Graph Polynomial and Vertex Coloring

Abstract: Let G be a (simple) graph with edge set E and vertex set $V = \{1, 2, ..., n\}$. The graph polynomial of G is $f_G(\vec{x}) = \prod_{ij \in E, i < j} (x_i - x_j) = \sum_{\vec{d}} C(\vec{d}) x_1^{d_1} x_2^{d_2} \cdots x_n^{d_n},$ where $\vec{d} = (d_1, d_2, \dots, d_n)$ satisfies $d_1 + d_2 + \dots + d_n = |E|$. It is clear that $\vec{c}: V \to R$ is a proper coloring if and only if $f_{c}(\vec{c}) \neq 0$. It is also known that $|C(\vec{d})| = |EE(D) - EO(D)|$, where D is any orientation of E with out-degree sequence \vec{d} , EE(D) and EO(D) are the number of Eulerian subgraphs with even and odd number of edges, respectively. In this talk we will give a proof of Matiyasevich's criterion about k-colorability of G based on the number of Eulerian subgraphs (mod k).