Counting distinct roots of a Lacunary polynomial over a finite field

Ethan White University of British Columbia

Joint work with József Solymosi and Chi Hoi Yip Carleton Combinatorics Meeting

August 5, 2021

Ethan White University of British Columbia Counting distinct roots of a Lacunary polynor

August 5, 2021 1 / 12

Definition (Lacunary)

A polynomial is lacunary if there is a gap between the exponent in consecutive terms, e.g. $x^{11} - 3x + 1$.

Notation

Throughout q denotes a prime power, and d will always be a divisor of q-1. For $f \in \mathbb{F}_q[x]$ denote by |Z(f)| the number of distinct nonzero roots of f in \mathbb{F}_q . Also we use the shorthand deg $(f) = f^{\circ}$.

Key Observation

$$\#\{x^{\frac{q-1}{d}}:x\in\mathbb{F}_q^*\}=d.$$

Easy consequence: Let $g^{\circ} < \frac{q-1}{d}$. Solutions to

$$f(x) = x^{\frac{q-1}{d}} + g(x) = 0$$

look like

$$\xi + g(x) = 0$$

for $\xi \in (\mathbb{F}_q^*)^{\frac{q-1}{d}}$. Hence $|Z(f)| \leq dg^{\circ}$.

· · · · · · ·

Theorem (Solymosi, W., Yip 2021)

Let $\ell \ge 0$ and d|(q-1). Let $g(x) \in \mathbb{F}_q[x]$ be such that $1 \le g^\circ < \frac{q-1}{d} - \ell$. Then for $f(x) = x^{\frac{q-1}{d} - \ell} + g(x)$ we have $|Z(f)| \le d(\ell + g^\circ).$

Proof of Theorem:

$$|Z(x^{\ell}f(x))| = |Z(f)|.$$

Therefore $x^{\ell}f(x) = x^{\frac{q-1}{d}} + x^{\ell}g(x) = 0$ takes the form $\xi + x^{\ell}g(x) = 0$ for some $\xi \in (\mathbb{F}_q^*)^{\frac{q-1}{d}}$. For fixed ξ , $\xi + x^{\ell}g(x) = 0$ has at most $\ell + g^{\circ}$ solutions.

Theorem (Solymosi, W., Yip 2021)

Let $m \ge 0$ and d|(q-1). Let $g(x) \in \mathbb{F}_q[x]$ be such that $1 \le g^{\circ} < \frac{q-1}{d} + m$. Then for $f(x) = x^{\frac{q-1}{d}+m} + g(x)$ we have

 $|Z(f)| \leq d \max\{m, g^{\circ}\}.$

Proof of Theorem: All solutions to f(x) = 0 take the form

$$\xi x^m + g(x) = 0,$$

for some $\xi \in (\mathbb{F}_q^*)^{\frac{q-1}{d}}$. For each fixed ξ , the number of solutions to the above is bounded by max $\{m, g^\circ\}$.

Question: when can we guarantee $|Z(f)| < \deg(f)$? (for lacunary f)

Theorem (Solymosi, W., Yip 2021)

Let $\ell \ge 0$. Suppose $f(x) \in \mathbb{F}_q[x]$ has the form $x^{\frac{q-1}{d}-\ell} + g(x)$, for some $g(x) \in \mathbb{F}_q[x]$ such that $1 \le g^\circ < \frac{q-1}{d} - \ell$. If one of the following holds, then $|Z(f)| < f^\circ$.

•
$$d(d+1)\ell + d^2g^\circ < q-1;$$

2
$$d^2(\ell + g^{\circ}) \le q - 1$$
 and $d(d + 1)\ell > q - 1$;

$$\begin{array}{l} \bullet \quad d^2(\ell+g^\circ)>q-1, \ d\ell+d^3g^\circ < q-1, \ \text{and} \\ \quad d(d^2+1)\ell+d^3g^\circ < (q-1)(d+1). \end{array}$$

Figure 1: Bounding |Z(f)| for $f(x) = x^{\frac{q-1}{d}-\ell} + g(x)$.

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Main idea: Iterate previous techniques. Partial sketch:

$$f(x) = x^{\frac{q-1}{d}-\ell} + g(x) \to \xi + x^{\ell}g(x)$$
$$\prod_{\xi \in (\mathbb{F}_q^*)^{\frac{q-1}{d}}} \left(\xi + x^{\ell}g(x)\right) = x^{d\ell}g^d(x) - 1$$

Substitute $x \mapsto x^{-1}$ and multiply through by the degree, $d\ell + dg^{\circ}$:

$$x^{d(\ell+g^\circ)}-x^{dg^\circ}g^d(x^{-1}).$$

The above is lacunary, let $d(\ell + g^\circ) = (q-1)/d - \ell'$ and apply the earlier theorem to obtain

$$|Z(f)| \leq q - 1 - d^2\ell.$$

Beating the degree bound: Limiting example

Let n, D be positive integers such that (n + 1)D divides q - 1. Then

$$x^{nD} + x^{(n-1)D} + \dots + 1 = \frac{x^{(n+1)D} - 1}{x^D - 1}$$

has nD distinct roots. Taking n = 2 and d = 2 we see that

$$f(x) = x^{2D} + x^D + 1 = x^{\frac{q-1}{2}-\ell} + g(x),$$

has $|Z(f)| = f^{\circ}$ so long as 3D divides q - 1. Since $g^{\circ} = D$ we see that for this class of examples

$$f^{\circ}=2D=\frac{q-1}{2}-\ell=2g^{\circ},$$

thereby giving a 'limiting line' on the g°, ℓ axes.

Figure 2: Limitations to improving the degree bound.

Iterating the method

$$f(x) = x^{\frac{q-1}{d}-\ell} + g(x) \to \xi + x^{\ell}g(x) \to \prod_{\xi \in (\mathbb{F}_q^*)^{\frac{q-1}{d}}} \left(\xi + x^{\ell}g(x)\right)$$

$$\to x^{d\ell}g^d(x) - 1 \to x^{d(\ell + g^{\circ})} - x^{dg^{\circ}}g^d(x^{-1}) = x^{\frac{q-1}{d} - \ell_1} + g_1(x).$$

If we repeat this sequence of steps we obtain a recurrence

$$egin{aligned} g_{i+1}(x) &= -x^{dg_i^\circ}g_i^d(x^{-1}), & \ell_{i+1} &= rac{q-1}{d} - d(\ell_i + g_i^\circ). \ & f_i(x) &= x^{rac{q-1}{d} - \ell_i} + g_i(x). \end{aligned}$$

August 5, 2021

11 / 12

Analyzing the recurrence

Theorem (Solymosi, W., Yip 2021)

If $\ell > rac{q-1}{d(d+1)}$ and $i \geq -1$ is the largest integer such that

$$\ell+g^\circ<(q-1)\left(rac{1+d^{-2i+1}}{d(d+1)}
ight)$$

then

$$|Z(f)| \leq \frac{q-1}{d+1} - d^{2i+2}\left(\ell - \frac{q-1}{d(d+1)}\right)$$

Example

Let p = 379, d = 2, $\ell = \frac{p-7}{4} = 93$, $g^{\circ} = 1$, and $f(x) = x^{96} + x + 317 \in \mathbb{F}_p[x]$. Using iteration we have $|Z(f)| \le |Z(f_i)|$ for $f_1(x) = x^{188} - 54x^2 - 255x - 1$, $f_2(x) = x^6 + 378x^4 + 248x^3 + 55x^2 + 127x + 116$.