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Rédei polynomial

Definition (Lacunary polynomial)

A polynomial is lacunary if a long run of zeroes appears in its sequence of
coefficients (usually between the highest and second highest term). For
example, x100 + x + 1.

Rédei polynomials have many interesting applications, but the most
famous application is bounding the number of directions.

Definition (Rédei polynomial)

Let U = {(ai , bi )}ni=1 ⊂ AG (2, p). The Rédei polynomial of U is

H(x , y) =
n∏

i=1

(x + aiy − bi )

= xn + h1(y)xn−1 + · · ·+ hn(y).
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Determined directions

Definition (Directions)

Let U be a subset of the affine plane AG (2, p), where p is a prime
number. A direction is determined by U if two points of U lie on a line in
that direction.

AG (2, p) can be coordinatized so that U = {(ai , bi ) : 1 ≤ i ≤ |U|}, where
ai , bi ∈ GF (p) for all 1 ≤ i ≤ |U|. The set of directions determined by U
is given by

D =

{
bi − bj
ai − aj

: 1 ≤ i < j ≤ n

}
.

Note that D is a subset of GF (p) ∪ {∞}. If U is a subset of a line, then
|D| = 1 (for example).
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Rédei polynomial, |U | = p

Notice that for any U ⊂ AG (2, p) such that |U| ≥ p + 1, U will determine
all p + 1 directions.

Lets first use the Rédei polynomial in the case |U| = p. If for some pair
1 ≤ i , j ≤ p we have

aiy − bi = ajy − bj ,

then y ∈ D, since

y =
bj − bi
aj − ai

.

Conversely, if y 6∈ D, then {aiy − bi}pi=1 are all distinct, and therefore

H(x , y) =

p∏
i=1

(x + aiy − bi ) = xp − x .
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Rédei polynomial, |U | = p

H(x , y) =

p∏
i=1

(x + aiy − bi )

= xp + h1(y)xp−1 + · · ·+ hn(y).

Every y 6∈ D is a zero of hi (y), 1 ≤ i ≤ p − 2.

Since deg hi ≤ i , hi ≡ 0 for 1 ≤ i ≤ p − |D|.

Equivalently, if hi 6≡ 0, then |D| ≥ p + 1− i .

For some y ∈ D, put Hy (x) = xp + gy (x). Then |D| ≥ deg(gy ) + 1

Theorem (Rédei)

Let f (x) = xp + g(x) be fully reducible and suppose that f ′(x) 6≡ 0. Then
deg(g) ≥ p+1

2 ; or f (x) = xp − x .
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Rédei polynomial, |U | = p

Theorem (Rédei and Megyesi, 1970)

A set of p points in AG (2, p) is either a line or determines at least p+3
2

directions.

Sets of p points that determine the minimum number of directions are
understood.

Theorem (Lovász and Schrijver, 1981)

If a set of p points in AG (2, p) determines p+3
2 directions, then it can be

coordinatized as
{(k , k

p+1
2 ) : k ∈ GF (p)}.
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Szőnyi’s extension

Theorem (Szőnyi, 1991)

A set of n points in AG (2, p) is either contained in a line or determines at
least n+3

2 directions.

Szőnyi’s above generalization follows a similar argument to Rédei and
Megyesi’s with the addition of an ‘extension polynomial’.
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Szőnyi’s extension

Let U = {(ai , bi )}ni=1 ⊂ AG (2, p). As before, if y 6∈ D, then

H(x , y) =
n∏

i=1

(x + aiy − bi ),

has all distinct roots. Construct the polynomial f (x , y) such that for every
y 6∈ D we have

H(x , y)f (x , y) = xp − x .

For y ∈ D, put
H(x , y)f (x , y) = xp + gy (x).

Once again, we’ll have the property

|D| ≥ deg(gy ) + 1.
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Rédei polynomial for a Cartesian product

Let A = {ai}mi=1,B = {bj}nj=1. The Rédei polynomial of A× B is

H(x , y) =
∏
i ,j

(x + aiy − bj).

The direction y = 0 is in D. Put

H(x , 0)f (x , 0) = f (x , 0)
∏
j

(x − bj)
m

= xp + c1x
p−1 + · · ·+ cp.
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Main theorem

Theorem (Di Benedetto, S., White, 2020)

Let A,B ⊂ GF (p) be sets each of size at least two such that |A||B| < p.
Then the set of points A× B ⊂ AG (2, p) determines at least

|A||B| −min{|A|, |B|}+ 2

directions.
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Paley graph

Let p ≡ 1 (mod 4) be prime. The Paley graph Pp has vertex set
{0, 1, . . . , p − 1}. There is an edge between x and y if x − y is a quadratic
residue, χ(x − y) = 1. (χ is the quadratic character, χ(a) = ±1 or 0)

Figure: Paley graph, p = 17
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Paley clique

Estimating the size of the clique number of Pp is a difficult open problem.

Ω(log p log log log p) . ω(Pp) ≤
√

2p − 1 + 1

2
.

Lower bound (for some primes p): Graham and Ringrose (1990)

Upper bound: Hanson and Petridis (2019)

Lower bound for some primes can be improved under GRH

The best general lower bound for all pr , when p ≡ 1 (mod 4), was given
by Cohen (1988), but for primes the bound is weaker than the present
bound for arbitrary graphs.
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Diagonal Ramsey

The current best bound on the diagonal Ramsey number is due to Ashwin
Sah (2020)

R(k + 1, k + 1) ≤ exp(−c(log k)2)

(
2k

k

)
<< 4k

One would expect that in a Paley graph the algebraic structure allows us
to get a better bound.

Theorem

If p ≥ 3.009k then the Paley graph in Fp has a clique of size k .
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Application of the direction bound: Paley clique

Corollary

If A ⊂ GF (p) is a Paley clique, then the number of directions determined
by A× A is at most p−1

2 + 2. Therefore,

|A|2 − |A|+ 2 ≤ Number of directions in A× A ≤ p + 3

2
.
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Directions and additive combinatorics

Let A,B ⊂ GF (p). Suppose A− A and B − B belong to a subgroup G of
GF (p)∗. Then all directions determined by A× B belong to G ∪ {0,∞}.{

b − b′

a− a′
: a, a′ ∈ A, b, b′ ∈ B

}
⊆ G ∪ {0,∞}.

Observation

A lower bound on the directions in A× B results in a lower bound on |G |.
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Thank you!

Kyle Yip will talk about the Van Lint-MacWilliams’ conjecture and
maximum cliques in Cayley graphs over finite fields and then Ethan White
will talk about the number of distinct roots of a lacunary polynomial over
finite fields.
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