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ElGamal Permutations

For p prime, Z∗p = {1, . . . , p − 1} is a cyclic group of order p − 1 under
multiplication. For g a generator, the ElGamal map x → gx from Z∗p
to Z∗p is a permutation

I The ElGamal function is the basis of the ElGamal Signature
Scheme

I The ElGamal function used in the Welch construction of Costas
Arrays



Research challenge

In 2016 Joachim von zur Gathen posed this research challenge:

I Let a, b, c
?← Z∗p .

I DDH assumption: (ga, gb, gab) ∼ (ga, gb, gc)

How random is the ElGamal map?
Is (x, gx) ∼ (x, x′) when x, x′

?← Z∗p?

We proceed showing some evidence from (Niehues et al., 2020)
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Cycles in ElGamal Permutations

Example: The generators of Z∗5 are 2 and 3.
x gx

1 21 = 2
2 22 = 4
3 23 = 3
4 24 = 1

W = (1, 2, 4) (3)

x gx

1 31 = 3
2 32 = 4
3 33 = 2
4 34 = 1

W = (1, 2, 3, 4)

I Distinct g produce distinct permutations;
I Distinct g affect the cyclic structures.
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Number of fixed points (k = 1)
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Results with Sidon Sets

Let S = {(x, gx) : x ∈ Z∗p} be the graph of the ElGamal permutation.
Because S is a Sidon Set,

Theorem (Niehues et al., 2020)
Let

B = [h1, . . . , h2] × [k1, . . . k2] ⊂ Z∗p × Zp.

Then ����#S ∪ B − #B
p

���� ≤ 50p1/2 log2 p



Other randomness properties

I Drakakis et al. prove the ElGamal function is Almost Perfect
Nonlinear

I Closer to PN than most APN functions in differential uniformity
I More linear than most Costas functions on a log-ratio test
I Less linear than random functions with a phase modulation test



Sequences from permutations

How about sequences?

For any permutation c in Z∗p, make a sequence

cv = (c1%v, . . . , cp−1%v).

Example: p = 5 and g = 2

W = ((20)%5)%2, . . . , (23)%5)%2)
= (1, 2, 4, 3)

W2 = (1, 0, 0, 1) ∈ Z4
2
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Randomness properties of ElGamal Sequences?

How closely do ElGamal sequences compare to sequences from
random permutations?

I Balance
I Period length
I Distribution of fixed t-tuples z ∈ Zt

v :

_(z) = #{i ∈ [0, p − 1] : Wv (i +n ]) = z(]), 0 ≤ ] < t}

I Distribution of runs of b ∈ Zv and of length t:

d(b, t) =#{i ∈ [0, p − 1] :
Wv (i −n 1), Wv (i +n t) ≠ b = Wv (i +n ]), 0 ≤ ] < t}

I d(t) = vd(t + 1)



Other uses of Modulo operator in sequences

I The Legendre sequence

(logg (i)%2, logg (i + 1)%2, . . .)

I Colbourn constructed covering arrays from the circulant matrix

(logg (i)%v, logg (i + 1)%v, . . .)

I Tzanakis et al. formed covering array from circulant matrices of

(logg (tr (gi))%v, logg (tr (gi+1))%v, . . .)
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Balance

Proposition
Let c be a permutation in Z∗p, then cv is a balanced sequence over Zv
if and only if v | p − 1.

Proof.
The number of x ≡ a mod v in [1, p − 1] is

|cv |a = d(p − 1 − ((a − 1) mod v))/ve

�



Period

Lemma
If p ≡ U ≠ 1 (mod v), then cv has period N = p − 1 for any c
permutation of Z∗p.

Proof.
The difference in the number of occurrences of any two symbols must
be a multiple of (p − 1)/N. But

|cv |a =
{
d(p − 1)/ve 0 ≤ a < U − 1,
b(p − 1)/vc otherwise.

�



Period

Theorem
For every n > 0 there exists an nn so that for all p ≥ nn , the number T
of balanced sequences cv with period p − 1 satisfies

(p − 1)!(1 − n) ≤ T ≤ (p − 1)!. (1)



Special case

When q is prime and p = vq + 1,

(p − 1)! − T
(p − 1)! =

v!(q!)v
(p − 1)!

This includes the case of Sophie Germain primes.



de Bruĳn graph
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Transfer Matrix

Transfer matrix is directed adjacency matrix of de Bruĳn graph with
variables

T =

©«
00 01 10 11

00 ux0 ux0 0 0
01 0 0 x0 x0
10 1 1 0 0
11 0 0 1 1

ª®®®¬
C =

©«
00 01 10 11

00 1 0 0 0
01 0 1 0 0
10 0 0 1 0
11 0 0 0 1

ª®®®¬∑
k∈Nt

an(k)xk =
∑

z′,z′′∈Zt
v

Cz′,z′′Tn
z′,z′′ .



Asymptotic Normality

Theorem (Bender, Richmond, Williamson 1983)
Suppose an(k) is admissible at 1 for n ≡ n0 (mod d) and that Λ is
d-dimensional. Then an(k) satisfies a central limit theorem for
n ≡ n0 (mod d) with means and covariance matrix asymptotically
proportional to n. Let q be such that qc ∈ Λ for all c ∈ Zv . Then
an(k) satisfies a local limit theorem modulo Λ for n ≡ n0 (mod dq)



Asymptotic Normality

Theorem
Let z ∈ Zt

v and t (^) be the number of balanced circular sequences of
length n over Zv for which _(z) = ^. There exists a m_, b_, c_ ∈ R
such that

sup
^

�����√2cb_t (^)( vl
l,l,...,l

) − c_e(^−m_)2/b_

����� = o(1).

Let b ∈ Zv , t ∈ N and r (^) be the number of balanced circular
sequences of length n over Zv for which d(b, t) = ^. There exists a
md, bd, cd ∈ R such that

sup
^

�����
√

2cbdr (^)( vl
l,l,...,l

) − cde(^−m2
d)/bd

����� = o(1).



Mean for tuples

n
v t

(
1 + −(t

2 − 2tv + v2 − t) (v − 1)
2n

)
+ O

(
1
n

)
≤ E (_(z)) ≤

n
v t

(
1 + t (v − 1)

2n

)
+ O

(
1
n

)



Variance for tuples

n
v2t

(
2v t

2
+ −12t2v t

24n

)
+ O

(
1
n

)
. VAR(_) .
n

v2t

(
2v t (v + 1)
2(v − 1) +

12v t+2t
24n(v − 1)

)
+ O

(
1
n

)



Runs

E (d(b, t)) = (l (v − 1) − 1) (v − 1)l (l)t
(n − 1)t+1

,

VAR(d(b, t)) = (l (v − 1) − 1) (v − 1)l (l)t
(n − 1)t+1

+ (v − 1)l (l)2t (l (v − 1) − 1)2(l (v − 1) − 2)
(n − 1)2t+2

−
(
(l (v − 1) − 1) (v − 1)l (l)t

(n − 1)t+1

)2

.

Where l = n/v.



Runs

E (d(b, t)) = n(v − 1)
v t+2

(
(v − 1) − (v − 1)2t2 − (v + 3) (v − 1)t + 2

2n

)
+ O

(
1
n

)
VAR(d(b, t)) ≈ n(v − 1)2

v t+2

(
1 + −(v − 1)t2

2n

)
+ O

(
1
n

)
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Balance

Proposition
Let c be a permutation in Z∗p, then cv is a balanced sequence over Zv
if and only if v | p − 1.



Period

Theorem
The ElGamal sequence Wv has period N = p − 1.

Proof.
1. p . 1 (mod v): Use balance
2. p ≡ 1 (mod v): Suppose period N < p − 1: gi+N%p ≡v gi%p
3. Let i = 0: g′ = gN%p ≡v 1.
4. Let p = kg′ + r, x = k + 1 (p < xg′ < 2p). Let i = logg (x):

x ≡v xg′%p = xg′ − p ≡v xg′ − 1

5. x (g′ − 1) ≡v 1 ≡v g′ is a contradiction.
�



Tuples

Theorem
Let Wv be an ElGamal sequence and p = qgt−1 + r, then⌊g

v

⌋ t−1 ⌊q
v

⌋
≤ _(z) ≤

⌈g
v

⌉t−1 ( ⌊q
v

⌋
+ 1

)
.



Proof

X =
{
x ∈ [1, p − 1] : (gix)%p ≡v zi , 0 ≤ i < t

}
Let ci = giz0 − zi , 0 ≤ i < t.

D = {d ∈ Zt : d0 = 0, di ≡v U−1ci and gdi−1 ≤ di < g(di−1+1) for 0 < i < t}.

For d ∈ D, let

Xd =

{
x ∈ Z : x ≡v z0,

dip
gi ≤ x <

(di + 1)p
gi , for 0 ≤ i < t

}
.

Claim: X =
⋃
d∈D

Xd



Xd ⊂ X

If x ∈ Xd , then x ≡v z0 and

dip ≤ gix < (di + 1)p

Thus

gix%p = gix − dip ≡v gix − Udi ≡v giz0 − ci ≡v giz0 − (giz0 − zi) = zi ,

So x ∈ X .



X ⊂ ∪Xd

For x ∈ X , define gix = qip + ri :

q0 = 0

ri = gix − qip = (gix)%p ≡v zi

qip
gi ≤ x <

(qi + 1)p
gi

So x ∈ X(q0,...,qt−1)



X ⊂ ∪Xd

qi ≡v U−1qip = U−1(gix − ri) ≡v U−1(giz0 − zi) = U−1ci .

Then,

qi =
gix − ri

p
=

g(gi−1x) − ri

p
=

g(qi−1p + ri−1) − ri

p

= gqi−1 + g
ri−1

p
− ri

p
< g(qi−1 + 1),

and

gqi−1 =
gqi−1p

p
≤ g(qi−1p + ri−1)

p
=

g(gi−1x)
p

=
gix
p
= qi +

ri

p
.

Since gqi−1, qi ∈ Z and ri/p < 1,⇒ qi ≥ gqi−1.
Thus (q0, . . . , qt−1) ∈ D.



Final step

X =
⋃
d∈D

Xd =
⋃
d∈D

(
{x ≡v z0}

⋂ ( ⋂
0≤i<t

{
dip
gi ≤ x <

(di + 1)p
gi

}))
.

=
⋃
d∈D

(
{x ≡v z0} ∩

{
dt−1p
gt−1 ≤ x <

(dt−1 + 1)p
gt−1

})
.

bg/vc t−1 ≤ #D ≤ dg/ve t−1

q ≤ #[dt−1p/gt−1, (dt−1 + 1)p/gt−1) ≤ q + 1
bq/vc ≤ #Xd ≤ d(q + 1)/ve⌊g

v

⌋ t−1 ⌊q
v

⌋
≤ _(z) ≤

⌈g
v

⌉t−1 ( ⌊q
v

⌋
+ 1

)
.

�



Observations

I When g = mv bounds differ by at most mt

I When g = v,
⌊ q

v
⌋
≤ _(z) ≤

⌊ q
v
⌋
+ 1

I If p ≥ vgt−1 and g ≥ v, then _(z) > 0 for all z ∈ Zt
v

I If _(z) > 0 for all z ∈ Zt
v , then g ≥ v and p ≥ v t + 1.

I Coincide when g = v
I Wv (i + 1) ≡v gWv (i) − s for some 0 ≤ s < g.



Runs

Theorem
Let Wv be an ElGamal sequence and p = qgt−1 + r. For z ∈ Zt

v , let

`(z) = #{i ∈ [1, p − 1] : gi+j%p ≡v zj , 0 ≤ j < t − 1, gi+t−1%p .v zt−1}.

Then⌊g
v

⌋ t−2
⌊
(v − 1)g

v

⌋ ⌊q
v

⌋
≤ `(z) ≤

⌈g
v

⌉t−2
⌈
(v − 1)g

v

⌉ (⌊q
v

⌋
+ 1

)
.



Corollary

Let p = qtgt + rt and p = qt+1gt+1 + rt+1. Then⌊g
v

⌋ t−1
⌊
(v − 1)g

v

⌋ ⌊qt

v

⌋
−

⌈g
v

⌉t
⌈
(v − 1)g

v

⌉ ⌈
qt+1 + 1

v

⌉
≤ d(b, t) ≤⌈g

v

⌉t−1
⌈
(v − 1)g

v

⌉ ⌈
qt + 1

v

⌉
−

⌊g
v

⌋ t
⌊
(v − 1)g

v

⌋ ⌊qt+1
v

⌋
,

and

(v−1)
⌊g
v

⌋ t
⌊
(v − 1)g

v

⌋ ⌊q
v

⌋
≤ d(b, t) ≤ (v−1)

⌈g
v

⌉t
⌈
(v − 1)g

v

⌉ ⌈
q + 1

v

⌉
.



Comparison to random balanced sequences

From theoretical results
I Balance matches exactly
I Periodicity matches very closely
I To first order, the number of tuples and runs matches
I To first order d(t) ≈ vd(t + 1)
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Experimental setting

We run experiments over two distinct data sets of pairs (p, v) with
p > 1, 000, 000 and 2 ≤ v ≤ 8.
all primes: Primes where v | p − 1.

g = v primes: Primes where v | p − 1 and v is a generator.

all g = v

# pairs (p, v) 715 400
# distinct v 7 4
# distinct primes 322 323
# v per prime (average) 4.51 1.48

I We run experiments over all primes for the smallest 10
generators.

I If v ∈ {4, 5, 8} then v ≠ g.
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ElGamal Sequences t-tuple bound gap distribution

Lower bound _(z) >0
t = 2 and 12% outliers.

Upper bound
t = 2 and 5% outliers

Distribution of gaps between _(z) and lower and upper bounds.



ElGamal Sequences t-tuple bound gap distribution

Lower bound _(z) >0
t = 7 and 59.75% outliers.

Upper bound
t = 7 and 93.56% outliers

Distribution of gaps between _(z) and lower and upper bounds.



ElGamal Sequences t-tuple bound accuracy

Lower bound Upper bound

Percentage of trials with z ∈ Zt
v s.t. _(z) matches lower and upper

bounds.



ElGamal Sequences run bound accuracy

Lower bound Upper bound

Percentage of trials with b ∈ Zv s.t. d(b, t) matches lower and upper
bounds.



ElGamal Sequences run ratio Experiment

All primes. g = v primes.

Distribution of d(t + 1)v/d(t) as a heat map with 2 ≤ v ≤ 8



ElGamal Sequences run ratio Experiment

All primes. g = v primes.

Distribution of d(t + 1)v/d(t) as a heat map with v = 2



Outline

Contextualization

Bounds for random v-ary sequences

Bounds for ElGamal v-ary sequences

Experimental results

Final Remarks



Conclusions

I ElGamal permutations behave like random for cycle sizes and
distribution of graph

I ElGamal permutations are close to random permutations for
nonlinearity

I ElGamal sequences have balance and periodicity close to random
I Tuples in ElGamal sequences are distributed as in random

balanced sequences
I Run lengths in ElGamal sequences satisfy Golomb’s

Randomness Postulate



Next steps

I Experiments indicate that _(z) bounds are tight. So any
improvements will be conditional

I Prove properties of the distribution of _(z)
I Prove linear complexity results for ElGamal sequences
I Determine expected linear complexity for random balanced

random sequences
I Further investigate auto-correlation
I Will these be enough to justify cryptographic utility?
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