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Abstract
When models are defined implicitly by systems of differential equations with no closed-form solution, small local errors in
finite-dimensional solution approximations can propagate into deviations from the true underlying model trajectory. Some
recent perspectives in quantifying this uncertainty are based on Bayesian probability modeling: a prior is defined over the
unknown solution and updated by conditioning on interrogations of the forward model. Improvement in accuracy via grid
refinement must be considered in order for such Bayesian numerical methods to compete with state-of-the-art numerical
techniques. We review the principles of Bayesian statistical design and apply these to develop an adaptive probabilistic
method to sequentially select time-steps for state-space probabilistic ODE solvers. We investigate the behavior of local error
under the adaptive schemewhich underlies numerical variable step-size methods. Numerical experiments are used to illustrate
the performance of such an adaptive scheme, showing improved accuracy over uniform designs in terms of local error.

Keywords Uncertainty quantification · Differential equations · Statistical design · Numerical methods · Data assimilation

1 Introduction

The fact that forward models based on the numerical solu-
tion of differential equations are subject to error has been
studied for a long time. One of the ways in which the field of
numerical analysis quantifies this error is by approximating
global error bounds on the solution at each spatio-temporal
location (e.g., Butcher 2008). The size of the error bound
can be controlled by the choice of numerical method and
by changing the number and location of discretization grid
points. An important advantage of this approach is that it
provides an upper limit on the deviation of the approxima-
tion from the true state. In other words, it can be shown that
the solution lies somewhere within this possibly large error
bound. A drawback of this approach is the lack of informa-
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tion about the relative likelihood of the solution being in a
given region within the error bound. It is therefore not clear
how to account for this error within statistical inference (the
inverse problem) given observed data. The developing field
of probabilistic numerics, which ultimately seeks a Bayesian
view of problems in numerical analysis, calls for modeling
the uncertainty in the forward problem by describing, either
exactly or approximately, the relative likelihood of the solu-
tion across the phase space.

At this stage, it is helpful to define some notation. We
primarily deal with the solution of the ordinary differential
equation (ODE) initial value problem,

{
Du = f (t, u) , t ∈ (0, L],
u = u1, t = 0,

(1)

where u1 is a vector of initial states, D is a linear differen-
tial operator and f : [0, L] × R

p → R
p is a vector field

that is Lipschitz continuous in the second argument. The
exact solution at time t is denoted by u†(t; u1). The notation
u(t; u1) is reserved for describing a probability model for
the uncertainty in the unknown solution to (1). A single sam-
ple from this process is denoted by a tilde, e.g., ũ(t; u1). In
order to relate our results to the numerical analysis literature,
we denote numerical solver output by û(t; u1). In all these
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cases, the dependence on the initial condition u1 will be omit-
ted when it is clear from the context. This paper describes a
probabilistic discretization technique, performedover a parti-
tion s1, . . . , sN ∈ [0, L] of the domain of integration.Objects
evaluated at these time points are either denoted explicitly as,
e.g., u(si ), or by using subscript notation, e.g., ui := u(si ),
where the subscript i indicates that u is evaluated at time si .
When a quantity is evaluated over multiple subsequent time
points, or a range of partitions of the domain is desired,weuse
a semicolon in the subscript between the first and last indices,
e.g., ui1:i2 and si1:i2 , respectively. For processes or quantities
that are updated sequentially, such as the probability model
on the states or the mean and covariance, the update num-
ber is denoted by a superscript, e.g., ui ,mi ,Ci , respectively.
Finally, when multiple parallel updates of these quantities
are required, additional superscripts in brackets indicate the
number of the ensemble member, e.g., ui( j),mi( j).

The use of probability models for uncertainty quantifi-
cation in numerical problems was first proposed by Dia-
conis (1988), O’Hagan (1992) and Skilling (1991). The
problem consists of solving the definite integral u(t) =∫ t
0 g(x)dx, t ∈ [0, L], where g : [0, L] → R

p is a fully
specified integrable function on [0, L]. First, a prior model is
defined jointly on the unknown function u and its derivative
g, which describes the analyst’s belief before any analysis is
conducted and incorporates any definitive knowledge in the
form of constraints. Exact time-derivatives of u are obtained
over a grid 0 = s1 < s2 < · · · < sN = L by evaluating
the function g at those points. The posterior over u given
the derivatives g(s1), . . . , g(si ) describes the uncertainty in
the solution conditional on the information about g. Because
this is a function estimation problem with noise-free obser-
vations, the convergence properties of the posterior to the
Dirac measure centered at u are available (e.g., Stuart 2010)
as the number of evaluation points grows within the domain
[0, L].

Differential equationmodels describe systemstates implic-
itly in terms of rates of change with respect to spatial and
temporal variables. Solving the ODE initial value problem
(1), although related to integration, is mademore complex by
the implicit dependence of the state on its own derivatives.
Indeed, for any t1 < t2, the solution u(t2) is a function of
u(t1) that does not depend on u(τ ), τ ∈ [0, t1) (a determin-
istic Markov property, e.g., Jazwinski 1970). The modern
ideas for Bayesian numerical analysis of differential equa-
tions were established in an innovative paper by Skilling
(1991). Interest lies in inferring the unknown deterministic
function u† : [0, L] → R

p, defined implicitly via the ODE
initial value problem (1). Skilling’s contribution was the idea
of modeling uncertainty in the fixed but unknown solution
using the Bayesian paradigm, by updating prior belief about
the solution by conditioning on evaluations of the forward
model. A prior process is defined jointly on u and Du, and

marginal state samples ũ0(s1), . . . , ũ0(sN ) are generated (not
necessarily in order) over a grid s1, . . . , sN ∈ [0, L]. Eval-
uating the vector field f at these sampled values yields a
sequence which can be modeled as noisy evaluations of Du
and hence used to update our prior belief about u†. Cru-
cially, however, this model specification does not directly
take into account the Markovian structure of the ODE solu-
tion (Chkrebtii et al. 2016b), so that convergence to the true
solution is guaranteed only when the model is explicit (i.e.,
equivalent to a direct integration problem). A reformulation
of this procedure based on sequential updating of the prior
(Hennig and Hauberg 2014; Schober et al. 2014) resolves the
problem, but lacks the flexibility to capture the non-Gaussian
structure of the error. This is especially problematic when
systemsolutions are restricted to low-dimensionalmanifolds.

The formalism of Cockayne et al. (2017) provides an ele-
gant alternative to the above methods via a collocation-based
approach, where the posterior over the solution trajectory is
constrained to satisfy Du(si ) = f (si , u(si )) at collocation
points s1, . . . , sN ∈ [0, L]. A compelling argument for this
approach is that exact knowledge about the true solution at the
collocation points is enforced. A disadvantage is that direct
sampling from this probability measure is infeasible except
when the ODE can be reformulated as an explicit integration
problem (Wang et al. 2018). Furthermore, Wang et al. (2018)
demonstrate that an exact likelihood cannot be obtained in
general due to the implicit specification of ODE initial value
problems.

The view we take in this paper, proposed in Chkrebtii
et al. (2016a), is a state-space Bayesian numerical method.
While it requires likelihood modeling at each discretization
grid point, this model can be set up in a way that reflects
our belief about the solution at each point. This approach
admits uncertainty estimates that are flexible (non-Gaussian)
at a computational cost, based on the number of operations
required, that is proportional to that of a similarly sampled
numerical solver (Chkrebtii et al. 2016a). We are ultimately
interested in the posterior over the solution conditional on
the specification of the initial value problem (1), determined
by the vector field f and the initial condition u1. Since we
cannot condition directly on the model specification, auxil-
iary variables a1:N are used to interrogate the model at times
s1:N where 0 = s1 < · · · < sN = L . Each auxiliary vari-

able ai =
(
ui−1
i , f (si , u

i−1
i )

)
, i = 1, . . . , N consists of two

components: the posterior predictive process at time si over
u obtained after i − 1 algorithm iterations denoted ui−1

i , and
the corresponding vector field fi = f (si , u

i−1
i ). The pos-

terior density over the state u evaluated at any desired time
points in [0, L] can be written as,

π(u | f (·), u1)
=

∫
π(u, a1:N | f (·), u1) da1:N
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∝
∫

p ( f1 | u1)
p (u2 | f1, u1) p ( f2 | u2)
p (u3 | f1:2, u1) p ( f3 | u3)
· · · p (uN | f1:N−1, u1) p ( fN | uN )

p (u | f1:N , u1) da1:N ,

=
∫

p (u | f1:N , u1)

∏N

i=1
{p ( fi | ui ) p (ui | f1:i−1, u1)} da1:N . (2)

The integrand is formed by an iterative application of anal-
ysis steps p ( fi | ui ) and forecast steps p (ui | f1:i−1, u1),
followed by a final smoothing step p (u | f1:N , u1) (see, e.g.,
Wikle and Berliner 2007 for an overview of this approach in
the filtering literature). Assuming a Gaussian prior and like-
lihood, the densities p (ui | f1:i−1, u1) are Gaussian, while
p ( fi | ui ) are generally not available in closed-form for
i > 1. In otherwords, (2) is a continuousmixture ofGaussian
forecast densities weighted by the corresponding analysis
densities. Section 2.1 provides additional details on this
approach, and Algorithm 1 summarizes a sequential Monte
Carlo procedure developed in Chkrebtii et al. (2016a) for
sampling from (2).

Numerical algorithms for solving ODE initial value prob-
lems can be designed to adapt step lengths in order to use
computational resources efficiently by controlling a chosen
criterion, such as local truncation error. As a result, some type
of step-size control is employed in most numerical solver
software (Shampine 2005). We show that applying princi-
ples of statistical design for state-space probabilistic solvers
can yield analogously effective and interpretable criteria for
sequential step length selection.

The paper is organized as follows. Section 2 describes
the state-space Bayesian numerical solver (hereafter called
UQDE) in detail, discusses approaches to adaptive step
length selection for one-step numerical solvers, and reviews
the principles of Bayesian experimental design. Our new
approach and main results are provided in Sect. 3, examples
and numerical results are provided in Sect. 4, and conclusions
are discussed in Sect. 5. MATLAB implementation of the
proposed approach is available at github.com/ochkrebtii/uqdes-
enkf-design along with code to reproduce all figures.

2 Background

This section details the state-space uncertainty quantifica-
tion approach developed in Chkrebtii et al. (2016a) for the
ODE initial value problem (1). We then provide a general
overview of the goals and strategies of adaptive step-size
selection methods employed in the numerical analysis liter-

ature for one-step solvers. The last subsection reviews the
topic of statistical design of experiments from a Bayesian
perspective.

2.1 State-space probabilistic solver

The probabilistic numerical method developed in Chkrebtii
et al. (2016a) for the forward model (1) can be viewed as a
continuous-time filter (e.g., Jazwinski 1970). This formula-
tion extends readily to PDEs where explicit integration tools
can be used over the spatial component of the domain.A large
class of numerical approaches to solving ODEs are based on
linearization of the implicitly-defined forward model. The
probabilistic analog is the following assumed error model,

fi := f (si , u
i−1(si ))

= Du†(si ) + ξ(si ), i = 1, . . . , N (3)

where the error term ξ is the source of model uncertainty.
Throughout this work, wewill assume that ξ(si ) are indepen-
dent, zero-mean Gaussian random variables with variance
Q(si , si ). In the context of the unknown solution of a deter-
ministic ODE initial value problem, the stochastic model
(3) is a description of our incomplete knowledge about the
explicit solution u† from a Bayesian perspective.

The first step is to define a joint prior model on the
unknowns. Specifically, we assume a Gaussian process (GP)

prior over (Du, u)� with mean function
(
Dm0,m0

)�
and

covariance operator that has block components C1,1 =
DC0D∗, C2,2 = C0, and C1,2 = C∗

2,1 = DC0. Here, C0

is a prior covariance operator and the asterisk represents the
adjoint of an operator. The GP model covariance is selected
to reflect our knowledge about the function space where the
solution lies. Sequentially updating the prior over (Du, u)�
by conditioning on f1:i yields the updated distribution,

(
Du(tk)
u(t�)

∣∣∣∣ f1:i
)

∼ GP
{(

Dmi (tk)
mi (t�)

)
,

(
DCi (tk, tk)D∗ DCi (tk, t�)
Ci (t�, tk)D∗ Ci (t�, t�)

)}
,

(4)

where means and covariances can be defined recursively as,

mi (t) = mi−1(t) + Ki (t, si )
{
fi − Dmi−1(si )

}
(5)

Ci (tk, t�) = Ci−1(tk, t�)

− Ki (tk, si )DCi−1(si , t�) (6)

Ki (t, si ) = Ci−1(t, si )D
∗ (

Q(si , si )

+ DCi−1(si , si )D
∗)−1

, (7)
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andQ(si , si )denotes the variance of the discrepancybetween
f and Du and at time si . For our numerical experi-
ments, we choose Q(si , si ) to be the predictive variance,
DCi−1(si , si )D∗, over Du at time si , although this model-
ing choice can be application-dependent.

The sequential updatingprocedure is summarized inAlgo-
rithm 1. The algorithm yields J Monte Carlo samples from
the posterior (2) at T desired evaluation time points x1:T ∈
[0, L]T . Although each Monte Carlo sample j = 1, . . . , J
can be computed in parallel, computational savings can also
be obtained by pooling covariance updates when the grid
spacing does not change between draws. In order to exploit
these computational savings and to ensure consistent inter-
pretation of uncertainty between draws, in what follows, our
proposed approach will assign each Monte Carlo sample a
common, but adaptively-selected design.

Algorithm 1 Sequential Monte Carlo algorithm to sample
from the posterior (2) at evaluation points x1:T ∈ [0, L]T
and ordered discretization grid locations s1:N ∈ [0, L]N
1: Define t = (s1:N , x1:T ) where 0 = s1 < s2 < · · · < sN = L .

The functions C0,m0, and Q are defined in Sect. 2.1. The state
u, its initial condition u1, vector field f , and the linear differential
operator D, are defined as in Eq. (1).

2: Compute f ( j)
1 = f (s1, u1) , j = 1, . . . , J

3: for j = 1 : J do
4: for i = 1 : N do
5: Given f ( j)

i , compute the following quantities recursively,

K i (t, si ) = Ci−1(t, si )D∗ {
Q(si , si )

+DCi−1(si , si )D∗}−1
,

(8)

mi( j)(t) = mi−1( j)(t) + K i (t, si )
{
f ( j)
i

−Dmi−1( j)(si )
}

,
(9)

Ci (t, t) = Ci−1(t, t)
−K i (t, si )DCi−1(si , t); (10)

6: if i < N then
7: Sample ũi( j)i+1 from

GP
(
mi( j)(si+1),C

i (si+1, si+1)
)

8: Compute f ( j)
i+1 = f

(
si+1, ũ

i( j)
i+1

)
9: end if
10: end for
11: end for
12: For each j = 1, . . . , J , sample and retain a draw ũN ( j)

1:T from
GP (

mN ( j)(x1:T ),CN (x1:T , x1:T )
)
to approximate any desired pos-

terior functionals.

To illustrate the influence of grid spacing on proba-
bilistic solver uncertainty, consider the chaotic Kuramoto-
Sivashinskymodel of a reaction-diffusion system (Kuramoto
and Tsuzuki 1976),

Fig. 1 Point-wise sample mean of 10 realizations from the posterior
trajectory (2) of the spatially-discretized Kuramoto-Sivashinsky PDE
initial value problem (11) on the domain x ∈ [0, 32π ], t ∈ [0, 150]. The
number of time-steps, from left to right, is 1000, 2000, and 3000, respec-
tively. Sensitivity to perturbations introduces discretization uncertainty
that manifests as variability between sample paths over time (blurry
regions). Trajectories are initially very similar (well-defined regions)
until they eventually diverge

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂
∂t u = −u ∂

∂x u − ∂2

∂x2
u − ∂4

∂x4
u,

x ∈ [0, 32π ], t ∈ (0, 150]
u = cos

( x
16

) {
1 + sin

( x
16

)}
,

x ∈ [0, 32π ], t = 0.

(11)

The model was discretized along the spatial domain (using
an equally spaced grid of size Ns = 128) and projected into
the Fourier domain. Defining ū = F(u) to be the discrete
Fourier transform of u evaluated at an even number Ns of
spatial locations, this becomes,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂
∂t ū = − ik

2 ū
2 + (

k2 − k4
)
ū, t ∈ (0, 150]

k ∈ {0, . . . , Ns/2 − 1, 0,−Ns/2 + 1, . . . ,−1}/16,
ū = F

(
cos

( xi
16

) {
1 + sin

( xi
16

)})
, t = 0,

i = 1, . . . , Ns .

(12)

Following Kassam and Trefethen (2005), the integrating fac-
tor method is applied in order to retain only the purely
nonlinear terms of the 128-dimensional ODE initial value
problem (12). Complex dynamics emerge in this model as
energy is transferred from low to high wave numbers, which
manifests itself through the visible onset of chaotic dynam-
ics, as shown in Fig. 1. The figure shows an average of
J = 10 trajectory images drawn from the posterior over
the state obtained via Algorithm 1. Clearly defined patterns
near the base of each figure indicate trajectories that are
almost exactly the same, while cloudy patterns near the top of
each figure indicate differences between realizations. Greater
solver accuracy due to finer discretization grid spacing (from
left to right) pushes the onset of chaos further forward in time.
The motivation of the present work is to improve accuracy
by arranging a fixed number of discretization grid points to
maximize the amount of information obtained about the solu-
tion.
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2.2 Adaptive step-size selection for numerical
methods

In numerical analysis, step-size control is the problem of
choosing a grid spacing that reduces the local truncation
error. Local error is defined as the error incurred at a given
step of a numerical solver under the assumption that the
step begins at the exact solution and that there is no round-
off error. In practice, this discrepancy is computed as the
difference between the output of the numerical solver ûi
at time si and the exact solution obtained by integrating
the ODE from time step si−1 with initial condition given
by ûi−1, the output of the numerical solver at time si−1.
This computable estimate, lei , of the local error is given
by:

lei = ûi − u†(si ; ûi−1), (13)

where ûi is the numerical solution at step i and u†(si ; ûi−1)

is the exact solution at si of the forward model (1) on the
domain [si−1, si ] when the initial condition at si−1 is ûi−1.
The local error typically has the following solver-dependent
form:

lei = h p+1
i φ

(
si , ûi

) + O
(
h p+2
i

)
, (14)

where hi = si − si−1 denotes the step length and the
principal error function φ depends both on the numeri-
cal method and the functional form of the vector field.
Based on this approximation, a variety of strategies can be
adopted, from placing an upper bound on the local error
at each step and halving the step size until this criterion
is met, to choosing a step length out of several candi-
dates with the smallest local error. An overview of these
techniques for one-step methods is provided in Shampine
(2005).

In contrast, controlling the global error, the difference
between the approximation and the exact solution, requires
numerically solving the system of differential equations
more than once, which is often impractical and will not
be considered in the present work. We note, however,
that although the rate of error propagation depends on
the form of the forward model, for most stable (non-
stiff) ODE initial value problems, ensuring that local error
remains very low at each step (e.g., under a small max-
imum step size) will translate to smaller global error
overall, as will be illustrated in subsequent numerical exper-
iments.

2.3 Bayesianmaximum entropy designs

Bayesian statistical design is the problem of choosing an
input s from a set S at which to measure data y, which

belongs to a sample space Y and depends on an unknown
quantity u ∈ U . In the language of decision theory (see,
for example, Bernardo and Smith 1994 p. 148, Chaloner
and Verdinelli 1995; Sebastiani and Wynn 2000), the choice
of s is called a decision and is associated with a user-
defined utility function v : U × Y × S → R that
reflects the gain associated with the decision. Choice of
the utility function v depends on the goal of the inference
problem and the application. An overview of several popu-
lar utility functions is provided in Chaloner and Verdinelli
(1995).

Because u is unknown and y has not yet been observed,
the objective function is the expectation of the utility with
respect to their joint density. A design point s is selected if it
maximizes the expected utility, v, of additional information
y(s) about the unknown quantity u,

s = argmax
s∈S

∫
Y
Eu|y,sv (u, y(s), s) dy. (15)

Here, we consider a utility function motivated by infor-
mation theory. Define the negative entropy Ent(w) :=
Ew {− log pw(w)}, of a random variable w with density
pw, and the utility function v(u, y(s), s) = Ent(u) −
Ent (u | y(s)). The resulting optimization problem is,

s = argmax
s∈S

∫
Y

{Ent(u) − Ent (u | y(s))} dy. (16)

The integrand in the above expression is known as the
Kullback–Leibler (KL) entropy (Kullback and Leibler 1951),
a non-symmetric discrepancy between the priorμpr and pos-
terior μpt measures over u, denoted by D (

μpt || μpr
)
. The

expression for the KL entropy between finite-dimensional
prior and posterior Gaussian measures is well-known. When
μpr and μpt are infinite-dimensional Gaussian processes
with means mpr ,mpt and covariances
C pr ,C pt , D (

μpt || μpr
)
has the form (e.g., Alexanderian

et al. 2016),

D (
μpt || μpr ) = 1

2

[
log det

{
I + (

C pr )1/2 D∗D
(
C pr )1/2}

− tr
(
D∗DC pt) + 〈mpt − mpr ,mpt − mpr 〉(C pr )−1

]
,

(17)

where 〈·, ·〉C represents the weighted inner product between
two square-integrable functions on the domain [0, L] and
|| · ||C represents its induced norm. In the following section,
we discuss how this design principle can be applied to the
choice of step length for Algorithm 1.
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3 Methods

Our goal is to maximize the information gain about the
unknown model state u ∈ U which solves the initial value
problem (1), by choosing the placement of model inter-
rogations sequentially. This is equivalent to choosing the
length of the time step in Algorithm 1. The present appli-
cation is well-suited to such a sequential approach because
interrogating the model at candidate locations, that is, evalu-
ating the vector field f (·) in Eq. (1), is computationally less
expensive than making a single update of the probabilistic
solver.
Though the criterion requires evaluating the vector field once
for every parallel Monte Carlo sample generated, we rec-
ommend that if a large Monte Carlo sample is desired, a
sub-sample of the J evaluations be used to approximate the
expected utility function (16).

The proposed algorithm will begin by training the model
over a small number S of initial steps of equal size h until
it reaches a pre-determined starting point a = Sh for the
adaptation. In our numerical experiments, we chose this
start time to be a = 0.1L , where L is the upper limit
of integration in (1). For each iteration i > S, the algo-
rithm will consider a small number P of candidate points
on each interval Ii = (si , si + hmax], where hmax is a
maximum allowed step length chosen by the user. We rec-
ommend taking hmax to be the step size associated with
the lowest resolution one would be willing to tolerate, in
terms of the local error. The candidate locations, denoted
by s1i , . . . , s

P
i , form an ordered partition of the domain Ii

such that si < s1i < · · · < sPi = si + hmax. In our numerical
experiments, these are chosen to be equally spaced. Although
a choice of P = 2 ensures the easiest visualization of the
discretization grid for our numerical experiments, P can be
as large as desired subject to computational considerations.
A Monte Carlo estimate of the expected utility function (16)
will be optimized over this partition to choose the next design
point. Section 3.2 will provide additional recommendations
and details of the settings used in our numerical experi-
ments.

3.1 Objective function

Recall that the posterior (2) over u given f (·), u1 is a continu-
ous mixture of Gaussians, weighted by the analysis densities
p( fi | ui ). Therefore, at each step, the integrand in (16) can,
at least in principle, be computed exactly. The outer integral
with respect to the marginal density p( fi | ui ) of the “data”
in (16) can be approximated based on a Monte Carlo sample
of trajectories of size J . Thus, the objective function in (16)
becomes,

∫
D

(
μu| f1:i+1 || μu| f1:i

)
d fi+1,

≈ 1

J

∑J

j=1
D

(
μu| f ( j)

1:i+1 || μu| f ( j)
1:i

)
, (18)

where { f ( j)
i }, j = 1, . . . , J , i = 1, . . . , N is an ensemble

of J vector field evaluations computed by running Algorithm
1 in parallel.

In principle, we wish to evaluate the expected utility
function (18) at the P candidate points within the interval
Ii = (si , si + hmax] for each iteration i > S. In practice,
this task must be balanced with computational considera-
tions. The Kullback–Leibler divergence in (18) consists of
three terms of different importance in the context of step-size
selection. The first two terms depend on the trajectory-wise
covariance functionsCi andCi+1 computed before and after
a single update.While these functions dependon the step size,
they are independent of the state and vector field. Indeed,
numerical experiments suggest that these terms change little
with step size relative to the third term of the expression,
which depends directly on the state. Since the covariances in
the first two terms typically remain relatively stable within
the interval Ii , we assume that the contribution of these terms
toward distinguishing between the candidate points is neg-
ligible. The third term has the most direct dependence on
the forward model and is assumed to be the main source of
variability in the objective function over the interval Ii . This
third term can be expressed as,

〈mi − mi−1,mi − mi−1〉
Ci−1−1

=
∣∣∣
∣∣∣Ki−1(·, s)

{
f (s) − Dmi−1(s)

}∣∣∣
∣∣∣2
Ci−1(·,·)−1 ,

=
∣∣∣∣
∣∣∣∣
{
Q(s, s) + DCi−1(s, s)D∗}−1

·
{
f (s) − Dmi−1(s)

}∣∣∣∣∣∣2
Λ

, (19)

with weight function Λ(t, t) given by,

Λ(t, t) = DCi−1(s, t)Ci−1(t, t)
−1

Ci−1(t, s)D∗. (20)

Expression (19) can be simplified to,

∫ L

a
Λ(t, t)dt

{
Q(s,s) + DCi−1(s, s)D∗}−2

·
{
f (s) − Dmi−1(s)

}2
, (21)

corresponding to the squared difference between the next
model evaluation f (s) and the predicted mean Dmi−1(s),
scaled by the strength of correlation between u(t) and f (s),
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and inversely proportional to the error variance Q(s, s) of
Du at time s. This intuitively describes the idea of choosing
a design point si+1 ∈ Ii in such a way that the information
obtained at this point has not been well-explained by the
updated model up to that point. This yields the following
rule for selecting the next discretization grid location,

si+1 = argmaxs∈{s1i ,...,sPi }
∫ L

a
Λ(t, t)dt

(
Q(s, s) + DCi−1(s, s)D∗)−2

· 1
J

∑J

j=1

(
f ( j)(s) − Dmi−1( j)(s)

)2
, (22)

which maximizes the information provided by the vector
field at the new location, as quantified by approximation (18)
to the expected utility function (16). Note that the weight∫ L
a Λ(t, t)dt cannot in general be computed in closed-form.
Although using a numerical approximation of this quan-
tity may appear undesirable in the context of a probabilistic
numerical method, this quantity only serves to select the step
length of the algorithm. In other words, discretization uncer-
tainty associated with its use is still accounted for by the
model in a separate calculation.

3.2 Implementation details

Implementing a state-space based probabilistic method
requires choosing a suitable covariance structure and its
hyperparameters. Chkrebtii et al. (2016a) suggest that the
covariance structure should reflect our a-priori assumptions
about the smoothness of the unknown solution u†. This,
however, must be balanced with computational efficiency
considerations because judicious choices can significantly
speed up implementation. For example, when the covariance
has bounded support, updating themean and covariances (23)
- (25) only requires updating of a subset of their elements
from the previous iteration. Thus, our numerical experi-
ments employ a uniform covariance structurewith half-width
(length-scale) equal to the maximum allowed step length
hmax. The covariance prior precision is chosen to be small
(0.1) in order to reflect our initial uncertainty about the
range of the solution. When observations on the states are
available, these hyperparameters can also be learned from
the data within the inverse problem (e.g., Chkrebtii et al.
2016a).

3.3 Relationship between adaptation and local
truncation error

An important consideration is how to quantify the reduc-
tion in the error associated with different discretizations of a

Algorithm 2 Sequential grid-adaptive Monte Carlo algo-
rithm to sample from the posterior (2) at T evaluation points
x1:T ∈ [0, L]T , ordered grid points s1:S ∈ [0, L]S , and can-
didate discretization grid points s1:P(S+1):N ∈ [0, L](N−S)P

1: Define t =
(
s1:S, s1:P(S+1):N , x1:T

)
, where 0 = s1 < s2 < · · · <

sN = L , for i > S the partitions are si < s1i < · · · < sPi =
si + hmax, and for i ≤ S we have si = si−1 + h. The functions
C0,m0, and Q are defined in Sect. 2.1. The state u, vector field f ,
and the linear differential operator D, are defined in Eq. (1).

2: Compute f ( j)
1 = f (s1, u1) , j = 1, . . . , J

3: for i = 1 : N do
4: for j = 1 : J do
5: Given f ( j)

i , compute the following quantities recursively,

K i (t, si ) = Ci−1(t, si )D∗ {
Q(si , si )

+DCi−1(si , si )D∗}−1
,

(23)

mi( j)(t) = mi−1( j)(t) + K i (t, si )
{
f ( j)
i

−Dmi−1( j)(si )
}

,
(24)

Ci (t, t) = Ci−1(t, t)
−K i (t, si )DCi−1(si , t); (25)

6: end for
7: if i < N then
8: if i > S then
9: Choose the next grid point by maximizing the objective

function

si+1 = argmaxs∈{s1i ,...,sPi }∫ L
a Λ(t, t)dt

{
Q(s, s) + DCi−1(s, s)D∗}−2

· 1J
∑J

j=1

(
f ( j)(s) − Dmi−1( j)(s)

)2
(26)

10: end if
11: for j = 1 : J do
12: Sample ũi( j)i+1 from

GP
(
mi( j)(si+1),C

i (si+1, si+1)
)

13: Compute f ( j)
i+1 = f

(
si+1, ũ

i( j)
i+1

)
14: end for
15: end if
16: end for
17: For each j = 1, . . . , J , sample and retain a draw ũN ( j)

1:T from
GP (

mN ( j)(x1:T ),CN (x1:T , x1:T )
)
to approximate any desired pos-

terior functionals.

state-space based probabilistic algorithm. This can be done
by relating the step length adaptation based on Bayesian
experimental design to numerical methods that control a
computable estimate of local truncation error. For this, we
generalize the concept of truncation error to stochastic mod-
els of uncertainty. We propose to consider the expected local
error:

elei = Eu| f (·),u1
{
ui − u†(si ; ui−1)

}
, (27)

123



1292 Statistics and Computing (2019) 29:1285–1295

and its Monte Carlo estimator:

ˆelei = 1

J

J∑
j=1

{
ũN ( j)
i − u†(si ; ũN ( j)

i−1 )
}

. (28)

In the following section, simulation studies will be used to
compare the distribution of this estimated expected local
truncation error between the probailistic state-space solver
implemented using an adaptive and an equally spaced design.

4 Results

To illustrate the performance of adaptive step-size selection
for the probabilistic numerical solver, we consider two exam-
ples. First, we consider the simple second-order initial value
problem (Chkrebtii et al. 2016a)

{ d
dt2

u2 = sin(2t) − u, t ∈ [0, 10],
d
dt u(0) = 0, u(0) = −1,

(29)

which is reduced to a first order ODE initial value prob-
lem with two states. Figures 2 and 3 show 100 draws from
the probabilistic solution in gray with minimum grid sizes
N = 25 and N = 100, respectively. The exact solu-
tion u(t) = u(0) cos(t) + ( d

dt u(0) + 2
3

)
sin(t) − sin(2t) is

superimposed in red for comparison. Note that the second
state (lower panel) is the derivative of the first state (upper
panel). The gray vertical lines illustrate the density of the
adaptively chosen discretization grid. Figure 2 illustrates
that larger steps are taken when the derivative is chang-
ing quickly, corresponding to large posterior variance in
those regions. This is due to the fact that the step length
is chosen to maximize the weighted difference between
the predictive mean and the vector field evaluation at each
candidate point. Figure 3 illustrates that the adaptive algo-
rithm behaves similarly given a finer grid of discretization
points.

The second example we consider is the “Lorenz63”model
of simplified convection dynamics for three states (Lorenz
1963) on the interval t ∈ [0, 5]. The forwardmodel is defined
implicitly by:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
u(1) = −σ(u(1) + u(2)),

d

dt
u(2) = −ru(1) − u(2) − u(1)u(3),

d

dt
u(3) = u(1)u(2) − bu(3),

u(0) = (−12,−5, 38),

(30)

with parameter values (σ, r , b) = (10, 8/3, 28). This
model is stiff due to the presence of linear and nonlinear

Fig. 2 Marginal sample paths (light solid lines) over the state (toppanel)
and derivative (bottom panel) trajectories for the second-order ODE
initial value problem (29) obtained using algorithm 2 with a minimum
grid size of N = 25. The exact solution and its derivative are shown as
dark solid lines, and discretization grid point locations are identified by
vertical lines

Fig. 3 Marginal sample paths (light solid lines) over the state (top
panel) and derivative (bottom panel) trajectories for the second-order
ODE initial value problem (29) obtained using Algorithm 2 with a
minimum grid size of N = 100. The exact solution and its derivative
are shown as dark solid lines, and discretization grid point locations
are identified by vertical lines, so that a darker region corresponds to a
sequence of smaller steps

terms and is therefore challenging to approximate numer-
ically without adaptively selecting the step length. Since
the exact solution is unknown, we will use the MATLAB
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Fig. 4 Mean over 100 simulation runs of the logarithm of integrated
mean squared error for the adaptive (aUQDES, thick line) and equally
spaced grid probabilistic numerical solver (UQDES, thin line) for two
forward models. Top: the ODE initial value problem (29). Bottom: the
Lorenz63 model

ode15 solver for assessing the performance of our adaptive
method.

For both systems, we conduct simulations to compare the
performance between an adaptive grid probabilistic solver
with a probabilistic solver set up over a grid of equally
spaced design points. To ensure a fair comparison, we run the
adaptive probabilistic solver first. The resulting total num-
ber of steps selected by this algorithm is then used to set
up the equidistant design for the probabilistic solver imple-
mentation. Posterior draws from both implementations are
compared in terms of the log integrated mean squared error
(IMSE) centered at the exact solution, if available, and at a
fine-grid numerical solution otherwise. The IMSE may be
viewed as the probabilistic analog of global error, which
is in general not accessible in practice and is therefore not
directly optimized. However, for stable systems, controlling
local error at each step can lead to lower global error or, as
in this case, lower IMSE.

Figure 4 illustrates the increased accuracy of using an
adaptive UQDE algorithm compared to one that is con-
structed on an equally spaced grid. Accuracy is compared
via the log IMSE over a number of grid sizes for the two
test models described above. As expected, the log IMSE
decreases as the discretization grid becomes finer, and the
adaptive algorithm appears to have greater accuracy than the
algorithm implemented over a uniform grid.

Figure 5 is a visualization of the distribution of local errors
between the state-space probabilistic solver with adaptive
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Fig. 5 Kernel density estimate of the distribution of estimated local
truncation errors for model (29) under an equally spaced design (thin
lines) and an adaptive design (thick lines). As the minimum number of
grid points increases (from dotted to solid lines), both densities become
more concentrated around 0, as expected. However, the density of esti-
mated local errors appears to always have more mass around zero for
the adaptive algorithm as compared to the uniform design

and equally spaced designs. The probabilistic analog of local
error described in Sect. 3.3 is estimated at each step of the
algorithm for different values hmax. Local truncation errors
typically increase with the step length, and thus we expect
more variability in the local errors for the adaptive algorithm,
because step sizes can change. Despite this fact, we observe
that the estimated local errors have more mass near zero than
the solver based on a uniform design and the overall spread
is quite low. The adaptive algorithm appears to out-perform
the algorithm without step-size adaptation for all values of
the maximum step length considered.

5 Conclusions

The explicit solution to an ODE initial value problem is a
source of model uncertainty when the implicitly defined for-
ward model cannot be solved analytically. In this paper, we
consider uncertainty quantification based on the state-space
probabilistic solver from Chkrebtii et al. (2016a). Viewed
as a Kalman filter, this approach can be set up to adaptively
select the step length after individual updates.By sequentially
optimizing a criterion inspired by principles of experimen-
tal design with an information-theoretic utility function, we
have developed a technique that decreases the step length
when the predicted trajectory differs substantially from the
evaluation of the forward model. In order to study and assess
the performance of this adaptive algorithm, we proposed an
analog of numerical local truncation error for probabilistic
solvers. Another proposed way to assess accuracy, the IMSE,
is an analog of global error. However, just like global error,
it cannot be computed exactly unless the solution is known
or can be approximated to a high degree of accuracy, which
is the setting for our numerical experiments.

123



1294 Statistics and Computing (2019) 29:1285–1295

The feature of a probabilistic solver that makes sequen-
tial design very appealing is the ability to generate “data”
in less time than it takes to complete a single model update.
Therefore, the design criterion used can simply be optimized
over candidate observations, thus extracting more informa-
tion from the model. Though this is not the typical scenario
when dealing with observational data, other applications that
have this feature include design for computer experiments,
when the problem is formulated sequentially, such as in Hig-
don et al. (2013).

Practical consideration in the implementation of adaptive
numerical solvers was discussed, including prior specifica-
tion. A method that chooses step sizes adaptively should
also have flexibility in how each of those evaluations is
weighted. In other words, the length-scale of the covari-
ance structure must be able to adapt to local changes in
the step length. There has been some work on developing
suchnon-stationary covariances forGPmodels (Paciorek and
Schervish 2004, 2006); however, translating this work to a
probabilistic model requires integration or differentiation of
these covariances in closed-form, which can be a challenging
problem.

Decreasing the computational cost of adaptive algorithms
is another important issue worth exploring. For numerical
methods, the additional computation required to adaptively
select the step length is worthwhile, especially in the case of
stiff forward models. A similar argument can be made for
probabilistic solvers.

In this paper, we have shown that, just like numerical
techniques, probabilistic state-space solvers can benefit from
step-size adaptation. As for numerical methods, there are
different ways of accomplishing this task. We have chosen
a technique based on the principles of experimental design
with an information-theoretic utility functions. Another pos-
sible approach would be to approximate at each step and
control the estimated expected local error. Other interesting
questions include investigating and comparing such different
approaches, both numerically and theoretically.
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