INVERSE OF A MATRIX

Definition: Let A be an $n \times n$ square matrix. If there is a matrix B such that

$$AB = BA = I_n$$

then A is said to be invertible and B is called the inverse of A.

Theorem: Let

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

be a 2×2 matrix.

A is invertible $\Leftrightarrow ad - bc \neq 0$.

And,

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

If ad-bc=0, then A is not invertible. ad-bc is called the determinant of A, and denoted by

$$|A| = \det A = ad - bc.$$

Theorem: If A is an invertible $n \times n$ matrix then for each $b \in R^n$, the equation AX = b has the unique solution

$$X = A^{-1}b.$$

Example: Consider the matrix

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right].$$

We want to have a matrix, A^{-1} , such that $AA^{-1} = I_2$.

$$ad - bc = 1 \cdot 4 - 3 \cdot 2 = 4 - 6 = -2 \neq 0$$

so A is invertible, and

$$A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$$
, and

$$AA^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2.$$

Example: Solve the equation

$$AX = \begin{bmatrix} -4 & -5 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Solution:

$$|A| = ad - bc$$

= $-4 \cdot 6 - (-5) \cdot 5$
= $-24 + 25$
= $1 \neq 0$,

so A is invertible, and

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -4 & -5 \\ 5 & 6 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 5 \\ -5 & -4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 11 \\ -9 \end{bmatrix}.$$

ELEMENTARY MARTRICES

An elementary matrix is obtained by performing a single row operation on an identity matrix.

Example: Consider the following matrices:

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} R_2 \longleftrightarrow R_3$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad R_2 \longleftrightarrow R_3$$

Then,

$$A \sim \begin{bmatrix} a & b & c \\ g & h & i \\ d & e & f \end{bmatrix}$$
 and $I \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = E_1$.

$$E_{1}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
$$= \begin{bmatrix} a & b & c \\ g & h & i \\ d & e & f \end{bmatrix}.$$

ii)
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 $R'_2 = R_2 + 2R_1$

$$A \sim \begin{bmatrix} a & b & c \\ 2a + d & 2b + e & 2c + f \\ g & h & i \end{bmatrix}.$$

Corresponding elementary matrix:

$$E_2 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

 $(R'_{2} = R_{2} + 2R_{1}: a_{21} \text{ entry in } I_{3} \text{ is } 2).$

$$E_2 A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$= \begin{bmatrix} a & b & c \\ 2a+d & 2b+e & 2c+f \\ g & h & i \end{bmatrix}.$$

iii)
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 $R'_1 = 2R_1$. Then

$$A \sim \left[egin{array}{ccc} 2a & 2b & 2c \ d & e & f \ g & h & i \end{array}
ight],$$

and the corresponding elementary matrix is

$$E_3 = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right],$$

(E_3 is obtained by multiplying the first row of I_3 by 2), and

$$E_3A = \begin{bmatrix} 2a & 2b & 2c \\ d & e & f \\ g & h & i \end{bmatrix}.$$

Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the same type that transforms E back into I.

Example:

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, E_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

$$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$E_3 = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_3^{-1} = \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Example: Consider the following elementary matrices.

$$R_1' = R_1 - 3R_2$$
: $E_1 = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}$,

$$R_2' = 4R_2$$
: $E_2 = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$,

$$R_1 \leftrightarrow R_2$$
: $E_3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Then,
$$E_1^{-1} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$
, $E_2^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1/4 \end{bmatrix}$

and
$$E_3^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
.

Example: Find the inverse of

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 4 & 2 & 0 \end{bmatrix}.$$

Solution:

$$\begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & 0 & 1 & 0 \\ 4 & 2 & 0 & | & 0 & 0 & 1 \end{bmatrix} \quad R'_{3} = R_{3} - 4R_{1}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & 0 & 1 & 0 \\ 0 & 2 & 0 & | & -4 & 0 & 1 \end{bmatrix} \quad R_2 \longleftrightarrow R_3$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & -4 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} \quad R_2' = \frac{1}{2}R_2$$

$$\sim \left[egin{array}{c|cccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -2 & 0 & 1/2 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{array}
ight].$$

Thus
$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1/2 \\ 0 & 1 & 0 \end{bmatrix}$$
.

$$E_1: R_3' = R_3 - 4R_1, \quad a_{31} = -4, \text{ and}$$

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}.$$

$$E_2: R_2 \longleftrightarrow R_3$$
, and $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.

 E_3 : $R_2' = \frac{1}{2}R_2$. We multiply the second row of I by 1/2. So

$$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Indeed, $E_3 E_2 E_1 A = I$, and $A^{-1} = E_3 E_2 E_1$.

$$E_3 E_2 E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1/2 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 1/2 \\ 0 & 1 & 0 \end{bmatrix} = A^{-1}.$$

Example: Write
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 and A^{-1}

as products of elementary matrices.

Solution: First we compute A^{-1} .

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \quad (R_2' = R_2 - R_1)$$

$$\sim \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{bmatrix} \quad (R_1' = R_1 - R_2)$$

$$\sim \left[egin{array}{c|ccc} 1 & 0 & 2 & -1 \ 0 & 1 & -1 & 1 \end{array}
ight].$$

Thus
$$A^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$
.

$$R_2' = R_2 - R_1 : E_1 = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}.$$

$$R_1' = R_1 - R_2$$
: $E_2 = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$.

Therefore,

$$A = (E_2 E_1)^{-1} = E_1^{-1} E_2^{-1}$$
$$= \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix},$$

$$A^{-1} = E_2 E_1$$

$$= \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}.$$

The Invertible Matrix Theorem

Let A be a square nxn matrix. Then the following statements are equivalent.

- 1) A is an invertible matrix.
- 2) A is row equivalent to I_n .
- 3) A has a pivot position in each row.
- 4) A has a pivot position in each column.

- 5) The equation Ax = 0 has only the trivial solution.
- 6) The columns of A form a linearly independent set.
- 7) The equation Ax = b is consistent for every b in \mathbb{R}^n .
- 8) The columns of A span \mathbb{R}^n .
- 9) A^T is an invertible matrix.
- 10) There is an nxn matrix C such that AC = CA = I.

- 11) The linear transformation T(x) = Ax is one-to-one.
- 12) The linear transformation T(x) = Ax is onto.

Example: Use Invertible matrix theorem to decide if the matrix

$$A = \left[\begin{array}{ccc} 5 & 3 & 2 \\ 0 & 7 & 1 \\ 0 & 0 & 9 \end{array} \right]$$

is invertible.

Solution: A has n pivot positions. A is row equivalent to I_3 . So, A is invertible.

Remark: Invertible matrix theorem applies only to square matrices.

Example: Let

$$A = \begin{bmatrix} 1 & 3 & -5 \\ 0 & 2 & -3 \\ 0 & -4 & 7 \\ -1 & 5 & -8 \end{bmatrix} R_4' = R_4 + R_1$$

$$\sim \begin{bmatrix} 1 & 3 & -5 \\ 0 & 2 & -3 \\ 0 & -4 & 7 \\ 0 & 8 & -13 \end{bmatrix} R_3' = R_3 + 2R_2$$

$$\sim \begin{bmatrix} 1 & 3 & -5 \\ 0 & 2 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix} R_4' = R_4 + R_3$$

$$\sim \begin{bmatrix} 1 & 3 & -5 \\ 0 & 2 & -3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

There are three basic variables and no free variables. So, columns of \boldsymbol{A} are linearly independent.

AX=0 has only trivial solution. But for

$$b = \left| \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} \right|,$$

we have

which does not have any solutions.

Columns of A are linearly independent but they do not span \mathbb{R}^4 .

Exercise: Let

$$A = \begin{bmatrix} 2 & 5 \\ -1 & -3 \\ 2 & 4 \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 0 & -1 \end{bmatrix}.$$

Verify that $CA = I_2$. Is A invertible? Explain your answer. **Example:** Let A be a matrix such that $A^3 = 0$. Use this to simplify $(I - A)(I + A + A^2)$, and then express $(I - A)^{-1}$ in terms of I and A.

Solution:

$$(I - A)(I + A + A^{2})$$

$$= I + A + A^{2} - A - A^{2} - A^{3}$$

$$= I - A^{3} = I.$$

So,
$$(I - A)^{-1} = I + A + A^2$$
.

Properties of Invertible Matrices

Let A and B be $n \times n$ invertible matrices. Then,

$$(A^{-1})^{-1} = A$$
, $(AB)^{-1} = B^{-1}A^{-1}$,
 $(kA)^{-1} = (1/k)A^{-1}$, $(A^T)^{-1} = (A^{-1})^T$.

Example: Suppose PXQ = R, where P and Q are invertible matrices. Express X^T in terms of P^T , Q^T and R^T .

Solution: From $(PXQ)^T = R^T$ we obtain $Q^TX^TP^T = R^T$. Then, $X^T = (Q^T)^{-1}R^T(P^T)^{-1}$.

Exercise: Solve the equation $C^{-1}(A+X)B^{-1}=I$ for X, assuming that A, B and C are all $n\times n$ matrices, and that B and C are invertible.

INVERSE OF A LINEAR TRANS-FORMATION

Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation. T is said to be invertible if there exists a linear transformation $S: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ such that S(T(X)) = X and T(S(X)) = X for all X in \mathbb{R}^n .

Theorem: Let $T: R^n \longrightarrow R^n$ be a linear transformation, and let A be the standard matrix for T. Then, T is invertible if and only if A is invertible, and the inverse of T is given by $S(X) = A^{-1}X$.

Example: Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be given by

$$T\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = \left[\begin{array}{c} 6x_1 - 8x_2 \\ -5x_1 + 7x_2 \end{array}\right].$$

Show that T is invertible and find a formula for T^{-1} .

Solution:

$$A = \left[\begin{array}{cc} 6 & -8 \\ -5 & 7 \end{array} \right].$$

$$det A = 6 \cdot 7 - (-5) \cdot (-8)$$
$$= 42 - 40 = 2 \neq 0.$$

A is invertible, and so T is invertible.

$$A^{-1} = \frac{1}{2} \begin{bmatrix} 7 & 8 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 7/2 & 4 \\ 5/2 & 3 \end{bmatrix}$$
, thus

$$S(X) = A^{-1}X = \begin{bmatrix} 7/2 & 4 \\ 5/2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \begin{bmatrix} (7/2)x_1 + 4x_2 \\ (5/2)x_1 + 3x_2 \end{bmatrix}.$$

Verify:

$$T(S(X)) = T(S\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right)$$

$$= T\left(\begin{bmatrix} (7/2)x_1 + 4x_2 \\ (5/2)x_1 + 3x_2 \end{bmatrix}\right)$$

$$= \begin{bmatrix} 6 & -8 \\ -5 & 7 \end{bmatrix} \begin{bmatrix} (7/2)x_1 + 4x_2 \\ (5/2)x_1 + 3x_2 \end{bmatrix}$$

$$= \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = X.$$

Similarly, S(T(X)) = X as well.