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Abstract Optimal normal bases are special cases of the so-called Gauss periods (Disquisi-
tiones Arithmeticae, Articles 343-366); in particular, optimal normal bases are Gauss peri-
ods of type (n,1) for any characteristic and type (n,2) for characteristic 2. We present the
multiplication tables and complexities of Gauss periods of type (n, t) for all n and t = 3,4,5
over any finite field and give a slightly weaker result for Gauss periods of type (n,6). In
addition, we give some general results on the so-called cyclotomic numbers, which are inti-
mately related to the structure of Gauss periods.

We also present the general form of a normal basis obtained by the trace of any normal
basis in a finite extension field. Then, as an application of the trace construction, we give
upper bounds on the complexity of the trace of a Gauss period of type (n,3).
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1 Introduction

Let q be a power of a prime p and let Fq be the finite field with q elements. For any element
α ∈Fqn , the conjugates of α are given by αqi

, i= 0,1, . . . ,n−1. We denote the ith conjugate
of α as αi = αqi

, i = 0,1, . . . ,n− 1. The element α is a normal element when α and its
conjugates form a basis for Fqn over Fq. In this case we call the basis N = {α0,α1, . . . ,αn−1}
a normal basis.

For the normal basis N there is an associated matrix Tα = (ti j) given by the relations

ααi =
n−1

∑
j=0

ti jα j.
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The number of nonzero entries in Tα is called the complexity (also sometimes called the
density) of the basis N [16].

Using a normal basis yields efficient exponentiation, as qth powers of elements are given
by a cyclic bit-shift of the corresponding coordinate vector. Massey and Omura [14] patented
an efficient hardware multiplier for normal bases over F2 and modifications of this can be
found [12,17,18,20], for example. Normal bases have also been implemented efficiently in
software, see, for example, [4,6,8].

The hardware and time complexity of multiplication using normal bases depends on the
structure of the normal basis used, particularly on the complexity of the normal basis. Mullin
et al. [16] prove that the complexity of any normal basis of Fqn over Fq is at least 2n− 1.
Normal bases which achieve this lower bound are called optimal normal bases. Mullin et al.
give two constructions of optimal normal bases, named Type I and Type II optimal normal
bases, and conjecture that there are no other optimal normal bases. Gao and Lenstra [7] later
prove this claim.

Optimal normal bases exist but not in every finite extension field, thus in the absence
of optimal normal bases it is desirable to know the normal basis with the least complexity.
Young and Panario [23] show that the dual basis of a Type I optimal normal basis over F2
has complexity 3n−3 and conjecture that no basis exists with complexity up to 3n except in
extensions which already contain an optimal normal basis. Wan and Zhou [21] show that the
complexity of the dual bases of Type I optimal normal bases over Fq, q odd, is 3n− 2 and
extend Young and Panario’s conjecture for odd q. Masuda, et al. [15] exhaustively search
finite fields F2n , n≤ 39, for normal bases and present a table including the number of normal
bases, minimum and maximum complexities, the average and variance of the complexities.
They use their data and constructions from the literature to create a table of the lowest known
complexity of a normal basis for all extensions of F2 with degree n≤ 512.

The constructions of optimal normal bases due to Mullin, et al. [16] are special cases of
Gauss periods. Gauss periods were introduced by Gauss [11, Articles 343-366], and were
used in determining ruler-and-compass constructions of regular polygons. Gauss periods
can be considered over any Galois extension of fields, but in this paper we only consider
the finite field case. Gauss periods as normal bases were introduced by Ash, Blake and
Vanstone [2] as a generalization of the optimal normal bases.

Definition 1.1 Let r = tn+ 1 be a prime not dividing q. Furthermore, let κ be the unique
subgroup of order t in Z∗r . Also, let β be a primitive rth root of unity in Fqtn . The elements
αi, i = 0,1, . . . ,n−1, are given by

αi = ∑
a∈κi

β
a,

where κi = {a ·qi : a ∈ κ} ⊆ Z∗r . The elements α0,α1, . . . ,αn−1 are called the Gauss periods
of type (n, t) over Fq.

It is easy to show that Gauss periods are elements of Fqn . The following theorem gives
conditions under which Gauss periods define normal elements.

Theorem 1.2 [6,22] Let α ∈Fqn be a Gauss period of type (n, t) as defined in Definition 1.1.
The following are equivalent:

– The set N =
{

α,αq, . . . ,αqn−1
}

forms a normal basis of Fqn over Fq.

– If e is the order of q modulo r, then gcd(nt/e,n) = 1.
– The (disjoint) union of κ0,κ1, . . . ,κn−1 is Z∗r . Equivalently, Z∗r = 〈q,κ〉.
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Gauss periods of type (n,1), for any q, and type (n,2), for q = 2, define the optimal
normal bases given by Mullin et al. [16]. For any value of t and prime power q, von zur
Gathen and Pappalardi [9] show under the generalized Riemann hypothesis that there are
infinitely many n such that there exists a normal basis of Fqn over Fq generated by Gauss
periods of type (n, t).

Gauss periods were experimentally shown to have high order by Gao, von zur Gathen
and Panario [5]. This was later shown by von zur Gathen and Shparlinski [10] for certain
Gauss periods and these results were extended by Ahmadi, Shparlinski and Voloch [1].
Gauss periods also have applications in cryptography and coding theory, see, for exam-
ple, [5,19].

Suppose α0,α1, . . . ,αn−1 are Gauss periods forming a normal basis of Fqn over Fq, we
follow the form of the multiplication table of normal bases due to Gauss periods presented
by Gao et al. [6]. First we define the cyclotomic numbers ti j = |(1+κi)

⋂
κ j|. Also, let j0 < n

be the unique index such that−1∈ κ j0 . If t is even, then j0 = 0, and if t is odd, then j0 = n/2.
Finally, define

δ j =

{
0 if j 6= j0
1 if j = j0.

Then the form of the multiplication table Tα is

ααi = δit +
n−1

∑
j=0

ti jα j. (1)

An explicit determination of the multiplication table Tα depends therefore on studying the
cyclotomic numbers ti j.

The structure of the paper is as follows: in Section 2 we give some general results on
cyclotomic numbers and their relation to Gauss periods. We also give a technical lemma
which is used extensively in Section 3. In Section 3 we present the multiplication tables
of Gauss periods of type (n,3), (n,4) and (n,5). In addition, we give the complexity of a
type (n,6) Gauss period over any characteristic. Although it is possible to give other Gauss
periods of type (n, t), t > 5, there is a substantial problem when t grows. For large n and
t, there are Gauss periods whose multiplication tables do not follow a simply prescribed
pattern. Gauss periods of type (n,3) have simple structure since t is small. Gauss periods
of type (n,4) have a slightly different structure because t is even. Type (n,5) Gauss periods
begin to show some of the additional structure of the multiplication tables of Gauss periods
have, yet still have t small enough that the multiplication tables follow a simply prescribed
pattern. We give a multiplication table of a Gauss period that does not follow this pattern
at the end of Section 3. In Section 4.1 we give the multiplication table of the trace of any
normal basis. Section 4.2 contains an application of the results of Section 4.1 to Gauss
periods of type (n,3), given in Section 3.1, for any finite field. Also, in Section 4.3 we take
this opportunity to correct some small typos and inconsistencies in our paper [3]. We finish
with some conclusions and future work in Section 5.

We remark that in this paper we consider only Gauss periods which construct normal
bases (and thus, satisfy the conditions of Theorem 1.2).

2 General results on Gauss periods

First, we notice that the cyclotomic numbers are symmetric when t is even.
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Proposition 2.1 Let n ∈ N, n > 2, and let r = tn+1 be an odd prime with t even. Let ω be
a primitive t-th root of unity in Fr and κ = 〈ω〉. Then t jh = th j for all 0≤ j,h≤ n−1.

PROOF. It is enough to show that t jh ≤ th j. Let t = 2x and suppose y ∈ (1+κ j)
⋂

κh, then
y = 1+q jω i = qhωk for 0≤ i,k ≤ t−1. Then

qh
ω

k−1 = q j
ω

i ⇔ qh
ω

k +ω
x = q j

ω
i⇔ ω

x(qh
ω

k−x +1) = q j
ω

i

⇔ qh
ω

k−x +1 = q j
ω

i−x.

This provides an injective map from (1+κ j)
⋂

κh to (1+κh)
⋂

κ j defined by mapping 1+
q jω i to q jω i−x.

We briefly recall that a normal basis is self-dual if and only if its multiplication table
is symmetric [13]. Therefore, by Equation (1), we can check that the multiplication table is
self dual if t is even and the characteristic divides t. This result appears in [6], where the
authors give a formula for the dual basis of the multiplication table of a Gauss period of any
type. For q = 2, different forms of this result appear in [2,13].

We observe that row n− j of the multiplication table is a cyclic left shift of row j of the
multiplication table by j positions, for any 0 < j < n/2. Since, for 0 < j < n/2, the jth row
of the multiplication table depends only on t jh, h= 0,1, . . . ,n−1, we conclude the following
proposition on cyclotomic numbers.

Proposition 2.2 Let n ∈ N, n > 2, and let r = tn+1 be an odd prime. Let ω be a primitive
t-th root of unity in Fr and κ = 〈ω〉. Then t j, j+h = tn− j,h for all 0 < j < n/2.

PROOF. It is enough to show that t j, j+h ≤ tn− j,h. Suppose x ∈ (1+ κ j)
⋂

κ j+h. Then x =
1+q jωu = q j+hωv. Multiplying both sides by qn− j yields qn− j +qnωu = qn+hωv. We note
that qn is a t-th root of unity in F∗r , and therefore qn− j +ωU = qhωV , for some U,V . Finally,
multiplying both sides by ω−U gives ω−U qn− j +1 = qhωV−U . Substituting j = n− j′ and
h = h′+ j′, for some j′,h′, yields the reverse inequality.

Remark 1 We note that t jh > 1 is the same as |(1+κ j)
⋂

κh|> 1. In this case, it is enough
to show that if x,y ∈ κ j then 1+x,1+y ∈ κh. In other words, we require x,y, x 6= y such that
x/y ∈ κ and (1+ x)/(1+ y) ∈ κ .

Now, we provide a technical lemma which is used in the derivations of the multiplication
tables which appear in this section.

Lemma 2.3 Let n, t ∈ N, n, t > 1, and r = nt +1 be an odd prime. Let ω be a primitive t-th
root of unity in Fr, and let κ be the subgroup of F∗r of order t. Then there are (t−1)(t−2)/2
distinct subsets {x,y} ⊂ Fr\{0,−1}, such that x 6= y x

y ∈ κ and 1+x
1+y ∈ κ , given by Si, j =

{xi, j,yi, j}, where

xi, j =
ω j−1

1−ω i+ j , yi, j = ω
ixi, j, 1≤ i≤ t−1, 1≤ j ≤ t−1, i+ j < t.

Furthermore, St−2 j, j ⊆ κ , 1≤ j ≤ t−1
2 .

PROOF. Let x,y ∈ Fr\{0,−1}, x 6= y. Then x/y ∈ κ and (1+ x)/(1+ y) ∈ κ if and only if
y = ω ix and 1+x = ω j(1+y), for some 1≤ i, j ≤ t−1. It follows that 1+x = ω j +ω i+ jx.



5

Since j 6≡ 0 (mod t), we have i+ j 6≡ 0 (mod t), which is equivalent to i+ j 6= t. So the sets
that satisfy the given conditions are Si, j = {xi, j,yi, j} with

xi, j =
ω j−1

1−ω i+ j , yi, j = ω
ixi, j, 1≤ i≤ t−1, 1≤ j ≤ t−1, i+ j 6= t. (2)

To identify which of those sets coincide, note that Si1, j1 = Si2, j2 if and only if

xi1, j1 = xi2, j2 , yi1, j1 = yi2, j2 , (3)

or
xi1, j1 = yi2, j2 , xi2, j2 = yi1, j1 . (4)

If Equation (3) holds then

yi1, j1 = ω
i1 xi1, j1 = ω

i1 xi2, j2 = ω
i1−i2 yi2, j2 ,

which implies that i1 = i2. Considering Equation (2) and letting i1 = i2 = i, we get (ω j1 −
1)(1−ω i+ j2) = (ω j2−1)(1−ω i+ j1), and thus (ω j1−ω j2)(ω i−1) = 0. Since 1≤ i≤ t−1,
ω i 6= 1 and we conclude that j1 = j2.

If Equation (4) holds then

yi1, j1 = ω
i1 xi1, j1 = ω

i1 yi2, j2 = ω
i1+i2 xi2, j2 ,

which implies that i1+i2 = t. Equation (2) becomes ω
j1−1

1−ω
i1+ j1

=ω i2 ω
j2−1

1−ω
i2+ j2

, and so (ω j1+ j2−
1)(ω i1 − 1) = 0. Again, ω i1 6= 1, therefore j1 + j2 = t. It follows that Si1, j1 = Si2, j2 if and
only if i2 = t− i1 and j2 = t− j1, in which case Equation (4) holds.

One way to reject duplicates is to restrict the range of values of i and j, as described in
the statement of the lemma. In particular, to ensure there is no double-counting of elements
we require i+ j < t. For the last statement, note that for i = t−2 j, we have

xt−2 j, j =
ω j−1

1−ω− j = ω
j,

and yt−2 j, j = ω t−2 jxt−2 j, j = ω− j, so that St−2 j, j = {ω j,ω− j} ⊆ κ .

We note that Tr(α) = Trqn/q(α) =−1. Indeed,

Trqn/q(α) =
n−1

∑
i=0

(
∑
a∈κ

β
a

)qi

=
n−1

∑
i=0

∑
a∈κ

β
aqi

=
n−1

∑
i=0

∑
a∈κi

β
a

=
r−1

∑
i=1

β
i = β +β

2 + · · ·+β
r−1 =−1.

In the following section we use an equivalent form of the rows of the multiplication
table. We have

n−1

∑
j=0

ti jα j =
n−1

∑
j=0

(ti j−δit)α j +
n−1

∑
j=0

δitα j,

where the last sum is δit ·Tr(α) =−δit. Thus,

ααi =
n−1

∑
j=0

(ti j−δit)α j. (5)
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3 Multiplication tables of Gauss periods of small type

In this section, we give the general structure of the multiplication tables of Gauss periods of
type (n,3), (n,4) and (n,5). We also give the complexity of a Gauss period of type (n,6)
over any characteristic.

3.1 Gauss periods of type (n,3)

In this section, we present the multiplication table of Gauss periods of type (n,3) for all
characteristics. A direct application of Lemma 2.3 gives the following lemma.

Lemma 3.1 Let n ∈ N, n > 3 and let r = 3n+ 1 be a prime. Let ω be a primitive 3rd root
of unity in Fr and let κ = 〈ω〉. There is one subset S = {x,y} ⊂ Fr\{0,−1} such that x 6= y,
x
y ∈ κ and 1+x

1+y ∈ κ . In particular, S = {ω,ω2} ⊂ κ .

Theorem 3.2 Let q be a power of an odd prime p > 3, and let α be a Gauss period of type
(n,3) generating the normal basis {α0,α1, . . . ,αn−1} of Fqn over Fq. Then, the complexity
of the multiplication table Tα generated by α is 4n−4. Furthermore, the first row of Tα has
2 nonzero terms, the n/2 row of Tα has n nonzero terms and every other row has exactly 3
nonzero terms.

PROOF. Let r = 3n+1 be a prime, and let κ = {1,ω,ω2}, where ω is a primitive 3rd root
of unity in Z∗r . Observe that n is even since 3n+1 is an odd prime. Also, let β be a primitive
rth root of unity in Fqtn . The elements αi, i = 0,1, . . . ,n−1 are given by

αi = ∑
a∈κi

β
a,

where κi = {a ·qi : a ∈ κ} ⊆ Z∗r .
To examine the multiplication table generated by α , we require the expression of the

products αα j in terms of the basis elements α,α1, . . . ,αn−1. Thus, we consider Equation (5)
with t = 3. We then examine the cyclotomic numbers t jh to determine the number of nonzero
entries in each row.

Case 1: j = 0
Since all the κh, h = 0,1, . . . ,n− 1, form a partition of Z∗r we have that ∑

n−1
h=0 t0h = 3, so

to show that there are two nonzero terms it is enough to show that t0h = 2 for some h =
0,1, . . . ,n−1. Lemma 3.1 gives that there are exactly 2 elements x,y∈ κ such that 1+x,1+
y ∈ κh for some h = 0,1, . . . ,n− 1. Thus, t0h = 2 and the first row contains only one other
nonzero entry, equal to 1.

Case 2: j = n/2
We prove that the n/2 row has n nonzero elements. Since δn/2 = 1 we have

ααn/2 =
n−1

∑
h=0

(
tn/2,h−3δn/2

)
αh =

n−1

∑
h=0

(
tn/2,h−3

)
αh.

It is enough to show that tn/2,h 6= 3 for all h = 0,1, . . . ,n−1. Suppose tn/2,h = 3 for some h.
Thus 1+κn/2 = κh and since −1 ∈ κn/2 we have 0 ∈ 1+κn/2, contradicting κh ⊆ Z∗r .
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Case 3: j 6= 0,n/2
Last, we prove that each of the remaining n− 2 rows has exactly 3 distinct nonzero terms,
all equal to 1. Let m 6= 0,n/2, and consider the mth row of the multiplication table:

ααm =
n−1

∑
h=0

tmhαh.

Since the cosets κh,h = 0,1, . . . ,n−1, form a partition of Z∗r we have that ∑
n−1
h=0 tmh = 3. We

show that each of these values of tmh are equal to 1.
Suppose, to the contrary, that tmh > 1 for some h = 0,1, . . . ,n−1, that is

tmh = |(1+κm)
⋂

κh| ≥ 2.

Thus, there are at least two distinct elements x,y ∈ κm such that 1+ x,1+ y ∈ κh. Since
m 6= n/2 we know x 6= −1 and y 6= −1 and from Lemma 3.1 we have x = ω,y = ω2 for
some primitive 3rd root of unity ω . Thus, x,y ∈ κ0 which contradicts the choice of m.

We present similar statements for the characteristic 2 and 3 cases, and note the differ-
ences to p > 3 case in the proofs of each characteristic.

Theorem 3.3 Let q be a power of 3 and let α be a Gauss period of type (n,3) generating the
normal basis {α0,α1, . . . ,αn−1} of Fqn over Fq. Then, the complexity of the multiplication
table Tα generated by α is 3n− 2. Furthermore, the first row of Tα has exactly 2 nonzero
terms, the n/2 row of Tα has exactly 2 nonzero terms and every other row has exactly 3
nonzero terms.

PROOF. The proof follows Theorem 3.2 except in the n/2 row. Since the characteristic is 3
the expression for the n/2 row becomes

ααn/2 =
n−1

∑
h=0

tn/2,hαh,

where tn/2,h = |(1+κn/2)
⋂

κh|. Since 0 ∈ 1+κn/2 and the κh,h = 0,1, . . . ,n− 1, partition
Z∗r , we have that ∑

n−1
h=0 tn/2,h = 2. Also, tn/2,h < 2 for all h by Lemma 3.1, therefore the n/2

row contains exactly 2 nonzero entries.

Theorem 3.4 Let q be a power of 2 and let α be a Gauss period of type (n,3) generating the
normal basis {α0,α1, . . . ,αn−1} of Fqn over Fq. Then, the complexity of the multiplication
table Tα generated by α is 4n− 7. Furthermore, the first row of Tα has exactly 1 nonzero
term, the n/2 row of Tα has exactly n−2 nonzero terms and every other row has exactly 3
nonzero terms.

PROOF. The proof follows that of Theorem 3.2 except for the first row and the n/2 row.
When q is a power of 2, the expression for the first row can be computed as in Theorem 3.2.
We have t0h = 2 for some h and thus the term t0hαh vanishes in the derivation of the first row
of Tα .

The n/2 row becomes

ααn/2 =
n−1

∑
h=0

(tn/2,h +1)αh,
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where tn/2,h = |(1+κn/2)
⋂

κh|. Since 0 ∈ 1+κn/2 and the κh, h = 0,1, . . . ,n−1, partition
Z∗r , we have that ∑

n−1
h=0 tn/2,h = 2. Also, tn/2,h < 2 for all h by Lemma 3.1, thus, there are only

2 values for which tn/2,h +1 = 0, proving the claim.

We remark that the complexity of Gauss periods of type (n, t) over F2 where t is a
prime, twice a prime, four times a prime or a power of 2 is given in [2]. Thus, our result
for q = 2 is not new and our contribution in this case is to present explicitly the rows of the
multiplication table.

3.2 Gauss periods of type (n,4)

In this section, we follow a similar process as in Section 3.1.

Lemma 3.5 Let n ∈N, n > 2, and r = 4n+1 be an odd prime. Let ω be a primitive 4th root
of unity in Fr and κ = 〈ω〉. There are three distinct subsets {x,y} ⊂ Fr\{0,−1} such that
x 6= y, x

y ∈ κ and 1+x
1+y ∈ κ. These sets are disjoint and exactly one is a subset of κ.

PROOF. By Lemma 2.3 there are three subsets satisfying the conditions of the lemma

Si, j = {xi, j,yi, j},(i, j) ∈ I = {(1,1),(1,2),(2,1)}.

If two of these sets have an element in common, say {x,y} and {x,z} with y 6= z, then the
set {y,z} also belongs to the collection. It follows that there exist distinct pairs of indices
(i1, j1),(i2, j2) ∈ I such that xi1, j1 = xi2, j2 or xi1, j1 = yi2, j2 . This is equivalent to

(ω j1 −1)(ω i2+ j2 −1) = (ω j2 −1)(ω i1+ j1 −1), (6)

or
(ω j1 −1)(ω i2+ j2 −1) = ω

i2(ω j2 −1)(ω i1+ j1 −1). (7)

Furthermore, S2,1 = {ω,ω3} ⊂ κ and so we need only check S1,1 and S1,2.
First, we notice that Equation (6) is invalid since if i1 = i2 then j1 = j2 and similarly, if

j1 = j2 then i1 = i2.
If (i1, j1) = (1,1) and (i2, j2) = (1,2), Equation (7) becomes

(ω−1)(ω3−1) = ω(ω2−1)2.

Since ω2 =−1 we have (ω−1)(−ω−1) = 4ω and thus 2ω = 1. Thus, r = 5, contradicting
n > 1.

Interchanging (i1, j1) and (i2, j2) gives

(ω2−1)2 = ω(ω−1)(ω3−1).

Expanding gives 2ω = 4, thus ω = 2 and −1 = 4, or r = 5, contradicting n > 1.

Theorem 3.6 Let q be a power of an odd prime p > 4, and let α be a Gauss period of type
(n,4) generating the normal basis {α0,α1, . . . ,αn−1} of Fqn over Fq. Then, the complexity
of the multiplication table Tα generated by α is 5n−6. Furthermore, the first row of Tα has
n nonzero terms, 2 rows of Tα have exactly 3 nonzero terms and every other row of Tα has
exactly 4 nonzero terms.
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PROOF. The jth row of the multiplication table of the basis generated by α is of the follow-
ing form:

αα j =
n−1

∑
h=0

(t jh−4δ j)αh,

where δ j = 0 if j 6= 0 and δ j = 1 if j = 0.
First, we observe that t jh < 3 for all 0 ≤ j,h ≤ n− 1 because otherwise there are three

distinct elements x,y,z ∈ Fr\{0,−1}, such that x,y,z ∈ κ j and 1+ x,1+ y,1+ z ∈ κh. This
would imply that the sets {x,y} and {x,z} that satisfy the conditions of Lemma 3.5 are
distinct but not disjoint, a contradiction.

Next, we observe that the case where t jh1 = t jh2 = 2 is invalid. That is, that no two
subsets Si, j given in Lemma 3.5 may coincide with the same row of the multiplication table.
Since S2,1 ⊆ κ we need only check S1,1 and S1,2. Suppose, by way of contradiction, that
x11 = q jω i and x12 = q jωk for fixed j with 0≤ i,k ≤ 3 and i 6= k. Isolating for q j gives

ω
−i 1−ω

ω2−1
= ω

−k 1−ω2

ω3−1
.

Canceling terms gives ω−i = 2ω−k since ω is a root of x2 +1. Thus 2 is a 4th root of unity
and so 16≡ 1 (mod r), yielding r = 3 or r = 5, a contradiction when n > 1.

Now, we give the number of nonzero entries in each row of the multiplication table:
Case 1: j = 0

The first row of the multiplication table is

αα0 =
n−1

∑
h=0

(t0h−4)αh.

Since −1 ∈ κ0, we know that ∑
n−1
h=0 t0h = 3. Furthermore, by Lemma 3.5, we know that

t0h = 2, for some h = 0,1, . . . ,n− 1. Thus, there are exactly n nonzero entries in the j = 0
row.

Case 2: j 6= 0
The j 6= 0 row of the multiplication table is

αα j =
n−1

∑
h=0

t jhαh.

By Lemma 3.5 we have precisely 2 entries, t jh = 2 and t j′h′ = 2, where j 6= j′ and every
other nonzero term is equal to 1. Since ∑

n−1
h=0 t jh = 4, for j = 1,2, . . . ,n−1, there are exactly

2 rows, row j and row j′, with 3 nonzero terms and n−3 rows with 4 nonzero terms.
Thus, the complexity of the multiplication table of the basis generated by α , where α is

a type (n,4) Gauss period over Fq is n+4(n−3)+2 ·3 = 5n−12+6 = 5n−6.

We also state analogous theorems to Theorem 3.6 for characteristics 2 and 3. For the
characteristic 3 case, the difference in the proof occurs only in the j = 0 row, where the term
t0h = 1 causes one additional cancelation.

Theorem 3.7 Let q be a power of 3, and let α be a Gauss period of type (n,4) generating the
normal basis {α0,α1, . . . ,αn−1} of Fqn over Fq. Then, the complexity of the multiplication
table Tα generated by α is 5n−7. Furthermore, the first row of Tα has n−1 nonzero terms,
2 rows of Tα have exactly 3 nonzero terms and every other row of Tα has exactly 4 nonzero
terms.
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We remark that the difference in the proof of the characteristic 2 case occurs in the j = 0
row, where the t0h = 2 term yields an additional cancelation, and the two rows containing
terms t jh = 2.

Theorem 3.8 Let q be a power of 2, and let α be a Gauss period of type (n,4) generating the
normal basis {α0,α1, . . . ,αn−1} of Fqn over Fq. Then, the complexity of the multiplication
table Tα generated by α is 4n− 7. Furthermore, the first row of Tα has 1 nonzero term, 2
rows of Tα have 2 nonzero terms and the remaining rows of Tα have 4 nonzero terms.

As before, we remark that the complexity given in Theorem 3.8 is not a new result for
q = 2 and has appeared in [2]. The additional contribution of this work is to explicitly give
the rows of the multiplication table.

3.3 Gauss periods of type (n,5)

We note that obtaining the multiplication tables of Gauss periods of type (n,5) and (n,6)
is similar to the previous cases. In order to save space, in the following two sections, we
present only the results with a brief sketch of the proofs. We also indicate any differences
with the previous cases.

In this section, we note that the methods for determining the cyclotomic numbers are
the same as those seen in Section 3.2, but the multiplication tables of type (n,5) Gauss
periods more closely resemble those of Section 3.1 since the type t is odd. We begin with
the statement of the lemma.

Lemma 3.9 Let n ∈N, n > 2, and r = 5n+1 be an odd prime. Let ω be a primitive 5th root
of unity in Fr, and κ = 〈ω〉. There are 6 distinct subsets {x,y}⊂ Fr\{0,−1} such that x 6= y,
x
y ∈ κ and 1+x

1+y ∈ κ , and these sets are disjoint. Furthermore, exactly two of these subsets
are subsets of κ .

By Lemma 2.3 with t = 5, there are 6 distinct subsets satisfying the statement of the
lemma:

Si, j = {xi, j,yi, j}, (i, j) ∈ I = {(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)}.

The procedure for determining that the subsets Si, j are disjoint are identical to that in the
proof of Lemma 3.5.

We now present the form of the multiplication table of a normal basis obtained by Gauss
periods of type (n,5) over Fq, where q is a power of an odd prime p 6= 5.

Theorem 3.10 Let q be a power of an odd prime p 6= 5. Furthermore, let α be a Gauss
period of type (n,5), n > 6, generating the normal basis {α0,α1, . . . ,αn−1} of Fqn over Fq.
Then, the complexity of the multiplication table Tα generated by α is 6n−11. Furthermore,
the first row of Tα has exactly 3 nonzero terms, the n/2 row of Tα has exactly n nonzero
terms, exactly 4 rows of Tα have 4 nonzero terms and the remaining rows of Tα have exactly
5 nonzero terms.

We start with the observation that t jh < 3 for 0≤ j,h≤ n−1, j 6= n/2. Indeed, if t jh ≥ 3,
then there exist three distinct elements x,y,z∈Fr\{0,−1}, such that x,y,z∈ κ j and 1+x,1+
y,1+ z ∈ κh. This would imply that the sets {x,y} and {x,z} that satisfy the conditions of
Lemma 3.9 are distinct but not disjoint, a contradiction.
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Next, we observe that the case where t jh1 = t jh2 = 2 is invalid for a fixed j. That is, that
no two subsets Si, j given in Lemma 3.9 may coincide with the same row of the multiplication
table. This requires checking the subsets S1,1,S1,3,S2,1 and S2,2 pairwise.

Finally, we break the analysis of the multiplication table into rows with different forms:
the row j = 0, the row j = n/2 and all other rows. The method is identical to the proof of
Theorem 3.6.

Now, we give similar statements for the characteristic 2 and 5 cases.

Theorem 3.11 Let q be a power of 2, and let α be a Gauss period of type (n,5) generating
the normal basis {α0,α1, . . . ,αn−1} of Fqn over Fq. Then, the complexity of the multipli-
cation table Tα generated by α is 6n− 21. Furthermore, the first row of Tα has exactly 1
nonzero term, the n/2 row of Tα has exactly n−4 nonzero terms, 4 rows of Tα have exactly
3 nonzero terms and the remaining rows of Tα have exactly 5 nonzero terms.

As before, we remark that the complexity given in Theorem 3.11 is not a new result for
q = 2, and has appeared in [2]. The additional contribution of this work is to explicitly give
the rows of the multiplication table.

Theorem 3.12 Let q be a power of 5, and let α be a Gauss period of type (n,5) generating
the normal basis {α0,α1, . . . ,αn−1} of Fqn over Fq. Then, the complexity of the multipli-
cation table Tα generated by α is 5n− 7. Furthermore, the first row of Tα has exactly 3
nonzero terms, the n/2 row of Tα has exactly 4 nonzero terms, 4 other rows of Tα have
exactly 4 nonzero terms and the remaining rows of Tα have exactly 5 nonzero terms.

3.4 Gauss periods of type (n,6)

In this section we present the complexities of the multiplication tables of Gauss periods of
type (n,6). As in Section 3.3, we present only the results with brief sketches of the proofs.

Lemma 3.13 Let n ∈ N,n > 2, and r = 6n+ 1 be an odd prime. Let ω be a primitive 6th
root of unity in Fr and κ = 〈ω〉. There are 10 distinct subsets {x,y} ⊂ Fr\{0,−1} such that
x 6= y, x

y ∈ κ and 1+x
1+y ∈ κ. These sets are disjoint and exactly two of these are subsets of κ .

By Lemma 2.3 there are 10 distinct such subsets Si, j = {xi, j,yi, j}, where

xi, j =
ω j−1

1−ω i+ j , yi, j = ω
ixi, j,

such that

(i, j) ∈ I = {(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)}.

We must show, as in Lemma 3.5 and Lemma 3.9, that all the sets Si, j, (i, j) ∈ I are
disjoint for distinct pairs of indices. The method is identical to that in the proof of Lemma 3.5
and left to the reader.
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Remark 2 Consider the following multiplication table of a type (10,6) Gauss period over
F7 

3 1 3 1 1 1 1 1 1 2
0 1 0 2 0 1 1 1 0 0
2 0 0 0 0 1 1 0 0 2
0 2 0 0 1 0 1 1 1 0
0 0 0 1 0 1 1 1 1 1
0 1 1 0 1 0 1 1 0 1
0 1 1 1 1 1 0 0 0 1
0 1 0 1 1 1 0 0 2 0
0 0 0 1 1 0 0 2 2 0
1 0 2 0 1 1 1 0 0 0


.

In the third row of this table we observe two 2s, in contrast to our findings in the t = 4 and
t = 5 cases. This yields a further complication in the multiplication table, and so for t = 6
we provide only the complexity of the multiplication table and not a complete row-by-row
analysis of the multiplication table. In principle, conditions where two 2s occur on the same
row can be computed, but the number of cases becomes extremely large as there are 28 pairs
of elements to check.

We present the complexity of a normal basis due to a Gauss period of type (n,6) for any
characteristic. We give only the complexities of the bases and not a row-by-row analysis.

Theorem 3.14 Let q be a power of a prime p, and let α be a Gauss period of type (n,6)
generating the normal basis {α0,α1, . . . ,αn−1} of Fqn over Fq. Then, the complexity of the
multiplication table Tα generated by α is given by the following table:

p = 2 p = 3 p = 5 p > 6
Complexity 6n−21 6n−11 7n−15 7n−14

.

We remark, as before, that the result for q = 2 is not new and appears in [2]. Our contri-
bution in this case is to extend the known complexities to any characteristic.

Remark 3 We have verified examples of each of the matrices given in the above sections
using a Maple program.

The lemmata in each section state that all of the subsets Si, j defined in Lemma 2.3
are disjoint in the type (n,4), (n,5) and (n,6) cases. However, a type (40,16) (which is,
unfortunately, too large to fit on the page) Gauss period over F7 contains 3s in multiple
rows, indicating that the Si, j are not disjoint as n and t grow. This example shows that there
is no hope of providing the multiplication table of Gauss periods of type (n, t), for general t,
using this analysis.

It remains an open problem to find the multiplication tables of Gauss periods of type
(n, t), for general t.

4 The trace of normal elements

In [3], the authors give the complexity of the basis generated by the trace of Type I and
Type II optimal normal bases. In this section, we show that this sort of analysis holds for
any normal basis. Then we give, as an example of this method, an analysis of the trace of a
type (n,3) Gauss period. As usual, for brevity we denote αi = αqi

to be the ith conjugate of
α over Fq.
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4.1 The trace of a general normal element

Theorem 4.1 Let n, l,m be integers such that n = lm. Let Fq be the finite field with q
elements, and let Fqn be the extension of Fq of degree n. Let α ∈ Fqn be a normal el-
ement of Fqn over Fq with multiplication table Tα . Furthermore, let β = Trqn/qm(α) =

α +αqm
+ · · ·+αq(l−1)m

be the trace of α over the subfield Fqm of Fqn . Then, the jth row of
the m×m multiplication table Tβ is given by

ββ j =
l−1

∑
v=0

r j+vm−1

∑
s=0

as, j+vmβτs, j+vm ,

where r j+vm denotes the number of nonzero terms in row j+ vm of Tα , as, j+vm ∈ F∗q and the
τs, j+vm run over the indices 0,1, . . . ,m−1.

PROOF. Let α ∈ Fqn be a normal element of Fqn over Fq, and let β = Trqn/qm(α) = α +

αqm
+ · · ·+αq(l−1)m

be the trace of α over the subfield Fqm of Fqn . It is easy to show that β

is a normal element of Fqm over Fq.
Let Tα ,Tβ be the multiplication tables of α,β , respectively. Suppose row i of Tα has ri

nonzero values. Thus,

ααi =
ri−1

∑
s=0

as,iατs,i ,

where as,i ∈ F∗q,τs,i ∈ {0,1, . . . ,n−1} and τs,i 6= τt,i for s 6= t.
We compute the jth row of Tβ as follows,

ββ j =

(
l−1

∑
w=0

α
qmw

)(
l−1

∑
u=0

α
qmu+ j

)
= ∑

w
∑
u

(
α

qmw
)(

α
qmu+ j

)
= ∑

w

(
αα

q j
)qmw

+∑
w

(
αα

q j+m
)qmw

+ · · ·+∑
w

(
αα

q j+(l−1)m
)qmw

. (8)

Explicit expressions for the jth row of Tβ depend therefore on the number of nonzero
elements in the rows of Tα defined by the mth coset of j modulo n. That is, on the number
of nonzero entries in row j, j+m, . . . , j+(l−1)m, where the values are taken modulo n.

As above, denote the number of nonzero entries in row i of Tα as ri, then for any v =
0,1, . . . , l−1 we find

∑
w
(αα j+vm)

qmw
= ∑

w

(
r j+vm−1

∑
s=0

as, j+vmατs, j+vm

)qmw

,

where as, j+vm ∈ F∗q,τs, j+vm ∈ {0,1, . . . ,n− 1} and τs, j+vm 6= τt, j+vm for s 6= t. Since β =

∑w αqmw
we find

∑
w
(αα j+vm)

qmw
=

r j+vm−1

∑
s=0

as, j+vmβτs, j+vm . (9)

Combining Equations (8) and (9) yields

ββ j =
l−1

∑
v=0

r j+vm−1

∑
s=0

as, j+vmβτs, j+vm .
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Therefore, computing the complexity of the trace of a Gauss period requires knowledge of
the number of nonzero elements in the rows of the multiplication table of the Gauss period.

In [3] the authors use the regular structure of the multiplication tables of optimal normal
bases to give the complexity of the trace of these bases. In the following section we present
the analysis of the trace of a Gauss period of type (n,3) over any finite field Fq. We notice
that the analysis for Gauss periods of type (n, t), t > 3, will be similar with the changes
arising some additional structure in the rows of the multiplication table.

4.2 The trace of a Gauss period of type (n,3)

Let α be a Gauss period of type (n,3) which generates a normal basis of Fqn over Fq.
Suppose n = lm and let

β = Trqn/qm(α) =
l−1

∑
i=0

α
qmi

be the trace of α with respect to the intermediate field Fqm . We apply the general trace
construction of Section 4.1 to examine the complexity of the normal basis generated by β .

Remark 4 In Section 3 we have seen that, in every characteristic, there are 3 distinct forms
of the rows: the first row, the n/2 row and every other row. We check that there is no combi-
nation of 0 < j < m, j 6= m/2 and 0 < v < l such that j+vm≡ 0 (mod n) or j+vm≡ n/2
(mod n). Indeed, if j + vm = bn = blm, for some l, then j = m(bl− v) where bl ≥ l > 1
and v < l. Thus, j ≥ m, which contradicts the range of j. Also, we know n is even since
3n+ 1 is an odd prime. Now, suppose j+ vm = n/2 = lm/2. If m is odd then l is even, so
j = m(l/2−v) where the right hand side is a nonzero multiple of m, contradicting the range
of j. Similarly, if m is even then j = m/2(l−2v) and the right-hand side is a multiple of m/2
smaller than 2l but the left hand side is not, by the assumption on j.

Thus, we can group the analysis into row 0, row m/2 (if it exists) and combine all other
rows.

We present the complexity of the basis in each of the cases q = 2, q is a (non-trivial)
power of two, q is a power of 3, and all other cases.

Theorem 4.2 Let q be a power of a prime p, let n = lm be integers and let α be a type (n,3)
Gauss period generating a normal basis of Fqn over Fq. Let β = Trqn/qm(α). Then, an upper
bound for the complexity of the multiplication table of the basis generated by β is given by
the following table. We observe that if m is odd, then the m/2 row does not exist and thus
the value in the row “Total (m odd)” is given by the sum of the j = 0 row and m− 1 times
the j 6= 0 row. If m is even, then the value in the row “Total (m even)” is given by the sum of
the j = 0 row, the j = m/2 row and m−2 times the j 6= 0,m/2 row.

q = 2 q = 2τ ,τ > 1
l even l odd l even l odd

j = 0 1 1 3l−3 3l−2
j = m/2 3l m−2 3l m−2

j 6= 0,m/2 3l 3l 3l 3l
Total (m odd) 3lm−3l +1 3lm−3l +1 3lm−3 3lm−2
Total (m even) 3lm−3l +1 (3l +1)m−6l−1 3lm−3 (3l +1)m−3l−4
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q = 3τ

l even l odd
j = 0 3l−2 3l−1

j = m/2 3l 3l−1
j 6= 0,m/2 3l 3l

Total (m odd) 3lm−2 3lm−1
Total (m even) 3lm−2 3lm−2

q = pτ , p > 3
l even l odd

p|l other p|l other
j = 0 3l−2 m 3l−1 3l−1

j = m/2 3l 3l 3l−1 m
j 6= 0,m/2 3l 3l 3l 3l

Total (m odd) 3lm−2 (3l +1)m−3l 3lm−1 3lm−1
Total (m even) 3lm−2 (3l +1)m−3l 3lm−2 (3l +1)m−3l−1

PROOF. We break the analysis into cases:
Case 1: q = 2

Suppose q = 2. Then, the multiplication table of a Gauss period of type (n,3) is given by
Theorem 3.4:

– the first row of the multiplication table has 1 nonzero entry in the second position,
– the n/2 row of the multiplication table contains n−2 nonzero entries,
– all other rows contain exactly 3 nonzero entries.

Let β = Tr2n/2m(α) and let Tβ be the m×m multiplication table of β . Since q = 2, we
know that the first row of Tβ has 1 nonzero entry as ββ = β 2 = β1. Also, if m is odd, we
can ignore row m/2 of Tβ .

If m is even, then the m/2 row of Tβ is given by

ββm/2 =
l−1

∑
v=0

rm/2+vm−1

∑
s=0

βτs ,

where we recall r j+vm denotes the number of nonzero entries in row j+vm of Tα and the τs
run over the indices 0,1, . . . ,m−1.

If l is even, then m/2+ vm 6= n/2 for any v and rm/2+vm = 3 for all v. Thus,

ββm/2 =
l−1

∑
v=0

(
βλv +βµv +βηv

)
,

where λv,µv and ηv are indices in 0,1, . . . ,m−1. Therefore, the m/2 row contributes at most
3l to the complexity.

If l is odd then, m/2+m(l−1)/2 = n/2 and thus

ββm/2 =
l−1

∑
v=0,v 6=(l−1)/2

rm/2+vm−1

∑
s=0

βτs +

rn/2−1

∑
s=0

βτs .

We know rn/2 = n−2, and we write

rn/2−1

∑
s=0

βτs =
n−1

∑
s=0

βs +βλn/2
+βµn/2 = l

m−1

∑
s=0

βs +βλn/2
+βµn/2 ,
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where λn/2,µn/2 ∈ {0,1, . . . ,m−1}. Thus,

rn/2−1

∑
s=0

βτs =
m−3

∑
s=0

βτs ,

where the τs run over the indices 0,1, . . . ,m−1. Therefore the m/2 row contributes at most
m−2 to the complexity.

For j 6= 0,m/2, the derivation is identical to row m/2 when m and l are even, yielding a
contribution to the complexity from these rows of at most 3l.

Case 2: q is a power of 2
The difference when q is a (non-trivial) power of 2 comes in the analysis of the first row of
the multiplication table. In particular, the form of the multiplication table remains the same,
but for the derivation of the first row we have ββ = β 2 6= β1. Since β 2 is now not a basis
element, we need to determine β 2 as a combination of basis elements.

The first row of the multiplication table Tβ is given by

ββ =
l−1

∑
v=0

rvm−1

∑
s=0

βτs .

For v = 0 we have r0 = 1. If l is odd, then there is no v such that vm = n/2 thus rvm = 3 for
all 0 < v < l. Therefore,

ββ = βλ0 +
l−1

∑
v=1

(
βλv +βµv +βηv

)
,

and the contribution to the complexity from the first row is at most 3l−2.
If l is even, then for v = l/2 we have rvm = rn/2 = n−2. Thus, we write

ββ = βλ0 +
l−1

∑
v=1,v6=l/2

(
βλv +βµv +βηv

)
+

n−1

∑
i=0

βi +βλn/2
+βµn/2 .

We write ∑
n−1
i=0 βi = l ∑

m−1
i=0 βi = 0 since l is even. Thus,

ββ = βλ0 +
l−1

∑
v=1,v 6=l/2

(
βλv +βµv +βηv

)
+βλn/2

+βµn/2 ,

and the contribution to the complexity from the first row is at most 1+3(l−2)+2 = 3l−3.
Case 3: q is a power of 3

When q is a power of 3, the multiplication table of α , given by Theorem 3.3, has the follow-
ing form:

– the first row has 2 nonzero terms, one equal to 1 and one equal to 2,
– the n/2 row has 2 nonzero terms, both of which are equal to 1,
– each other row has 3 nonzero terms, all of which are equal to 1.

The derivation to find the number of nonzero entries in each row differs from Case 1 and
Case 2 only in the first row and in the m/2 row.

The first row of the multiplication table Tβ is given by

ββ =
l−1

∑
v=0

rvm−1

∑
s=0

βτs .
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For v = 0 we have r0 = 2. If l is odd, then there is no v such that vm = n/2 thus rvm = 3 for
all 0 < v < l. Therefore,

ββ = βλ0 +2βµ0 +
l−1

∑
v=1

(
βλv +βµv +βηv

)
,

and the contribution to the complexity from the first row is at most 3l−1.
If l is even, then for v = l/2 we have rvm = rn/2 = 2. Thus, we write

ββ = βλ0 +2βµ0 +
l−1

∑
v=1,v 6=l/2

(
βλv +βµv +βηv

)
+βλn/2

+βµn/2 .

Thus, the contribution to the complexity from the first row is 3l−2.
For the m/2 row, if l is even, then m/2+ vm 6= n/2 for any v and rm/2+vm = 3 for all v.

As before, the contribution to the complexity from the m/2 row in this case is at most 3l. If
l is odd, then m/2+m(l−1)/2 = n/2, and thus

ββm/2 =
l−1

∑
v=0,v 6=(l−1)/2

(
βλv +βµv +βηv

)
+βλn/2

+βµn/2 .

Therefore, the contribution to the complexity from the m/2 row is at most 3l−1.
Case 4: q = pτ , p > 3

When q is a power of a prime p > 3, the multiplication table of α , given by Theorem 3.2,
has the following form:

– the first row has 2 nonzero terms; one equal to 1 and one equal to 2,
– the n/2 row has n nonzero terms, exactly 2 of which are equal to −2 and the remainder

equal to −3,
– each other row has 3 nonzero terms, all of which are equal to 1.

For the first row, we have r0 = 2. If l is odd, then there is no v such that vm = n/2, and
thus rvm = 3 for all 0 < v < l. The derivation for the first row in this case is identical to the
Case 3, and the contribution to the complexity from the first row is at most 3l−1.

If l is even, then for v = l/2 we have rvm = rn/2 = n. Thus, we write

ββ = βλ0 +2βµ0 +
l−1

∑
v=1,v6=l/2

(
βλv +βµv +βηv

)
−3

n−1

∑
i=0

βi +βλn/2
+βµn/2 .

We write ∑
n−1
i=0 βi = l ∑

m−1
i=0 βi. We further split into the cases l ≡ 0 (mod p) and all other

cases. If l ≡ 0 (mod p), then −3∑
n−1
i=0 βi = −3l ∑

m−1
i=0 βi = 0 and thus the contribution to

the complexity from the first row is at most 3l − 2. For other values of l (mod p), the
contribution to the complexity from the first row contains more terms. In these cases, we
give the trivial bound and the contribution to the complexity from the first row is at most
m. We note, in other specific cases we can determine certain small cancelations in the rows
of the multiplication tables. For example, if l ≡ 1/3 (mod p), then −3∑

n−1
i=0 βi =−∑

m−1
i=0 βi

and thus the contribution in this case will cancel every term with a coefficient of 1 in the
expression of this row. If l ≡ 2/3 (mod p), there is one cancelation with one term from the
n/2 row and the 2βµ0 term.
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If m is odd, then there is no m/2 row of Tβ . We consider the case where m is even. If l
is even, then m/2+ vm 6= n/2 for any v and rm/2+vm = 3 for all v. Thus,

ββm/2 =
l−1

∑
v=0

(
βλv +βµv +βηv

)
,

where λv,µv and ηv are indices in 0,1, . . . ,m−1. Therefore, the m/2 row contributes at most
3l to the complexity.

If l is odd, then m/2+m(l−1)/2 = n/2 and thus

ββm/2 =
l−1

∑
v=0,v 6=(l−1)/2

(
βλv +βµv +βηv

)
+

rn/2−1

∑
s=0

aτs βτs .

We know rn/2 = n and we write

rn/2−1

∑
s=0

βτs =−3
n−1

∑
s=0

βs +βλn/2
+βµn/2 =−3l

m−1

∑
s=0

βs +βλn/2
+βµn/2 .

We further split into the cases l ≡ 0 (mod p) and all other cases. If l ≡ 0 (mod p), then
−3l ∑

m−1
s=0 βs = 0 and the contribution from the m/2 row of the multiplication table is at most

3l−1. Otherwise, we cannot claim any cancelations and so we upper bound the contribution
from the m/2 row of the multiplication table by m.

We remark that there is an implicit assumption in this paper about the range of l we
consider. In particular, we assume that l is small enough such that the contribution to the
complexity from each row does not exceed m. For example, in Section 4.2, Case 4 when l
is odd, the first row contributes at most 3l−1 to the complexity, so the implicit assumption
is that l is at most m/3. Indeed, this assumption is not needed as Theorem 4.2 is valid (but
trivial) for larger values of l.

4.3 Errata of [3]

We would like to take the opportunity to correct a couple of small typos and inconsistencies
in our previous paper [3]. In particular, [3, Theorem 3] should indicate that the result, as all
of the other results in that paper and in Section 4 of this paper, give upper bounds on the
complexity of the normal basis obtained by traces. In the previous paper, in the statement
of [3, Theorem 3] we say “...the complexity of the normal basis of F2m over F2 generated
by β is 2km−2k+1”. This should read, “...the complexity of the normal basis of F2m over
F2 generated by β is at most 2km− 2k + 1.” This change should also be reflected in [3,
Corollary 2].

In addition, we notice in Section 4 that there is a difference in the derivation of the trace
of Gauss periods when q = 2 and when q is a (non-trivial) power of 2. In this case ββ = β 2

is not a basis element and thus there is an addition contribution to the complexity from the
first row. In [3] we indicate that we give the trace of Type I and Type II optimal normal bases
for q even, but what we derive in [3] is the q = 2 case.

Now, we would like to indicate an oversight in the derivation of the m/2 row of the
multiplication table in [3, Theorem 1], which is again reflected in [3, Theorem 2]. In the
equation below [3, Equation (5)], each term with a coefficient of −1 should read −k. Thus,
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our bound of m− k+ 1 nonzero terms only applies when k ≡ 1 (mod p). In the best case,
when p divides k, the contribution from the m/2 line is at most k−1. In all other cases, we
revise this bound on the contribution to the complexity from m− k+ 1 to m, which is the
maximum allowable.

Below, find a table indicating the changes to the table found in the conclusions section
of [3]. The notation for the table below is as in this paper: q is a power of a prime p and
n, l,m are integers such that n = lm.

Type I (q odd) Type I (q = 2)
m even, l odd p divides l (l +1)m− l−1 –

m even, l odd, l ≡ 1 (mod p) (l +2)m−3l +1 (l +1)m−3l +2
m even, l odd, all other l (l +2)m−2l –

We regret any inconvenience that this discrepancy in the result has caused.

5 Concluding remarks

In this paper, we give the complexity of the multiplication tables of Gauss periods of type
(n, t), t = 3,4,5,6. In addition, we give the format of the rows of the multiplication table of
a Gauss period normal basis for t = 3,4,5. We also give a method of finding normal bases in
subfields of a field containing a known normal basis, and apply this method to Gauss periods
of type (n,3). In principle, if the complexity of the normal basis in the original field is low
and the size of the subfield is not too small compared to the original field (that is, if n = lm
and l is relatively large), then the complexity of the normal basis in the subfield should also
be low.

We recall that Gauss periods of type (n, t) form self-dual normal bases if t is even, and
the characteristic divides t. The dual basis of a type I optimal normal basis (Gauss periods
of type (n,1)) appears in [21] and the dual basis of the trace of type I optimal normal bases
can be found in [3]. We remark that the dual basis of the trace construction of Gauss periods
of larger type presented in Section 4 could also be carried out in this paper in the same way
as in [3,21].

We observe that it is possible in principle to extend this analysis to Gauss periods of
small type. However, the number of pairs of elements given in Lemma 2.3 is (t−1)(t−2)/2
and so the number of pairs of elements to check is quadratic in t. In addition, the analysis
of the cyclotomic numbers becomes more complicated as the degree of the t-th cyclotomic
polynomial over Q grows. The problem of giving the multiplication tables (and therefore,
the complexities) of Gauss periods of type (n, t), for general t, remains open.
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