Counting distinct roots of a Lacunary polynomial over a finite field

Ethan White University of British Columbia

Joint work with József Solymosi and Chi Hoi Yip
Carleton Combinatorics Meeting

August 5, 2021

Lacunary polynomials

Definition (Lacunary)

A polynomial is lacunary if there is a gap between the exponent in consecutive terms, e.g. $x^{11}-3 x+1$.

Notation

Throughout q denotes a prime power, and d will always be a divisor of $q-1$. For $f \in \mathbb{F}_{q}[x]$ denote by $|Z(f)|$ the number of distinct nonzero roots of f in \mathbb{F}_{q}. Also we use the shorthand $\operatorname{deg}(f)=f^{\circ}$.

Finite fields

Key Observation

$$
\#\left\{x^{\frac{q-1}{d}}: x \in \mathbb{F}_{q}^{*}\right\}=d
$$

Easy consequence: Let $g^{\circ}<\frac{q-1}{d}$. Solutions to

$$
f(x)=x^{\frac{q-1}{d}}+g(x)=0
$$

look like

$$
\xi+g(x)=0
$$

for $\xi \in\left(\mathbb{F}_{q}^{*}\right)^{\frac{q-1}{d}}$. Hence $|Z(f)| \leq d g^{\circ}$.

Extensions with $f^{\circ} \leq \frac{q-1}{d}$

Theorem (Solymosi, W., Yip 2021)

Let $\ell \geq 0$ and $d \mid(q-1)$. Let $g(x) \in \mathbb{F}_{q}[x]$ be such that $1 \leq g^{\circ}<\frac{q-1}{d}-\ell$. Then for $f(x)=x^{\frac{q-1}{d}-\ell}+g(x)$ we have

$$
|Z(f)| \leq d\left(\ell+g^{\circ}\right)
$$

Proof of Theorem:

$$
\left|Z\left(x^{\ell} f(x)\right)\right|=|Z(f)|
$$

Therefore $x^{\ell} f(x)=x^{\frac{q-1}{d}}+x^{\ell} g(x)=0$ takes the form $\xi+x^{\ell} g(x)=0$ for some $\xi \in\left(\mathbb{F}_{q}^{*}\right)^{\frac{q-1}{d}}$. For fixed $\xi, \xi+x^{\ell} g(x)=0$ has at most $\ell+g^{\circ}$ solutions.

Extensions with $f^{\circ} \geq \frac{q-1}{d}$

Theorem (Solymosi, W., Yip 2021)

Let $m \geq 0$ and $d \mid(q-1)$. Let $g(x) \in \mathbb{F}_{q}[x]$ be such that $1 \leq g^{\circ}<\frac{q-1}{d}+m$. Then for $f(x)=x^{\frac{q-1}{d}+m}+g(x)$ we have

$$
|Z(f)| \leq d \max \left\{m, g^{\circ}\right\}
$$

Proof of Theorem: All solutions to $f(x)=0$ take the form

$$
\xi x^{m}+g(x)=0
$$

for some $\xi \in\left(\mathbb{F}_{q}^{*}\right)^{\frac{q-1}{d}}$. For each fixed ξ, the number of solutions to the above is bounded by $\max \left\{m, g^{\circ}\right\}$.

Beating the degree bound

Question: when can we guarantee $|Z(f)|<\operatorname{deg}(f)$? (for lacunary f)

Theorem (Solymosi, W., Yip 2021)

Let $\ell \geq 0$. Suppose $f(x) \in \mathbb{F}_{q}[x]$ has the form $x^{\frac{q-1}{d}-\ell}+g(x)$, for some $g(x) \in \mathbb{F}_{q}[x]$ such that $1 \leq g^{\circ}<\frac{q-1}{d}-\ell$. If one of the following holds, then $|Z(f)|<f^{\circ}$.
(1) $d(d+1) \ell+d^{2} g^{\circ}<q-1$;
(2) $d^{2}\left(\ell+g^{\circ}\right) \leq q-1$ and $d(d+1) \ell>q-1$;
(3) $d^{2}\left(\ell+g^{\circ}\right)>q-1, d \ell+d^{3} g^{\circ}<q-1$, and $d\left(d^{2}+1\right) \ell+d^{3} g^{\circ}<(q-1)(d+1)$.

Figure 1: Bounding $|Z(f)|$ for $f(x)=x^{\frac{q-1}{d}-\ell}+g(x)$.

Beating the degree bound: Proof ideas

Main idea: Iterate previous techniques. Partial sketch:

$$
\begin{gathered}
f(x)=x^{\frac{q-1}{d}-\ell}+g(x) \rightarrow \xi+x^{\ell} g(x) \\
\prod_{\xi \in\left(\mathbb{F}_{q}^{*}\right)^{\frac{q-1}{d}}}\left(\xi+x^{\ell} g(x)\right)=x^{d \ell} g^{d}(x)-1
\end{gathered}
$$

Substitute $x \mapsto x^{-1}$ and multiply through by the degree, $d \ell+d g^{\circ}$:

$$
x^{d\left(\ell+g^{\circ}\right)}-x^{d g^{\circ}} g^{d}\left(x^{-1}\right)
$$

The above is lacunary, let $d\left(\ell+g^{\circ}\right)=(q-1) / d-\ell^{\prime}$ and apply the earlier theorem to obtain

$$
|Z(f)| \leq q-1-d^{2} \ell
$$

Beating the degree bound: Limiting example

Let n, D be positive integers such that $(n+1) D$ divides $q-1$. Then

$$
x^{n D}+x^{(n-1) D}+\cdots+1=\frac{x^{(n+1) D}-1}{x^{D}-1}
$$

has $n D$ distinct roots. Taking $n=2$ and $d=2$ we see that

$$
f(x)=x^{2 D}+x^{D}+1=x^{\frac{q-1}{2}-\ell}+g(x)
$$

has $|Z(f)|=f^{\circ}$ so long as $3 D$ divides $q-1$. Since $g^{\circ}=D$ we see that for this class of examples

$$
f^{\circ}=2 D=\frac{q-1}{2}-\ell=2 g^{\circ},
$$

thereby giving a 'limiting line' on the g°, ℓ axes.

Figure 2: Limitations to improving the degree bound.

Iterating the method

$$
\begin{aligned}
& f(x)=x^{\frac{q-1}{d}-\ell}+g(x) \rightarrow \xi+x^{\ell} g(x) \rightarrow \prod_{\xi \in\left(\mathbb{F}_{q}^{*}\right)^{\frac{q-1}{d}}}\left(\xi+x^{\ell} g(x)\right) \\
& \rightarrow x^{d \ell} g^{d}(x)-1 \rightarrow x^{d\left(\ell+g^{\circ}\right)}-x^{d g^{\circ}} g^{d}\left(x^{-1}\right)=x^{\frac{q-1}{d}-\ell_{1}}+g_{1}(x) .
\end{aligned}
$$

If we repeat this sequence of steps we obtain a recurrence

$$
\begin{gathered}
g_{i+1}(x)=-x^{d g_{i}^{\circ}} g_{i}^{d}\left(x^{-1}\right), \quad \ell_{i+1}=\frac{q-1}{d}-d\left(\ell_{i}+g_{i}^{\circ}\right) \\
f_{i}(x)=x^{\frac{q-1}{d}-\ell_{i}}+g_{i}(x)
\end{gathered}
$$

Analyzing the recurrence

Theorem (Solymosi, W., Yip 2021)

If $\ell>\frac{q-1}{d(d+1)}$ and $i \geq-1$ is the largest integer such that

$$
\ell+g^{\circ}<(q-1)\left(\frac{1+d^{-2 i+1}}{d(d+1)}\right)
$$

then

$$
|Z(f)| \leq \frac{q-1}{d+1}-d^{2 i+2}\left(\ell-\frac{q-1}{d(d+1)}\right)
$$

Example

Let $p=379, d=2, \ell=\frac{p-7}{4}=93, g^{\circ}=1$, and $f(x)=x^{96}+x+317 \in \mathbb{F}_{p}[x]$. Using iteration we have $|Z(f)| \leq\left|Z\left(f_{i}\right)\right|$ for $f_{1}(x)=x^{188}-54 x^{2}-255 x-1, f_{2}(x)=x^{6}+378 x^{4}+248 x^{3}+55 x^{2}+127 x+116$.

