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We introduce a method to estimate parameters and states from a differential equation model while enforcing inter-
pretability constraints such as monotone or non-negative states. We motivate the methodology using a real data
chemical engineering example and show that a variety of restrictive constraints from earlier analyses do not address
the problem of interpretability. Our proposed method estimates parameters using a smoothing-based relaxation of
the model to enforce interpretability of the observed and unobserved system states. Copyright © 2012 John Wiley &
Sons, Ltd.
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1. CHALLENGES OF PARAMETER ESTIMATION
FROM DIFFERENTIAL EQUATION MODELS

Ordinary differential equations (ODEs) describe the rate of
change of system states x(t) with respect to time t (or another
argument) as a function of x(t) along with externally controlled
inputs u(t) and p model parameters θ. Using the differential
operator Dx tð Þ ¼ d

dt x tð Þ, the ODE model

Dx tð Þ ¼ f x t½ �; θ; u t½ �ð Þ (1)

can be interpreted as a regression model with functional
covariates x(t). When x(t) is a vector of chemical concentrations,
model (1) describes the rate of change of chemical concentrations
as a function of the chemicals in the system x(t), rate parameters θ,
and (time-varying) covariates such as temperature, pressure, and
other catalytic inputs u(t). Rate parameters θ are typically of main
interest because they can be used to predict behavior of the
system under different u(t) and to optimize reactor settings.
System states x(t) are of interest to determine when the reactor
holds the desired mixture of chemicals. This paper focuses on
estimating both x(t) and θ.

In general, for a nonlinear function f(�) in (1), there is no
analytic form for x(t), but given θ and initial system states x(0),
numerical methods can produce the solution S(θ, x[0], t) = x(t).
However, the measurement error model, for example,

y tð Þ � N S θ; x 0f g; t½ �;s2� �
(2)

will not have a closed-form likelihood. Further, complicating the
model statistically, observations y(t) are often only available from
a subset of the vector of states x(t).

With S(θ, x[0], t) in (2), θ̂ can be estimated by nonlinear least
squares (NLS) through gradient-based optimization, [1] or Markov
chain Monte Carlo (MCMC) [2]. Knowing x(0) improves the

reliability of parameter estimates when the model trajectory is
strongly impacted by changes in initial conditions [3], and
therefore, the estimation problems are exacerbated when the
unknown parameter vector from θ is augmented to c= [θ, x(0)].
Complicating these estimation methods, a relatively compact
ODE model can be used to describe complex dynamics such
as limit cycles, exponential growth, or a strong tendency
towards an equilibrium state depending on the values of c. The
diversity in modeled dynamics gives rise to complex likelihood
topology such as ripples, ridges, flat sections, and/or multiple
local maxima [4].
The alternative to depending on S(θ, x[0], t) is to work with

a relaxation of the ODE solution by smoothing the data to
produce the approximation x̂ tð Þ � S θ; x 0½ �; tð Þ and estimating
θ via

argmin
θ

jjDx̂ tð Þ � f x̂ t½ �; θ; u t½ �ð Þj 2
��

Some implementations use a nonparametric data smooth [5–8];
however, these methods are limited when the model of
interest has discontinuous derivatives or mixtures of fast and
slow changing dynamics. Other smoothing-based methods use
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iterative conditional updating of θ̂ and a parametric model-
based smooth estimator of x(t) via frequentist [9,10] or Bayesian
methods [11]. This paper focuses on extending the generalized
smoothing (GS) method of [12] to cases where the model-based
data smooth is confined to a restricted function space meeting
monotonicity or nonnegativity constraints. Using GS, x̂ tð Þ and θ
are estimated using a multilevel, multicriterion optimization
and parametric ODE model-based smoothing. The related ap-
proximate maximum likelihood estimation (AMLE) method of
[13] uses an unconstrained model-based smoothing strategy
but estimates x(t) and θ, simultaneously giving both types
of parameters equal importance, whereas we consider x(t)
to be defined by a set of nuisance parameters. Furthermore,
AMLE relies on the assumption that the measurement error
variance s2 in (2) is known and the lack of model fit afforded
by the smoothing process is therefore assumed to be caused
by a stochastic forcing function. We do not assume that s2 is
known, but we are also able to work with the assumption if it
is reasonable.
Generalized smoothing is a collocation method; it uses a basis

expansion with a vector of coefficients b and basis functions f(t)
to approximate the system states such that x̂ tð Þ ¼ b′f tð Þ �
S θ; x 0½ �; tð Þ . The data smooth x̂ tð Þ is a model-based smooth
because it is guided by the ODE by penalizing deviation from
the residual of (1). The tradeoff between interpolating y(t) and
perfectly following S(θ, x[0], t) is controlled by the smoothing
parameter l, allowing x̂ tð Þ to be interpreted as a relaxation of

S(θ, x[0], t). GS requires estimation of b̂ , θ, and l̂ , but through
a multi-criterion three-level hierarchical optimization, the
relationships b(θ, l) and θ(l) are defined such that the process
reduces to estimating the degrees of freedom laden parameter
l. In this paper, we extend GS to accommodate interpretability
constraints on the shape of x̂ tð Þ . In addition, we propose an
intuitive estimation strategy for l and highlight how to
overcome challenges of a real data system.
Section 2 provides a description of the motivating data set

from an industrial chemical engineering application with a
nonlinear ODE model. The challenges of the motivating example
include multiple experimental replications, step function
changes in functional inputs, noisy system components
observed at different time points, and precisions along with
unobserved state variables within a nonlinear differential
equation model where system states are only interpretable
when taking on nonnegative values. Section 3 describes
GS with the extension to ensure that state estimates are
constrained to remain interpretable. Section 4 describes
how GS is adapted to overcome the remaining challenges
of the motivating data set. Section 5 provides an analysis
of the real data set, highlighting how the assumptions and
limitations of previous analyses are removed using the pro-
posed methodology. Comparisons with alternative methods
are also shown. Discussion about the method’s performance
and further adaptations and generalizations are given in
Section 6.

2. NYLON SYSTEM

In a heated reactor, amine (A) and carboxyl (C) groups combine,
producing polyamide links (L) and water (W), which escape as
steam. Simultaneously, steam bubbled through molten nylon,

decomposes L into A and C giving the symbolic competing
reactionsA+C⇌ L+W. From any starting values, A, C, L, and W
will adjust their concentrations until these competing reaction
rates balance and equilibrium concentrations are achieved. In
the experiment of [14], steam is bubbled through molten nylon
to manipulate the concentration of W in the system. Conse-
quently A, C, and L move towards equilibrium concentrations
with the imposed level of W. Within each of the i = 1, . . ., 6
experimental runs, the amount of input steam followed a
step function. Initial high levels of steam were held constant
until time ti1, then reduced until time ti2, and finally
returned to the original level for the remainder of the exper-
imental run. Each experimental run was performed at a con-
stant temperature Ti, which, along with the input water pres-
sure, determines the equilibrium concentration of water in
the molten nylon mixture, Weq. With reaction rates kp and
Ka, the reaction dynamics are described with differential
equations

�DL ¼ DA ¼ DC ¼ �kp CA� LW=Kað Þ (3)

DW ¼ kp CA� LW=Kað Þ � 24:3 W �Weq
� �

(4)

Reaction rates kp and Ka are allowed to change with Ti andWeq

according to parameter vector θ= [kp, E, g, b, Ka0,H] and the refer-
ence temperature T0 = 549.15 K, through the following relation-
ships:

kp ¼ kp0
1000

exp �E
103

8:314
1
Ti
� 1
T0

� �� �
(5)

Ka ¼ 1þWeq
g

1000
exp �b103

1
Ti
� 1
T0

� �� �� �
KT Ka0½ �

exp �H
103

8:314
1
Ti
� 1
T0

� �� �
(6)

KT ¼ 20:97exp �9:624þ 3613
Ti

� �
(7)

These equations include scaling factors, making all initial
arameter estimates used in [14] for θ of the same order of
magnitude to ease estimation. A variety of alternative models
for this system have been proposed [13,12,14,15], and the
methodology and upcoming analysis could be applied to any
of them. Equation (6) is altered from that of [14] to ensure
consistency of parameter units. Alternatively, four or five
parameters versions of (5)–(7) may also of interest and are
described in Section 5.2. Given any three chemical compo-
nents, the fourth can be determined algebraically using the
mass balance of the system; however, it was only possible to
measure A and C. Consequently, an unobserved state variable
must also be estimated. Figure 1 shows the data for each
of the experimental runs and includes vertical lines
corresponding to ti1 and ti2.

These data and differential equation model produce several
challenges that are addressed in this paper:
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(1) This system describes chemical concentrations that are by
definition constrained to take on nonnegative values. Using
nonlinear regression, Zheng et al. [14] overcame this
problem by assuming that the initial system states were
known. However, along with restricting the set of possible
ODE solutions, including strong assumptions about initial
states can produce biased parameter estimates and
artificially narrow confidence intervals [3]. Other analyses
avoided negative states by using a basis incapable of
matching the sharp modeled dynamics [12,13], producing
state estimates that would not be considered optimal had
they used NLS or a denser basis to obtain θ̂ and x̂ tð Þ. Using
too few basis functions prevents x t̂ð Þ from following sharp
dynamics and can introduce bias into the parameter
estimates. Figure 1 shows the unconstrained optimal GS fit
to the data using a much more flexible basis than that
of [13] and [12]. By using a much more flexible basis,
although W(0) is negative in four cases, after a positive initial
condition, Â tð Þ becomes uninterpretably negative in the
second experiment (top middle plot). Consequently, a
constraint on initial conditions alone may not suffice to

ensure that all states remain within the nonnegativity
constraint. The parameter estimates that our paper produce
are those obtained by constraining the states to be interpret-
able, without assuming x(0) is known and without limiting
the dynamics by using too few basis functions.

(2) Information must be pooled across the six experimental
runs. Using a method based on producing Si(θ, x{0}, t)
requires estimating the vector of 3� 6= 18 initial conditions
and p= 6 ODE parameters. The increased parameter space
and resulting likelihood difficulties were avoided in [14] by
assuming that initial conditions were measured without
observation error and that W(0) =Weq(0). We wish to
estimate θ and x(t) by removing these assumptions.

(3) Generally in ODE models, states x(t) may be modeled in
different units and have incomparable scales and precisions.
Figure 1 shows that the variability in the measurement of C is
larger than that of A, that is, s2A 6¼ s2C . Although AMLE
assumes that s2 is known from equipment manufacturers
error suggestions or additional steady state experiments, s2

may vary depending on the practitioner who performs
the chemical analysis, and as such, we wish to remove

Figure 1. The nylon observations and data fit using unconstrained generalized smoothing (GS) (solid line) and the shape constrained GS (dashed line),
both with dense bases. Temperatures of the experimental runs are given above component A in Kelvin. Vertical axes are in concentration units and
horizontal axes are in hours. Horizontal dashed gray lines mark concentrations of zero. Vertical lines denote times ti1 and ti2.
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assumptions about its value. In addition, the observations for
components A and C are not evenly spaced, simultaneously
measured or observed the same number of times.

(4) Although the ODE model is based on scientific theory, the
model in (3)–(7) is believed to be useful but imperfect. The
model may be subject to stochastic forcing modifying (1) to

dx tð Þ ¼ f x tð Þ; θ; u tð Þð Þdt þ xdo tð Þ (8)

where xdo(t) could be, for example, a Weiner process with
diffusion x [16]. Consequently, enforcing strict adherence to
the model may not be reasonable.

3. GENERALIZED PROFILE ESTIMATION

Generalized smoothing estimates b, θ, and l through a multi-
criterion multilevel hierarchical optimization. A hierarchy is
defined by rewriting some parameters as functions of others
higher up the hierarchy, b(θ, l) and θ(l), such that the estimation
process condenses to the estimation of the degrees of freedom
heavy l to define all parameters.
The incidental or local parameters in the sense of [17] are the

basis coefficients b of the data smooth. There may be many more
basis coefficients than data points, and the number of coefficients
may grow as more observations are obtained. Representing the
lowest level of the hierarchy, b is defined as a function of
parameters θ and l. For each l and θ, the optimal b defines a data
smooth, balancing the fit between interpolating the data and
following the ODE model. The smoothing step described in
Section 3.1 allows the data fit to deviate from the ODE model,
potentially allowing process noise or other model imperfections.
The structural parameters θ define the behavior allowed by

the ODE model. Changes in these parameters decide between
limit cycles, exponential decay, or other behaviors from the
ODE model. We are primarily interested in θ because of its
interpretation and potential use for making decisions and
predictions. As described in Section 3.2, for any l, θ(l) is
estimated iteratively through a profile likelihood maintaining

bðθ̂ l½ �; lÞ at its optimum at every iterated value of θ, defining
the second level of the hierarchy.
The complexity or smoothing parameter l defines the top

level of parameters to estimate. It determines how closely the
data follows the ODE model and allows for some model misspe-
cification. One could interpret l as x2/s2, which is the ratio of
process noise to measurement noise in the model formulation
in (8) if do(t) is a Weiner process. For any l, we can find θ(l)
and b(θ[l], l). Estimation of l is detailed in Section 3.3.
The estimation routine can be thought of as resulting from

inner and outer loops to estimate b̂ θ; lð Þ and θ̂ lð Þ for fixed l.
Although the estimation process is described in [12], we extend
these loops with interpretability constraints on the smooth and
detail how to intuitively optimize l in the remainder of this section.
Software to perform the estimation is available on request.

3.1. Inner optimization: model-based interpretable
smoothing

By using a piecewise differentiable one to one function g(�) to
restrict the smooth to follow interpretable behavior, the basis
expansion xik tð Þ ¼ gik b′ ikfik tð Þ� � � S θ; x 0½ �; tð Þ for the i=1, . . ., I
experimental runs and k= 1, . . ., K system components smooths

the data and approximates the ODE trajectory. Some examples
of g(�) from [10] include

g að Þ ¼ exp að Þ positive smooth
g að Þ ¼ exp að Þ= 1þ exp að Þ½ � bounded smooth
g að Þ ¼ R t0 exp að Þds monotone smooth
g að Þ ¼ a unconstrained smooth

L-spline smoothing in [10] estimates b̂ from a (weighted)
penalized likelihood, regularizing the data fit with the ODE
model. Using weights wik ¼ ŝik�2 and the measurement error

modeling (2), the estimates b̂ minimize the weighted penalized
negative log likelihood

b̂ θ; lð Þ ¼ argminb Jiðb y; θ; lj Þ ¼ argminb
XK
k¼1

wik SSEik þ lPENikð Þ

¼ argminb
XK
k¼1

wik

X
t2tik

yik tð Þ � g b′ ikfik tð Þ	 
� �2 þ lPENik

 !

(9)

In nonparametric smoothing, often PEN ¼ R D2x t½ �ð Þ2dt ,
implying a model with little curvature. In GS, PEN penalizes the
residual of (1), which, hiding dependence on inputs u[t], gives

PENik ¼
Z

Dxik sð Þ � fk xi s½ �; θð Þð Þ2ds (10)

For fixed l and θ and data yik observed at the vector of times

tik, b̂ θ; lð Þ is obtained through nonlinear regression. The integral
in equation (10) is over the interval [mink(tik),maxk(tik)], the
maximum range of observation times over all K observed
variables in the ith run. Section 4.2 describes how to approximate
this integral.

3.2. The outer optimization: estimating ODE parameters

Using the error model Y(t)�N(x[t],s2), the maximum profile

likelihood estimate is used for θ̂ lð Þ , which is equivalent to
minimizing the negative log profile likelihood

H θ;b θ; lð Þð jy; lÞ ¼
XI
i

XK
k¼1

wikSSEik ¼
XI
i

XK
k¼1

X
t2tik

wik

yik t½ � � gk bik θ; lg′fik tf g
n ih 
2

:

�
(11)

A penalized likelihood is not used at this level of the
parameter hierarchy because fidelity to the ODE model is already
enforced in (9).

For fixed l, finding θ̂ lð Þ is a nonlinear regression problem

applied to the likelihood while profiling over bðθ̂; lÞ. Numerically,

as θ̂ lð Þ is updated through optimization iterations in the outer

loop, bðθ̂; lÞ must be updated at each increment through the
inner optimization step. Simplifying notation from H(θ,b[θ, l]|y, l)
to H, assuming that l is fixed and notationally simplifying θ(l)
to θ, b(θ, l) to b, and g(b′f) to g, gives the total gradient for the
profile likelihood
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dH
dθ

¼ @H
@θ

þ @H
@g

dg
db

db
dθ

(12)

When f(x[t], θ) is a nonlinear function of x(t), there is no explicit

formula for b̂ θ; lð Þ, and consequently, db̂=dθ must be obtained
using the implicit function theorem. Assume that H and J are
twice continuously differentiable with respect to θ and b and
that the Hessian matrices

@2H

@θ2
;
@2H
@g2

;
@2J

@θ2
and

@2J
@g2

are positive definitive over a nonempty neighborhood of y in the

data space. Using dJ/db= 0 at b ¼ b̂ from (9),

d2J
dbdθ

¼ d
dθ

dJ
db

� �
¼ d

dθ
@J
@g

dg
b

� �

¼ @2J
@g@θ

dg
db

þ dg

db̂

� �′ @2J
@g2

dg
db

þ @J
@g

d2g
db2

( )
db
dθ

" # (13)

db
dθ

b¼b̂

¼ � dg
db

� �
@2J
@g2

dg
db

þ @J
@g

d2g
db2

� ��1
@2J
@g@θ

dg
db

� �
b¼b̂

������� (14)

Substituting (14) into (12) provides the total gradient for the
maximum profile likelihood estimate

dH
dθ

¼ @H
@θ

� @H
@g

dg
db

dg
db

� �
@2J
@g2

dg
db

þ @J
@g

d2g
db2

� ��1
@2J
@g@θ

dg
db

� �
(15)

3.2.1. Interval estimates for θ̂ lð Þ
Interval estimates obtained using the delta method approximation

var θð Þ � dθ
dy

var yð Þ dθ
dy

(16)

require the implicit function theorem once again to define dθ/dy.
Using the fact that at θ ¼ θ̂ , dH/dθ=0 from (11), dθ/dy can be
found using

d
dy

dH
dθ

� �
θ¼θ̂

¼ d2H
dydθ

� �
þ d2H

dθ2
dθ
dy θ¼θ̂ ¼ 0
������ (17)

and therefore at θ ¼ θ̂,

dθ
dy

¼ � d2H

dθ2

� ��1
d2H
dydθ

where

d2H

dθ2
¼ @2H

@θ2
þ 2

@2H
@θ@g

dg
db

db
dθ

þ dg
db

db
dθ

� �0 @2H
@g2

dg
db

db
dθ

� �

þ @b
@θ

� �0 @H
@g

d2g
db2

@b
@θ

� �
þ @H

@g
dg
db

d2b

dθ2

(18)

and

d2H
dθdy

¼ d2H
dθdy

þ d2H
dθdg

dg
db

db
dy

þ d2H
dgdy

dg
db

db
dθ

þ dg
db

db
dy

� �′ d2H
dg2

dg
db

db
dθ

þ db
dy

� �′ dH
dg

d2g
db2

db
dθ

þ dH
dg

dg
db

d2b
dθdy

(19)

These last two equations involve the terms d2b=dθ2, d2b/dθdy,
and db/dy, all of which arise from further calls to the implicit
function theorem. These terms are given in the Appendix.

3.3. Estimating the complexity parameter

3.3.1. When s is known

When experiments are repeated frequently, for example, to assess
quality control, themeasurement noise variance s2may be reason-
ably well known. Consequently, the discrepancy between the data
and the original model should be partitioned into a measurement
error component of known magnitude and a stochastic forcing
term, such as x in (8), the latter being absorbed into the model
relaxation afforded by the data smoothing process. Estimating
the complexity parameter is then equivalent to estimating x with

fixed s2. Following [18], the optimal l̂ is

l̂ ¼ min
l

ŝ2
l

s2
� 1

� �2

(20)

where s2 is the known value and ŝl2 is the estimated residual
variance based on the value of l and corresponding estimates
for θ(l) and b(θ, l).

3.3.2. When s is unknown

Smoothing parameter l controls the flow of information between
y(t) and θ(l) such that small l allows limited influence from θ(l) on
the shape of x(t). When l=0, the differential equation model is
ignored, and (9) is minimized nonuniquely along a data-
interpolating manifold in the function space of c(t). Small values
of l limit the impact of θ(l) on x(t), producing a wide basin of

attraction for θ̂ lð Þ , allowing the optimization increments to
traverse difficult likelihood surfaces and avoid local likelihood
maxima. As l increases, the SSE term in (9) increases, as shown in
the left plot of Figure 2 using 100 simulated data sets based
on the four-parameter variant of the nylon model described in
Section 5.2.1. Simulated data based on the error structure in (2)
were obtained by using additive noise s2A;s

2
C

� � ¼ 0:62; 2:42
� �

.
The right column of Figure 2 shows how PEN decreases with
increasing l. Increasing l increases the impact of changes in θ on
x(t) and reintroduces the sharper profile likelihood features.
Consequently, l has a similar role to a temperature parameter in
annealing or parallel tempering by easing movement around the
parameter space and refining point and interval estimates.
When l=1, PEN= 0 by forcing the residual from (1) to 0.

Because x(t) is then a solution to the ODE, GS is equivalent to
NLS while profiling over x(0). However, setting l=1 requires a
basis capable of perfectly matching S(θ, x[0], t) in a neighborhood
of the θtrue.
For most practical choices of f(t), as l!1, the range of

values of θ for which PEN! 0 is limited. For instance, when l
becomes “too large” for f(t), x(t) is forced to find reductions in
PEN at the resolution demanded by l by moving x(t) towards a
trajectory that is closer to the function space of ODE solutions.
This results in x(t) moving away from the dynamics in the data
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but reduces PEN by moving θ(l) towards a value where the
function spaces of the basis and ODE are closer to intersecting.
This happened in [12] in order to ensure nonnegative x̂ tð Þ with
the potential side effect of introducing bias in θ and x(t).
As an extreme example, consider the situation where the

chosen basis is the set of Haar wavelets and the ODE model
describes a sinusoid with frequency θ. As l increases, to reduce
PEN, θ must move towards a frequency of 0 to eliminate the
periodicity so that the model function space can match that of
the basis. This will occur as l!1 regardless of the dynamics
expressed by the data. Increasing the number of basis functions
will postpone the problem towards a larger l if the basis and the
model do not span intersecting function spaces. More generally,
as l!1, the problem of basis-induced bias manifests by forcing
θ(l) and b(θ, l) to take values that describe dynamics inconsistent
with the data. The parameter estimates from 100 simulated data
sets show the onset of the basis-induced bias in Figure 3 using the
B-spline basis of Section 5.1. Figure 2 also shows a corresponding
sharp increase in SSE and an abrupt decrease in PEN at l> 104,
which is too large for the basis.
Although [12] admit that choosing an optimal l remains

an open problem, Figures 2 and 3 show that in this example,

l2 (102, 104) produces values of θðl̂Þ close to θtrue and gives
stable values of SSE and PEN. Within this range of l, x(t) is not
visually different from S(θ, x[0], t). Consequently, we propose the
following intuitive estimation strategy:

(1) Initialize: start with a small lj to obtain a low bias but
potentially high variance initial estimate θ̂ lj

� �
.

(2) Anneal: increase lj+ 1 = lj * 10 to remove smoothness in the
likelihood and obtain the refined estimate θ̂ ljþ1

� �
.

(3) Repeat step 2 until parameter estimates converge or
destabilize at lJ. Keep the estimates from θ(lJ� 1) because
larger l enforces the ODE model as much as possible for
the given basis.

This estimation method can be further refined to account for
states observed with different levels of unknown precision
through incorporating an iterative weighting as demonstrated
in Section 4.3. When the model is not accurate, this approach
permits model relaxations, balancing the data fitting and model
fitting criteria without interpolating or extending beyond the
capabilities of the basis as seen in the analysis of the real data
and the simulation study of Section 4.4.

4. OVERCOMING CHALLENGES OF A REAL
DATA SYSTEM

4.1. Unobserved outputs

The model (1) depends on observed and unobserved system
states. The unobserved states in GS are estimated by x̂ tð Þ while
following the ODE model through PEN. Estimated unobserved
states are data regularized by their impact on the fit to y(t)
through the observed states in (9). Therefore, the shape of x̂ tð Þ
for the unobserved states is the function that helps to produce
the best fit to the observed system states while penalized to
follow the model dynamics.

Figure 2. SSE (left) and PEN (right) as a function of log10(l) for 100 simulated data sets.

Figure 3. The four parameter estimates from the four-parameter nylon model from 100 simulated data sets at different values of log10(l). The hori-
zontal line is the true parameter value.
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4.2. Computing PEN and discontinuous derivatives

The integral in (10) is evaluated using a numerical quadrature
approximation, which allows each component to have a unique
differentiable basis and does not require variables to have been
measured at the same times. It does however require that the
quadrature points be the same for all components within the kth
experimental run so that information from each component is
available to compute PENik over the kth quadrature grid. Basic
Simpson’s rule quadrature for approximating PEN is explained
in [12]. Here, we highlight how to overcome numerical difficulties
associated with discontinuous derivatives. A quadrature approxima-
tion to PEN is set up by dividing Ti into a set of small intervals whose
boundaries are the unique knot locations compiled over the bases
of all k components. By denoting the location of the ‘th such
knot location by x‘ , intervals are then split into four equal-sized
subintervals, and Simpson’s rule weights 1; 4; 2; 4; 1ð Þ x‘þ1 � x‘ð Þ=5
are used to approximate the integral over each interval.

At points of discontinuity in the first derivative ti, the integral
in (10) is undefined. At ti, the left or right hand derivatives could
be defined at ti. Alternatively, the integration can be set up
to avoid ti by integrating over the intersection of Ti and the
compliment of a small d sized neighborhood, tdi :

PENik ¼
R
Ti∩�tdi

Dxik sð Þ � fk xi; ui; sð jθð ÞÞ2ds
¼ R ti�d=2

Tmin
i

Dxik sð Þ � fk xi; ui; sð jθð ÞÞ2ds
þ R Tmax

i
tiþd=2 Dxik sð Þ � fk xi; ui; sð jθð ÞÞ2ds

(21)

This integral is approximated by shifting the quadrature interval
boundaries at times ti to the points defining the boundaries of tdi
and omitting quadrature weights across tdi . To avoid enabling
the basis to push an extremely poor fit into tdi , effectively allowing
a discontinuous smooth across tdi , we recommend using a small
neighborhood such as 10�6 �min‘ x‘þ1 � x‘ð Þ.

4.3. Outputs measured with different precision

In ODE systems, often components are measured in different
units, scales, and precisions; consequently, it is important for
parameter estimation that weights wij bring SSEk to approximately
the same scale. In some cases, thismay include using vectors forwij

to accommodate autocorrelations in the data. For a Gaussian
likelihood, the optimal choice is wki ¼ 1=s2ki [19]. Iterative
reweighting can be applied to estimate wki as follows:

(1) At iteration m=0, initialize w mð Þ
ki ¼ 1 or use another value

consistent with prior information.
(2) Perform the profile estimation to obtain b̂; θ̂; l̂ using

weights w mð Þ
ki .

(3) Obtain the vectors of residuals rki ¼ ŷ ki � yki , and estimate

new weights ŵki mþ 1ð Þ ¼ nki
r ′ki rki

� 

. Other robust weight

estimators may also be appropriate.
(4) If ŵ mþ1ð Þ

ki � ŵ mð Þ
ki

��� ��� > E for some convergence tolerance E> 0,

set m=m+ 1 and return to step 2.

4.4. Model imperfection

When the model is not correct, l!1 is not reasonable because
a smaller l balances the fit to the model dynamics with the fit to
the data. We used a simulation study to explore model imperfec-
tions. We altered models (3) and (4) such that when Weq

decreases after ti1, it moves to a level ~Weq ¼ Weq � xi , where xi
N(1,.22), but we continue to model it assuming that it is equal
to Weq. At time ti, 2, the level is returned to its original known
value. This models the situation that could arise if the gauge
used to calibrate Weq was malfunctioning. Allowing ~Weq to differ
from Weq by 20% or 40% results in the model misspecifying A(t)
and C(t) over the intervals (ti1, ti2).
Generalized smoothing was performed using the four-parameter

nylon model of Section 5.2.1. Simulated data have Gaussian
measurement error noise s2A; s

2
C

� � ¼ 2:262; 42
� �

. The resulting
parameter estimates are in Figure 4. Parameter estimates remain
close to the true values despite the misspecification in the value
of Weq. The parameters in this model are involved in determining
the rate at which the system approaches equilibrium after t and
in determining the equilibrium concentration levels. Although
~Weq alters some of this information, the equilibrium levels before
ti1 and after ti2 provide accurate information but withwider spread
than in Figure 3. Naturally, the quality of the estimation is
dependent on the type of model misspecification, and more
extreme cases will require major model refinements such as those
described in [20].

5. ESTIMATION DETAILS AND RESULTS FOR
THE NYLON DATA

5.1. Details of the basis and weights

Data smoothing was performed using a fifth-order B-spline basis
with knots linearly spaced at a rate of 10 per experiment hour

Figure 4. The four parameter estimates from the misspecified four-parameter nylon model from 100 simulated data sets at different values of log10(l).
The horizontal line is the true parameter value.
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and one at each observation of component A. Additional knots
at the times of changes in input Weq were used to allow a
discontinuity in the first derivative at t. This same basis was also
used for C and unobserved W. This strategy produced between
84 and 142 unique interior knots per component. Although there
are at most 23 observations for any component, the density of
this basis is necessary to capture the fast-changing dynamics
immediately after ti1 and ti2. A denser basis should be used if
the ODE solution is expected to exhibit finer resolution
features or faster dynamics. Because all of the components are
concentrations, negative estimates of concentration have no
interpretation and we use the positively constrained data
smooth x(t) = g(b′f(t)) = exp(b′f(t)).
Alternative basis set up is worth considering on the basis of

the structure of this particular system. The ODE in (3) and (4)
can be reformulated by noting that A and C have identical
derivatives producing a constant the difference in concentration
Ci(t)�Ai(t) = di within each experimental run. Consequently, the
ODE system could be rewritten as a differential algebraic
equation (DAE):

�DL ¼ DA ¼ �kp CA� LW=Kað Þ
C ¼ dþ A

DW ¼ kp CA� LW=Kað Þ � 24:3 W �Weq
� � (22)

The DAE model requires the augmenting θ by including
d= [d1, . . ., dI]. Using GS, in the ODE version of the nylon system,
d is estimated implicitly by the smooth in the same way that the
smooth estimates x(0). However, these values are profiled out in
the multilevel optimization. As d and x(0) are not of primary
interest, we prefer to keep this system as an ODE model.
An alternative basis system exploiting the DAE structure uses

the smooth for A as one of two basis functions for C. The second
basis function is equivalent to estimating the constant di. At large
values of l, this accelerates the computation by reducing the
number of basis coefficients. However, at small values of l this
basis hinders the flexibility of the smooth to simultaneously
interpolate the data for A and C and therefore the estimation
process may lose robustness to poor initial parameter estimates.
While there is little lost by using too many basis functions, too
few will not permit the model dynamics to be adequately
represented by the basis expansion.
In the nylon example, all components have the same scale and

units; however, A was measured with more precision than C. In
what we will refer to as method 1 below, we use the weights
determined by additional experiments and used by [14] in their
weighted NLS. In accordance with their weights, for all
i=1, . . ., 6 experimental runs, we use wiA ¼ 1=s2A ¼ 1=0:62 and
wiC ¼ 1=s2C ¼ 1=2:42 held constant across all runs. In method 2
(Section 5.3), we challenge this assumption and estimate s2A
and s2C through iterative reweighting.

5.2. Parameter estimation details

The parameter estimation process for the nylon model was
initialized with the parameters all set to the value 10. This choice
is discussed in Section 6. GS was performed using the iterative

refinement of θ̂ lð Þ following the strategy of Section 3.3 initialized
with l(1) = 10.

5.2.1. Results

The nylon model in (3)–(7) differs from that of [14] to correct an
inconsistency in the balance of units. However, point
estimates in our model were plagued by extremely high correla-
tion ( r̂2 > 0:99999 ) between b and g, removing the ability to
statistically uniquely identify these parameters. Consequently, b
was eliminated from the model so that instead of (6), we use

Ka ¼ 1þ g
1000

Weq

� 

KTKa0exp �H

R
1
T
� 1
T0

� �� �
(23)

A similar simplification was also recently developed by [13] to
address the high correlations of b and g in a stochastic
differential equation version of this system. In this reduced
model using the same incrementally increasing l procedure,
the final 95% confidence interval estimates for E overlap zero,
suggesting that a simpler model would be just as effective at
fitting the data. Although E is interpreted as an activation energy
parameter, it does not make interpretative sense to have a value
of 0; we reduce the model to focus the estimation abilities on
parameters for which the model is informative, and note that
further experiments are necessary to determine the impact of
temperature on the rate parameter kp0. Setting E to zero in (5)
is equivalent to removing the effect of temperature on kp in (3)
and (4), replacing (5) with

kp ¼ kp0
1000

(24)

For comparison, NLS was also performed with x(0) held fixed;
however, [14] assumed that the first observation was measured
without error. Here, x(0) was set equal to values estimated by
the smoothing step of GS. Final point and interval estimates for
the four-parameter model are given under method 1 in Table I
using GS and NLS. Note that the point estimates for NLS and
GS are very similar, but the assumed knowledge about the initial

states reduces the overall uncertainty in θ̂ lð Þ. Estimating the initial
system states in NLS adds three new parameters to the model for
each experimental run and produces some negative estimates for
W(0). Furthermore, with x(0) unknown, NLS was more sensitive to
the choice of parameters used to initialize the algorithm.

Figure 1 shows the fit to the data. Because of the weighting, the
fit to A is slightly better than the fit to C because the latter is
presumed to have a larger measurement variance. The difference
between the smooth at l=103 and the solution to the differential
equation based on the smooth estimates x̂ 0ð Þ is less than 1% of the
variability of the data fit at its worst point, suggesting reasonable
agreement between the observed and modeled dynamics.

5.3. Estimating unknown weights

In this section, we use method 2 to challenge the assumption of
method 1 that s2A and s2C , as determined from additional
experiments, are indicative of the relative precisions of the
additive error component. Here, we use iterative reweighting
as described in Section 4.3, assuming thats2A ands

2
C are unknown

but constant across experimental runs.
For comparison with model 2, the table includes Bayesian

point and interval estimates using a likelihood centered on the
solution to the ODE model Si(θ, xi(0), t) [2,21]:
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P yi;k t½ �
� ��θ; xi;k 0½ �;s2A; s2CÞ � N Si;k θ; xi 0ð Þð Þ; s2i;k

� 


The Bayesian model uses the variance structure of method 2
and the following priors, which include the indicator function I
to assign zero probability to negative system states:

P kp0
� � ¼ P Ka0ð Þ ¼ Γ 4; 8ð ÞIS θ;x 0½ �ð Þ>0;

P gð Þ ¼ N 0; 152
� �

IS θ;x 0½ �ð Þ>0;

P Hð Þ ¼ N 0; 502
� �

IS θ;x 0½ �ð Þ>0;

P s2A
� � ¼ P s2C

� � ¼ Γ 3; 3ð Þ;
P Xi 0ð Þð Þ ¼ N Xobserved 0ð Þ; s2A

� �
;

P Wi 0ð Þð Þ ¼ N Weq;i 0ð Þ; 252� �
(25)

These priors represent the expected order of magnitude along
with considerable uncertainty. While Bayesian estimates depend
on the prior specification, these priors and the Bayesian results
are included for illustrative purposes and comparison with the
results of GS. Large discrepancies between MCMC and GS results
would suggest cause for concern. MCMC was performed using
the previous model with 85,000 iterations, where the first
25,000 were discarded as burn in.

Method 2 estimated standard deviations ŝk ¼ 1=
ffiffiffiffiffiffi
wk

p� �
using

iteratively reweighted GS, and the corresponding marginal
posterior means of the Bayesian model are included in Table I.
Point and interval estimates for GS and MCMC are close with
differences in interval estimates because, in part, of the GS intervals
reflecting uncertainty in parameters due to the model relaxation,
whereas the Bayesian model assumes that the model is perfect.

6. DISCUSSION

In this paper, we introduce an extension of GS to enforce
interpretability constraints on state estimates such as monoto-
nicity or nonnegativity. Furthermore, we develop an intuitive
method for estimating the model discrepancy smoothing
parameter, which performs well with simulated data both when
the model is correct and when it is subject to misspecification.
Finally, we showcase practical considerations for implementing
the methodology with a real data example where we are
able to remove assumptions or model perfection and known
initial conditions of [14] and reduce restrictions on potentially
fast-moving dynamics of [12].

Although (1) uses a measurement error model, using a finite l
in estimating x̂ tð Þ allows some deviation from the deterministic
system that may prove useful when applied to SDE models.
Furthermore, although this paper assumes a Gaussian error
structure, alternative error distributions can be accommodated
by altering the log likelihood in (9) and (11).
The rough topologies associated with dynamic system models

necessitate examination of a methods performance with poorly
chosen parameter values used to initialize the iterative
algorithm. Parameter estimation was attempted with the poor
choice of initial parameter estimates kp0< 0 and/or Ka0< 0.
Negative values of these parameters alter (3) and (4) from
describing exponential decay to unbounded exponential
growth, ignoring the mass balance of the system. When θ
prevents the dynamics of (1) from matching the dynamics of
the data, a small value of l reduces the influence of f(θ, x) and
improves the basin of attraction for θ by shifting x(t) towards
the data. Decreasing the starting value of l provides consider-
able robustness to poor initial parameter estimates by allowing
x(t) to approach a data interpolant.
Another type of poor initial parameter estimates also arises

when g is large and consequently in (23) the term

1þ g
1000

Weq

� 

Ka0 � g

1000
WeqKa0

eliminating the ability to uniquely determineg and Ka0. This
feature of the parametrization may not be overcome by altering
l and highlights the potential problem of the parameterization
of ODE models. A poor choice of initial parameter estimates
did not affect the converged values if GS was initialized in a
region of the parameter space where the parameters were
identifiable.

APPENDIX
A. Additional implicitly defined derivatives
This section provides implicitly defined derivatives for confidence
intervals of Section 3.2.1.

A.1. @ 2b/@ Θ @ ΘK

The implicit function theorem is required to define @ 2b/@ θ @ θk
in (18). The term @ 2b/@ θ @ θk comes from the fact that @ J/@ b=0

Table I. 95% confidence intervals for the nylon data using method 1 with values from nonlinear least squares with X(0) fixed at
their generalized smoothing estimates in brackets and method 2 values with Markov chain Monte Carlo results in brackets

Parameter Lower Point Upper

Method 1 (fixed weights), sA= 0.6 and sC= 2.4
kp 14.63 (20.54) 20.50 (20.67) 26.37 (20.80)
g 14.44 (21.86) 26.71 (26.91) 38.99 (31.97)
Ka0 39.04 (45.58) 50.35 (50.23) 61.66 (54.87)
H �49.91 (�43.48) �36.56 (�37.06) �23.20 (�30.64)
Method 2 (two weights)sA= 2.13(2.26) and sC=4.37(4.00)
kp 15.95 (15.64) 18.72 (17.72) 21.48 (20.16)
g 14.92 (17.09) 22.10 (22.66) 29.29 (28.67)
Ka0 47.46 (49.51) 55.68 (55.65) 63.90 (62.49)
H �47.08 (�44.28) �36.74 (�35.18) �26.40 (�26.57)
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at the optimal choice of b ¼ b̂ . Then, differentiating twice with
respect to θ and θk, equivalent to differentiating (13) with
respect to θk, produces (26), which is then rearranged to give
the derivative in (27).

@

@θk

@2J

@b̂@θ

� �
¼ @

@θk

@2J
@g@θ

dg

db̂
þ dg

db̂

� �′ @2J
@g2

dg

db̂
þ @J
@g

d2g

db̂
2

( )
@b̂
@θ

 !

¼ @3J
@g@θ@θk

dg

db̂
þ dg‘

db̂‘

db̂‘

dθk

 !′
@3J

@g@θ@g‘

dg

db̂

þ @2J
@g@θ

d2g

db̂db̂‘

db̂‘

dθk
þ
(

d2g

db̂db̂‘

db̂‘

dθk

 !
@2J
@g2

dg

db̂

þ dg

db̂

� �′ @3J
@g@θk@g

dg

db̂
þ dg

db̂

� �′ @3J
@g2dg‘

dg

db̂

dg‘
db̂‘

db̂‘

dθk

þ dg

db̂

� �′ @2J
@g2

d2g

db̂db̂‘

db̂‘

dθk
þ @2J
@g@θk

d2g

db̂
2

@2J
@g@g‘

d2g

db̂
2

dg‘
db‘

db‘
dθk

þ @J
@g

d3g

db̂
2
db̂‘

db̂‘

dθk

)
@b̂
@θ

þ dg

db̂

� �′ @2J
@g2

dg

db̂
þ @J
@g

d2g

db̂
2

( )
@2b̂

@θ@θk

(26)

@2b̂
@θ@θk

¼ �þ dg

db̂

� �′ @2J
@g2

dg

db̂
þ @J
@g

d2g

db̂
2

" #�1

@3J
@g@θ@θk

dg

db̂
þ dg‘

db̂‘

db̂‘

dθk

 !′
@3J

@g@θ@g‘

dg

db̂
þ @2J
@g@θ

d2g

db̂db̂‘

db̂‘

dθk

2
4

3
5

3þ
(

d2g

db̂db̂‘

db̂‘

dθk

 !′
@2J
@g2

dg

db̂

dg

db̂

� �′ @3J
@g@θk@g

dg

db̂

þ dg

db̂

� �′ @3J
@g2dg‘

dg

db̂

dg‘
db̂‘

db̂‘

dθk
þ dg

db̂

� �′ @2J
@g2

dg

db̂db̂‘

db̂‘

dθk

þ @2J
@g@θk

d2g

db̂
2 þ

@2J
@g@g‘

d2g

db̂
2

dg‘
db̂‘

db̂‘

dθk
þ @J
@g

d3g

db̂
2
db̂‘

db̂‘

dθk

)
@b̂
@θ

#

(27)

A.2. @b̂=@y

The implicit function theorem is required to define @b̂=@y in (19).
This derivative again uses the fact that @ J/@ b= 0 at the optimal

choice of b ¼ b̂ . Then, differentiating twice with respect to y
produces (28), which is then rearranged to give the derivative
in (29).

@

@y
@J

@b̂

� �
¼ @2J

@g@y
dg

db̂
þ dg

db̂

� �′@2J
@g2

dg

db̂

@b̂
@y

þ@J
@g

d2g

db̂
2

@b̂
@y

(28)

@b̂
@y

¼ dg

db̂

� �′ @2J
@g2

dg

db̂
þ @J
@g

d2g

db̂
2

( )�1
@2J
dgdy

dg

db̂

� �
(29)

A.3. @2b̂=@y@θ
We obtain this derivative by differentiating (28) with respect to

θk to produce Equation (30). Solving for @2b̂=@y@θ gives us the
results in (31).
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