INNER PRODUCT, LENGTH, and ORTHOGONALITY

Definition: Let

$$u = \left[egin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_n \end{array}
ight] ext{ and } v = \left[egin{array}{c} v_1 \\ v_2 \\ \vdots \\ v_n \end{array}
ight]$$

be two vectors in \mathbb{R}^n . Then the inner product of u and v is

$$u \cdot v = u^T v = u_1 v_1 + u_2 v_2 + \dots + u_n v_n.$$

Example: Let
$$u = \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix}$$
, $v = \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix}$.

Then

$$u \cdot v = u^{T}v = [3 - 1 - 5] \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix}$$

$$= 3 \cdot 6 + (-1) \cdot (-2) + (-5) \cdot 3$$

$$= 18 + 2 - 15 = 5, \text{ and}$$

$$v \cdot u = v^{T}u = [6 - 2 \ 3] \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix}$$

$$= 6 \cdot 3 + (-2)(-1) + 3 \cdot (-5)$$

$$= 18 + 2 - 15 = 5.$$

So,
$$u \cdot v = v \cdot u$$

Properties of the inner product

Let u, v, and w be vectors in \mathbb{R}^n and c be a scalar. Then,

$$1) u \cdot v = v \cdot u$$

2)
$$(u + v) \cdot w = u \cdot w + v \cdot w$$

3)
$$(cu) \cdot v = c(u \cdot v) = u \cdot (cv)$$

4)
$$u \cdot u \ge 0$$
 and $u \cdot u = 0 \Longleftrightarrow u = 0$

Definition (the length of a vector):

If $v = (v_1, v_2, \dots, v_n)$ in \mathbb{R}^n , then the length (or norm) of v is defined by

$$||v|| = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Then, $||v||^2 = v \cdot v$. A vector whose length is one unit is called a unit vector.

Example: Let v = (2, -3, 1). Find the length of v and a unit vector in the direction of v.

Solution:

$$||v||^2 = v \cdot v$$

= $2^2 + (-3)^2 + 1^2 = 4 + 9 + 1 = 14$,

and so, $||v|| = \sqrt{14}$. A unit vector in the direction of v is

$$\frac{1}{\sqrt{14}}(2, -3, 1) = \left(\frac{2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{1}{\sqrt{14}}\right) = u.$$

The process of creating u from v is called normalizing v.

Example: Let $W = \operatorname{Span} \left\{ \begin{vmatrix} 1 \\ -1 \\ 2 \end{vmatrix} \right\}$. Find

a unit vector
$$v$$
 which is a basis for W . Solution: let $u=\begin{bmatrix} 1\\-1\\2 \end{bmatrix}$. Then,

$$||u|| = \sqrt{1^2 + (-1)^2 + 2^2} = \sqrt{6}.$$

$$v = \frac{1}{\sqrt{6}}u = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{6}\\ -1/\sqrt{6}\\ 2/\sqrt{6} \end{bmatrix}.$$

Another unit vector is

$$-v = \begin{bmatrix} -1/\sqrt{6} \\ 1/\sqrt{6} \\ -2/\sqrt{6} \end{bmatrix}.$$

Definition (Distance between u and

v): Let u, v in \mathbb{R}^n . Then the distance between u and v is the length of the vector u - v. That is

$$dist(u, v) = ||u - v||.$$

Example: Let u = (1, 2, -1) and

$$v = (2, 1, 1)$$
 in R^3 . Then

$$dist(u,v) = ||u - v|| = ||(-1,1,-2)||$$
$$= \sqrt{(-1)^2 + 1^2 + (-2)^2} = \sqrt{6}.$$

Definition (Orthogonal vectors): Let u and v be two vectors in \mathbb{R}^n . Then u and v are orthogonal to each other $(u \perp v)$ if $u \cdot v = 0$. Note that $0 = \operatorname{zero}$ vector is orthogonal to every vector. **Example:** Let u and v in \mathbb{R}^n . Show that

$$u \perp v \iff ||u + v||^2 = ||u||^2 + ||v||^2.$$

Solution: (1) Let $u \perp v$. Then $u \cdot v = 0$, and so,

$$||u + v||^2 = (u + v) \cdot (u + v)$$

$$= u \cdot u + u \cdot v + v \cdot u + v \cdot v$$

$$= ||u||^2 + ||v||^2$$

(2) Let
$$||u+v||^2 = ||u||^2 + ||v||^2$$
.

Then we need to show that $u \perp v$, i.e, $u \cdot v = 0$.

$$||u + v||^2 = (u + v) \cdot (u + v)$$

$$= u \cdot u + u \cdot v + v \cdot u + v \cdot v$$

$$= ||u||^2 + ||v||^2 + 2u \cdot v$$

So,

$$||u + v||^2 = ||u||^2 + ||v||^2 \iff u \cdot v = 0.$$

By (1) and (2),

$$u \perp v \iff ||u + v||^2 = ||u||^2 + ||v||^2.$$

"The Phythagorean Theorem"

Definition: Let W be a subspace of \mathbb{R}^n .

- 1) If $z \in \mathbb{R}^n$ is orthogonal to every vector in W, then z is said to be orthogonal to W.
- 2) The set of all z that are orthogonal to W is called the orthogonal complement of W, and is denoted by W^T . That is ,

$$W^T = \{ z \in R^n \mid z \perp W \} .$$

Example: Let $S = \{(1, 2, 1), (1, -1, -1)\}.$ Find S^{\perp} .

Solution: A vector

$$v=(x,y,z)\in S^\perp\Longleftrightarrow v\cdot(1,2,1)=0$$
 and
$$v\cdot(1,-1,-1)=0.$$
 So,

*3*0,

$$(x,y,z)\cdot (1,2,1)=0$$
 and $(x,y,z)\cdot (1,-1,-1)=$ $x+2y+z=0$ and $x-y-z=0$;

which gives that

$$z = t$$
, $y = -2/3t$, $x = 1/3t$.
 $v = (x, y, z) = (\frac{1}{3}t, \frac{-2}{3}, t) = \frac{1}{3}t(1, -2, 3)$
 $= s(1, -2, 3)$,

Thus, $S^{\perp} = \text{Span}\{(1, -2, 3)\}$

Example: Suppose that a vector y is orthogonal to vectors u and v. Show that y is orthogonal to u + v.

Solution: let $y \perp u$ and $y \perp v$. Then, $y \cdot u = 0$ and $y \cdot v = 0$.

In order to show that y is orthogonal to u+v, we need to verify $y\cdot (u+v)=0$.

$$y \cdot (u + v) = y \cdot u + y \cdot v = 0 + 0 = 0.$$

So, y is orthogonal to u + v.

Example: Suppose the vectors u and v are orthogonal to the vector z. Show that u + v is orthogonal to z.

Solution: Let $u \perp z$ and $v \perp z$. Then,

$$(u+v) \cdot z = u \cdot z + v \cdot z = 0 + 0 = 0,$$

which means that $u + v \perp z$.

Theorem: 1) A vector x is in W^{\perp} if and only if x is orthogonal to every vector in a set that spans W.

2) W^{\perp} is a subspace of \mathbb{R}^n .

Theorem: Let A be an $n \times n$ matrix. Then,

$$(\operatorname{Row} A)^{\perp} = \operatorname{Null} A$$

 $(\operatorname{Col} A)^{\perp} = \operatorname{Null} A^T$

Proof: ii) In i), replacing A by A^T gives,

$$(\operatorname{Row} A^T)^{\perp} = \operatorname{Null} A^T$$
 $(\operatorname{Col} A)^{\perp} = \operatorname{Null} A^T.$

Definition: A set of non-zero vectors S is called an <u>orthogonal set</u> if each vector in S is orthogonal to other vectors in S, i.e,

$$S = \{v_1, v_2, \cdots, v_p\}$$
 is an orthogonal set
$$\iff v_i \cdot v_j = 0 \text{ if } i \neq j.$$

An orthogonal set in which each vector has length 1 is called an orthonormal set.

A basis consisting of orthogonal vectors is called an <u>orthogonal basis</u>.

A basis consisting of orthonormal vectors is called an <u>orthonormal basis</u>.

Example:
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

is an orthonormal basis for R^3 .

$$\left\{ \begin{bmatrix} 1\\ -2\\ 3 \end{bmatrix}, \begin{bmatrix} -2\\ 2\\ 2 \end{bmatrix}, \begin{bmatrix} 5/7\\ 4/7\\ 1/7 \end{bmatrix} \right\}$$

is an orthogonal basis for R^3 .

$$\left\{ \left[\begin{array}{c} -1 \\ 2 \\ 2 \end{array} \right], \left[\begin{array}{c} 2 \\ -1 \\ 2 \end{array} \right], \left[\begin{array}{c} 2 \\ 2 \\ -1 \end{array} \right] \right\}$$

is an orthogonal basis for R^3 .

$$\left\{ \begin{bmatrix} 2\\2\\4\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\-1\\1 \end{bmatrix}, \begin{bmatrix} -2\\0\\1\\1 \end{bmatrix} \right\}$$

is an orthogonal set in \mathbb{R}^4 .

Theorem: If $S = \{u_1, u_2, ..., u_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent.

Proof: Let $0 = c_1u_1 + c_2u_2 + \cdots + c_pu_p$ for some scalars $c_1, c_2, ..., c_p$. Then,

$$0 \cdot u_1 = (c_1 u_1 + c_2 u_2 + \dots + c_p u_p) \cdot u_1$$

$$0 = c_1 u_1 \cdot u_1 + c_2 u_2 \cdot u_1 + \dots + c_p u_p \cdot u_1,$$

$$0 = c_1 u_1 \cdot u_1 + 0 + \dots + 0,$$

since
$$u_i \cdot u_j = 0$$
 if $i \neq j$.

$$0 = c_1 ||u_1||^2$$
 which gives $c_1 = 0$

since $u_1 \neq 0$. Similarly, we can show that $c_2 = 0,...,c_p = 0$. Thus, S is linearly independent.

Theorem: Let $\{u_1, u_2, ..., u_p\}$ be an orthogonal basis for R^n . Then for each $x \in R^n$,

$$x = c_1 u_1 + c_2 u_2 + \dots + c_n u_n$$
 where $c_1 = \frac{x \cdot u_i}{u_i \cdot u_i}, \quad i = 1, 2, ..., n.$

Proof: For a fixed i, $1 \le i \le n$,

$$x \cdot u_i = (c_1 u_1 + c_2 u_2 + \dots + c_n u_n) \cdot u_i$$

= $c_i (u_i \cdot u_i)$,

which gives

$$c_i = \frac{x \cdot u_i}{u_i \cdot u_i}$$

(since $u_i \neq 0$, $u_i \cdot u_i \neq 0$)

Example: Show that the set

$$S = \left\{ u_1 = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}, u_2 = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}, u_3 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} \right\}$$

is an orthogonal basis for \mathbb{R}^3 . Express

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 as a linear combination of

the vectors in S.

Solution: Check that $u_1 \cdot u_2 = 0$,

$$u_1 \cdot u_3 = 0$$
, $u_2 \cdot u_3 = 0$. Then,

$$x = c_1 u_1 + c_2 u_2 + c_3 u_3$$

$$c_1 = \frac{x \cdot u_1}{u_1 \cdot u_1} = \frac{-1 + 4 + 6}{1 + 4 + 4} = \frac{9}{9} = 1,$$

$$c_2 = \frac{x \cdot u_2}{u_2 \cdot u_2} = \frac{2 - 2 + 6}{4 + 1 + 4} = \frac{6}{9} = \frac{2}{3},$$

$$c_3 = \frac{x \cdot u_3}{u_3 \cdot u_3} = \frac{2+4-3}{4+4+1} = \frac{3}{9} = \frac{1}{3}.$$

Thus,

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix} + \frac{2}{3} \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}.$$