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a b s t r a c t

Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper
we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which
exemplifies the implementation intricacies common in many biochemical inference problems. We intro-
duce an extension to the Generalized Smoothing approach for estimating delay differential equation
models, addressing selection of complexity parameters, choice of the basis system, and appropriate opti-
mization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing
approach to consider a nonlinear observation process with additional unknown parameters, and high-
light how the approach handles unobserved states and unevenly spaced observations. The methodology
developed is generally applicable to problems of estimation for differential equation models with delays,
unobserved states, nonlinear observation processes, and partially observed histories.

Crown Copyright � 2013 Published by Elsevier Inc. All rights reserved.
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1. Challenges of parameter estimation from differential
equation models

Ordinary Differential Equations (ODEs) relate state functions
xðtÞ to their rates of change with respect to an index t, such as time,
externally controlled forcing functions uðtÞ, and model parameters
h 2 Hp. In statistical terminology, ODEs can be thought of as defin-
ing states implicitly by the functional regression model, with dif-
ferential operator D ¼ d=dt:

DxðtÞ ¼ f xðtÞ; h;uðtÞð Þ; xð0Þ ¼ x0: ð1Þ

The d-dimensional function xðtÞ may represent concentrations of d
species in a number of system compartments, parameters h may
represent reaction or metabolism rates, and uðtÞ may be an initial
input or catalyst. Interest typically lies in estimating unknown
parameters h required to further our understanding of the biochem-
ical mechanism under study. Recovering state functions xðtÞ can
help determine when specific concentration levels are attained. In
this paper we examine the problem of estimating h from experi-
mental data for a biochemical signalling pathway model.

When system (1) can be solved exactly given initial states x0,
state functions xðtÞ ¼ Sðh;x0; tÞ can be recovered up to the
unknown model parameters h and used to construct the likelihood
L h; yðtÞð Þ of the data. The Gaussian likelihood,
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L h;yðtÞð Þ¼N S h;x0;tð Þ;Rð Þ

¼ ð2pÞ�n=2jRj�1=2 exp
1
2

x�S h;x0;tð Þð Þ0R�1 x�S h;x0;tð Þð Þ
� �

;

ð2Þ

will be used for illustration throughout this paper, although the
methodology presented is more generally applicable to any likeli-
hood function.

Often f is a nonlinear function of the states for which no closed
form solution exists, in which case the likelihood is built around an
approximation to xðtÞ. Classical methods use numerical integration
to approximate Sðh;x0; tÞ, and parameters h may be estimated
using nonlinear least squares (NLS) regression [1], or Markov Chain
Monte Carlo (MCMC) methods [2]. However, exploring this often
high-dimensional parameter space can be computationally ineffi-
cient, because repeated numerical integration is often dispropor-
tionately time-consuming [3]. Furthermore the associated
likelihood surface typically exhibits a complex topology including
multi-modality, ripples, and other prohibitive features [4]. Esti-
mating h is further complicated when state functions are observed
through a possibly nonlinear transformation, or when only a subset
of states is unobserved.

To alleviate these optimization difficulties, numerous methods
have been developed to avoid solving the system numerically by
using the state estimator x̂ðtÞ � S h; x0; tð Þ where Dx̂ðtÞ can be read-
ily computed. Smooth and match estimators [5] [6] [7] [8] obtain
x̂ðtÞ by a non-parametric smooth state estimating function in the
first stage, which allows conditional estimation of hjx̂ðtÞ in the
second stage via:
ights reserved.
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ĥjx̂ðtÞ ¼ arg min
h
kDx̂ðtÞ � f x̂ðtÞ; h;uðtÞð Þk2

:

These estimators are flexible and computationally efficient, but
problematic for models with derivative discontinuities, unobserved
states, sparse data, or rapidly changing dynamics.

Model-based smoothing methods overcome limitations of
smooth and match estimators [9] [10]. In particular this paper
focuses on the Generalized Smoothing (GS) framework of [11], a
model-based smoothing method that estimates x̂ðtÞ and ĥ. The
solution xðtÞ ¼ b0/ðtÞ is modelled by a truncated expansion of
bases /ðtÞ with coefficients b estimated by optimizing a penalized
likelihood criterion that balances state agreement to the data with
fidelity to the model. The relative importance of the model fit ver-
sus the data fit is regulated by an auxiliary parameter k̂. The three
different types of parameters ðk; h;bÞ are estimated through a
parameter hierarchy, where lower hierarchical level parameters
are defined as functions of higher levels. Optimization proceeds
by holding upper hierarchical level parameters fixed and profiling
over lower level parameters where each level has a different opti-
mization criterion.

The model based smoothing of GS has successfully overcome
significant optimization challenges faced by numerical solver
based methods (see for example the comparison of likelihoods
from numerical solvers and model based smoothing state esti-
mates plotted in [11,12]). This paper explores and extends GS to
address implementation challenges, with particular emphasis on
the additional complexity arising when (1) is a delay differential
equation (DDE) system of the form:

DxðtÞ ¼ f xðtÞ;xðt � sÞ; h;uðtÞð Þ; given xðsÞ; s 2 ð�s; 0Þ: ð3Þ

GS has previously been applied to DDE systems in [13], and we ex-
tend their work to the short time domain context of the JAK-STAT
model. Among the differences, we develop two new strategies for
estimating xðsÞ; s 2 ð�s;0Þ, introduce an adaptive basis to account
for periodic derivative discontinuities in states caused by the delay,
and apply a Newey–West variance estimator to account for serial
dependencies in the residuals caused by the smoothing process.

Delay dynamics in biological systems typically describe underly-
ing mechanisms that introduce a time lag but cannot be modeled di-
rectly. Fixed delay models of this form can describe a large class of
often complex behaviours governing gene transcription [14,15], sig-
nalling pathways [16], and cell kinetics [17]. Although the system
(3) can be studied indirectly through ODE approximations, the long
term dynamics can differ substantially from those of the DDE model
[18]. The more general distributed delay systems are based on a
convolution of the delayed state with a density function. While
not explicitly considered in this paper, many of the implementation
details can be applied to inference for distributed delay systems.

The GS method is particularly appropriate for inference on DDE
models. When delays are introduced as proxies for unmodeled
mechanisms, there is some degree of model uncertainty. In addi-
tion, DDEs often describe rather complex dynamics, with solutions
that can be extremely sensitive to the specification of the func-
tional initial condition. The GS approach effectively uses a model
relaxation rather than strictly enforcing a solution to (3), allowing
enough flexibility to capture both model dynamics and important
features of the data. Importantly, incorporating data into the esti-
mation of the states can result in potential for more reliable
parameter estimates by overcoming the very sharp likelihood fea-
tures arising from solution sensitivity to parameters when model
dynamics are strictly enforced.

We organize the paper as follows; Section 2 describes the moti-
vating application, inference for a model of the concentrations of
transcription factors in the JAK-STAT intracellular signalling mech-
anism. Section 3 explains and extend the GS methodology to DDE
systems, while Section 4 provides detailed analysis for the JAK-
Please cite this article in press as: D.A. Campbell, O. Chkrebtii, Maximum profil
based smoothing state estimates, Math. Biosci. (2013), http://dx.doi.org/10.101
STAT inference problem. Concluding discussion and further exten-
sions are outlined in Section 5.

2. JAK-STAT system

The motivating application is parameter inference for a model
of intracellular signal transduction network dynamics. The JAK-
STAT system is a signalling pathway in which transcription factors
(STATs) undergo biochemical reactions in response to phosphory-
lation of Janus kinase (JAK) triggered by the binding of Erythropoi-
etin (Epo) hormone to cell surface receptors. A review of this
mechanism is available in [19]. Interest lies in inferring rate
parameters and the time evolution of four species of STAT-5 tran-
scription factor in two compartments (cytoplasm and nucleus).
Current understanding suggests that following gene activation
within the nucleus, STAT-5 may revert to the initial state and re-
turn to the cytoplasm to be used in the next activation cycle.
Whereas factor reactions may be assumed to happen instanta-
neously, this last stage may introduce a time delay.

The delay model presented in [20] describes the rates of change
in concentration of STAT-5 factor in each of four reaction states by
a delay differential equation system involving the functional forc-
ing term uðtÞ representing the concentration of Epo outside of the
cell,

_x1ðtÞ ¼ �h1x1ðtÞuðtÞ þ 2h4x4ðt � sÞ; ð4Þ
_x2ðtÞ ¼ h1x1ðtÞuðtÞ � h2x2

2ðtÞ;
_x3ðtÞ ¼ �h3x3ðtÞ þ 0:5h2x2

2ðtÞ;
_x4ðtÞ ¼ h3x3ðtÞ � h4x4ðt � sÞ;

on t 2 Rþ with a mixture of known history function
x2ðt < 0Þ ¼ x3ðt < 0Þ ¼ x4ðt < 0Þ ¼ 0 and constant but unknown
x1ðt < 0Þ. The unknown reaction rate constants h1; h2; h3; h4 2 Rþ de-
scribe the rate at which the STAT factors change states. Following
[16], we initially assume uðtÞ is linearly interpolated between its er-
ror-free measurements, or uðtÞ can be modelled and estimated as
though it were a fifth system equation in a manner similar to
[21]. While parameter inference in [20] is based on a linear chain
ODE approximation of the above model, the present work directly
examines the delay model (4).

Direct measurement of the concentrations of the four STAT spe-
cies is limited by experimental constraints. Observable concentra-
tions are modeled by a partially nonlinear transformation
g : R4 ! R4 of the states,

g1ðx; hÞ ¼ h5 x2 þ 2x3ð Þ; ð5Þ
g2ðx; hÞ ¼ h6 x1 þ x2 þ 2x3ð Þ;
g3ðx; hÞ ¼ x1;

g4ðx; hÞ ¼ x3= x2 þ x3ð Þ;

with non-negative scaling factors h5 and h6. As GS is a maximum
profile likelihood estimation method, any appropriate likelihood
model can be used but, for expositional simplicity, observations
are assumed to have additive Gaussian noise with mean zero and,
in this case, known standard deviations based on experimental
conditions. The assumption of known standard deviations is not
required for GS, it is used here to define likelihood weights that
could otherwise be estimated iteratively [22].

yiðtÞ ¼ gi xðtÞ; h;uðtÞ½ � þ �ðtÞ; �iðtÞ � N 0;r2
i ðtÞ

� �
; i ¼ 1;2;3;4:

ð6Þ

The data, shown in Fig. 1 include 16 observations for each of the
first two observation processes, and a single artificial observations
for each of the third and fourth processes proposed by [20] in their
resolution to the problem of lack of identifiability. The first artificial
observation y3ð0Þ defines measurement units for all four factors,
e likelihood estimation of differential equation parameters through model
6/j.mbs.2013.03.011

http://dx.doi.org/10.1016/j.mbs.2013.03.011


213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

272

273

274
275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

0 20 40 60
0

0.2

0.4

0.6

0.8

1
 Y

1

0 20 40 60
0.5

0.6

0.7

0.8

0.9

1

 Y
2

0 20 40 60
0

50

100

150

200

250

 Y
3

0 20 40 60
0

0.2

0.4

0.6

0.8

1

 Y
4

0 50
0

50

100

150

200

250

X 1

0 50
0

5

10

15

20

25
X 2

0 50
0

20

40

60

80

X 3
0 50

0

10

20

30

40

50

X 4

0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ep
or

A

Fig. 1. Top: The JAK-STAT data and estimated observation processes with the model based smooth from approach A (solid black line), approach C (dashed black line), D (solid
grey line), and E (dashed grey line). Bottom: The untransformed DDE solution estimates and EpoRa from the same three approaches.
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while the artificial observation y4ð20Þ allows identification between
species x2 and x3. A thorough identifiability analysis for this system
and discussion of the artificial observations is given in [20].

Features of this partially observed system that make inference
challenging, are typical in biochemical applications:

1. Discontinuities in the second derivative d2xðtÞ=dt2 of the
states occur as a result of a delay in the model, and a piece-
wise linear forcing function;

2. Known initial states must be enforced when estimating the
state functions within the collocation based GS framework;

3. Unknown initial states which define the process history
must be estimated together with the other model
parameters;

4. Scaling factors h5 and h6 are not directly involved in the
model of the states, but are part of the measurement pro-
cess which is a partially nonlinear transformation of xðtÞ;

5. The unknown delay s plays a role in reducing the model,
since un-modelled states likely exist between x4 and x1.
As this mechanism is not fully understood, an estimated
value of the delay may provide some information about
the un-modelled reactions.

3. Generalized profile estimation

The GS approach estimates state functions xðtÞ, parameters h

and the model relaxation parameter k by establishing a hierarchy
where parameters at each level are expressed in terms of those
above them. GS models system states by a basis expansion
xðtÞ ¼ b0ðh; kÞ/ðtÞ � Sðh;x½0�; tÞ weighted by so-called nuisance
parameters b. For given basis and order, b is defined as a function
of h and k. For each k and h, the optimal b defines a model-based
data smooth, balancing the fit between interpolating the data
and solving the ODE model. The smoothing step described in Sec-
tion 3.1 allows a relaxation from the ODE model to ease optimiza-
tion and to allow for un-modelled process noise or other model
discrepancies.

Structural parameters h define the vector field of the ODE model
and control features such as limit cycles, exponential decay, or
other behaviours. Structural parameters are of primary interest
for their interpretability and potential use in making decisions
Please cite this article in press as: D.A. Campbell, O. Chkrebtii, Maximum profil
based smoothing state estimates, Math. Biosci. (2013), http://dx.doi.org/10.101
and predictions. Section 3.2 describes the iterative profile likeli-
hood optimization process by which hðkÞ is estimated by profiling
over bðĥfkg; kÞ. That is, we effectively ensure that for every incre-
mental change in hðkÞ, the likelihood is adjusted to its optimum
for bðh; kÞ.

The complexity or smoothing parameter k, defines the top level
of the hierarchy. The smoothing parameter determines the extent
of the model relaxation permitted by the state estimation and con-
sequently allows for some model misspecification. Estimation of k
is detailed in Section 3.3.

Computationally, the estimation routine can be thought of as a
multi-level, multi-criterion optimization, that is it proceeds as a
series nested optimization loops each with a different optimization
criterion to estimate b̂ðh; kÞ, ĥðkÞ, and k. While the basic estimation
process is described in [11], we outline the optimization process
with special consideration to the intricacies of the JAK-STAT DDE
model. Software to perform the estimation is available on request.
Before going into estimation details we present the algorithmic
workflow to clarify the estimation stages and nested loops.

Algorithm 1. Nested loops of profile likelihood maximization

1: Initialize: k; h, and b
2: while convergence criteria unmet for k do

3: Update k by one step
4: while convergence criteria unmet for ðh jkÞ do
5: Update h by one step
6: while convergence criteria unmet for ðb jh; kÞ do
7: Update b
8: end while
9: end while
10: end while
3.1. Inner optimization of bðh; kÞ; model-based smoothing

We describe a general setting where system states are
measured indirectly through the noisy observation process (6) at
times tik 2 ð0; TÞ, for states k ¼ 1; . . . ;K , and experimental runs
i ¼ 1; . . . ; I. For fixed h and k, state functions x̂ikðtÞ ¼ bikðh; kÞ0/ikðtÞ
are estimated by minimizing the negative log likelihood with re-
e likelihood estimation of differential equation parameters through model
6/j.mbs.2013.03.011
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spect to bðh; kÞ subject to the differential equation model based
penalty, PEN:

b̂ðh; kÞ ¼ arg min
b

Jðbjy; hðkÞ; kÞ

¼ arg min
b

XI

i¼1

XK

k¼1

� log L hðkÞ; yikðtÞð Þ½ � þ kPEN ikf g:

For expositional simplicity we consider the likelihood from (6)
where � log L hðkÞ; yikðtÞð Þ½ � / wikSSEik and optionally use weights
wikðtÞ ¼ r̂�2

ik ðtÞ if known or estimated, giving:

b̂ðhðkÞ;kÞ¼ argmin
b

XI

i¼1

XK

k¼1

wikSSEikþkPEN ikf g

¼ argmin
b

XI

i¼1

XK

k¼1

�
X
t2tik

wikðtÞ yikðtÞ�gik b0ik/ikðtÞ;hðkÞ;uðtÞ
� �� �2þkPEN ik

( )

ð7Þ

In contrast with non-parameteric smoothing, where PEN ik ¼R
ðD2xik½t�Þ2dt penalizes curvature, the GS framework introduces a

penalty on the squared functional residual of (1) or (3). Omitting
dependence on inputs uðtÞ, this term,

PEN ik ¼
Z T

0
DxikðsÞ � fkðxi½s�; hðkÞÞð Þ2ds; ð8Þ

penalizes deviations of the states from the model. For fixed k; h, and
yik observed at the vector of times tik; b̂ðh; kÞ is obtained through a
nonlinear regression step. It is important to note that the SSE term
depends on observation function gð�Þ while PEN does not, highlight-
ing the fact that b̂ðh; kÞ balances the observation function fit to the
data with the state fit to the model. Consequently PEN permits
smoothing even for unobserved states, in which case x̂ðtÞ follows
the data only indirectly through f ð�Þ. We chose to evaluate the inte-
gral in (8) using a Simpson’s rule numerical quadrature approxima-
tion with 3 evenly spaced points between each basis knot. System
states may be estimated with unique bases and irregularly mea-
sured variables as long as the quadrature grid is the same for all
states within each experimental run.

3.1.1. Dealing with delay differential equations
When the time domain is large relative to the anticipated value

of s, we propose replacing (7) and (8) with:

b̂ðh; kÞ ¼ arg min
b

Jðbjy; h; kÞ

¼ arg min
b

XI

i¼1

XK

k¼1

wikSSEik þ kPEN ð1Þik þ kPEN ð2Þik

n o
ð9Þ

where

PEN
ð1Þ
ik ¼

Z T

s
DxikðsÞ � fkðxi½s�; hðkÞÞð Þ2ds ð10Þ
392
393

395395

396

397

398

399

400

401
PEN
ð2Þ
ik ¼

Z s

0
DrxikðsÞ �

dr�1

dsr�1 fkðxi½s�; hðkÞÞ
 !2

ds

�
Z s

0
DrxikðsÞð Þ2ds ð11Þ

The penalty is split into a portion covering the DDE model after the
first lag to the end of the time domain in (10), and a second non-
parameteric penalty on the first s time in (11) units which borrows
from functional data analysis methods and places a penalty on the
rth model derivative so as to annihilate or nearly annihilate the
lagged variable from the model. Eliminating the lagged variable
avoids the infinite recursion associated with model derivatives that
Please cite this article in press as: D.A. Campbell, O. Chkrebtii, Maximum profil
based smoothing state estimates, Math. Biosci. (2013), http://dx.doi.org/10.101
depend on even earlier histories that would otherwise also require
estimation. It is important to maintain a penalty on the interval
ð0; sÞ or the optimal delay will become ŝ P T resulting in xðtÞ inter-
polating the data and effectively eliminating the flow of data based
information to the estimation of ĥ and k. All parameter estimation
methods for DDE models, including GS, face locally unidentifiable
delay parameters when s P T. As a precaution a bounded optimiza-
tion routine should be applied when estimating s.

When the time domain is short compared to the anticipated va-
lue of s, [23] propose estimating the history by a spline estimator.
The states are estimated over interval ð�s;0Þ using a B-spline
expansion with the same knot density as the interval ð0; sÞ to per-
mit consistent functional flexibility. Corresponding basis coeffi-
cients b� are appended to b and estimated in the inner
optimization. Unlike in (9)–(11), but following [23], no penalty is
placed on the estimated history because data fitting utilizes
x̂ðt 2 ð�s;0ÞÞ indirectly through f ð�Þ, so that x̂ðt 2 ð�s;0ÞÞ is regu-
larized through the model and the data.

3.1.2. Choice of basis
Choice of the basis system f/ikðtÞg for this inner level is an

important consideration. In particular, it is important for the basis
to span a function space that closely resembles the model dynamics
for a wide range of h. We use B-spline bases throughout this paper
because of their flexibility and compact support. In some cases, use
of a sufficiently flexible basis capable of matching fast changing fea-
tures also requires interpretability constraints such as non-negativ-
ity or monotonicity, as outlined in [22]. Although JAK-STAT system
states must be non-negative in order to maintain interpretability, in
this example, we found inclusion of constraints to be unnecessary.
Delay differential equation models can exhibit discontinuities in
time derivatives higher than one at integer multiples of s. Conse-
quently, it may be necessary to use an adaptive basis in the inner
optimization with multiple spline knots at times s;2s;3s; . . . to al-
low derivative discontinuities in the model and the basis expansion.
The knot placement is then determined in part by ŝ obtained in the
outer optimization loop as part of ĥðkÞ, but otherwise b̂ðh; kÞ is esti-
mated as above using (7), consequently we leave adaptive basis de-
tails for Section 3.2.2 after discussing estimation of ĥðkÞ.

3.2. The outer optimization; estimating h

The outer optimization provides structural parameter estimates
that are used in the inner level. Structural parameters in the
JAK-STAT model consist of the reaction rates h1, h2, h3, constant time
delay s, initial value x1ð0Þ, and the observation scale factors h5, h6.

We model the data as observations from the noise process in (6)
and choose h ¼ ĥðkÞ to minimize the negative log profile likelihood:

ĥðkÞ ¼ arg min
hðkÞ

H hðkÞ;bðh; kÞjy; kð Þ

¼ arg min
hðkÞ

XI

i¼1

XK

k¼1

� log L hðkÞ; yikðtÞð Þ½ �: ð12Þ

Using the Gaussian likelihood from (6) this becomes:

H hðkÞ;bðh; kÞjy; kð Þ ¼
XI

i¼1

XK

k¼1

wikSSEik ¼
XI

i¼1

XK

k¼1

X
t2tik

wikðtÞ yikðtÞ½

� gik bikfhðkÞ; kg0/ikftg; hðkÞ
� ��2

: ð13Þ

Variants of this function are widely used in classical parameter
estimation methods. For example, replacing bikfh; kg0/ikftg in ð13Þ
with a numerical ODE solution produces the standard nonlinear
regression objective function [1]. A model discrepancy term (like
PEN) is not included in ð13Þ because model fitting and deviation
thereof is already considered in (7). For any k; ĥðkÞ is a maximum
e likelihood estimation of differential equation parameters through model
6/j.mbs.2013.03.011
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profile likelihood estimate (MPLE) of the vector of structural param-
eters. Therefore, for every new k; ĥðkÞ is optimized in the outer loop
using an iterative algorithm that further updates the nuisance
parameters, bðĥ; kÞ, in the inner loop at every step.

For fixed k, and simplifying notation from HðhðkÞ, bfhðkÞ; kg,
g bfhðkÞ; kg0/ðtÞ; hðkÞ
� �

jy; kÞ to H; from g bfh; kg0/; hðkÞ
� �

to g; from
bfhðkÞ; kg to b; and from hðkÞ to h; the total gradient for the profile
likelihood is:

dH
dh
¼ @H
@h
þ @H
@g

@g
@h
þ @H
@g

@g
@b

db
dh
: ð14Þ

Typically, the vector field f ð�Þ is a nonlinear function of xðtÞ and/or
xðt � sÞ and no explicit formula for b̂ðh; kÞ is available. Therefore,
an expression for db=dh is obtained below for b ¼ b̂ by applying
the implicit function theorem. Simplifying the notation from
Jðh;b;gjy; kÞ to J, we assume that H and J are twice continuously dif-
ferentiable with respect to h;g, and b, and that the Hessian matrices,

@2H
@h2 ;

@2H
@g2 ;

@2J
@h2 ;

@2J
@g2 ;

are positive definitive over a nonempty neighbourhood of y in the
data space. The function (7) is optimized at b ¼ b̂, so that at this
point dJ=db ¼ 0 and

d2J
dbdh

¼ d
dh

dJ
db

� 	

¼ @2J
@g@h

@g
@b
þ @2J
@g2

@g
@h

@g
@b
þ @J
@g

@2g
@b@h

þ @g
@b

� 	0
@2J
@g2

@g
@b

� 	
þ @J
@g

@2g

@b2

( )
db
dh
; ð15Þ

and, solving for db=dh at b ¼ b̂, we obtain

db
dh
¼ � @g

@b

� 	0
@2J
@g2

@g
@b

� 	
þ @J
@g

@2g

@b2

( )�1

� @2J
@g@h

@g
@b
þ @2J
@g2

@g
@h

@g
@b
þ @J
@g

@2g
@b@h

( )
; ð16Þ

which we substitute into (14) to obtain the total gradient for the
MPLE:

dH
dh
¼ @H
@h
þ @H
@g

@g
@h
� @H
@g

@g
@b

@g
@b

� 	0
@2J
@g2

@g
@b

� 	
þ @J
@g

@2g

@b2

( )�1

� @2J
@g@h

@g
@b
þ @2J
@g2

@g
@h

@g
@b
þ @J
@g

@2g
@b@h

( )
: ð17Þ

In practice the profile likelihood may be highly nonlinear such that
gradient approximations for components of (17) based on finite dif-
ferences may be numerically unstable if analytic forms are not
available. If the assumption of identifiable parameters is not met,
(17) may involve inverting rank deficient matrices and practitioners
are reminded to consider alternative optimization strategies, sev-
eral of which are compared in [24].

3.2.1. Interval estimates for ĥðkÞ
In general, under the mild conditions specified in [25], the GS

maximum profile likelihood estimator is asymptotically normal
with covariance matrix equal to that of the maximum likelihood
estimator, meaning that one could use the observed inverse Fisher
information:

var ĥðkÞ

 �

¼ IðhÞ�1 ¼ d2

dh2 H

 !�1

ð18Þ
513
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as an asymptotic covariance estimate. The total derivative in (18)
can be determined using the implicit function theorem through
derivatives specified in the appendix. This is the strategy we used
for obtaining interval estimates.

Alternatively one may consider interval estimates based on a
first order Taylor expansion of the likelihood. Linearization strate-
gies for interval estimates can over or underestimate the actual
sampling variance since the quality of the approximation will de-
pend on the remainder of the Taylor expansion. The choice of like-
lihood and the nonlinearity of the model determine the utility of
the linearization method, so we present it here and caution the
reader to consider them as a crude approximation and instead
advocate the Fisher Information Intervals above. The advantage
to the linearization is the ability to incorporate the data covariance
structure as outlined below.

In the Gaussian likelihood example from (6), under the assump-
tion of independent errors and minor non-linearities in the model
around the parameter estimates, with covariance matrix
CovðyÞ ¼ diagðr2Þ, sampling variances for ĥ can be obtained using
a linearization approximation to the variance estimator:

VarðĥÞ � dĥ0

dy
CovðyÞ dĥ

dy
; ð19Þ

An expression for dh=dy is derived below using the fact that
dH=dh ¼ 0 at h ¼ ĥ.

d
dy

dH
dh

� 	����
h¼ĥ

¼ d2H
dydh

þ d2H
dh2

dh

dy

" #�����
h¼ĥ

¼ 0; ð20Þ

and, using the implicit function theorem at h ¼ ĥ,

dh

dy
¼ � d2H

dh2

" #�1
d2H
dydh

;

where d2H=dh2 and d2H=dhdy are provided in the appendix.
More generally, the process of smoothing often introduces seri-

al dependence between the residuals at consecutive time points.
One way to account for this is by using the asymptotic Newey–
West covariance sandwich estimator introduced [26] [27]:

CovðhÞ � V�1
0 V0 þ

Xl

‘¼1

1� ‘

lþ 1

� 	
ðVk þ V 0kÞ

 !
V�1

0 ; ð21Þ

where,

Vk ¼
r̂2

n

Xn

t¼kþ1

/ðt � kÞ0db
dh

0
@g
@b

0
þ @gðt � kÞ

@h

0 �
@gðtÞ
@h
þ @g
@b

db
dh

/ðtÞ
 �

:

ð22Þ

The resulting covariance estimate is equivalent to (19) when the
errors are independent, but is a more conservative estimate when
serial correlations exist. In practice l can be chosen to permits lags
spanning the full dataset, however in practice that is not necessary,
and [27] suggest setting l ¼ n=5 as a rule of thumb.

A tempting alternative is to consider parametric bootstrap
standard errors based on repeatedly simulating data from the

likelihood centred around g S ĥ; x̂ð0Þ; t
h i

; ĥ

 �

and re-estimating ĥ.

However, the generalized smoothing approach is designed to pro-
vide flexibility by relaxing the DDE model under the assumption
that the model is useful but imperfect. Consequently, parametric
bootstrap based on the numeric DDE solution can generate data
from the incorrect model producing invalid standard error esti-
mates when model discrepancies are present.

The asymptotic confidence intervals for h are based on the like-
lihood curvature. However, [20] show that without the addition of
the artificial observations in the JAK-STAT system, some
e likelihood estimation of differential equation parameters through model
6/j.mbs.2013.03.011
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parameters are not identifiable. The identifiability diagnostics of
[20] and other likelihood contour intervals [1] will in some cases
be more appropriate than the asymptotic intervals based on the
delta method. These interval finding routines can be performed
using the likelihood based on the smooth state estimate in (12).
Lack of identifiability is a complex issue and a thorough treatment
extends beyond the scope of this paper, we therefore refer the
reader to [28] for an overview of the reasons behind and possible
solutions for lack of identifiability.

3.2.2. Adaptive basis
To permit additional flexibility in xðtÞ, the state estimator

should have discontinuous higher derivatives to match those im-
posed in the model by the delay. In the present application, the his-
tory is considered to be constant giving rise to a discontinuity in
_xðt ¼ 0Þ. This propagates through the system leading to disconti-
nuities in €xðt ¼ sÞ; €xðt ¼ 2sÞ; . . ., which can be accommodated by
using a B-spline basis of order norder and placing norder � 2 spline
knots at s;2s; . . .

As s is estimated iteratively, the basis must be modified at each
algorithm iteration. It is important to note that changes in the
number of bases can potentially confound our estimate of hðkÞ, as
they allow xðtÞmore or less flexibility to accommodate the dynam-
ics described by a particular hðkÞ. As a result, ĥðkÞ could be pushed
towards values that are biased but ensure a restricted basis that
will reduce (8). To avoid attributing this flexibility to the choice
of parameters, we suggest using a number of basis functions large
enough that addition or subtraction of norder � 2 bases has negligi-
ble impact on the flexibility of xðtÞ to match model features be-
tween lag intervals. We also note that even when using an
adaptive basis, fixed quadrature points must be maintained for
the numerical approximation of (8) to ensure that the quality of
the approximation remains comparable between iterations. Conse-
quently a dense quadrature grid will be required to regularize the
adaptive basis expansion.

3.3. Estimating the complexity parameter

A variety of approaches have been proposed for choosing the
complexity parameter k, and here we offer an overview of the main
ideas. We divide the discussion into the case where r2 is unknown
and the case when it is known.

3.3.1. Unknown r2

Standard cross-validation is designed for non-parametric
smoothing and tends to produce good estimates of xðtÞ, but sug-
gests less than optimal values for estimating h. A few methods have
been proposed for estimating k such as, minimizing by choice of k,
the squared deviation between the estimated states xðtÞ and the
numerical ODE solution Sðĥ; x̂ð0Þ; tÞ [29], minimizing forward pre-
diction error [27], or choosing the best model fit available to the
basis expansion [22]. The first case is useful if the model and the
data are thought to be in agreement. In all cases it is important
to consider the role of k:

	 When k ¼ 0;xðtÞ interpolates the data;
	 When k!1, xðtÞ ! SðtÞ.

In general, k controls the flow of information from y to h. When
k ¼ 0, xðtÞ does not depend on h, and results in a likelihood that is
completely flat (uninformed) in h. As k!1, GS becomes a variant
of nonlinear least squares regression based on SðtÞ. The role of k is
complicated by the fact that the function space of xðtÞ is limited
by the choice of basis, and consequently xðtÞ ! SðtÞ only occurs in
the intersection of the function spaces of model solutions and basis
expansions. Generally this intersection occurs over a limited set of
Please cite this article in press as: D.A. Campbell, O. Chkrebtii, Maximum profil
based smoothing state estimates, Math. Biosci. (2013), http://dx.doi.org/10.101
hðkÞ, and it is unwise to consider the limiting case as results will dif-
fer substantially from those based directly on Sðh;x½0�; tÞ.

The shift in focus of xðtÞ and changes in the likelihood of h as a
result of increasing k suggest using the annealing-type strategy of
beginning with a small k and gradually increasing it until some
optimality criterion is met.

The cross-validation based forward prediction error method of
[27] minimizes:

XM

m¼0

Xtmþh

t¼tm

yðtÞ � SðĥðkÞ; x̂ðtÞÞ

 �2

;

the squared difference between the observations and the model
solution, initialized at the smooth estimate, over an interval of size
h. Effectively this criterion assumes that the model is correct over a
small interval but permits model deviations to propagate as the
time domain increases. A special case of forward prediction error
is when m ¼ 0 and h ¼ T , which assumes that the DDE model is
an accurate long term data representation [29]. The computational
complexity of the forward prediction error method may be substan-
tial, and consequently we outline an alternative algorithm from
[22]:

1. Begin with small k
2. Compute SSE and PEN.
3. Increase k by an order of magnitude, as a result SSE increases

and PEN decreases.
4. Increase k until PEN and SSE stabilize, and choose the largest k

before PEN decreases sharply at the expense of large increase
in SSE.

In practice the above algorithm will select the largest k that the ba-
sis can accommodate without introducing bias due to differences
between the function spaces of /ðtÞ and SðtÞ. When the model is
close to that describing the true dynamics, the above algorithm will
terminate when xðtÞ is near SðtÞ. When the model describes dynam-
ics that are not reflected in the data, then a much smaller k will be
produced allowing extraction of some useful information about hðkÞ
from the data through a model relaxation.

3.3.2. Known r2

Discrepancies between the data and model can arise for many
reasons, most of which could be approximated by a form of pro-
cess error or functional disturbance, where k can then be inter-
preted as the ratio of process noise to measurement noise in
the case that (1) is forced by a stochastic Wiener process. When
extensive experiments have been performed and r2 is fairly well
known, k̂ can be selected so as to match the sample variance
r̂2 kð Þ, computed after fitting the model under fixed k, with the
known r2 as outlined in [30]:

k̂ ¼ arg min
k

r̂2 kð Þ
r2 � 1

� 	2

:

This results in selection of k̂ that produces the best fit to the data
while ensuring the model discrepancy matches prior knowledge
of the observation error.

Due to the hierarchical structure of ĥðkÞ and the difficult topo-
logical features of differential equation model likelihoods, it is still
strongly recommended that k be initialized at a small value, and
then incrementally increased to refine ĥðkÞ.
4. Estimation details and results for the JAK-STAT data

We use the JAK-STAT data from [16], including the artificial
observations and parameter reduction of [20]. Although [20] use
e likelihood estimation of differential equation parameters through model
6/j.mbs.2013.03.011
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the simplification s ¼ 10=h4 as part of a linear chain ODE approxi-
mation with 10 chain steps, the present work directly examines
the delay model (4) and uses the simplification s ¼ 1=h4 to assist
with parameter estimability.

We consider two types of estimation based on considering uðtÞ
known and linearly interpolated, and uðtÞ unknown and estimated.

4.1. Basis details

Three smoothing approaches were applied to the JAK-STAT data
set to examine the impact of changes in the basis. Because the JAK-
STAT system states have discontinuities in the second derivatives
at times s;2s; . . ., approaches A and B are constructed with a much
rougher higher derivative structure than is needed to satisfy this
requirement. These approaches use fixed cubic B-spline bases with
19 and 39 evenly spaced interior knots respectively. In contrast,
approach C uses the smoother quintic spline basis functions with
59 interior knots, but with the additional interior knots placed at
s;2s; . . . to provide a basis with second derivative discontinuities
matching those of the JAK-STAT model.

All of the approaches use more knots than observations; states
y1 and y2 have 16 observations each, while y3 and y4 have only 1
observation each. In general, more knots are required than obser-
vations so that the basis can approximate the model dynamics over
a wide range of h values. A denser basis should be used if the model
dynamics are expected to exhibit particularly sharp features.

Another reason for using a B-spline basis system is that only the
first basis function, /0ð0Þ ¼ 1, is nonzero at t ¼ 0. Consequently
with JAK-STAT, known initial conditions x2ð0Þ ¼ x3ð0Þ ¼ x4ð0Þ ¼ 0
are enforced by maintaining the first coefficients in b fixed at the
known values while optimizing (7).

The remaining initial state x1ð0Þ is unknown and must be
estimated. GS typically estimates initial states in the same
way as states at any point on the domain. In contrast to the
nonlinear regression methodology where numerical solver error
propagates over the time domain, GS spreads the approximation
uncertainty more or less uniformly. As a result states are esti-
mated at every time point, including t ¼ 0, in the same way
by b0/ðtÞ.

In delay systems where the function xðt < 0Þ is considered con-
stant, the initial state defines the system history. In such cases one
could consider xð0Þ as a structural parameter, including it in the
vector h and estimating remaining basis coefficients as in the case
where initial states are known. JAK-STAT only requires the history
for x4, which is known, so the initial state for x1ð0Þ can be esti-
mated with the other b. However, to demonstrate ability to be con-
sistent with other literature studies of the JAK-STAT system, we
estimated x1ð0Þ along with h.

Approaches A, B, and C, were performed using a linear interpo-
lator for uðtÞ as per [16]. However if the forcing functions uðtÞ are
not known perfectly they should be estimated and treated as the
additional state. Following [21], we also use attempt using a cubic
spline smoother defining the additional state x5ðtÞ ¼ uðtÞ where:

y5ðtÞ ¼ g5½xðtÞ; h� ¼ x5ðtÞ:

Approaches D and E have the same knot basis as A but treat the esti-
mation of x5ðtÞ in two different ways. Approach D follows [21] in
modelling the additional state as

d2

dt2 x5ðtÞ ¼ 0:

The resulting component of PEN in (8) is equivalent to standard
spline smoothing methods with a curvature based penalty, except
that x̂5ðtÞ is also guided by the model to help fit the other states
Please cite this article in press as: D.A. Campbell, O. Chkrebtii, Maximum profil
based smoothing state estimates, Math. Biosci. (2013), http://dx.doi.org/10.101
as well. As k!1;PEN ensures that the estimated Epo concentra-
tion will therefore be linear, however the data clearly show an in-
crease and subsequent decrease. We therefore also consider
approach E, a model that will permit an additional change in curva-
ture through the higher order penalty:

d4

dt4 x5ðtÞ ¼ 0 ð23Þ
4.2. Optimization details

The inner optimization was performed using gradient based
optimization. Although it is technically possible to perform the
outer optimization through gradient based methods using the total
gradient (17), we selected a gradient-free algorithm in our analysis.
Ordinary differential equation models without delays, and subject
to a linear observation function gð�Þ require simpler derivatives
which can usually be determined analytically, in contrast to the
JAK-STAT system where numeric derivatives were highly unstable.
For this reason, the outer optimization was implemented using the
genetic optimization algorithm, ga, in Matlab (version 2012a, The
MathWorks Inc., Natick, MA, 2012). As is common in general opti-
mization, parameters were rescaled by multiplicative factors so
that their anticipated optimal values were in the interval ð0;10Þ.
The genetic algorithm is a parallel-coded, bounded optimization
routine with lower bounds for all parameters set to zero to be con-
sistent with interpretability. Upper bounds were set to 50 after
rescaling.

Decreasing k results in a smoother likelihood surface [11],
behaviour which is exploited in the annealing type of approach
to optimizing k. Consequently GS is inherently robust to parameter
values used to initialize the algorithm. The random starting values
of the genetic algorithm enable efficient exploration of the param-
eter space, further adding to the robustness to initialization. The
genetic algorithm was initially performed with 100 random start-
ing points, holding k ¼ 1 fixed. Optimization continued in se-
quence by setting knew ¼ 10� kold and setting ĥðkoldÞ from all
previous kold values as deterministic points among the otherwise
random starting values for the genetic algorithm. Because mea-
surement error standard deviations for the JAK-STAT data are pro-
vided in [16], we estimate k̂ by considering r2

ikðtÞ to be known, as
outlined in Section 3.3.2, using the weights wikðtÞ ¼ 1=r2

ikðtÞ in
(7) and (13). In general weights and error term variances can be
estimated using iteratively re-weighting [22].

4.3. Results

Resulting point and standard error estimates, constructed using
(21), are given in Table 1. The Newey–West estimator was con-
structed with l ¼ 10. Parameter estimates were fairly robust to k̂,
giving stable ĥðkÞ over a wide range of values. Fig. 1 shows x̂ðtÞ
and Sðĥ; x̂ð0Þ; tÞ obtained using approach A, although x̂ðtÞ is visually
nearly indistinguishable under approaches A and B. While impact-
ing k̂, an increase in the basis density had little noticeable effect on
the model fit. Denser bases permit more flexibility and require
more quadrature weights in (8) to control the fit to the model.
For this reason k̂ does not have a straightforward interpretation
that is comparable between models.

Approach C uses a higher order basis, more basis coefficients,
and an adaptive basis to accommodate discontinuous second
derivatives at s;2s; . . . Since xðtÞ is an approximation to the DDE
solution, the added model matching ability of the adaptive basis
approach does not seem to have a strong impact on the results
and consequently the fit to approaches A and C are nearly indistin-
guishable in Fig. 1. In all cases the richness of the basis was suffi-
e likelihood estimation of differential equation parameters through model
6/j.mbs.2013.03.011
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Table 1
Point estimates and standard errors (in brackets) for h from the different approaches. Approaches A, B, and C use a linearly interpolated uðtÞ, where A has a low knot density basis,
B has a high knot density basis, and C uses an adaptive knot density basis. Approaches D and E use a low knot density basis but estimate uðtÞ with a second and fourth derivative
penalty, respectively.

Approach h1 h2 h3 x1ð0Þ h5 h6 s k

A 2.43 (0.43) 0.11 (0.04) 0.128 (0.039) 207 (25) 0.0059 (0.031) 0.0046 (0.008) 3.91 (0.60) 1000
B 2.64 (0.37) 0.34 (0.13) 0.150 (0.064) 166 (22) 0.0071 (0.0084) 0.0051 (0.008) 4.63 (0.64) 1000
C 2.38 (0.41) 0.28 (0.09) 0.228 (0.051) 215 (18) 0.0062 (0.009) 0.0045 (0.008) 4.50 (0.61) 10000
D 1.02 (0.35) 0.13 (0.10) 0.456 (0.15) 215 (14) 0.0134 (0.018) 0.0043 (0.010) 2.89 (0.16) 1000
E 1.82 (0.07) 0.77 (0.16) 0.174 (0.009) 207 (7.4) 0.0068 (0.024) 0.0048 (0.011) 3.18 (0.25) 1000
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cient to approximate the DDE trajectory and estimate parameters.
However, approach C shows considerably more flexibility in
matching the DDE solution as the function space spanned by
f/ikg is closer to that spanned by SðtÞ. As a result, approach C
was able to follow the DDE model to a higher degree of fidelity,
which led to a much wider range of k values over which ĥðkÞ was
nearly constant.

Approaches A, D, and E had the fewest basis functions and
therefore the computation of bðh; kÞ was faster than under ap-
proaches B and C. In other models, richness of the basis can have
a substantial impact on the results, for example compare the nylon
example in [11,22].

The minimal differences in the estimates between approaches
A, B, and C shown in Table 1 are most likely due to the near uniden-
tifiability of the system under study. The benefit of GS is that it re-
laxes the model dynamics towards the data while extracting the
available information about the structural parameters. Addition-
ally, robustness of the method to parameter initializations and
complex likelihood topologies makes the GS a useful tool for esti-
mating complex models. As was observed by [21], large differences
in parameter and state estimates resulted from differences in how
uðtÞ was treated. Treating uðtÞ as a state and estimating it along
with the others means that a single k is selected to capture all of
the features in all states. This is in contrast to [21], who fitted a
non-parametric smooth to uðtÞ and then used a numerical solver
for the remaining states.
834

835

836

837

838

839

840

841

842
843

845845
5. Discussion

We outline the GS methodology, originally designed for esti-
mating parameters from ordinary differential equation models,
and show extensions to account for real data challenges, including
partially known initial conditions, unobserved system states, non-
linear observation functions, and systems where delays are mod-
elled directly rather than being implemented through modelling
additional states.

As with any method it is important to consider the strengths
and limitations of the methodology.

In the JAK-STAT example the history is assumed constant, with
x2ðtÞ, x3ðtÞ and x4ðtÞ known to be zero over the interval t 2 ð�s;0Þ,
and x1ðtÞ constant but unknown. However, in many cases the func-
tion xðt 2 ð�s; 0ÞÞ must be estimated. Estimation of the history is
an important problem as DDE systems may exhibit chaotic behav-
iour with small changes in s and/or xðt 2 ð�s;0ÞÞ. Chaotic behav-
iour translates into complex likelihood topologies and the model
relaxation towards the data enables the GS approach to smooth
out the likelihood, simplifying optimization.

The GS method uses a model based smooth state estimate,
which relaxes the solution to the differential equation towards
the data. This feature permits parameter estimation when the
model is somewhat mis-specified, and can ease optimization by
avoiding some topological pitfalls associated with using a numeri-
cal differential equation solver.
Please cite this article in press as: D.A. Campbell, O. Chkrebtii, Maximum profil
based smoothing state estimates, Math. Biosci. (2013), http://dx.doi.org/10.101
The inability to observe all modelled states is overcome in the
GS approach by feeding information from observed states through
the model to guide the fit to unobserved ones. However if all
states are sparsely observed, there is not enough information in
the data to guide the model relaxation permitted by the smooth.
Severe sparsity requires stronger assumptions on the underlying
process and consequently we recommend numerical solver based
methods instead. As a rule of thumb, exploratory plots of the data
should reveal a clear signal, at least in the observed modelled
states. Although the JAK-STAT model has the same number of
modelled states as observation processes, this need not be the
case. While smoothing based methods overcome topological con-
straints in the likelihood surface, GS has the further advantage of
pooling information from the model and the observed states to
estimate unobserved states. GS requires optimization of basis
coefficients and therefore will generally be slower than producing
a numerical solution.

Different values of k may be useful for estimating different
states or may enhance or hinder different model features. Conse-
quently an area of future research is to consider a scale space
approach to state estimation. This approach has been very suc-
cessful in estimating local features from data [31] and may be
an efficient way to consider the roles of different types of mod-
elled states, for example consider the distinction between
x1ðtÞ; . . . ;x4ðtÞ with a well devised DDE versus the convenient
penalty placed on x5ðtÞ.
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Appendix A. Additional implicitly defined derivatives

This section provides implicitly defined derivatives for confi-
dence intervals of Section 3.2.1.
A.1. d2H=dh2

d2H

dh2 ¼
@2H

@h2 þ
@2H
@h@g

@g
@h
þ @2H
@h@g

@g
@b

db
dh
þ @2H
@g@h

@g
@h
þ @g

@h

� 	0
@2H

@2g
@g
@h

� 	

þ @
2H

@2g
@g
@b

db
dh

@g
@h
þ @H
@g

@2g
@h2 þ

@H
@g

@2g
@h@b

db
dh
þ @2H
@g@h

@g
@b

db
dh

þ @
2H
@g2

@g
@h

@g
@b

db
dh
þ @g

@b
db
dh

� 	0
@2H
@g2

@g
@b

db
dh

� 	
þ @H
@g

@2g
@b@h

db
dh

þ @H
@g

db
dh

� 	0
@2g

@b2

db
dh

� 	
þ @H
@g

@g
@b

d2b
dh2 ; ðA:1Þ
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A.2. d2H=dhdy
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Expressions (A.1) and (A.2) require d2b=dh2, d2b=dhdy and db=dy,
which are derived next.

A.3. d2b=dhdhk

Differentiating b with respect to h and then hk is equivalent to
differentiating (15) with respect to hk. The resulting expression
(A.3) can then be solved for d2b=dhdhk in (A.4), using the implicit
function theorem and the fact that @J=@b ¼ 0 when b ¼ b̂.

@

@hk

d2J
dbdh

 !
¼ @

@hk

@2J
@g@h

@g
@b
þ @

2J
@g2

@g
@h

@g
@b
þ @J
@g

@2g
@b@h

 

þ @g
@b

� 	0
@2J
@g2

@g
@b

� 	
þ @J
@g

@2g

@b2

( )
db
dh

!

¼ @3J
@g@h@hk

þ @3J
@g@h@b

@b
@hk
þ @3J
@g@h@g

@g
@hk

 

þ @3J
@g@h@g

@g
@b

@b
@hk

!
@g
@b
þ @2J
@g@h

@2g
@b@hk

þ @2J
@g@h

@2g

@b2

@b
@hk

þ @3J
@g2@hk

þ @3J
@g2@b

@b
@hk
þ @

3J
@g3

@g
@hk
þ @

3J
@g3

@g
@b

@b
@hk

 !

�@g
@h

@g
@b
þ @

2J

@2g
@2g
@h@hk

@g
@b
þ @

2J

@2g
@2g
@h@b

@b
@hk

@g
@b

þ@g
@h

@2g
@b@hk

þ@g
@h

@2g

@b2

@b
@hk

þ @2J
@g@hk

þ @
2J

@g2

@g
@hk
þ @

2J
@g2

@g
@b

@b
@hk

 !
@2g
@b@h

þ @J
@g

@3g
@b@h@hk

þ @J
@g

@3g
@b@h@b

@b
@hk

þ @2g
@b@hk

þ @
2g

@b2

@b
@hk

 !0
@2J
@g2

@g
@b
þ @g

@b

� 	0

� @3J
@g2@hk

þ @3J
@g2@b

@b
@hk
þ @

3J
@g3

@g
@hk
þ @

3J
@g3

@g
@b

@b
@hk

 !
@g
@b

� 	

þ @g
@b

� 	0
@2J
@g2

@2g
@b@hk

þ @
2J

@g2

@2g

@b2

@b
@hk

 !

þ @2J
@g@hk

þ @
2J

@g2

@g
@hk
þ @

2J
@g2

@g
@b

@b
@hk

 !
@2g

@b2

 !

þ @J
@g

� 	
@3g

@b2
@hk

þ @
3g

@b3

@b
@hk

 !
@b
@h

þ @g
@b

� 	0
@2J
@g2

@g
@b
þ @J
@g

@2g

@b2

( )
d2b

dhdhk
ðA:3Þ
Please cite this article in press as: D.A. Campbell, O. Chkrebtii, Maximum profil
based smoothing state estimates, Math. Biosci. (2013), http://dx.doi.org/10.101
Next, solve for d2b̂=dhdhk using the fact that the above expression is
zero at b ¼ b̂. The implicit function theorem allows us to take the
inverse of the last term of (A.3).
d2b̂
dhdhk

¼� @g

@b̂

� 	0
@2J
@g2

@g

@b̂
þ @J
@g

@2g

@b̂2

" #�1

� @3J
@g@h@hk

þ @3J

@g@h@b̂

@b̂
@hk
þ @3J
@g@h@g

@g
@hk
þ @3J
@g@h@g

@g

@b̂

@b̂
@hk

 !"

� @g

@b̂
þ @2J
@g@h

@2g

@b̂@hk

þ @2J
@g@h

@2g

@b̂2

@b̂
@hk

þ @3J
@g2@hk

þ @3J

@g2@b̂

@b̂
@hk
þ @

3J
@g3

@g
@hk
þ @

3J
@g3

@g

@b̂

@b̂
@hk

 !
@g
@h

@g

@b̂

þ @
2J

@2g
@2g
@h@hk

@g

@b̂
þ @

2J

@2g
@2g

@h@b̂

@b̂
@hk

@g

@b̂
þ@g
@h

@2g

@b̂@hk

þ @g
@h

@2g

@b̂2

@b̂
@hk
þ @2J

@g@hk
þ @

2J
@g2

@g
@hk
þ @

2J
@g2

@g

@b̂

@b̂
@hk

 !
@2g

@b̂@h

þ @J
@g

@3g

@b̂@h@hk

þ @J
@g

@3g

@b̂@h@b̂

@b̂
@hk
þ @2g

@b̂@hk

þ @
2g

@b̂2

@b̂
@hk

 !0
@2J
@g2

@g

@b̂

þ @g

@b̂

� 	0
@3J

@g2@hk
þ @3J

@g2@b̂

@b̂
@hk
þ @

3J
@g3

@g
@hk
þ @

3J
@g3

@g

@b̂

@b̂
@hk

 !
@g

@b̂

� 	

þ @g

@b̂

� 	0
@2J
@g2

@2g

@b̂@hk

þ @
2J

@g2

@2g

@b̂2

@b̂
@hk

 !

þ @2J
@g@hk

þ @
2J

@g2

@g
@hk
þ @

2J
@g2

@g

@b̂

@b̂
@hk

 !
@2g

@b̂2

 !

þ @J
@g

� 	
@3g

@b̂2@hk

þ @
3g

@b̂3

@b̂
@hk

 !
@b̂
@h

#
: ðA:4Þ
A.4. @b̂=@y

Expression (A.2) requires an expression for db̂=dy. Differentiat-
ing dJ=db with respect to y produces (A.5). We again use the fact
that @J=@b ¼ 0 at b ¼ b̂ and solve for @b̂=@y in (A.6), using the im-
plicit function theorem.
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A.5. @2b̂=@y@h

We obtain this derivative by differentiating (A.5) with respect
to hk to produce Eq. (A.7). Solving for @2b̂=@y@h gives us the expres-
sion (A.8).
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