0 ∈ Fq, thus so is
∏
αi 6=0

g′ (L(αi)).

Determining the parity of the number of irreducible factors r of f depends
on the polynomials g and L. In particular, we conclude that r ≡ T (mod 2) if

and only if each of g′(c0), cT0 and
∏
αi 6=0

g′ (L(αi)) are all quadratic residues in

Fq or if exactly one of them is.
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