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5.3 Complexity of normal bases

Shuhong Gao, Clemson University

David Thomson, Carleton University

5.3.1 Optimal and low complexity normal bases

5.3.1 Definition Let α ∈ Fqn be normal over Fq and let N = (α0, α1, . . . , αn−1) be the normal
basis of Fqn over Fq generated by α, where

αi = αq
i

, 0 ≤ i ≤ n− 1.

Denote by T = (tij) the n× n matrix given by

ααi =

n−1∑
j=0

tijαj , 0 ≤ i ≤ n− 1,

where tij ∈ Fq. The matrix T is the multiplication table of the basis N . Furthermore,
the number of non-zero entries of T , denoted by CN , is the complexity (also called the
density) of the basis N .

5.3.2 Remark An exhaustive search for normal bases of F2n over F2 for n < 40 is given in [2015],
extending previous tables such as those found in [1631]. Using data from the search, the
authors in [2015] indicate that normal bases of F2n over F2 follow a normal distribution
(with respect to their complexities) which is tightly compacted about a mean of roughly
n2/2. We define low complexity normal bases loosely to mean normal bases known to have
sub-quadratic bounds, with respect to n, on their complexity.

5.3.3 Remark In addition, [2015] gives the minimum-known complexity of a normal basis of F2n

over F2 for many values of n using a variety of constructions that appear in this section.
Further tables on normal bases are provided in Section 2.2.

5.3.4 Proposition [2199] The complexity CN of a normal basis N of Fqn over Fq is bounded by

2n− 1 ≤ CN ≤ n2 − n+ 1.

5.3.5 Definition A normal basis is optimal normal if it achieves the lower bound in Proposi-
tion 5.3.4.

5.3.6 Theorem [139, 2199]

1. (Type I optimal normal basis) Suppose n + 1 is a prime and q is a primitive
element in Zn+1. Let α be a primitive (n+ 1)-st root of unity. Then α generates
an optimal normal basis of Fqn over Fq.

2. (Type II optimal normal basis) Suppose 2n+1 is a prime and let γ be a primitive
(2n+ 1)-st root of unity. Assume that the multiplicative group of Z2n+1 is gener-
ated by 2 and −1 (that is, either 2 is a primitive element in Z2n+1, or 2n+ 1 ≡ 3
(mod 4) and 2 generates the quadratic residues in Z2n+1). Then α = γ + γ−1

generates an optimal normal basis of F2n over F2.
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5.3.7 Theorem (Optimal normal basis theorem) [1184] Every optimal normal basis is equivalent
to either a Type I or a Type II optimal normal basis. More precisely, suppose Fqn has an
optimal normal basis over Fq generated by α and let b = Tr(α) ∈ Fq. Then one of the
following must hold:

1. n+ 1 is a prime, q is primitive modulo n+ 1 and −α/b is a primitive (n+ 1)-st
root of unity;

2. q = 2v with gcd(v, n) = 1, 2n + 1 is a prime such that 2 and −1 generate the
multiplicative group of Z2n+1, and α/b = γ + γ−1 for some primitive (2n+ 1)-st
root of unity γ.

5.3.8 Remark Gao and Lenstra [1184] prove a more general version of the optimal normal basis
theorem. They show that if a finite Galois extension L/K, where K is an arbitrary field,
has an optimal normal basis, say generated by α, then there is a prime number r, an r-th
root of unity γ in some algebraic extension of L and a nonzero constant c ∈ K so that one
of the following holds:

1. α = cγ and L has degree r− 1 over K (so the polynomial xr−1 + xr−2 + x+ 1 is
irreducible over K);

2. α = c(γ + γ−1) and L has degree (r − 1)/2 over K (so the minimal polynomial
of γ + γ−1 over K has degree (r − 1)/2).

5.3.9 Theorem [308] Let F (x) = xq+1 + dxq − (ax+ b) with a, b, d ∈ Fq and b 6= ad. Let f be an
irreducible factor of F of degree n > 1 and let α be a root of f . Then all the roots of f are

αi = αq
i

= ϕi(α), i = 0, 1, . . . , n− 1,

where ϕ(x) = (ax+ b)/(x+ d). If τ = TrFqn/Fq (α) 6= 0, then (α0, α1, . . . , αn−1) is a normal
basis of Fqn over Fq such that

α


α0

α1

α2

...
αn−1

 =


τ∗ −en−1 −en−2 · · · −e1

e1 en−1

e2 en−2

...
. . .

en−1 e1




α0

α1

α2

...
αn−1

+


b∗

b
b
b
b

 , (5.3.1)

where e1 = a, ei+1 = ϕ(ei) (i ≥ 1), b∗ = −b(n− 1) and τ∗ = τ − ε with

ε =

n−1∑
i=0

ei =


(n− 1)(a− d)/2 if p 6= 2,

a = d if p = n = 2,

a− d if p = 2 and n ≡ 3 (mod 4),

0 if p = 2 and n ≡ 1 (mod 4).

5.3.10 Corollary [308] The following are two special cases of the above theorem.

1. For every a, β ∈ F∗q with TrFq/Fp(β) = 1,

xp − 1

β
axp−1 − 1

β
ap

is irreducible over Fq and its roots form a normal basis of Fqp over Fq of complexity
at most 3p−2. This corresponds to the case of Theorem 5.3.9 with n = p, e1 = a,
ϕ(x) = ax/(x+ a), b = b∗ = 0, and τ∗ = a/β if p 6= 2 and τ∗ = a/β − a if p = 2.
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2. Let n be any factor of q − 1. Let β ∈ Fq have multiplicative order t such that
gcd(n, (q − 1)/t) = 1 and let a = β(q−1)/n. Then

xn − β(x− a+ 1)n

is irreducible over Fq and its roots form a normal basis of Fqn over Fq with
complexity at most 3n − 2. This corresponds to the case of Theorem 5.3.9 with
e1 = a, ϕ(x) = ax/(x+ 1), b = b∗ = 0, and τ∗ = −n(a− 1)β/(1− β)− ε, with ε
given as in Theorem 5.3.9 with d = 1.

5.3.11 Conjecture [3036] If there does not exist an optimal normal basis of Fqn over Fq, then the
complexity of a normal basis of Fqn over Fq is at least 3n− 3.

5.3.12 Remark Explicit constructions of low complexity normal bases beyond the optimal normal
bases and the constructions given in Theorem 5.3.10 are rare. In Section 5.3.2 we give a
generalization of optimal normal bases arising from Gauss periods. Below, we illustrate how
to construct new normal bases of low complexity arising from previously known normal
bases.

5.3.13 Proposition [1172, 2578, 2580] Suppose gcd(m,n) = 1 and α and β generate normal bases
A and B for Fqm and Fqn over Fq, respectively. By Proposition 5.2.3, αβ generates a normal
basis N for Fqmn over Fq. Furthermore, we have CN = CACB and if α and β both generate
optimal normal bases, then CN = 4mn− 2m− 2n+ 1.

5.3.14 Proposition [634] Let n = mk and suppose α ∈ Fqn generates a normal basis
(α0, α1, . . . , αn−1) over Fq with multiplication table T = (tij) for 0 ≤ i, j ≤ n− 1. Then

β = TrFqn/Fqm (α) = α0 + αm + α2m + · · ·+ α(k−1)m

generates a normal basis (β0, β1, . . . , βm−1) for Fqm over Fq with

ββi =

m−1∑
j=0

sijβj , 0 ≤ i ≤ m− 1,

where

sij =
∑

0≤u,v≤k−1

tum+i,vm+j , 0 ≤ i, j ≤ m− 1.

5.3.15 Corollary [633, 634, 1931] Let n = mk. Upper-bounds on the complexity obtained from
traces of optimal normal bases of Fqn over Fq are given in Table 5.3.1.

Type I (q odd): Type I (q = 2): Type II (q = 2):
m even, k odd, p | k km− (k + 1)/2 – –
m even, k odd, k ≡ 1 (mod p) (k + 1)m− (3k + 1)/2 (k + 1)m− 3k + 2∗ 2km− 2k + 1
m even, k odd, all other k (k + 1)m− (3k + 1)/2 – –

k even, p | k km− k/2† km− k + 1 2km− 2k + 1
k even, k ≡ 2 (mod p) (k + 1)m− 3k/2 + 1† km− k + 1 2km− 2k + 1
k even, all other k (k + 1)m− k – –

Table 5.3.1 Upper-bounds on the complexity obtained from of traces of optimal normal bases of Fqn
over Fq , where n = mk. ∗Tight when k = 3; †tight when k = 2, 3.
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5.3.2 Gauss periods

5.3.16 Definition [139] Let r = nk + 1 be a prime not dividing q and let γ be a primitive r-th
root of unity in Fqnk . Furthermore, let K be the unique subgroup of order k in Z∗r and
Ki = {a · qi : a ∈ K} ⊆ Z∗r be cosets of K, 0 ≤ i ≤ n− 1. The elements

αi =
∑
a∈Ki

γa ∈ Fqn , 0 ≤ i ≤ n− 1,

are Gauss periods of type (n, k) over Fq.

5.3.17 Theorem [1180, 2951] Let αi ∈ Fqn be Gauss periods of type (n, k) as defined in Defini-
tion 5.3.16. The following are equivalent:

1. N = (α0, α1, . . . , αn−1) is a normal basis of Fqn over Fq;
2. gcd(nk/e, n) = 1, where e is the order of q modulo r;

3. the union of K0,K1, . . . ,Kn−1 is Z∗r ; equivalently, Z∗r = 〈q,K〉.
5.3.18 Remark Gauss periods of type (n, 1) define Type I optimal normal bases and Gauss periods

of type (n, 2) define Type II optimal normal bases when q = 2.

5.3.19 Remark For the remainder of this section, we are concerned with Gauss periods which are
admissible as normal bases, that is, where the properties in Theorem 5.3.17 hold. When
the characteristic p does not divide n, the existence of admissible Gauss periods of type
(n, k) is shown assuming the ERH in [14, 159] for any n with k ≤ (cn)3(log(np))2. For
any k and prime power q, assuming the GRH, there are infinitely many n such that there
is an admissible Gauss period of Fqn over Fq [1236]. In contrast, when p divides n, [2952]
contains necessary and sufficient conditions for admissible Gauss periods, thus showing the
non-existence of admissible Gauss periods in certain cases.

5.3.20 Proposition [1180] There is no admissible Gauss period of type (n, k) over F2 if 8 divides
nk.

5.3.21 Definition Let Ki be defined as in Definition 5.3.16 for i = 0, 1, . . . , n− 1. The cyclotomic
numbers are given by cij = |(1 +Ki) ∩Kj |.

5.3.22 Proposition [259, 1180] Let N = (α0, α1, . . . , αn−1) be the normal basis arising from Gauss
periods of type (n, k) for Fqn over Fq. Let j0 < n be the unique index such that −1 ∈ κj0 ,
and let δj = 1 if j = j0 and 0 if j 6= j0. Then

ααi = δik +

n−1∑
j=0

cijαj , 0 ≤ i ≤ n− 1,

hence CN ≤ (n− 1)k + n.

5.3.23 Proposition [139, 259] Let p be the characteristic of Fq and let N = (α0, α1, . . . , αn−1) be
the normal basis of Fqn over Fq arising from Gauss periods of type (n, k).

1. If p divides k, then CN ≤ nk − 1.

2. If p = 2, then{
kn− (k2 − 3k + 3) ≤ CN ≤ (n− 1)k + 1 if k even,

(k + 1)n− (k2 − k + 1) ≤ CN ≤ (n− 2)k + n+ 1 if k odd.
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3. If q = 2 and k = 2vr, where either r = 1 or both r is an odd prime and v ≤ 2,
then the lower bounds above are tight for sufficiently large n.

5.3.24 Problem Find the complexity of Gauss periods of type (n, k) over F2 for all n when k is
not a prime, twice an odd prime or four times an odd prime.

5.3.25 Remark [139, 634] The complexities of normal bases arising from Gauss periods of type
(n, k), 2 ≤ k ≤ 6, are given in Table 5.3.2 for all characteristics p when n > p.

Type (n, 1) Type (n, 2) Type (n, 3) Type (n, 4)
all p p = 2 p > 2 p = 2 p = 3 p > 3 p = 2 p = 3 p > 3

2n− 1 2n− 1 3n− 2 4n− 7 3n− 2 4n− 4 4n− 7 5n− 7 5n− 6

Type (n, 5) Type (n, 6)
p = 2 p = 3 p = 5 p > 5 p = 2 p = 3 p = 5 p > 5

6n− 21 6n− 11 5n− 7 6n− 11 6n− 21 6n− 11 7n− 15 7n− 14

Table 5.3.2 Complexities of normal bases from Gauss periods of Type (n, k), 2 ≤ k ≤ 6, n > p.

5.3.26 Remark Let q = 2. Proposition 5.3.13 can be used to create normal bases of large extension
degree by combining normal bases of subfields with coprime degree. By Proposition 5.3.20
Gauss periods of type (n, k) do not exist when 8 divides nk. Hence, Proposition 5.3.13
cannot be used to construct low complexity normal bases when the degree is a prime power.
Thus, when n is a prime power (specifically a power of two), there are no constructions of
low-complexity normal bases arising from the above propositions.

5.3.27 Problem Find explicit constructions of low-complexity normal bases of F2n over F2 when
n is a power of two.

5.3.28 Remark Normal bases of low complexity are useful in fast encoding and decoding of network
codes, see [2665] for more details.

5.3.3 Normal bases from elliptic periods

5.3.29 Remark Proposition 5.2.20, Theorem 5.3.9 and its corollaries show how the multiplicative
group of Fq or Fq2 can be used to construct irreducible polynomials and normal bases for
those degrees n whose prime factors divide q − 1 or q + 1. Also, Gauss periods use the
multiplicative group of Fqr−1 for some prime r. Couveignes and Lercier [746] show how
these methods can be generalized by using elliptic curve groups. The normal bases from
their construction may not have low complexity, but these bases still allow a fast algorithm
for multiplication. We outline their construction below; for more details on how to perform
fast multiplication using elliptic periods, we refer the reader to [746]. For properties of
elliptic curves, see Section 12.2.

5.3.30 Remark Let E be an elliptic curve over Fq defined by a Weierstrass equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

where ai ∈ Fq. The points of E over every extension of Fq form an additive group with the
point O at infinity as the identity. The order of the group E(Fq) is q+1− t for some integer
t with |t| ≤ 2

√
q. Let n > 1 be an integer such that E(Fq) has a cyclic subgroup F of order

n. The quotient E′ = E/F is also an elliptic curve over Fq and there is an isogeny

φ : E → E′,
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that has F as its kernel, and φ is defined by rational functions in Fq[X,Y ]. For any point
P ∈ E, let x(P ) denote the x-coordinate of P and similarly denote y(P ), thus

P = (x(P ), y(P )).

Vélu [2865] gives a formula for E′ and φ. In fact, for P ∈ E,

φ(P ) =

x(P ) +
∑

T∈F\{O}

(x(P + T )− x(T )) , y(P ) +
∑

T∈F\{O}

(y(P + T )− y(T ))

 .

5.3.31 Remark We describe here an explicit formula due to Kohel [1779] for E′ and φ when E is
of the form

E : Y 2 = X3 + aX + b.

We denote by D the kernel polynomial given by

D(X) =
∏

Q∈F\{O}

(X − x(Q))

= Xn − c1Xn−1 + c2X
n−2 − c3Xn−3 + · · ·+ (−1)ncn ∈ Fq[X].

Then, for P = (x, y) ∈ E,

φ(P ) =

(
N(x)

D(x)
, y ·

(
N(x)

D(x)

)′)
,

where N(x) is determined by the equation:

N(x)

D(x)
= nx− c1 − (3x2 + a)

D′(x)

D(x)
− 2(x3 + ax+ b)

(
D′(x)

D(x)

)′
.

Furthermore, E′ is defined by

Y 2 = X3 + (a− 5v)X + (b− 7w),

where

v = a(n− 1) + 3(c21 − 2c2), w = 3ac1 + 2b(n− 1) + 5(c31 − 3c1c2 + 3c3).

5.3.32 Definition Let T ∈ E(Fq) be a point of order n and φ be the corresponding isogeny with
its kernel generated by T . For any point P ∈ E(Fqn) with φ(P ) ∈ E′(Fq), let θ(P, T )
denote the slope of the line passing through the two points T and P + T , that is

θ(P, T ) =
y(P + T )− y(T )

x(P + T )− x(T )
∈ Fqn .

The element θ(P, T ) is an elliptic period over Fq.

5.3.33 Theorem [746] Let T ∈ E(Fq) be a point of order n ≥ 3 and φ be the corresponding isogeny
with its kernel generated by T . Suppose there is a point P ∈ E(Fqn) so that nP 6= O in E
and φ(P ) ∈ E′(Fq). Then either

1. the elliptic period θ(P, T ) is a normal element of Fqn over Fq if the trace of θ(P, T )
from Fqn to Fq is nonzero, or
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2. the element 1 + θ(P, T ) is a normal element of Fqn over Fq if the trace of θ(P, T )
is zero.

5.3.34 Example [746] Consider the following curve over F7

E : y2 + xy − 2y = x3 + 3x2 + 3x+ 2.

The point T = (3, 1) ∈ E(F7) has order n = 5, so the subgroup F = 〈T 〉 has order 5. By
Vélu’s formula, the equation for E′ = E/F is

E′ : y2 + xy − 2y = x3 + 3x2 − 3x− 1,

and the corresponding isogeny is

φ(x, y) =

(
x5 + 2x2 − 2x− 1

x4 + 3x2 − 3
,(

x6 − 3x4 + 3x3 − x2 + 3x− 3
)
y + 3x5 + x4 + x3 + 3x2 − 3x+ 1

x6 + x4 − 2x2 − 1

)
.

Take A = (4, 2) ∈ E′(F7). We note that the polynomial

f(X) = (X5 + 2X2 − 2X − 1) + 3(X4 + 3X2 − 3) = X5 + 3X4 − 3X2 − 2X − 3

is irreducible over F7. Hence F75 = F7[α], where α is a root of f . Compute β so that
φ(α, β) = (4, 2). We find that

β = α4756 = −α3 − α2 + 3α+ 2,

and P = (α, β) ∈ E(F75). We check that 5P 6= O in E and we note that

P + T = (−3α4 + 3α2 + 2α− 1,−α4 + α3 + α2 + 1).

Hence

θ(P, T ) =
Y (P + T )− Y (T )

X(P + T )−X(T )
= −α4 + α3 + 3α2 − 3α− 3

is a normal element in F75 over F7.

5.3.4 Complexities of dual and self-dual normal bases

5.3.35 Remark For the definition of dual and self-dual bases, see Definition 2.1.100. Self-dual nor-
mal bases have been well studied due to their efficiency in implementation, see Section 16.7.
A complete treatment of dual bases over finite fields can be found in [1631, Chapter 4], see
also Sections 5.1 and 5.2.

5.3.36 Remark It is computationally easier to restrict an exhaustive search to self-dual normal
bases. Geiselmann in [1263, 1631] computes the minimum complexity for a self-dual normal
basis of F2n over F2 for all n ≤ 47. These computations are repeated for odd degrees n ≤ 45
in [130] and the authors also give tables of minimum complexity self-dual normal bases over
finite fields of odd characteristic and for extensions of F2` , ` > 1. Some additional searches
for self-dual normal bases can be found in [2015].

5.3.37 Proposition [1632] Let N be a normal basis with multiplication table T . Then N is self-dual
if and only if T is symmetric.
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5.3.38 Proposition [1632] Let gcd(m,n) = 1. Suppose α and β generate normal bases A and B
for Fqm and Fqn over Fq, respectively. Then γ = αβ generates a self-dual normal basis N
for Fqmn over Fq if and only if both A and B are self-dual, as in Proposition 5.2.3. The
complexity of the basis N is CN = CACB , as in Proposition 5.3.13.

5.3.39 Proposition [1632, 2422] Let n be even, α ∈ F2n and γ = 1 + α. Then,

1. the element α generates a self-dual normal basis for F2n over F2 if and only if γ
does;

2. if α and γ = 1 +α generate self-dual normal bases B and B̄, respectively, for F2n

over F2, then the complexities of B and B̄ are related by

CB̄ = n2 − 3n+ 8− CB .

5.3.40 Corollary Suppose n ≡ 2 (mod 4), then the following hold

1. the average complexity of a self-dual normal basis of F2n over F2 is 1
2 (n2−3n+8);

2. if B is a self-dual normal basis for F2n over F2 , we have

2n− 1 ≤ CB ≤ n2 − 5n+ 9,

and one of the equalities holds if and only if either B or its complement B̄ is
optimal.

5.3.41 Proposition [308] Let q be a power of a prime p. For any β ∈ F∗q with TrFq/Fp(β) = 1,

xp − xp−1 − βp−1

is irreducible over Fq and its roots form a self-dual normal basis of Fqp over Fq with com-
plexity at most 3p − 2. The multiplication table is as in Theorem 5.3.10 with e1 = β,
ei+1 = ϕ(ei) for i ≥ 1, ϕ(x) = βx/(x+ β), τ∗ = 1 if p 6= 2 and τ∗ = 1− β if p = 2.

5.3.42 Proposition [308] Let n be an odd factor of q − 1 and let ξ ∈ Fq have multiplicative
order n. Then there exists u ∈ Fq such that (u2)(q−1)/n = ξ. Let x0 = (1 + u)/n and
x1 = (1 + u)/(nu). Then the monic polynomial

1

1 + u2

(
(x− x0)n − u2(x− x1)n

)
is irreducible over Fq and its roots form a self-dual normal basis of Fqn over Fq. The
multiplication table is as in Theorem 5.3.9 with a = (x0 − ξx1)/(1 − ξ), b = −x0x1,
d = a− (x0 − x1) and τ = 1.

5.3.43 Proposition [308] Let n be an odd factor of q + 1 and let ξ ∈ Fq2 be a root of xq+1 − 1
with multiplicative order n. Then there is a root u of xq+1−1 such that (u2)q+1/n = ξ. Let
x0 = (1 + u)/n and x1 = (1 + u)/(nu). Then

1

1− u2

(
(x− x0)n − u2(x− x1)n

)
is irreducible over Fq and its roots form a self-dual normal basis of Fqn over Fq. The
multiplication table is as in Theorem 5.3.9 with a = (x1 − ξx0)/(1 − ξ), b = −x0x1,
d = a− (x0 + x1) and τ = 1.
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5.3.4.1 Duals of Gauss periods

5.3.44 Proposition [1180, 1930] Let α be a type (n, k) Gauss period generating a normal basis N
and let j0 = 0 if k is even and j0 = n/2 if k is odd. Then the element

γ =
αq

j0 − k
nk + 1

is dual to α, and hence γ generates the dual basis Ñ of N . Furthermore, the complexity of
the dual basis Ñ is

CÑ ≤
{

(k + 1)n− k if p - k,
kn− 1 if p | k.

5.3.45 Corollary [1180] For n > 2, a normal basis of Fqn over Fq arising from Gauss periods of
type (n, k) is self-dual if and only if k is even and divisible by the characteristic of Fq. In
particular, Type II optimal normal bases are self-dual.

5.3.46 Proposition [2924] The complexity of the dual of a Type I optimal normal basis is 3n− 2
if q is odd and 3n− 3 if q is even.

5.3.47 Remark [633] Upper bounds on the complexities of the dual basis of the Fqm -trace of
optimal normal bases of Fqn over Fq, where n = mk, are given in Table 5.3.3.

Type I (q odd) Type I (q even) Type II (q even)
m odd (k + 2)m− 2 (k + 2)(m− 1) + 1 2k(m− 1) + 1
m even (k + 3)m− k − 4 (k + 3)m− 2k − 3 2k(m− 1) + 1

Table 5.3.3 Upper bounds on complexities of the dual bases of the trace of optimal normal bases.

5.3.5 Fast arithmetic using normal bases

5.3.48 Remark In practical applications it is important to know how to do fast arithmetic in finite
fields, for example addition, multiplication and division; and for cryptographic applications
it is also desirable to have elements of high orders and a fast algorithm for exponentiation.
Details for the basic operations discussed in this section can be found in Section 11.1, see
also [1227]. In hardware implementations, normal bases are often preferred, see Section 16.7
for details on hardware implementations. This subsection presents some theoretical results
related to fast multiplication and exponentiation under normal bases generated by Gauss
periods.

5.3.49 Remark Gao and Vanstone [1188] first observed that a Type II optimal normal basis gen-
erator has high order, which was proved later by von zur Gathen and Shparlinski [1240];
for more details see Section 4.4. Computer experiments by Gao, von zur Gathen and Pa-
nario [1179] indicate that Gauss periods of type (n, k) with k > 2 also have high orders;
however, it is still open whether one can prove a subexponential lower bound on their orders.

5.3.50 Problem Give tight bounds on the orders of Gauss periods of type (n, k), k > 2.

5.3.51 Proposition [1179, 1188] Suppose α ∈ Fqn is a Gauss period of type (n, k) over Fq. Then
for any integer 1 ≤ t < qn − 1, αt can be computed using at most n2k operations in Fq.

5.3.52 Theorem [1180] Suppose γ is an element of order r (not necessarily a prime) and

α =
∑
i∈K

γi



Bases 121

generates a normal basis N for Fqn over Fq, where K is a subgroup of Z×r . With Fqn
represented under the normal basis N , we have

1. addition and subtraction can be computed in O(n) operations in Fq;
2. multiplication can be computed in O(r log r log log r) operations in Fq;
3. division can be computed in O(r log2 r log log r) operations in Fq;
4. exponentiation of an arbitrary element in Fqn can be computed in
O(nr log r log log r) operations in Fq.

5.3.53 Remark Theorem 1.5 in [1174] tells us when and how to find such a subgroup K in the
above theorem. The element α can be a Gauss period or a generalized Gauss period, see
Example 5.3.54 for more information. We outline the algorithm from [1180] for fast mul-
tiplication and division. The basic idea is to convert the normal basis representation to a
polynomial basis in the ring R = Fq[x]/(xr − 1), do fast multiplication of polynomials in
the ring, then convert the result back to the normal basis. More precisely, let γ and α be as
in Theorem 5.3.52. The condition of the theorem implies that that K, qK, . . . , qn−1K are
disjoint subsets of Zr and qnK = K. For 0 ≤ j ≤ n− 1, let Kj = qjK ⊆ Zr, and

αj =
∑
i∈Kj

βi.

Then (α0, α1, . . . , αn−1) is the normal basis generated by α, with the following property:

α0 + α1 + · · ·+ αn−1 = −1.

For each element A = a0α0 + a1α1 + · · ·+ an−1αn−1 ∈ Fqn , where ai ∈ Fq, we associate a
polynomial

A(x) =

r−1∑
i=0

uix
i,

where ui = aj if i ∈ Kj for some j, and ui = 0 if i is not in any Kj . This can be viewed as
a map from Fqn to R = Fq[x]/(xr − 1). The map is in fact a ring homomorphism.

Suppose we have two arbitrary elements A,B ∈ Fqn . To compute AB, we first write
them as polynomials A(x), B(x) ∈ Fq[x] of degree at most r − 1 as above. Then we use a
fast algorithm to compute the product polynomial C1(x) = A(x)B(x) of degree at most
2r − 2. This step needs O(r log r log log r) operations in Fq, see [1227]. Next, we reduce C1

modulo xr − 1 (just reduce the exponents of x modulo r) to get a polynomial

C2(x) = c0 + c1x+ · · ·+ cr−1x
r−1.

The coefficients satisfy the property that ci = cj whenever i, j ∈ K` for some 0 ≤ ` ≤ n−1.

Since
∑n−1
j=0 αj = −1, we conclude that

AB = d0α0 + d1α1 + · · ·+ dn−1αn−1, where di = cj − c0 for any j ∈ Ki.

To compute A−1 (assuming A 6= 0), we apply a fast gcd algorithm to the two polynomials
A(x) and xr − 1 to get a polynomial U(x) of degree at most r − 1 so that A(x)U(x) ≡ 1
(mod xr − 1). The element in Fqn corresponding to the polynomial U(x) is the desired
inverse of A. The fast gcd step needs O(r log2 r log log r) operations in Fq, see [1227].

5.3.54 Example (Generalized Gauss Periods [1047, 1174]) For any normal basis from Gauss periods
of type (n, k), we can apply Theorem 5.3.52 to perform fast arithmetic in Fqn . To obtain
an admissible Gauss period of type (n, k), r = nk + 1 must be a prime. Here we give an
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example of generalized Gauss periods where r is not prime. Suppose we want to perform fast
arithmetic in F2954 . Let n = 954 and note that the smallest k so that there is an admissible
Gauss period of type (n, k) over F2 is k = 49. The corresponding r = nk + 1 = 46747 is a
little big in this case. We observe that 954 = 106 · 9 and that there is an admissible Gauss
period α1 of type (106, 1) over F2, and an admissible Gauss period α2 of type (9, 2). Then
α = α1α2 is a normal element of F2n over F2. We construct this α as follows. Let

r = (106 · 1 + 1)(9 · 2 + 1) = 2033, K = {1, 322}.

Then K is a subgroup of Z×r satisfying the condition in Theorem 5.3.52. Let γ be any
primitive r-th root of unity in an extension field of F2. Then

α = γ + γ322

is a generalized Gauss period that is normal for Fqn over Fq. Now we can apply Theorem
5.3.52 to perform fast arithmetic in Fqn with a much smaller r. In [1174], it is shown how
to find generalized Gauss periods with minimum r and the related subgroups K; see [1174,
Tables 2-4] for many more examples for which generalized Gauss periods are better than
Gauss periods.

5.3.55 Example (Fast arithmetic under type II optimal normal bases) For type II optimal normal
bases over F2, we describe below a slightly faster algorithm from [248, 1238]. Suppose 2n+1
is a prime and the multiplicative group of Z2n+1 is generated by −1 and 2. Let γ ∈ F22n be
an element of order 2n+ 1. For any i ≥ 0, define

γi = γi + γ−i.

Then N = (γ1, γ2, . . . , γn) is a permutation of the normal basis for F2n over F2 generated
by

α = γ1 = γ + γ−1.

We note that γ0 = 2 and
γ1 + γ2 + · · ·+ γn = 1.

To do fast multiplication and division in F2n , we first perform a basis transition from N to
the polynomial basis P = (α, α2, . . . , αn), then perform a fast multiplication of polynomials
and finally transform the result back to the basis N . To do the basis transitions, we need
the following properties:

γi+j = γiγj + γj−i, for all i, j.

To see how to go from the basis N to the basis P , suppose we have an expression

A = a1γ1 + a2γ2 + · · ·+ a`γ`,

where ai ∈ F2 and ` ≥ 1 is arbitrary. We want to express A as a combination of α, α2, . . . , α`

over F2. Let m be a power of 2 so that `/2 ≤ m < `. Then

γm = αm.

We observe that

a1γ1 + a2γ2 + · · ·+ a`γ`

= a1γ1 + · · ·+ amγm + am+1(γmγ1 + γm−1) + · · ·+ a`(γmγ`−m + γm−(`−m)),

= (a1γ1 + · · ·+ amγm + am+1γm−1 + · · ·+ a`γm−(`−m))

+αm (am+1γ1 + am+2γ2 + · · ·+ a`γ`−m) .
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We note that the first part is of the form U = u1γ1 + · · · + umγm, where ui ∈ F2, which
can be computed using m bit operations. Let V = am+1γ1 + am+2γ2 + · · ·+ a`γ`−m, where
`−m ≤ m. Apply the method recursively to convert U and V into the power basis, say

U = b1α+ · · ·+ bmα
m, V = bm+1α+ · · ·+ b`α

`−m,

where bi ∈ F2. Then

A = U + αmV = b1α+ · · ·+ bmα
m + bm+1α

m+1 + · · ·+ b`α
`.

This gives an algorithm for going from N to P using at most 1
2n log2(n) operations in F2,

where log2(n) is the logarithm of n in base 2. By reversing the above procedure, we get an
algorithm for going from P to N using at most 1

2n log2(n) operations in F2.
This shows that multiplication in F2n under N can be computed by (a) two transforma-

tions from N to P , (b) one multiplication of polynomials of degree at most n in F2[x], and
(c) one transformation from (α, α2, . . . , α2n) to (γ1, γ2, . . . , γ2n) which is easily converted to
N , as γn+1+i = γn−i. The number of bit operations used is the cost for one multiplication of
polynomials of degree at most n, plus 2n log2 n bit operations for the basis transformations.
Finally, for division in F2n , we need to precompute the minimal polynomial of α and apply
a fast gcd algorithm for polynomials of degree at most n in F2[x].

See Also

§2.2 For standards requiring normal basis arithmetic.
§5.2 For general results on normal bases.
§11.1 For basic operations over finite fields.
§16.7 For hardware implementarions of finite fields arithmetic.
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For orders and cryptographic applications of Gauss Periods.
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5.4 Completely normal bases

Dirk Hachenberger, University of Augsburg

We present some theoretical results concerning algebraic extensions of finite fields. The
starting point is the Complete Normal Basis Theorem, which is a strengthening of the
classical Normal Basis Theorem. The search for completely normal elements leads to an
interesting structure theory for finite fields comprising a generalization of the class of finite
Galois field extensions to the class of cyclotomic modules.

5.4.1 The complete normal basis theorem

5.4.1 Remark Let Fq denote an algebraic closure of the finite field Fq. The Frobenius automor-
phism of Fq/Fq (throughout denoted by σ) is the field automorphism mapping each θ ∈ Fq


