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Firefighter problem (Hartnell, 1995)

A fire (or contagion) breaks out on a vertex vf of a graph G . The
following process repeats until no new vertices burn:

A firefighter protects k unburnt vertices.
The fire then spreads to any unprotected neighbour of a burning vertex.

The firefighter’s goals may include:

Stop the fire’s spread as quickly as possible (i.e. minimize the number
of time steps before the process terminates)
Save a particular set of vertices from burning.
Determine the minimum value of k that will save a particular number
or fraction of vertices.
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Example with k = 2 firefighters
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Background on Firefighter

Consider the decision problem for the case k = 1:

Firefighter
Instance: A graph G , an integer t, and a vertex vf ∈ V (G ).

Question: Can one firefighter save t vertices of G
(in addition to those he protects)?

Firefighter is NP-complete for:

Bipartite graphs (MacGillivray and Wang, 2003)
Trees with maximum degree 3 (Finbow, King, MacGillivray and Rizzi,
2007)
Cubic graphs (King and MacGillivray, 2010)

Firefighter is polynomial-time solvable for graphs of maximum
degree 3 if deg(vf ) = 2. (Finbow, King, MacGillivray and Rizzi, 2007)

See the survey by Finbow and MacGillivray (2009)
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Firebreak Problem

Suppose that the firefighter only has one move.

When the fire breaks out, he may build a firebreak by protecting k
unburnt vertices.

Protected vertices will not burn, and the fire cannot spread through
them.

Thereafter, the fire spreads to any vertex reachable along paths
through only unprotected vertices.

How many vertices can we prevent from burning?
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Example with k = 2 protected vertices
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Firebreak problem

In order to save additional vertices, the set of protected vertices must form
a vertex cut.

So we seek a vertex cut of size k (the protected vertices) that separates vf
from as many vertices as possible (the saved vertices).

Definition

F(G , k , vf ) is the maximum number of vertices outside the protected set
that can be saved.

Can we compute F(G , k , vf )?
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Firebreak decision problem

Instance: A graph G , integers k and t, and a vertex vf ∈ V (G ).

Question: Does V (G ) contain a k-subset S such that vf /∈ S and
the number of vertices of G − S that are separated
from vf is at least t?

What is the complexity of this problem?
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Split graphs

Definition

A split graph G has vertex set V (G ) = A ∪ B, where

G [A] is a maximum clique.

G [B] is an independent set.

Example
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Key Player Problem

Consider the Key Player problem:

Instance: A graph G , integers k and t.

Question: Does V (G ) contain a k-subset S such that
the number of components in G − S is at least t?

Theorem

Firebreak and Key player are computationally equivalent on split
graphs.
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Computational equivalence

Using an oracle for Firebreak to solve Key Player:

Let (G , k, t) be an instance of Key Player on a split graph

We can assume k < |A| (otherwise the problem can be solved in
polynomial time)

Form G ′ by adding a new vertex vf adjacent to each vertex of A.

Answer to Key Player for (G , k , t) is affirmative iff answer to
Firebreak for (G ′, k , t − 1, vf ) is affirmative.
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Computational equivalence

Using an oracle for Key Player to solve Firebreak

Let (G , k, t, vf ) be an instance of Firebreak on a split graph G

Assume k < |NG (vf )| (otherwise, Firebreak can be solved in
polynomial time)

Construct a graph G ′ by adding k “twins” of vf

Answer to Firebreak for (G , k , t, vf ) is affirmative iff answer to
Key Player for (G ′, k, t + 1) is affirmative.
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NP-complete on split graphs

Theorem

Key Player is NP-complete on split graphs.

Proof.

Reduction from t-way vertex cut, which is known to be NP-complete
on split graphs (Berger, Grigoriev, van der Zwann, 2014):

t-way vertex cut:

Instance: Graph G , integer k , integer t

Question: Does V (G ) contain a subset S such that
|S | ≤ k and G − S has at least t components?

Corollary

Firebreak is NP-complete on split graphs.
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Cubic graphs

Theorem

Firebreak can be solved in polynomial time on cubic graphs.

Idea.

Given an instance (G , k , t, vf ) of Firebreak:

If k ≥ 3, let S consist of N(vf ) along with any k − 3 other vertices.

If k < 3, exhaustively check all k-subsets S of V (G ) \ {vf }.

Theorem

Key Player is NP-complete on cubic planar graphs.

Idea.

Reduction from Independent Set.
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Bipartite graphs

Theorem

Firebreak is NP-complete on bipartite graphs.

An oracle for Firebreak on bipartite graphs can be used to solve
Firebreak on split graphs.

Given a split graph G , consider an instance (G , k, t, vf ) of Firebreak. If
k ≥ |NG (vf )|, the problem is easy.

Otherwise, subdivide edges in a max clique to form a bipartite graph G ′.

Firebreak has an affirmative answer for (G , k, t, vf ) iff it has an
affirmative answer for (G ′, k, t +

(
k
2

)
, vf ).
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Trees

Theorem

Firebreak can be solved in polynomial time on trees.

Idea.

Root the tree at vf , and count vertices in the subtrees rooted at the
neighbours of vf .

Protect the k neighbours of vf with largest subtrees.

vf
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Courcelle’s Theorem

Theorem (Courcelle, 1990; Arnborg, Lagergren and Seese 1991)

Let G be a graph on n vertices and w a constant.

Let P be a graph theoretical problem that can be expressed in the
form of extended monadic second-order logic (EMSO).

If tw(G ) ≤ w, then determining whether G has property P can be
accomplished in time O(f (w) · n).

Theorem

Firebreak can be solved in linear time for graphs with constant-bounded
treewidth.
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Extended Monadic Second-Order logic

Monadic second-order logic (MSO) expressions for graphs are based on

variables for vertices, edges, sets of vertices, sets of edges

universal and existential quantifiers

logical connectives of conjunction, disjunction and negation

binary relations to assess set membership; adjacency of vertices;
incidence of edges and vertices; equality for edges, vertices and sets

Extended monadic second-order logic (EMSO) also includes an evaluation
relation that lets us consider set cardinalities.

See the survey by Langer, Reidl, Rossmanith and Sikdar (2014) for details.
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Firebreak on graphs of bounded treewidth

Consider the MSO expression

ϕ = (vf /∈ S) ∧ (vf /∈ X ) ∧ (∀y(y ∈ S)⇒ (y /∈ X )) ∧
(∀x∀y ((x ∈ X ) ∧ (adj(x , y) ∧ (y /∈ S))⇒ (y ∈ X ))

The expression ϕ is true iff X is the set of vertices separated from vf in
G − S .

We need an evaluation relation ψ which is true iff |S | = k and |X | ≥ t.
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Firebreak on graphs of bounded treewidth

The expression ϕ has two set variables (S and X ).

Define a weight function w1 : V (G )→ R by w1(v) = 1 for all v and set

y1 =
∑
u∈S

w1(u) and y2 =
∑
u∈X

w1(u).

Note that y1 = |S | and y2 = |X |.
We may also use numbers from the problem instance in the evaluation
relation. Set y3 = k and y4 = t.

Define the evaluation relation ψ by

ψ : (y1 = y3) ∧ (y2 ≥ y4).

Combining ϕ and ψ expresses Firebreak in EMSO.
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Interval graphs

An interval graph is an intersection graph of a collection of intervals.
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Solving Firebreak in polynomial time on interval graphs

Construct the interval representation (can be done in polynomial
time)

Scan for minimal vertex separators (O(n2))

Separating sets are formed by combining minimal separators.

We never need to use more than one minimal separator on each side
of vf .

So we need to check O(n4) candidate solutions. Each can be checked
in O(n) time.
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Summary

We have shown that Firebreak is:

NP-complete on:

split graphs
bipartite graphs

polynomial-time solvable on:

graphs of constant-bounded degree
graphs of constant-bounded treewidth
interval graphs
certain other classes of intersection graphs
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Related questions

In the firebreak problem, the firefighter has only one turn. In the
firefighter problem, the number of firefighter turns is unrestricted.
What if the number of firefighter turns is a fixed constant m ≥ 1?

What if the fire can spread to all vertices within distance d at each
timestep?

Firefighter: d = 1
Firebreak: d =∞
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Thanks!
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