Randomness properties of \mathbb{Z}_{V} ElGamal sequences

Daniel Panario* Lucas Pandolfo Perin ${ }^{\dagger}$ Brett Stevens*

*Carleton University - Canada
${ }^{\dagger}$ Universidade Federal de Santa Catarina - Brazil
${ }^{\dagger}$ Technical Innovation Institute - United Arab Emirates

2020-08-05

Outline

Contextualization

Bounds for random v-ary sequences

Bounds for ElGamal v-ary sequences

Experimental results

Final Remarks

Outline

Contextualization

Bounds for random v-ary sequences

Bounds for ElGamal v-ary sequences

Experimental results

Final Remarks

ElGamal Permutations

For p prime, $\mathbb{Z}_{p}^{*}=\{1, \ldots, p-1\}$ is a cyclic group of order $p-1$ under multiplication. For g a generator, the ElGamal map $x \rightarrow g^{x}$ from \mathbb{Z}_{p}^{*} to \mathbb{Z}_{p}^{*} is a permutation

- The ElGamal function is the basis of the ElGamal Signature Scheme
- The ElGamal function used in the Welch construction of Costas Arrays

Research challenge

In 2016 Joachim von zur Gathen posed this research challenge:

- Let $a, b, c \stackrel{?}{\leftarrow} \mathbb{Z}_{p}^{*}$.
- DDH assumption: $\left(g^{a}, g^{b}, g^{a b}\right) \sim\left(g^{a}, g^{b}, g^{c}\right)$

Research challenge

In 2016 Joachim von zur Gathen posed this research challenge:

- Let $a, b, c \stackrel{?}{\leftarrow} \mathbb{Z}_{p}^{*}$.
- DDH assumption: $\left(g^{a}, g^{b}, g^{a b}\right) \sim\left(g^{a}, g^{b}, g^{c}\right)$

$$
\begin{aligned}
& \text { How random is the ElGamal map? } \\
& \text { Is }\left(x, g^{x}\right) \sim\left(x, x^{\prime}\right) \text { when } x, x^{\prime} \stackrel{?}{\leftarrow} \mathbb{Z}_{p}^{*} ?
\end{aligned}
$$

Research challenge

In 2016 Joachim von zur Gathen posed this research challenge:

- Let $a, b, c \stackrel{?}{\leftarrow} \mathbb{Z}_{p}^{*}$.
- DDH assumption: $\left(g^{a}, g^{b}, g^{a b}\right) \sim\left(g^{a}, g^{b}, g^{c}\right)$

$$
\begin{aligned}
& \text { How random is the ElGamal map? } \\
& \text { Is }\left(x, g^{x}\right) \sim\left(x, x^{\prime}\right) \text { when } x, x^{\prime} \stackrel{?}{\leftarrow} \mathbb{Z}_{p}^{*} \text { ? }
\end{aligned}
$$

We proceed showing some evidence from (Niehues et al., 2020)

Cycles in ElGamal Permutations

Example: The generators of \mathbb{Z}_{5}^{*} are 2 and 3.

x	g^{x}
1	$2^{1}=2$
2	$2^{2}=4$
3	$2^{3}=3$
4	$2^{4}=1$

$$
\gamma=(1,2,4)(3)
$$

x	g^{x}
1	$3^{1}=3$
2	$3^{2}=4$
3	$3^{3}=2$
4	$3^{4}=1$

$$
\gamma=(1,2,3,4)
$$

Cycles in ElGamal Permutations

Example: The generators of \mathbb{Z}_{5}^{*} are 2 and 3.

x	g^{x}
1	$2^{1}=2$
2	$2^{2}=4$
3	$2^{3}=3$
4	$2^{4}=1$

x	g^{x}
1	$3^{1}=3$
2	$3^{2}=4$
3	$3^{3}=2$
4	$3^{4}=1$

$$
\gamma=(1,2,4)(3)
$$

$$
\gamma=(1,2,3,4)
$$

- Distinct g produce distinct permutations;
- Distinct g affect the cyclic structures.

$p=1009$

Number of cycles

Distribution of number of cycles for all 288 generators of \mathbb{F}_{1009}

Number of k-cycles

Average number of k-cycles in \mathbb{F}_{1009}

Number of fixed points $(k=1)$

Average number of fixed points in the generators of \mathbb{F}_{p}

Results with Sidon Sets

Let $S=\left\{\left(x, g^{x}\right): x \in \mathbb{Z}_{p}^{*}\right\}$ be the graph of the ElGamal permutation. Because S is a Sidon Set,

Theorem (Niehues et al., 2020)
Let

$$
B=\left[h_{1}, \ldots, h_{2}\right] \times\left[k_{1}, \ldots k_{2}\right] \subset \mathbb{Z}_{p}^{*} \times \mathbb{Z}_{p}
$$

Then

$$
\left|\# S \cup B-\frac{\# B}{p}\right| \leq 50 p^{1 / 2} \log ^{2} p
$$

Other randomness properties

- Drakakis et al. prove the ElGamal function is Almost Perfect Nonlinear
- Closer to PN than most APN functions in differential uniformity
- More linear than most Costas functions on a log-ratio test
- Less linear than random functions with a phase modulation test

Sequences from permutations

How about sequences?

Sequences from permutations

How about sequences?

For any permutation π in \mathbb{Z}_{p}^{*}, make a sequence

$$
\pi_{v}=\left(\pi_{1} \% v, \ldots, \pi_{p-1} \% v\right)
$$

Sequences from permutations

How about sequences?

For any permutation π in \mathbb{Z}_{p}^{*}, make a sequence

$$
\pi_{v}=\left(\pi_{1} \% v, \ldots, \pi_{p-1} \% v\right)
$$

Example: $p=5$ and $g=2$

$$
\begin{aligned}
\gamma & \left.\left.=\left(\left(2^{0}\right) \% 5\right) \% 2, \ldots,\left(2^{3}\right) \% 5\right) \% 2\right) \\
& =(1,2,4,3) \\
\gamma_{2} & =(1,0,0,1) \in \mathbb{Z}_{2}^{4}
\end{aligned}
$$

Randomness properties of ElGamal Sequences?

How closely do ElGamal sequences compare to sequences from random permutations?

- Balance
- Period length
- Distribution of fixed t-tuples $z \in \mathbb{Z}_{v}^{t}$:

$$
\lambda(z)=\#\left\{i \in[0, p-1]: \gamma_{v}\left(i+_{n} \iota\right)=z(\iota), 0 \leq \iota<t\right\}
$$

- Distribution of runs of $b \in \mathbb{Z}_{v}$ and of length t :

$$
\begin{aligned}
\rho(b, t)= & \#\{i \in[0, p-1]: \\
& \left.\gamma_{v}(i-n 1), \gamma_{v}(i+n t) \neq b=\gamma_{v}\left(i+_{n} \iota\right), 0 \leq \iota<t\right\}
\end{aligned}
$$

- $\rho(t)=v \rho(t+1)$

Other uses of Modulo operator in sequences

- The Legendre sequence

$$
\left(\log _{g}(i) \% 2, \log _{g}(i+1) \% 2, \ldots\right)
$$

- Colbourn constructed covering arrays from the circulant matrix

$$
\left(\log _{g}(i) \% v, \log _{g}(i+1) \% v, \ldots\right)
$$

- Tzanakis et al. formed covering array from circulant matrices of

$$
\left(\log _{g}\left(\operatorname{tr}\left(g^{i}\right)\right) \% v, \log _{g}\left(\operatorname{tr}\left(g^{i+1}\right)\right) \% v, \ldots\right)
$$

Outline

Contextualization

Bounds for random v-ary sequences

Bounds for ElGamal v-ary sequences

Experimental results

Final Remarks

Balance

Proposition

Let π be a permutation in \mathbb{Z}_{p}^{*}, then π_{v} is a balanced sequence over \mathbb{Z}_{v} if and only if $v \mid p-1$.

Proof.
The number of $x \equiv a \bmod v$ in $[1, p-1]$ is

$$
\left|\pi_{v}\right|_{a}=\lceil(p-1-((a-1) \bmod v)) / v\rceil
$$

Period

Lemma

If $p \equiv \alpha \neq 1(\bmod v)$, then π_{v} has period $N=p-1$ for any π permutation of \mathbb{Z}_{p}^{*}.

Proof.

The difference in the number of occurrences of any two symbols must be a multiple of $(p-1) / N$. But

$$
\left|\pi_{\nu}\right|_{a}= \begin{cases}\lceil(p-1) / v\rceil & 0 \leq a<\alpha-1, \\ \lfloor(p-1) / v\rfloor & \text { otherwise. }\end{cases}
$$

Period

Theorem
For every $\epsilon>0$ there exists an n_{ϵ} so that for all $p \geq n_{\epsilon}$, the number T of balanced sequences π_{v} with period $p-1$ satisfies

$$
\begin{equation*}
(p-1)!(1-\epsilon) \leq T \leq(p-1)!. \tag{1}
\end{equation*}
$$

Special case

When q is prime and $p=v q+1$,

$$
\frac{(p-1)!-T}{(p-1)!}=\frac{v!(q!)^{v}}{(p-1)!}
$$

This includes the case of Sophie Germain primes.
de Bruijn graph

Transfer Matrix

Transfer matrix is directed adjacency matrix of de Bruijn graph with variables

$$
\begin{gathered}
T=\begin{array}{c}
00 \\
01 \\
10 \\
11
\end{array}\left(\begin{array}{cccc}
00 & 01 & 10 & 11 \\
u x_{0} & u x_{0} & 0 & 0 \\
0 & 0 & x_{0} & x_{0} \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \\
00 \\
00 \\
01 \\
10 \\
11
\end{gathered}\left(\begin{array}{cccc}
1 & 10 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Asymptotic Normality

Theorem (Bender, Richmond, Williamson 1983)

Suppose $a_{n}(k)$ is admissible at 1 for $n \equiv n_{0}(\bmod d)$ and that Λ is d-dimensional. Then $a_{n}(k)$ satisfies a central limit theorem for $n \equiv n_{0}(\bmod d)$ with means and covariance matrix asymptotically proportional to n. Let q be such that $q c \in \Lambda$ for all $c \in \mathbb{Z}^{v}$. Then $a_{n}(k)$ satisfies a local limit theorem modulo Λ for $n \equiv n_{0}(\bmod d q)$

Asymptotic Normality

Theorem

Let $z \in \mathbb{Z}_{V}^{t}$ and $t(\kappa)$ be the number of balanced circular sequences of length n over \mathbb{Z}_{v} for which $\lambda(z)=\kappa$. There exists a $m_{\lambda}, b_{\lambda}, c_{\lambda} \in \mathbb{R}$ such that

$$
\sup _{\kappa}\left|\frac{\sqrt{2 \pi b_{\lambda}} t(\kappa)}{\left(1, l_{, \ldots, l}^{v}\right)}-c_{\lambda} e^{\left(\kappa-m_{\lambda}\right)^{2} / b_{\lambda}}\right|=o(1) .
$$

Let $b \in \mathbb{Z}_{v}, t \in \mathbb{N}$ and $r(\kappa)$ be the number of balanced circular sequences of length n over \mathbb{Z}_{v} for which $\rho(b, t)=\kappa$. There exists a $m_{\rho}, b_{\rho}, c_{\rho} \in \mathbb{R}$ such that

$$
\sup _{\kappa}\left|\frac{\sqrt{2 \pi b_{\rho}} r(\kappa)}{(l, l, \ldots, l)}-c_{\rho} e^{\left(\kappa-m_{\rho}^{2}\right) / b_{\rho}}\right|=o(1) .
$$

Mean for tuples

$$
\begin{aligned}
\frac{n}{v^{t}}\left(1+\frac{-\left(t^{2}-2 t v+v^{2}-t\right)(v-1)}{2 n}\right) & +O\left(\frac{1}{n}\right) \\
\leq E(\lambda(z)) & \leq \\
& \frac{n}{v^{t}}\left(1+\frac{t(v-1)}{2 n}\right)+O\left(\frac{1}{n}\right)
\end{aligned}
$$

Variance for tuples

$$
\begin{aligned}
\frac{n}{v^{2 t}}\left(\frac{2 v^{t}}{2}+\frac{-12 t^{2} v^{t}}{24 n}\right)+O & \left(\frac{1}{n}\right) \\
& \lesssim \operatorname{VAR}(\lambda) \lesssim \\
& \frac{n}{v^{2 t}}\left(\frac{2 v^{t}(v+1)}{2(v-1)}+\frac{12 v^{t+2} t}{24 n(v-1)}\right)+O\left(\frac{1}{n}\right)
\end{aligned}
$$

Runs

$$
\begin{aligned}
E(\rho(b, t)) & =\frac{(I(v-1)-1)(v-1) I(I)_{t}}{(n-1)_{t+1}}, \\
\operatorname{VAR}(\rho(b, t)) & =\frac{(I(v-1)-1)(v-1) I(I)_{t}}{(n-1)_{t+1}} \\
& +\frac{\left.(v-1) I(I)_{2 t} I(v-1)-1\right)^{2}(I(v-1)-2)}{(n-1)_{2 t+2}} \\
& -\left(\frac{(I(v-1)-1)(v-1) I(I)_{t}}{(n-1)_{t+1}}\right)^{2} .
\end{aligned}
$$

Where $I=n / v$.

Runs

$$
\begin{aligned}
E(\rho(b, t))= & \frac{n(v-1)}{v^{t+2}}\left((v-1)-\frac{(v-1)^{2} t^{2}-(v+3)(v-1) t+2}{2 n}\right) \\
& +O\left(\frac{1}{n}\right) \\
\operatorname{VAR}(\rho(b, t)) \approx & \frac{n(v-1)^{2}}{v^{t+2}}\left(1+\frac{-(v-1) t^{2}}{2 n}\right)+O\left(\frac{1}{n}\right)
\end{aligned}
$$

Outline

Contextualization

 Bounds for random v-ary sequences

 Bounds for random v-ary sequences}

Bounds for ElGamal v-ary sequences

Experimental results

Final Remarks

Balance

Proposition

Let π be a permutation in \mathbb{Z}_{p}^{*}, then π_{v} is a balanced sequence over \mathbb{Z}_{v} if and only if $v \mid p-1$.

Period

Theorem

The ElGamal sequence γ_{v} has period $N=p-1$.
Proof.

1. $p \not \equiv 1(\bmod v)$: Use balance
2. $p \equiv 1(\bmod v)$: Suppose period $N<p-1: g^{i+N} \% p \equiv{ }_{v} g^{i} \% p$
3. Let $i=0: g^{\prime}=g^{N} \% p \equiv_{v} 1$.
4. Let $p=k g^{\prime}+r, x=k+1\left(p<x g^{\prime}<2 p\right)$. Let $i=\log _{g}(x)$:

$$
x \equiv_{v} x g^{\prime} \% p=x g^{\prime}-p \equiv_{v} x g^{\prime}-1
$$

5. $x\left(g^{\prime}-1\right) \equiv_{v} 1 \equiv_{v} g^{\prime}$ is a contradiction.

Tuples

Theorem
Let γ_{v} be an ElGamal sequence and $p=q g^{t-1}+r$, then

$$
\left\lfloor\frac{g}{v}\right\rfloor^{t-1}\left\lfloor\frac{q}{v}\right\rfloor \leq \lambda(z) \leq\left\lceil\frac{g}{v}\right\rceil^{t-1}\left(\left\lfloor\frac{q}{v}\right\rfloor+1\right)
$$

Proof

$$
X=\left\{x \in[1, p-1]:\left(g^{i} x\right) \% p \equiv_{v} z_{i}, 0 \leq i<t\right\}
$$

Let $c_{i}=g^{i} z_{0}-z_{i}, 0 \leq i<t$.
$D=\left\{d \in \mathbb{Z}^{t}: d_{0}=0, d_{i} \equiv_{V} \alpha^{-1} c_{i}\right.$ and $g d_{i-1} \leq d_{i}<g\left(d_{i-1}+1\right)$ for $\left.0<i<t\right\}$.
For $d \in D$, let

$$
X_{d}=\left\{x \in \mathbb{Z}: x \equiv_{v} z_{0}, \frac{d_{i} p}{g^{i}} \leq x<\frac{\left(d_{i}+1\right) p}{g^{i}}, \text { for } 0 \leq i<t\right\}
$$

Claim:

$$
X=\bigcup_{d \in D} x_{d}
$$

$X_{d} \subset X$

If $x \in X_{d}$, then $x \equiv_{v} z_{0}$ and

$$
d_{i} p \leq g^{i} x<\left(d_{i}+1\right) p
$$

Thus
$g^{i} x \% p=g^{i} x-d_{i} p \equiv_{\nu} g^{i} x-\alpha d_{i} \equiv_{v} g^{i} z_{0}-c_{i} \equiv_{v} g^{i} z_{0}-\left(g^{i} z_{0}-z_{i}\right)=z_{i}$,
So $x \in X$.

For $x \in X$, define $g^{i} x=q_{i} p+r_{i}$:

$$
\begin{aligned}
& q_{0}=0 \\
& r_{i}=g^{i} x-q_{i} p=\left(g^{i} x\right) \% p \equiv_{V} z_{i} \\
& \frac{q_{i} p}{g^{i}} \leq x<\frac{\left(q_{i}+1\right) p}{g^{i}}
\end{aligned}
$$

So $x \in X_{\left(q_{0}, \ldots, q_{t-1}\right)}$

$$
q_{i} \equiv_{V} \alpha^{-1} q_{i} p=\alpha^{-1}\left(g^{i} x-r_{i}\right) \equiv_{v} \alpha^{-1}\left(g^{i} z_{0}-z_{i}\right)=\alpha^{-1} c_{i} .
$$

Then,

$$
\begin{aligned}
q_{i} & =\frac{g^{i} x-r_{i}}{p}=\frac{g\left(g^{i-1} x\right)-r_{i}}{p}=\frac{g\left(q_{i-1} p+r_{i-1}\right)-r_{i}}{p} \\
& =g q_{i-1}+g \frac{r_{i-1}}{p}-\frac{r_{i}}{p}<g\left(q_{i-1}+1\right),
\end{aligned}
$$

and

$$
g q_{i-1}=\frac{g q_{i-1} p}{p} \leq \frac{g\left(q_{i-1} p+r_{i-1}\right)}{p}=\frac{g\left(g^{i-1} x\right)}{p}=\frac{g^{i} x}{p}=q_{i}+\frac{r_{i}}{p} .
$$

Since $g q_{i-1}, q_{i} \in \mathbb{Z}$ and $r_{i} / p<1, \Rightarrow q_{i} \geq g q_{i-1}$.
Thus $\left(q_{0}, \ldots, q_{t-1}\right) \in D$.

Final step

$$
\begin{aligned}
& X=\bigcup_{d \in D} x_{d}=\bigcup_{d \in D}\left(\left\{x \equiv_{v} z_{0}\right\} \bigcap\left(\bigcap_{0 \leq i<t}\left\{\frac{d_{i} p}{g^{i}} \leq x<\frac{\left(d_{i}+1\right) p}{g^{i}}\right\}\right)\right) . \\
& =\bigcup_{d \in D}\left(\left\{x \equiv_{v} z_{0}\right\} \cap\left\{\frac{d_{t-1} p}{g^{t-1}} \leq x<\frac{\left(d_{t-1}+1\right) p}{g^{t-1}}\right\}\right) . \\
& \begin{array}{ccl}
\lfloor g / v\rfloor^{t-1} \leq & \# D & \leq\lceil g / v\rceil^{t-1} \\
q & \leq \#\left[d_{t-1} p / g^{t-1},\left(d_{t-1}+1\right) p / g^{t-1}\right) & \leq q+1 \\
\lfloor q / v\rfloor & \leq x_{d} & \leq\lceil(q+1) / v\rceil
\end{array} \\
& \left\lfloor\frac{g}{v}\right\rfloor^{t-1}\left\lfloor\frac{q}{v}\right\rfloor \leq \lambda(z) \leq\left\lceil\frac{g}{v}\right\rfloor^{t-1}\left(\left\lfloor\frac{q}{v}\right\rfloor+1\right) .
\end{aligned}
$$

Observations

- When $g=m v$ bounds differ by at most m^{t}
- When $g=v,\left\lfloor\frac{q}{v}\right\rfloor \leq \lambda(z) \leq\left\lfloor\frac{q}{v}\right\rfloor+1$
- If $p \geq v g^{t-1}$ and $g \geq v$, then $\lambda(z)>0$ for all $z \in \mathbb{Z}_{v}^{t}$
- If $\lambda(z)>0$ for all $z \in \mathbb{Z}_{v}^{t}$, then $g \geq v$ and $p \geq v^{t}+1$.
- Coincide when $g=v$
- $\gamma_{v}(i+1) \equiv_{v} g \gamma_{v}(i)-s$ for some $0 \leq s<g$.

Runs

Theorem

Let γ_{v} be an ElGamal sequence and $p=q g^{t-1}+r$. For $z \in \mathbb{Z}_{v}^{t}$, let $\mu(z)=\#\left\{i \in[1, p-1]: g^{i+j} \% p \equiv_{v} z_{j}, 0 \leq j<t-1, g^{i+t-1} \% p \not \equiv_{v} z_{t-1}\right\}$.

Then

$$
\left\lfloor\frac{g}{v}\right\rfloor^{t-2}\left\lfloor\frac{(v-1) g}{v}\right\rfloor\left\lfloor\frac{q}{v}\right\rfloor \leq \mu(z) \leq\left\lceil\frac{g}{v}\right\rceil^{t-2}\left\lceil\frac{(v-1) g}{v}\right\rceil\left(\left\lfloor\frac{q}{v}\right\rfloor+1\right) .
$$

Corollary

Let $p=q_{t} g^{t}+r_{t}$ and $p=q_{t+1} g^{t+1}+r_{t+1}$. Then

$$
\begin{aligned}
\left\lfloor\frac{g}{v}\right\rfloor^{t-1}\left\lfloor\frac{(v-1) g}{v}\right\rfloor\left\lfloor\frac{q_{t}}{v}\right\rfloor- & \left\lceil\frac{g}{v}\right\rceil^{t}\left\lceil\frac{(v-1) g}{v}\right\rceil\left\lceil\frac{q_{t+1}+1}{v}\right\rceil \\
& \leq \rho(b, t) \leq \\
& \left\lceil\frac{g}{v}\right\rceil^{t-1}\left\lceil\frac{(v-1) g}{v}\right\rceil\left\lceil\frac{q_{t}+1}{v}\right\rceil-\left\lfloor\frac{g}{v}\right\rceil^{t}\left\lfloor\frac{(v-1) g}{v}\right\rfloor\left\lfloor\frac{q_{t+1}}{v}\right\rfloor
\end{aligned}
$$

and

$$
(v-1)\left\lfloor\frac{g}{v}\right\rfloor^{t}\left\lfloor\frac{(v-1) g}{v}\right\rfloor\left\lfloor\frac{q}{v}\right\rfloor \leq \rho(b, t) \leq(v-1)\left\lceil\frac{g}{v}\right\rceil^{t}\left\lceil\frac{(v-1) g}{v}\right\rceil\left\lceil\frac{q+1}{v}\right\rceil
$$

Comparison to random balanced sequences

From theoretical results

- Balance matches exactly
- Periodicity matches very closely
- To first order, the number of tuples and runs matches
- To first order $\rho(t) \approx v \rho(t+1)$

Outline

Contextualization

 Bounds for random v-ary sequences

 Bounds for random v-ary sequences

 Bounds for ElGamal v-ary sequences

 Bounds for ElGamal v-ary sequences}

Experimental results

Final Remarks

Experimental setting

We run experiments over two distinct data sets of pairs (p, v) with $p>1,000,000$ and $2 \leq v \leq 8$.
all primes: Primes where $v \mid p-1$.
$g=v$ primes: Primes where $v \mid p-1$ and v is a generator.

Experimental setting

We run experiments over two distinct data sets of pairs (p, v) with $p>1,000,000$ and $2 \leq v \leq 8$.
all primes: Primes where $v \mid p-1$.
$g=v$ primes: Primes where $v \mid p-1$ and v is a generator.

	all	$g=v$
\# pairs (p, v)	715	400
\# distinct v	7	4
\# distinct primes	322	323
\# v per prime (average)	4.51	1.48

- We run experiments over all primes for the smallest 10 generators.
- If $v \in\{4,5,8\}$ then $v \neq g$.

ElGamal Sequences t-tuple bound gap distribution

Lower bound $\lambda(z)>0$
$t=2$ and 12% outliers.

Upper bound
$t=2$ and 5\% outliers

Distribution of gaps between $\lambda(z)$ and lower and upper bounds.

ElGamal Sequences t-tuple bound gap distribution

> Lower bound $\lambda(z)>0$ $t=7$ and 59.75% outliers.

Distribution of gaps between $\lambda(z)$ and lower and upper bounds.

ElGamal Sequences t-tuple bound accuracy

Lower bound

Upper bound

Percentage of trials with $z \in \mathbb{Z}_{v}^{t}$ s.t. $\lambda(z)$ matches lower and upper bounds.

ElGamal Sequences run bound accuracy

Lower bound
Upper bound

Percentage of trials with $b \in \mathbb{Z}_{v}$ s.t. $\rho(b, t)$ matches lower and upper bounds.

ElGamal Sequences run ratio Experiment

All primes.

$$
g=v \text { primes. }
$$

Distribution of $\rho(t+1) v / \rho(t)$ as a heat map with $2 \leq v \leq 8$

ElGamal Sequences run ratio Experiment

All primes.
$g=v$ primes.

Distribution of $\rho(t+1) v / \rho(t)$ as a heat map with $v=2$

Outline

Contextualization
\section*{Bounds for random v-ary sequences}
\section*{Bounds for ElGamal v-ary sequences}
\section*{Experimental results}

Final Remarks

Conclusions

- ElGamal permutations behave like random for cycle sizes and distribution of graph
- ElGamal permutations are close to random permutations for nonlinearity
- ElGamal sequences have balance and periodicity close to random
- Tuples in ElGamal sequences are distributed as in random balanced sequences
- Run lengths in ElGamal sequences satisfy Golomb's Randomness Postulate

Next steps

- Experiments indicate that $\lambda(z)$ bounds are tight. So any improvements will be conditional
- Prove properties of the distribution of $\lambda(z)$
- Prove linear complexity results for ElGamal sequences
- Determine expected linear complexity for random balanced random sequences
- Further investigate auto-correlation
- Will these be enough to justify cryptographic utility?

Obrigado Thanks

 شكرا لـك

