Test 2, 69.114 Section E Exam Version 1

1. Let
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 be given by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1^2 \\ x_2^2 \end{bmatrix}$. Is T linear? (a)Yes (b)No.

Answer: (b).

2. Is the matrix
$$\begin{pmatrix} 1 & 1 & 2 \\ -1 & 1 & 7 \\ 2 & 2 & 4 \end{pmatrix}$$
 invertible?

Answer: (b).

3. Let $A = \begin{pmatrix} 3 - \lambda & 2 \\ 2 & 6 - \lambda \end{pmatrix}$. There are two values of λ that make $\det A = 0$. Find the sum of these two values of λ .

Answer: (d).

4. Consider the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 7 \\ -1 & 3 & 1 \end{pmatrix}$. What is detA?

(a)
$$10$$
 (b) -10 (c) 11 (d) -11 .

Answer: (d).

5. Let
$$A = \begin{pmatrix} 7 & -1 & 1 & 0 \\ 3 & 0 & 1 & 0 \\ 4 & 0 & 0 & 0 \\ 9 & 5 & 3 & 7 \end{pmatrix}$$
. What is det A ?

Answer: (b).

6. Let T be the linear transformation given by $T\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{bmatrix} 2x_1 + 3x_2 \\ -x_1 + x_2 \end{bmatrix}$. Let S be the inverse linear transformation of T. Then, S is

(a)
$$\begin{bmatrix} \frac{1}{5}x_1 - \frac{3}{5}x_2 \\ \frac{1}{5}x_1 + \frac{3}{5}x_2 \end{bmatrix}$$
 (b) $\begin{bmatrix} x_1 - 3x_2 \\ x_1 + 2x_2 \end{bmatrix}$ (c) $\begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$ (d) $\begin{bmatrix} \frac{2}{5}x_1 + \frac{3}{5}x_2 \\ -\frac{1}{5}x_1 + \frac{1}{5}x_2 \end{bmatrix}$.

Answer: (a).

7. Let $A = \begin{pmatrix} 3 & 7 & -2 \\ 0 & 5 & 3 \\ 1 & 2 & -1 \end{pmatrix}$. What is the largest positive entry of A^{-1} ?

(a) 11/2 (b) 15/2 (c) 17/2 (d) 13/2.

Answer: (a).

8. If $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ is the solution of the system $A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$, where

$$A^{-1} = \begin{pmatrix} 1 & 2 & 4 \\ 1 & -3 & 0 \\ 2 & 1 & 5 \end{pmatrix}.$$

Then what is $x_1 + x_2 + x_3$?

(a)1 (b)19/3 (c)6 (d)0.

Answer: (a).

9. Let $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$. We know that $\det A = 4$. Let $B = \begin{pmatrix} a - b & b & 2c \\ d - e & e & 2f \\ g - h & h & 2i \end{pmatrix}$. What is $\det B$?

(a)8 (b)-8 (c)4 (d)-4 .

Answer: (a).

10. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 + x_2 \\ x_1 - x_2 \\ 6x_1 + 3x_2 \end{bmatrix}$. Then,

- (a) T is 1-1 (injective) and onto (surjective)
- (b) T is 1-1, but not onto
- (c) T is onto, but not 1-1
- (d) T is neither 1-1 nor onto.

Answer: (b).