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Lacunary polynomials

Definition (Lacunary)

A polynomial is lacunary if there is a gap between the exponent in
consecutive terms, e.g. x11 − 3x + 1.

Notation

Throughout q denotes a prime power, and d will always be a divisor of
q − 1. For f ∈ Fq[x ] denote by |Z (f )| the number of distinct nonzero
roots of f in Fq. Also we use the shorthand deg(f ) = f ◦.
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Finite fields

Key Observation

#{x
q−1
d : x ∈ F∗q} = d .

Easy consequence: Let g◦ < q−1
d . Solutions to

f (x) = x
q−1
d + g(x) = 0

look like
ξ + g(x) = 0

for ξ ∈ (F∗q)
q−1
d . Hence |Z (f )| ≤ dg◦.
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Extensions with f ◦ ≤ q−1
d

Theorem (Solymosi, W., Yip 2021)

Let ` ≥ 0 and d |(q− 1). Let g(x) ∈ Fq[x ] be such that 1 ≤ g◦ < q−1
d − `.

Then for f (x) = x
q−1
d
−` + g(x) we have

|Z (f )| ≤ d(`+ g◦).

Proof of Theorem:
|Z (x`f (x))| = |Z (f )|.

Therefore x`f (x) = x
q−1
d + x`g(x) = 0 takes the form ξ + x`g(x) = 0 for

some ξ ∈ (F∗q)
q−1
d . For fixed ξ, ξ + x`g(x) = 0 has at most `+ g◦

solutions.
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Extensions with f ◦ ≥ q−1
d

Theorem (Solymosi, W., Yip 2021)

Let m ≥ 0 and d |(q − 1). Let g(x) ∈ Fq[x ] be such that

1 ≤ g◦ < q−1
d + m. Then for f (x) = x

q−1
d

+m + g(x) we have

|Z (f )| ≤ d max{m, g◦}.

Proof of Theorem: All solutions to f (x) = 0 take the form

ξxm + g(x) = 0,

for some ξ ∈ (F∗q)
q−1
d . For each fixed ξ, the number of solutions to the

above is bounded by max{m, g◦}.

Ethan White Counting distinct roots of a Lacunary polynomial over a finite fieldAugust 5, 2021 5 / 12



Beating the degree bound

Question: when can we guarantee |Z (f )| < deg(f )? (for lacunary f )

Theorem (Solymosi, W., Yip 2021)

Let ` ≥ 0. Suppose f (x) ∈ Fq[x ] has the form x
q−1
d
−` + g(x), for some

g(x) ∈ Fq[x ] such that 1 ≤ g◦ < q−1
d − `. If one of the following holds,

then |Z (f )| < f ◦.

1 d(d + 1)`+ d2g◦ < q − 1;

2 d2(`+ g◦) ≤ q − 1 and d(d + 1)` > q − 1;

3 d2(`+ g◦) > q − 1, d`+ d3g◦ < q − 1, and
d(d2 + 1)`+ d3g◦ < (q − 1)(d + 1).
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Beating the degree bound: Proof ideas

Main idea: Iterate previous techniques. Partial sketch:

f (x) = x
q−1
d
−` + g(x)→ ξ + x`g(x)∏

ξ∈(F∗
q )

q−1
d

(
ξ + x`g(x)

)
= xd`gd(x)− 1

Substitute x 7→ x−1 and multiply through by the degree, d`+ dg◦:

xd(`+g◦) − xdg
◦
gd(x−1).

The above is lacunary, let d(`+ g◦) = (q − 1)/d − `′ and apply the earlier
theorem to obtain

|Z (f )| ≤ q − 1− d2`.
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Beating the degree bound: Limiting example

Let n,D be positive integers such that (n + 1)D divides q − 1. Then

xnD + x (n−1)D + · · ·+ 1 =
x (n+1)D − 1

xD − 1

has nD distinct roots. Taking n = 2 and d = 2 we see that

f (x) = x2D + xD + 1 = x
q−1

2
−` + g(x),

has |Z (f )| = f ◦ so long as 3D divides q − 1. Since g◦ = D we see that for
this class of examples

f ◦ = 2D =
q − 1

2
− ` = 2g◦,

thereby giving a ‘limiting line’ on the g◦, ` axes.
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Iterating the method

f (x) = x
q−1
d
−` + g(x)→ ξ + x`g(x)→

∏
ξ∈(F∗

q )
q−1
d

(
ξ + x`g(x)

)

→ xd`gd(x)− 1→ xd(`+g◦) − xdg
◦
gd(x−1) = x

q−1
d
−`1 + g1(x).

If we repeat this sequence of steps we obtain a recurrence

gi+1(x) = −xdg◦
i gd

i (x−1), `i+1 =
q − 1

d
− d(`i + g◦i ).

fi (x) = x
q−1
d
−`i + gi (x).
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Analyzing the recurrence

Theorem (Solymosi, W., Yip 2021)

If ` > q−1
d(d+1) and i ≥ −1 is the largest integer such that

`+ g◦ < (q − 1)

(
1 + d−2i+1

d(d + 1)

)
then

|Z (f )| ≤ q − 1

d + 1
− d2i+2

(
`− q − 1

d(d + 1)

)
.

Example

Let p = 379, d = 2, ` = p−7
4 = 93, g◦ = 1, and

f (x) = x96 + x + 317 ∈ Fp[x ]. Using iteration we have |Z (f )| ≤ |Z (fi )| for

f1(x) = x188−54x2−255x−1, f2(x) = x6+378x4+248x3+55x2+127x+116.
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