Graph Polynomial and Vertex Coloring

Abstract: Let G be a (simple) graph with edge set E and vertex set $\mathrm{V}=\{1,2, \ldots, \mathrm{n}\}$. The graph polynomial of G is
$f_{G}(\vec{x})=\prod_{i j \in E, i<j}\left(x_{i}-x_{j}\right)=\sum_{\vec{d}} C(\vec{d}) x_{1}^{d_{1}} x_{2}^{d_{2}} \cdots x_{n}^{d_{n}}$,
where $\vec{d}=\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ satisfies $d_{1}+d_{2}+\cdots+d_{n}=|E|$.
It is clear that $\vec{c}: V \rightarrow R$ is a proper coloring if and only if $f_{G}(\vec{c}) \neq 0$.
It is also known that $|C(\vec{d})|=|E E(D)-E O(D)|$, where D is any
orientation of E with out-degree sequence \vec{d}, $\mathrm{EE}(\mathrm{D})$ and $\mathrm{EO}(\mathrm{D})$ are the number of Eulerian subgraphs with even and odd number of edges, respectively. In this talk we will give a proof of Matiyasevich's criterion about k-colorability of G based on the number of Eulerian subgraphs (mod k).

