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Abstract

The goal of this thesis is to examine the actions of finite symmetry groups on aperiodic

tilings. To an aperiodic tiling with finite local complexity arising from a primitive

substitution rule one can associate a metric space, transformation groupoids, and

C*-algebras. Finite symmetry groups of the tiling act on each of these objects and

we investigate appropriate constructions on each, namely the orbit space, semidirect

product groupoids, and crossed product C*-algebras respectively. Of particular inter-

est are the crossed product C*-algebras; we derive important structure results about

them and compute their K-theory.
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Chapter 1

Introduction

Mathematical research on aperiodic tilings traces back to Wang [69] who considered

the problem of whether sets of square tiles could tile the plane given a set of rules about

which edges could be adjacent. Despite his conjecture that no such set could tile the

plane aperiodically, an aperiodic set of 20426 such squares was found by his student

Berger in [12]. The question of the smallest number of tile shapes needed to cover

the plane aperiodically was soon considered, and in the 70’s Penrose [46] discovered

an aperiodic set consisting of two rhombs which when given certain matching rules

could only tile the plane aperiodically. Even though every such tiling was aperiodic,

they also had a strong repetitivity property – every patch in such a tiling appeared

infinitely often and such appearances occurred with regularity.

In 1984, D. Shechtman et al [64] discovered a crystalline substance which had

a diffraction pattern with five-fold rotational symmetry; this was a surprising result

because symmetry of this kind is not possible from a periodic lattice. Penrose tiles

and their three-dimensional analogues were seen as likely models for such materials

(now known as quasicrystals), and so interest in aperiodic tilings grew.

In his book on noncommutative geometry [16], Connes presented the set of Pen-

rose tilings as an example of a noncommutative space. He used the fact that Penrose
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tilings are self-similar to write down a Bratteli diagram and associate to each Penrose

tiling an infinite path through the diagram. He showed that a tiling T could be taken

to another tiling T ′ by an isometry of the plane if and only if their associated paths

through the Bratteli diagram eventually coincide (that is, they are tail equivalent).

The space of paths in a Bratteli diagram under tail equivalence naturally gives rise

to a C*-algebra, an approximately finite or AF C*-algebra as studied and classified

by Elliott [22].

Connes’ construction showed that one could fruitfully study aperiodic tilings us-

ing C*-algebras. This point of view was further explored by Kellendonk and Putnam

in [33], [34], [35], [36], and [52]. However, their point of view was also a dynamical

one. Interest in symbolic dynamics (the study of the space of bi-infinite sequences on a

finite alphabet together with the map that shifts such sequences one place to the left)

was growing due to its many applications to cryptography and coding. An aperiodic

tiling can be seen as a two-dimensional generalization of a bi-infinite sequence, so

Kellendonk and Putnam considered only translation on tilings. In considering these

dynamics, interesting topological spaces arose and were studied by computing their

invariants, notably their cohomology [1]. Cohomology turned out to be quite a useful

and computable invariant for studying tilings, and is discussed thoroughly by Sadun

in [62] and computed for large classes of examples by Gähler, Hunton and Kellendonk

in [25] and [26].

The elements of the C*-algebra C∗r (Rpunc) Kellendonk and Putnam considered

were seen to have physical significance by Bellissard in [6]. If an aperiodic tiling is

seen as a model for a quasicrystal with atoms located at the vertices of tiles, certain

elements of C∗r (Rpunc) can be thought of as observables associated to a particle moving

through this quasicrystal, see for example [7], [8] and [9]. In [6] Bellissard proved

the remarkable result that K0(C∗r (Rpunc)) labels the gaps in the spectrum of the

Schrödinger operator for such a particle. An extension of this result (the so-called

gap-labeling conjecture) was proved by Bellissard along with Gambaudo and Benedetti



3

in [10] and also independently by Kaminker and Putnam in [31] and by Benameur

and Oyono-Oyono in [11].

Physics aside, this C*-algebra is interesting in its own right. It is simple, separa-

ble, and nuclear, and hence is of interest in the current program initiated by Elliott

to classify all such algebras. In the case of a one-dimensional tiling, C∗r (Rpunc) is

strongly Morita equivalent to the crossed product of the Cantor set by a minimal

homeomorphism, and so by a result of Putnam [53], is classifiable by its K-theory. To

this end, Anderson and Putnam [1] calculated the K-theory of this C*-algebra, and in

[52] Putnam proved that the order on projections for C∗r (Rpunc) was determined by its

unique trace. Phillips [47] generalized this result and also showed that C∗r (Rpunc) has

real rank zero and stable rank one by using a canonical AF subalgebra of C∗r (Rpunc),

which we denote AFω.

What initially garnered interest in Penrose tilings from physicists was their ro-

tational symmetry. The goal of this thesis is to examine the actions of rotational

and dihedral symmetry groups on C∗r (Rpunc). The interaction of finite groups with

spaces of tilings has been explored by Ormes, Radin and Sadun in [45] and Rand in

[58]. In [45], the authors used the naturally arising rotation groups to arrive at a finer

invariant than the cohomology by computing the cohomology one representation at a

time. In her thesis, Rand [58] incorporates the rotation groups into the cohomology.

From the quasicrystal perspective, symmetries in diffraction spectra were considered

by Mermin in [41] and later by Lenz and Moody in [37].

The material in Chapters 2, 3, and 4 of this thesis is background material, almost

all of which is present in the literature. In Chapter 2 we record terminology and

notation used in the study of tilings, and define the tiling space Ω. We summarize

the assumptions we place on our tilings in Remark 2.5.8, and under these assumptions

Ω is a compact metric space. The elements of Ω are tilings and Rd acts minimally

by translation. We also define a subspace Ωpunc ⊂ Ω that is homeomorphic to a

Cantor set. In Chapter 3 we provide background on locally compact groupoids, the
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primary object upon which the C*-algebras of interest are built. We also describe the

r-discrete groupoid Rpunc as defined by Kellendonk in [35]. In Chapter 4 we provide

some background on C*-algebras, and define C*-algebras associated to dynamical

systems (Section 4.2) and to r-discrete groupoids (Section 4.3). We then describe

the C*-algebra C∗r (Rpunc), its AF subalgebra AFω and summarize its properties as

originally described by Kellendonk, Putnam, and Phillips in [33], [34], [35], [47], and

[52].

Chapters 5 and 6 are the heart of the present work. Chapter 5 examines the

action of a finite symmetry group G on Ω, Rpunc and C∗r (Rpunc) for a tiling of R2. We

begin by showing that the orbit space Ω/G has the structure of an inverse limit of

CW complexes; this is a result stated for rotation groups in [45] and analogous to the

main result in [1] that Ω has this structure. We then describe precisely which tilings

in Ω are fixed under a given group element. In Section 5.5 we describe the crossed

product C∗r (Rpunc) oG. Under the assumption that no tile in our tiling is fixed by a

nontrivial element of G, we show that C∗r (Rpunc)oG is simple, real rank zero, stable

rank one, has a unique trace, and that the order on its projections is determined by

this trace. We also examine the crossed product of AFω by symmetry groups, and

show that in the case of the Penrose tiling and G = D10 that AFω oG is isomorphic

to the AF algebra Connes originally considered in [16].

In Section 5.7 we prove that if C∗r (Rpunc) has tracial rank zero (a conjecture

of Phillips) then C∗r (Rpunc) o G has tracial rank zero as well. We prove this by

showing that the action of G on C∗r (Rpunc) has the tracial Rokhlin property assuming

C∗r (Rpunc) has tracial rank zero. We also prove that when restricted to AFω, the

action of G has the strict Rokhlin property.

In Chapter 6 we compute the K-theory of these crossed products for some exam-

ple tilings using techniques of [15] and [19].



Chapter 2

Tilings

In this chapter we define what we mean by a tiling and much of the terminology

common in the study of tilings. We also introduce the assumptions we will apply to

all the tilings studied in this work.

2.1 Tilings

A tile is a subset of Rd homeomorphic to the closure of the open unit ball B1(0). A

partial tiling is a collection of tiles whose interiors are pairwise disjoint. A finite

partial tiling will be called a patch. The support of a partial tiling is the union of

its tiles; the support of a partial tiling T is denoted supp(T ). We define a tiling to

be a partial tiling whose support is Rd. Given U ⊂ Rd and a partial tiling T , T (U) is

all the tiles that intersect U , that is, T (U) = {t ∈ T | t∩U 6= ∅}. For x ∈ Rd, T ({x})

is frequently abbreviated as T (x). Two partial tilings T and T ′ are said to agree on

U if T (U) = T ′(U).

Given a vector x ∈ Rd, we can take any subset U ⊂ Rd and form its translate

by x, namely U + x = {u + x | u ∈ U}. Thus, given a tiling T we can form another

5
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tiling by translating every tile by x. We denote this new tiling by

T + x = {t+ x | t ∈ T}.

A set of tiles P = {p1, p2, . . . , pN} is called a set of prototiles for a tiling T if

for each tile t ∈ T there exists pi ∈ P and x ∈ Rd such that t = pi + x. Prototiles

may carry labels to distinguish possibly translationally equivalent tiles. We also insist

that the prototiles, when viewed as subsets of Rd, have the origin in their interior.

This allows us to define a designated point in each tile. If t is a tile in a tiling and

t = p+ xt for some p ∈ P we say that the puncture of t is xt.

A tiling for which T + x = T for some nonzero x ∈ Rd is called periodic. A

tiling for which no such nonzero vector exists is called aperiodic.

Example 2.1.1 One famous example of an aperiodic tiling is the Penrose rhomb

tiling. In Figure 2.1 we show a patch of such a tiling.

Example 2.1.2 Another example of an aperiodic tiling is the Ammann-Beenker

tiling, also known as the octagonal tiling. In Figure 2.2 we show a patch of such

a tiling.

2.2 Tiling Spaces

Given a set T of tilings, we would like to define a metric on T .

Definition 2.2.1 Suppose that T is a set of tilings of Rd and that T, T ′ ∈ T . We

define the distance between T and T ′ to be

d(T, T ′) = inf{1, ε | ∃ x, x′ ∈ Rn 3 |x| , |x′| < ε,

(T − x)(B1/ε(0)) = (T ′ − x′)(B1/ε(0))},

where B1/ε(0) denotes the open ball radius 1
ε

centred at 0 in Rd. This is called the

tiling metric.
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Figure 2.1: Patch of a Penrose rhomb tiling.
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Figure 2.2: Patch of an Ammann-Beenker (octagonal) tiling.
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This definition is standard, see for example [56] or [66]. For a proof that this defines

a metric, see for example [68], Proposition 2.3.1. We denote the ball of radius r

centered at T in this metric to be BΩ
r (T ). Two tilings are close in this metric if they

agree on a large ball around the origin up to a small translation.

Definition 2.2.2 Let T be a tiling and consider the set of tilings T + Rd = {T + x |

x ∈ Rd}. We define ΩT to be the completion of this set in the tiling metric, and call

this space the continuous hull of T (also called the tiling space associated with T ).

The following is well-known, but we include a proof for completeness.

Lemma 2.2.3 The elements of ΩT are all tilings. That is, given a Cauchy sequence

{Ti}i∈N of elements in T + Rd one can find a tiling T ′ (not necessarily in T + Rd)

such that {Ti}i∈N converges to T ′.

Proof: We note first that if S is a tiling, then for any r > 0 and x ∈ Rd we have

S(Br(0)) + x = (S + x)(Br(x)). (2.2.1)

Suppose that {Ti}i∈N is a Cauchy sequence of tilings in the tiling metric. For each

n > 3, find Kn ∈ N such that d(Ti, Tj) <
1
n

whenever i, j ≥ Kn. We may always pick

the Kn so that they are increasing with n. Thus for each such n if i, j ≥ Kn there

exist xi,n, xj,n ∈ Rd with |xi,n|, |xj,n| < 1
n

such that

(Ti − xi,n)(Bn(0)) = (Tj − xj,n)(Bn(0)).

Define Pn = (Ti−xi,n)(Bn(0)). Now if s > n > 3 we have that for all i, j ≥ Ks ≥ Kn,

(Ti − xi,s)(Bs(0)) = (Tj − xj,s)(Bs(0)) = Ps.

These equations and Equation 2.2.1 imply that

Ti(Bs(xi,s)) = Ps + xi,s
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Ti(Bn(xi,n)) = Pn + xi,n

Hence Pn+xi,n and Ps+xi,s are both patches in Ti. Furthermore, since |xi,n|, |xi,s| < 1
3
,

we must have that Bn(xi,n) ⊂ Bs(xi,s), and so we have

Pn + xi,n ⊂ Ps + xi,s.

This is true for any i ≥ Ks, so we define

T ′ =
∞⋃
l=4

(Pl + xKl,l).

Since T ′ is built from successive patches of inner radius at least l, it is a tiling. We

claim that {Ti}i∈N converges to T ′. Let ε > 0 and find N ∈ N such that N > 1
ε
. Then

for all n > N

Pn + xKn,n ⊂ T ′

(Tn − xKn,n)(Bn(0)) + xKn,n ⊂ T ′

(Tn − xKn,n)(Bn(0)) ⊂ T ′ − xKn,n

=⇒ (Tn − xKn,n)(Bn(0)) = (T ′ − xKn,n)(Bn(0))

From previous, |xKn,n| < 1
n
< ε and so d(T ′, Tn) < ε.

For an alternative formulation of ΩT , see [1] or [57]. There the authors produce a set

of tilings and show that any translational orbit is dense.

Definition 2.2.4 A tiling T is said to have finite local complexity if for every

r > 0, the set {T (Br(x)) | x ∈ Rd} contains only finitely many different patches

modulo translation.

If T admits a finite set of prototiles which are polygons, and tiles meet full-edge to

full-edge in T , then T has finite local complexity, see [56]. This will be the case for

all of our examples.
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Lemma 2.2.5 ([56], Lemma 2) If T has finite local complexity, then ΩT is compact.

We will consider only tilings with finite local complexity.

Definition 2.2.6 A tiling T is said to be strongly aperiodic if ΩT contains no

periodic tilings.

This definition is not vacuous; for example, consider the tiling T consisting of a unit

grid in R2 with the four squares around the origin removed and replaced with a 2× 2

square. All translates of this tiling are aperiodic but {T + (n, 0)}n∈N is a Cauchy

sequence of tilings converging to the usual grid.

We let Ωpunc ⊂ ΩT be the set of tilings in Ω that have a puncture at the origin.

In other words, T ∈ Ωpunc if and only if T (0) ∈ P . The space Ωpunc is sometimes

called the punctured hull of the tiling.

Lemma 2.2.7 ([33], p. 187) If T is strongly aperiodic and has finite local complexity,

then its punctured hull Ωpunc is homeomorphic to the Cantor set.

The space Ωpunc has a neighbourhood base consisting of sets of the following form:

for a patch P and tile t ∈ P , define

U(P, t) = {T ∈ Ωpunc | P − xt ⊂ T}.

Each of these sets is clopen and the set of all such U(P, t) forms a neighbourhood base

for Ωpunc, see [33]. If y ∈ Rd, then the sets U(P, t) and U(P + y, t+ y) are identical.

Hence when describing U(P, t) we may use any patch which is a translate of P , along

with the tile corresponding to t.

2.3 Local Equivalence of Tilings

In this section, we discuss a sufficient condition for the existence of a homeomorphism

commuting with translation (by elements of Rd) between two tiling spaces ΩT and
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ΩS. Roughly, we want to say that two tilings T and S are equivalent if there is a way

to construct T from S only using local data, and vice versa. The simplest example of

constructing one tiling from another using local data is obtained from decomposing

one or more of the prototiles into smaller tiles and extending this decomposition to

the whole tiling.

For example, consider the Penrose rhomb tiling of Figure 2.1. The prototiles are

two rhombs, and their rotates by multiples of π/5. We form a new tiling by splitting

each rhomb down a diagonal, see Figure 2.3. One can see that in this case, the process

is invertible – just delete the diagonals. The resulting tiling is known as a tiling by

Robinson triangles. The following definition is due to Baake et al. [3].

Definition 2.3.1 Let T and S be tilings. Then we say that T is locally derivable

from a tiling S if there exists a radius r > 0 such that for all x ∈ Rd whenever we

have S(Br(x)) = S(Br(y))+(x−y) then T (x) = T (y)+x−y. If T is locally derivable

from S and S is locally derivable from T , then we say that S and T are mutually

locally derivable, or MLD.

Lemma 2.3.2 ([36], Section III) If S and T are MLD, then there exists a homeomor-

phism ϕ : ΩT → ΩS such that ϕ(T ′ + x) = ϕ(T ′) + x for all T ′ ∈ ΩT and x ∈ Rd. In

other words, the dynamical systems (ΩT ,Rd) and (ΩS,Rd) are topologically conjugate.

2.4 Substitution Tilings

In this section, we present a well-studied class of tilings, the so-called substitution

tilings. Substitution tilings are constructed using self-similarity on a finite set of tiles.

Tilings of this type have been considered by many authors; for example see [33], [34],

[35], and [66].
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Figure 2.3: The Penrose rhomb tiling is locally equivalent to a tiling by
Robinson Triangles.
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Definition 2.4.1 Let P = {p1, p2, . . . , pN} be a set of tiles. A substitution rule ω

with scaling factor λ > 1 on P is a rule which associates with p ∈ P a patch ω(p)

with support λp whose tiles are all translates of elements of P.

We may extend a substitution rule to translates of elements of P via the formula

ω(p + x) = ω(p) + λx. Thus the substitution may be applied to patches – if P is a

patch then

ω(P ) = {ω(t) | t ∈ P}.

In particular, the substitution may be iterated.

Definition 2.4.2 A substitution rule ω is said to be primitive if there exists m ∈ N

such that for every pi, pj ∈ P, ωm(pi) contains a translate of pj. If ω is primitive, we

call (ω,P) a primitive substitution tiling system.

Primitivity of a substitution gives us the self-similarity needed to construct a tiling.

Construction 2.4.3 (Construction of a tiling from a primitive substitution rule).

Let (P , ω) be a primitive substitution rule. Let p ∈ P , and find k ∈ N such that

ωk(p) contains a tile in the interior of its support. Since the substitution is primitive,

there exist x ∈ R and m ∈ N such that p+x ∈ ωk+m(p) and p+x is contained in the

interior of the supp(ωk+m(p)) = λk+mp. The function

f : λk+mp→ p+ x

z 7→ λ−(k+m)(z + x)

is continuous and onto, and p+x ⊂ λk+mp. Hence by the Brouwer fixed point theorem

(see for example [44], Theorem 55.6), f has a fixed point in its interior; call it z0.

That is, z0 satisfies

λk+mz0 = z0 + x

=⇒ x = λk+mz0 − z0
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We have

p+ x ∈ ωk+m(p)

p+ λk+mz0 − z0 ∈ ωk+m(p)

p− z0 ∈ ωk+m(p)− λk+mz0

p− z0 ∈ ωk+m(p− z0).

Hence,

{p− z0} ⊂ ωk+m(p− z0) ⊂ · · · ⊂ ωi(k+m)(p− z0) ⊂ ω(i+1)(k+m)(p− z0) ⊂ . . .

is an increasing nested sequence of patches. Further, since p− z0 is in the interior of

ωk+m(p− z0), the supports of these patches are an increasing nested sequence of sets

in Rd whose union is Rd. Thus

T =
∞⋃
i=1

ωi(k+m)(p− z0)

is a tiling.

With this choice of T , it is clear that P is a set of prototiles for T . If every

tiling arising this way from (P , ω) has finite local complexity, then we say that (P , ω)

has finite local complexity. This is satisfied if, for example, the elements of P are

polygons and meet full-face to full-face in ωn(p) for all n ∈ N and p ∈ P .

Definition 2.4.4 A tiling T is said to be repetitive if for every patch P ⊂ T there

is an r > 0 such that for every x ∈ Rd there is a translate of P contained in T (Br(x)).

Repetitivity is a strong regularity condition on a tiling. If a tiling T has repetitivity,

every patch in T appears infinitely often and such appearances occur with regularity.

Lemma 2.4.5 ([66], Lemma 2.2) If T is formed by a primitive substitution as in

Construction 2.4.3, and T has finite local complexity, then T is repetitive.
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The following is a corollary to the main result of [56] but is stated in the following

form by Solomyak.

Lemma 2.4.6 ([66], Lemma 1.2) The tiling T is repetitive if and only if for every

T ′ ∈ ΩT we have ΩT ′ = ΩT .

In light of Lemma 2.4.6, if T is repetitive we drop the T and refer to the tiling space as

simply Ω. When we form the space Ω from a substitution in this way, it has another

useful characterization: Ω is the space of all tilings T such that every patch P ⊂ T is

contained in ωn(p) for some n ∈ N and p ∈ P (see [1], Section 2 for details).

The substitution ω can be applied to any tiling in Ω. In [1], the following is

proved:

Lemma 2.4.7 Consider the space Ω formed from a primitive substitution tiling sys-

tem with finite local complexity. Then

1. ω(Ω) = Ω

2. ω : Ω→ Ω is continuous.

Proof: See [1] Proposition 2.2 and Proposition 3.1.

Definition 2.4.8 The substitution ω is said to be locally invertible if there exists

r > 0 such that whenever we have a tiling T ∈ Ω, t, t′ ∈ ω(T ) and

(ω(T )− xt) (Br(0)) = (ω(T )− xt′) (Br(0)) ,

then this implies that (T − λ−1xt)(0) = (T − λ−1xt′)(0).

In words, ω has this property if there is a radius r such that the substituted tile that

a tile t ∈ ω(T ) belongs to is uniquely determined by the pattern (ω(T )− xt) (Br(0)).

Kellendonk notices ([35], discussion after Lemma 4) that this implies local invertibility

of ωn.
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Lemma 2.4.9 Consider the tiling space Ω of a tiling created from a primitive sub-

stitution tiling system with finite local complexity. The following are equivalent:

1. The space Ω contains no periodic tilings.

2. The map ω is injective when restricted to Ω.

3. The map ω is locally invertible.

Proof: See [1] Proposition 2.3 and [66] Lemma 2.7.

This provides a way of checking aperiodicity.

Example 2.4.10 Figure 2.4 illustrates a substitution on a set of prototiles

PPen = {1,2, . . . ,40},

all of which are Robinson triangles. Only four prototiles are shown; the others are

obtained by rotation. Let r denote the counterclockwise rotation of R2 by π/5 and let

2 = r1, 12 = r11, and so on. It is easy to check that this substitution is primitive and

has finite local complexity. Because tilings by Robinson triangles and Penrose rhombs

are MLD, this substitution will be what we refer to as the Penrose substitution.

Example 2.4.11 The octagonal tiling of Figure 2.2 can be obtained via substitution

rule as well; see Figure 2.5. There are 20 prototiles; 4 rhombs and 16 triangles obtained

by rotating the given tiles by multiples of π/4, as well as reflecting the triangle over

the x-axis and rotating it by multiples of π/4.

In both these examples, the substitution rule is given on a subset of prototiles and

then extended by symmetry. In other words, there is a finite group G which acts on

P and there exists a subset SG ⊂ P such that GSG = P . The substitution is defined

on SG, and if p = gq for some q ∈ SG and g ∈ G, we define

ω(p) := ω(gq) = gω(q).
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Prototiles

(+ rotates by π/5)

γ = golden ratio

γ γ

1

1

8

24

11
ω
λ=γ
−→

14

38

γ γ

γ2

21

31 25

17

31 2137

5

Figure 2.4: Substitution rule on Robinson triangles.
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−→

Figure 2.5: Substitution rule for the octagonal tiling.

In the case of the Penrose tiling above, we can take G to be the dihedral group D10

generated by r (the counterclockwise rotation by π/5) and f (the reflection over the

x-axis). These elements satisfy the relations

r10 = f 2 = e, frf = r−1.

In this case, we can take SD10 = {1,21}. Another feature of this action is that D10

acts freely on PPen, that is, if gp = p for some g ∈ D10 and p ∈ PPen, then g = e. We

note that for the subgroup 〈r〉 we have S〈r〉 = {1,11,21,31} and the action of 〈r〉

also free.

For the octagonal tiling, we can take G to be the dihedral group D8 generated

by r (the counterclockwise rotation by π/4) and f (the reflection over the x-axis). As

before, these elements satisfy the relations

r10 = f 2 = e, frf = r−1.
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−→

Figure 2.6: Substitution rule for the octagonal tiling after breaking symmetry.

Then SD8 consists of a rhomb and a triangle. In this case, the action of D8 on P is

not free, as the rhomb is fixed by r4, rf , and r5f . However, one can always arrange

for a free action of a group on the prototiles, as the following example shows.

Example 2.4.12 Figure 2.5 shows the substitution for the octagonal tiling on a

rhomb and a triangle. To break the symmetry of the rhomb, we divide it into 4

triangles by cutting along both its diagonals. The resulting substitution rule is given

in Figure 2.6.

2.5 The Tiling Space as an Inverse Limit

In [1], Anderson and Putnam obtain a tractable description of Ω for a substitution

tiling. This is a landmark in the theory, and has since been generalized to classes of

tilings other than substitution tilings; see [10], [45], [58] and [61].

We begin with standard definitions from topology.

Definition 2.5.1 ([29], discussion on page 5) An open n-cell is a space homeomor-
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phic to the open unit ball in Rn – the open 0-cell is the singleton space. A space X is

called a finite CW complex (or simply a CW complex or a cell complex) if X

can be written as an increasing union

X0 ⊂ X1 ⊂ · · · ⊂ Xk−1 ⊂ Xk = X

where X0 is a finite set whose points are regarded as 0-cells, and Xm \ Xm−1 is a

finite disjoint union of open m-cells for all m, such that for each m-cell in Xm\Xm−1

there exists a continuous map fe from the closed unit ball in Rm into Xm such that

fe restricted to the open unit ball is a homeomorphism onto e.

Furthermore, if X = ∪Xn and Y = ∪Y n are CW complexes, a continuous map

f : X → Y is called cellular if f
(
Xk
)
⊂ Y k for all k. A continuous map g : X → Y

is called a CW map if whenever e is an m-cell in Xm \ Xm−1 we have g(e) is an

m-cell in Y m \ Y m−1.

Let (P, ω) be a primitive substitution tiling system. We assume, as is the case

in all our examples, that our prototiles are polytopes. Consider

Y = {(x, p) ∈ Rd × P | x ∈ p}

i.e., the disjoint union of the prototiles. We define an equivalence relation on this

set as follows: we declare (x, p) and (y, q) to be equivalent if there is a tiling T in Ω

such that, for some zp, zq ∈ Rd we have p + zp, q + zq ∈ T and zp + x = zq + y. In

words, we treat the prototiles as disjoint sets and then glue them together wherever

they could possibly meet up in any tiling. If R is the equivalence relation generated

by the above, we let

Γ = Y/R.

When our prototiles are polytopes meeting full-face to full-face, then in [1] it is shown

that Γ is a d-dimensional CW complex whose d-cells are the prototiles. The substitu-

tion induces a map γ on Γ in the obvious way – if x is in some prototile p, then ω(p)
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is a patch consisting of translates of prototiles, so λx lies inside at least one translate

of a prototile pi + y. So then λx − y is in pi, and we define γ((x, p)) = (λx − y, pi).

Even though λx could lie in more than one tile, and hence the image could be in

more than one prototile, this map is well-defined precisely because such points are

identified. It is proved in [1] that γ is continuous.

Recall that if X is a compact Hausdorff space and ϕ : X → X is a continuous

surjection, then the inverse limit X = lim
←

(X
ϕ← X) is the subspace of

∏
n∈NX of all

sequences (xn)n∈N such that ϕ(xn+1) = xn for all n ∈ N, with the relative topology

from the product topology. For an open set U ⊂ X and n ∈ N, let BX
U,n denote the

set

BX
U,n = {(xi)i∈N | xi ∈ ϕn−i(U), i = 0, 1, . . . , n}.

The collection of sets BX
U,n forms a basis for the topology on X .

We let

Ω0 = lim
←

(
Γ

γ← Γ
)

= {(x1, x2, . . . ) | xi ∈ Γ, γ(xi) = xi−1}

and define ω0 : Ω0 → Ω0 as the left shift (or from another perspective, application of

γ to each coordinate). In [1] the authors prove that ω0 is a homeomorphism. In the

presence of the following condition, they get even more.

Definition 2.5.2 A substitution tiling system (P , ω) is said to force its border if

there exists an n ∈ N such that for all p ∈ P if we have that whenever ωn(p) + x ∈ T

and ωn(p) + x′ ∈ T ′ then we can conclude that

T (supp(ωn(p) + x))− x = T ′ (supp(ωn(p) + x′))− x′.

In words, a substitution forces its border if there exists an n such that the tiles

touching the patch ωn(p) are the same no matter where in any given tiling one sees a

translate of it. The Penrose substitution of Figure 2.4 and the octagonal substitution

of Figure 2.6 both force their border. In the case of the Penrose one can see that it
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satisfies this property by the following argument. Suppose that {t1, t2} is a two-tile

patch in a Penrose tiling such that t1 ∩ t2 is homeomorphic to [0, 1]. There are only

finitely many such patches. Consider the patch

P = {t ∈ T | t ∈ ω({t1, t2}), t ∩ Int(λ(t1 ∩ t2))}.

Informally, P is the set of all tiles that touch the edge λ(t1 ∩ t2) after performing

the substitution. Then, if ft1,t2 denotes the reflection of R2 over line through the

origin with the same direction as t1 ∩ t2, one can check that ft1,t2P = P . In other

words, substituting an edge in a Penrose tiling results in a patch which is reflection-

symmetric over the substituted edge. Since we must care for the tiles which intersect

the ends of the edges too, we end up getting that the Penrose tiling forces its border

with n = 4. The octagonal tiling shares this property. An example of a tiling which

does not force its border is the Chair tiling; for a discussion of this tiling see [1],

Example 10.5.

Theorem 2.5.3 ([1], Theorem 4.3) If (P , ω) forces its border, then the dynamical

systems (Ω, ω) and (Ω0, ω0) are topologically conjugate, that is, there exists a homeo-

morphism ϕ : Ω→ Ω0 such that ϕ ◦ ω = ω0 ◦ ϕ.

Mapping a tiling T to a sequence is straightforward - to get the first point in the

sequence you look at the position of the origin inside whatever tile sits around the

origin in T and find the corresponding point in Γ. To find the next point you do the

same thing for ω−1(T ) and so on.

Remark 2.5.4 The need to force the border is not as restrictive as it looks. The

following argument from ([1], §4) explains why. From a substitution tiling system

(P , ω) we form a new one (P ′, ω′) as follows: for each prototile p ∈ P , look at the set

of all patches Ω(p) = {T (p) | T ∈ Ω}. By finite local complexity, this set is finite.

We let

P ′ = {(p, P ) | p ∈ P , P ∈ Ω(p)}.
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In words, we create a labeled copy of p for each patch consisting of tiles that intersect

p that could possibly surround it in any tiling in Ω. The substitution extends to this

in the natural way. If we let Γ1 and γ1 be the CW complex and map formed as above

but from (P ′, ω′), and form

Ω1 = lim
←

(
Γ1

ω′← Γ1

)
then, with ω1 the shift map on the above, (Ω1, ω1) is always topologically conjugate

to (Ω, ω). This procedure is called collaring.

Example 2.5.5 The CW complex of the Penrose tiling is given in Figure 2.7. This

is the same as [1] Figure 6 with a correction - they have the short edge on triangles

17 and 2 labeled as 27, and we have it labeled correctly as 22 (here bold numbers

indicate 2-cells and text numbers indicate 1-cells).

Example 2.5.6 The CW complex of the octagonal tiling is given in Figure 2.8.

Example 2.5.7 After breaking symmetry on the octagonal tiling, we get the CW

complex in Figure 2.9. It is easy to see that the two CW complexes given in Figure

2.8 and Figure 2.9 are homeomorphic.
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Figure 2.7: CW complex for the Penrose tiling.
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Figure 2.8: CW complex for the octagonal tiling.
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Figure 2.9: CW complex for the octagonal tiling after breaking symmetry.
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Remark 2.5.8 For the rest of this work, we assume that

1. (P , ω) is a primitive substitution tiling system (Definition 2.4.2)

such that

2. every tiling arising from (P , ω) via Construction 2.4.3 has finite local complexity

(Definition 2.2.4).

If Ω is the tiling space formed from any such tiling, it does not depend on the choice

of tiling chosen. We also assume that

3. Ω contains no periodic tilings, and

4. (P , ω) forces its border (Definition 2.5.2).

When these are satisfied, Ω is compact (Lemma 2.2.5) and every Rd orbit in Ω is dense

(Lemma 2.4.6). The map ω : Ω→ Ω is a homeomorphism (Lemmas 2.4.7, 2.4.9) and

ω is locally invertible (Definition 2.4.8). The subspace Ωpunc ⊂ Ω is homeomorphic

to a Cantor set (Lemma 2.2.7).



Chapter 3

Groupoids and Equivalence

Relations

In this chapter we recall definitions and terminology used in the study of groupoids,

especially in how they relate to the study of C*-algebras. Many of the definitions in

Sections 3.1 and 3.2 are from Renault’s Lecture Notes on groupoid C∗-algebras [59].

3.1 Groupoids

Definition 3.1.1 A groupoid is a set G , a subset G (2) ⊂ G × G called the set of

composable pairs, a partially defined product from G (2) → G with (γ, η)→ γη and an

inverse map from G → G with γ → γ−1 such that the following relations are satisfied:

1. (γ−1)−1 = γ,

2. (γ, η), (η, ξ) ∈ G (2) implies (γη, ξ), (γ, ηξ) ∈ G (2) and (γη)ξ = γ(ηξ),

3. (γ−1, γ) ∈ G (2) and if (γ, η) ∈ G (2) then γ−1(γη) = η,

4. (γ, γ−1) ∈ G (2) and if (ξ, γ) ∈ G (2) then (ξγ)γ−1 = ξ.

29
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If γ ∈ G , s(γ) = γ−1γ is the source of γ and r(γ) = γγ−1 is its range. The pair

(γ, η) is composable if and only if the range of η is the source of γ. We call the set

G 0 = d(G ) = r(G ) the unit space of G .

A groupoid G is said to be principal if the map (r, s) from G into G (0)×G (0) is

injective; it is said to be transitive if the map (r, s) is onto.

Definition 3.1.2 A subgroupoid H ⊂ G is a subset of G that is closed under

products and inverses such that H (0) = G (0).

Definition 3.1.3 Let H and G be groupoids. A map φ : H → G is a homomor-

phism if whenever (γ, η) ∈ G (2), we have that (φ(γ), φ(η)) ∈ H (2), and in this case

φ(γη) = φ(γ)φ(η). If φ is bijective, we call it an isomorphism. If φ : G → G is an

isomorphism, we call it an automorphism. For a groupoid G , we denote the group

of all automorphisms on G by Aut(G ).

One sees that homomorphisms take units to units and inverses to inverses.

If A and B are subsets of G and u, v ∈ G 0 we may form the following:

• A−1 = {γ−1 | γ ∈ A}

• AB = {ξ ∈ G | γ ∈ A, η ∈ B such that ξ = γη}

• G u = r−1(u), G A = r−1(A)

• Gv = s−1(v), GB = s−1(B)

• G v
u = G u ∩ Gv, G A

B = G A ∩ GB

• G (u) = G u
u , which is a group, is called the isotropy group at u.

The relation u ∼ v ⇔ G u
v 6= ∅ is an equivalence relation on the unit space. Its

equivalence classes are called orbits and the orbit of u is denoted [u]. A groupoid is

transitive if and only if it has a single orbit.
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Definition 3.1.4 Let G be a groupoid. We say that a set S ⊂ G is a G -set if the

restrictions of r and s to S are injective. Equivalently, S is a G -set if and only if

SS−1 and S−1S are both subsets of G (0).

Definition 3.1.5 Let G be a groupoid and E ⊂ G (0). Then the saturation of E,

denoted [E], is

[E] = r(s−1(E)) = r(GE).

We say that E is invariant if [E] = E.

Example 3.1.6 Let X be a set and let R be an equivalence relation on X. Then R

is endowed with a natural groupoid structure on setting

1. ((x, y), (w, z)) ∈ R(2) ⇔ y = w and (x, y)(y, z) = (x, z)

2. (x, y)−1 = (y, x)

In this case, from the definition of the range and source maps, r(x, y) = (x, x) and

s(x, y) = (y, y) for all (x, y) ∈ R. Thus the unit space R(0) is given by the diago-

nal ∆X = {(x, x) | x ∈ X}, and upon identifying the diagonal with X we see that

the range and source maps are the projections onto the first and second coordinate

respectively. It is easy to see that every principal groupoid can be seen as an equiv-

alence relation on its unit space. If u ∈ X, then its orbit [u] is its equivalence class,

and if E ⊂ X its saturation [E] is the union of the equivalence classes of elements of

E.

Example 3.1.7 Let X be a set and let G be a group acting on X. That is, there is a

map G×X → X with (g, x) 7→ gx such that ex = x for all x ∈ X and g(hx) = (gh)x

for all g, h ∈ G and x ∈ X. We endow X × G with a groupoid structure by saying

(x, g) is composable with (y, h) if and only if y = gx, and in this case

(x, g)(gx, h) = (x, hg).



3.1. Groupoids 32

The switching of the order of the group elements arises because we are assuming G to

be acting on the left. One can easily see that (x, g)−1 = (gx, g−1), that r(x, g) = (x, e)

and s(x, g) = (gx, e). This groupoid is called the transformation group groupoid

which we denote (X,G). The unit space consists of all the pairs (x, e), and so can be

identified with X.

Renault [59] gives us the following definition of a groupoid arising from a group action

on a groupoid. We will refer to this construction often.

Definition 3.1.8 Let G be a groupoid, G be a group, and let α : G → Aut(G ) be a

homomorphism. We write γ · g = αg−1(γ) for g ∈ G and γ ∈ G . The semidirect

product G oα G is the groupoid G ×G where

1. (γ, g) and (ξ, h) are composable if and only if ξ = η ·g with γ and η composable,

2. (γ, g)(η · g, h) = (γη, gh), and

3. (γ, g)−1 = (γ−1 · g, g−1).

In this case, r(γ, g) = (r(γ), e) and s(γ, g) = (s(γ) · g, e). In light of this, the unit

space of G oα G may be identified with the unit space of G .

We note that the notation γ · g = αg−1(γ) is in fact more than notation – this indeed

defines a right action of the group G on G .

Example 3.1.9 Example 3.1.7 can be seen as a semidirect product. Let R =

{(x, x) | x ∈ X} be the trivial equivalence relation on X. If G acts on X then

it acts on R in the obvious way, and the semidirect product R oG is isomorphic to

the transformation group groupoid (X,G).
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3.2 Topological Groupoids

Definition 3.2.1 If G is a groupoid with a topology and G (2) is given the product

topology, then we say G is a topological groupoid if the inverse map G → G and

the product G (2) → G are both continuous.

In the case of an equivalence relation R on a set X, the following are immediate

consequences of the above definition. The range and source maps are continuous and

γ 7→ γ−1 is a homeomorphism. If R is Hausdorff, then R(0) is closed in R. If R(0) is

Hausdorff, then R(2) is closed in R×R. Moreover, R(0) is both a subspace of R and

a quotient of R by the map r. We also observe that in a Hausdorff topology a single

point {x} is closed for all x ∈ R(0) and from this we have that r−1{x} is closed in R.

Definition 3.2.2 A Haar system on a locally compact Hausdorff groupoid G is a

family {µu}u∈G (0) of non-negative measures on G such that

1. supp(µu) = G u, u ∈ G (0),

2. for f ∈ Cc(G ), the function

u→
∫
fdµu

on G (0) is continuous and compactly supported, and

3. for γ ∈ G , γµs(x) = µr(γ), that is,
∫
f(γη)dµs(γ)(η) =

∫
f(η)dµr(γ)(η).

A groupoid need not admit a Haar system. The following is a case where possible

Haar systems are easy to describe.

Definition 3.2.3 A locally compact Hausdorff groupoid G is called r-discrete if G (0)

is open in G .

Many of the groupoids considered in this thesis will be r-discrete, and so their prop-

erties will be important to us. Renault shows in [59] that if G is a locally compact

Hausdorff r-discrete groupoid we have the following:
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1. for any u ∈ G (0), G u and Gu are discrete,

2. if G has a Haar system, then the Haar system consists of counting measures,

and

3. G has a Haar system if and only if r and s are local homeomorphisms.

Lemma 3.2.4 ([59], Proposition I.2.8) Let G be a locally compact Hausdorff groupoid.

Then the following are equivalent:

1. G is r-discrete and admits a Haar system,

2. r : G → G (0) is a local homeomorphism,

3. G has a neighbourhood base consisting of open G -sets.

We will be concerned with the semidirect product of r-discrete groupoids by finite

groups. The following proposition is slightly more general.

Proposition 3.2.5 Let G be a locally compact Hausdorff r-discrete groupoid which

admits a Haar system, let G be a discrete group, and let α : G → Aut(G ) be a

homomorphism. Then the semidirect product G oα G is locally compact, Hausdorff,

r-discrete and admits a Haar system.

Proof: We recall from the definition of the semidirect product groupoid (Defini-

tion 3.1.8) that the unit space of G oα G is also G (0) and that r(γ, g) = r(γ) for all

γ ∈ G and g ∈ G. For γ ∈ G and g ∈ G we will also use the notation γ · g := αg−1(γ)

introduced in Definition 3.1.8. The groupoid G oαG is given the product topology, so

it is locally compact and Hausdorff. Let (γ, g) ∈ G oα G, and find a neighbourhood

U of γ in G such that r|U : U → r(U) is a homeomorphism. Then U × {g} is open

in G oα G and r(U × {g}) = r(U), and so r is a local homeomorphism. Hence by

Lemma 3.2.4, G oα G admits a Haar system consisting of counting measures.
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The following definition is of a special class of r-discrete principal groupoids of par-

ticular interest.

Definition 3.2.6 Let R be an equivalence relation on a compact metrizable space X.

We say the topology T on R is an étale topology for R if the following conditions

are satisfied.

1. (R, T ) is σ-compact;

2. ∆X = {(x, x) | x ∈ X} is open in (R, T );

3. every point (x0, y0) in R has an open neighbourhood U in (R, T ) such that

r(U) and s(U) are open in X and both r : U → r(U) and s : U → s(U) are

homeomorphisms;

4. if U and V are open sets in (R, T ) then UV is open in (R, T );

5. if U is an open set in (R, T ) then U−1 is open in (R, T ).

In this case, R is called an étale equivalence relation.

The following definition describes many of the groupoids we encounter when studying

tilings.

Definition 3.2.7 ([47], Definition 1.1) A topological groupoid G equipped with a Haar

system is called a Cantor groupoid if the following conditions are satisfied:

1. G is Hausdorff, locally compact, and second countable.

2. The unit space G (0) is compact, totally disconnected, metrizable, and has no

isolated points (so is homeomorphic to the Cantor set).

3. G (0) is open in G .

4. The Haar system consists of counting measures.



3.2. Topological Groupoids 36

Definition 3.2.8 A Cantor groupoid G is called approximately finite (AF for

short), if it is an increasing union of a sequence of compact open principal Cantor

subgroupoids, each of which contains the unit space G (0).

Phillips [47] proves that an AF Cantor groupoid is AF in the sense of Definition 1.1

in Chapter 3 of [59].

Definition 3.2.9 ([47], Definition 2.1) Let G be a Cantor groupoid and let K ⊂

G (0) be a compact subset. We say K is thin if for every n there exist compact G -

sets S1, S2, . . . , Sn ⊂ G such that s(Sk) = K and the sets r(S1), r(S2), . . . , r(Sn) are

pairwise disjoint.

Definition 3.2.10 ([47], Definition 2.2) Let G be a Cantor groupoid. We say that G

is an almost AF Cantor groupoid if we have the following:

1. There exists an open AF subgroupoid G0 ⊂ G which contains the unit space such

that whenever K is a compact subset of G \G0, we have that s(K) is thin in the

sense of Definition 3.2.9.

2. For every closed invariant subset E ⊂ G (0), and every nonempty relatively open

subset U ⊂ E, there is a G -invariant Borel probability measure µ on G (0) such

that µ(U) > 0

Equivalence relations are principal groupoids. A slightly weaker notion than principal

will become useful to us later.

Definition 3.2.11 ([59], Definition II.4.3) We say that a locally compact Hausdorff

groupoid G is essentially principal if for every invariant closed subset F of its unit

space, the set of u in F for which G (u) = {u} is dense in F .

Lemma 3.2.12 ([47], Lemma 2.6) If G is an almost AF Cantor groupoid, then it is

essentially principal.
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3.3 Equivalence of Groupoids

In this section we present an important notion of equivalence for topological groupoids.

For the most part, we follow the development of [42].

Definition 3.3.1 ([42], Definition 2.12) Let G be a groupoid and let X be a set. We

say G acts on X (on the left), and that X is a left G -space, if there is a surjection

r : X → G (0) and a map (γ, x) 7→ γx from G ∗X := {(γ, x) | s(γ) = r(x)} to X such

that

1. r(γx) = r(γ) for all (γ, x) ∈ G ∗X;

2. if (γ1, x) ∈ G ∗ X and (γ2, γ1) ∈ G (2), then (γ2γ1, x), (γ2, γ1x) ∈ G ∗ X and

γ2(γ1x) = (γ2γ1)x; and

3. r(x)x = x for all x ∈ X.

Right actions and right G -spaces are defined similarly, but s is used to denote

the map X to G (0) and we write X ∗ G = {(x, γ) | s(x) = r(γ)}.

We are interested in the case where X and G have topologies.

Definition 3.3.2 ([42], Remark 2.30) Let G be a locally compact Hausdorff groupoid

which acts on a locally compact Hausdorff space X on the left. Then we say that the

action is continuous if the map r : X → G (0) is continuous and open and the map

(γ, x) 7→ γx from G ∗X to X is continuous. Similarly, if G acts on the right of X,

the action is continuous if the map s : X → G (0) is continuous and open and the map

(x, γ) 7→ γx from X ∗ G to X is continuous.

Definition 3.3.3 ([42], Definition 5.25) Let G be a locally compact Hausdorff groupoid

which acts continuously on a locally compact Hausdorff space X on the left. Then we

say the action is proper if the map Φ from G ∗X to X×X defined by Φ(γ, x) = (γx, x)
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is proper in the usual sense, i.e., for each compact subset K ⊂ X×X,Φ−1(K) is com-

pact in G ∗X.

If the action is free in addition to being proper, we say that X is a principal

G -space.

Properness for right actions is defined analogously.

For left actions, we write G \X for the quotient space of X under the relation

x ∼ y if and only if there is a γ ∈ G such that γx = y. For right actions, we write

X/G for the analogous space.

Proposition 3.3.4 ([42], Definition 5.27) Let G be a locally compact Hausdorff groupoid

which acts continuously on a locally compact Hausdorff space X on the left. Then the

quotient map from X to G \X is open. If the action is proper, then G \X is Hausdorff.

Definition 3.3.5 ([42], Definition 5.32) Let G and H be locally compact Hausdorff

groupoids. We say that a locally compact Hausdorff space X is a (G ,H )-equivalence

if

1. X is a principal left G -space and a principal right H -space.

2. The actions of G and H commute.

3. The map r : X → G (0) induces a homeomorphism between G (0) and X/H and

the map s : X → G (0) induces a homeomorphism between H (0) and G \X.

Further, we will say that two locally compact Hausdorff groupoids G and H are

Morita equivalent if there exists a (G ,H )-equivalence.

One can prove that this is an equivalence relation.

Example 3.3.6 ([43], Example 2.7) The main example of equivalence that we will

consider is that arising from a transversal. Suppose that G is a locally compact
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Hausdorff groupoid and that F ⊂ G (0) is a closed subset of the unit space that meets

every orbit in G (0). If the restrictions of r and s to GF are open, then the space

GF = {γ ∈ G | s(γ) ∈ F}

is a (G ,G F
F )-equivalence.

Example 3.3.7 ([42], Example 5.33.2) Another example that is important to us

is the case of isomorphic groupoids. Let G and H be locally compact Hausdorff

groupoids and let

ϕ : H → G

be a groupoid isomorphism which is also a homeomorphism. Then G acts on the left

on G by translation, and H acts on the right of G by the formula γ · η := γϕ(η).

With these two actions, G becomes a (G ,H )-equivalence.

3.4 Groupoids Associated with Tilings

We now describe groupoids associated with tilings. Since we have an action of Rd on

Ω, one natural groupoid to consider is the transformation group groupoid G = (Ω,Rd).

We use Example 3.3.6 to produce an equivalent groupoid that is easier to deal with.

We start with a primitive substitution system (P , ω) which satisfies the conditions

of Remark 2.5.8. Let Ωpunc be the punctured hull formed from (P , ω). Define

Rpunc = G
Ωpunc

Ωpunc
= {(T, T + x) | T, T + x ∈ Ωpunc}.

It is clear that Rpunc is an equivalence relation. The set Rpunc can be viewed as a

subset of Ωpunc×Rd, and so we letRpunc inherit the product topology from Ωpunc×Rd.

Lemma 3.4.1 ([1], Proposition 7.2) Let T ∈ Ωpunc. Then there is an ε > 0 and a

neighbourhood of T ∈ U ⊂ Ωpunc such that map

s : U ×Bε(0)→ Ω
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s(T ′, x) = T ′ + x

is a homeomorphism onto its image.

Proof: Take T ∈ Ωpunc and consider the open neighbourhood U({T (0)}, T (0)).

Because punctures are in the interior of the tiles, there exists ε > 0 such that

T (B2ε(0)) = T (0). Now

s(U({T (0)}, T (0))×Bε(0)) = {T ′ + x | T ′(0) = T (0), |x| < ε}

Suppose T1 + x1 and T2 + x2 are both in the above set, with Ti(0) = T (0). Then

T1 = T2 + x2 − x1. We have that |x2 − x1| < 2ε, and both T1 and T2 are punctured

tilings with T (0) at the origin, so x2−x1 = 0 making T1 = T2. Thus the restriction of

r to U({T (0)}, T (0))× Bε(0) is injective. So restricted to this domain, s is bijective

and continuous. We need to show that it is an open map. Suppose we have V open

in U ×Bε(0). We may assume that

V = U(P, T (0))×Bδ(0)

for some δ > 0 and some patch P such that T (0) ∈ P . Then

s(V ) = {T ′ + x | T ′ ∈ U(P, T (0)), |x| < δ}.

Take any T ′ + x ∈ s(V ) and find δ0 > 0 such that δ0 <
1
4
(δ − |x|) and also such that

P ⊂ T ′(B1/δ0(0)). It is enough to show that the open ball BΩ
δ0

(T ′ + x) ⊂ s(V ). If we

take S ∈ BΩ
δ0

(T ′+x) then there exists x′ with |x′| < 2δ0 such that (S+x′)(B1/δ0(0)) =

(T ′ + x)(B1/δ0(0)). Thus

(S + x′ − x)(B1/δ0(0)) = T ′(B1/δ0(0) ⊇ P

implies that

S + x′ − x ∈ U(P, T (0)).
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We have that

|x− x′| ≤ |x|+ |x′| < |x|+ 1

2
(δ − |x|) =

1

2
δ +

1

2
|x| < δ.

Hence S ∈ s(V ).

Corollary 3.4.2 Let G = (Ω,Rd) be the transformation group groupoid associated to

a primitive substitution system. Then GΩpunc is a (G ,Rpunc)-equivalence, and hence

G and Rpunc are Morita equivalent in the sense of Definition 3.3.5.

Proof: This combines Lemma 3.4.1 with Example 3.3.6, see [1], Proposition 7.2.

For a patch P and tiles t1, t2 ∈ P , we define

V (P, t1, t2) = {(T, T + x) ∈ Rpunc | T ∈ U(P, t1), x = x(t1)− x(t2)}.

From the definition we see that if (T, T ′) ∈ V (P, t1, t2), then T ∈ U(P, t1) and T ′ ∈

U(P, t2). Notice again as in the definition of U(P, t), V (P, t1, t2) = V (P+y, t1+y, t2+

y) for any y ∈ Rd, so that when describing these sets we may use any translational

equivalence class of the triple (P, t1, t2). It is proved in [33] that these sets are compact

open Rpunc-sets that form a base for the topology on Rpunc. In addition,

r(V (P, t1, t2)) = U(P, t1), s(V (P, t1, t2)) = U(P, t2)

and r and s are homeomorphisms when restricted to this domain. This leads to the

following.

Theorem 3.4.3 With the topology inherited from Ωpunc×Rd, Rpunc is an étale equiv-

alence relation.
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The proof is in [33]. Though we do not prove this here, we comment on Condi-

tion 3 of our definition of étale equivalence relation. Given (T, T − x) ∈ Rpunc, let P

be the patch

P = T ({ξx | ξ ∈ [0, 1]}).

In words, P is the set of all tiles in T that intersect the line segment between 0 and

x. Then (T, T − x) ∈ V (P, T (0), T (x)), and V (P, T (0), T (x)) is the neighbourhood

on which r and s are local homeomorphisms.

We now describe an AF subequivalence relation (see Definition 3.2.8) of Rpunc.

This equivalence relation is constructed, for example, in [40] and [34], though we

follow the description and notation in [33].

Notice that if p and p′ are two prototiles and x, x′ are points in their respective

interiors, then the sets U({p}, p)−x and U({p′}, p)−x′ are disjoint unless p = p′ and

x = x′. Since ω is a bijection, the sets ωn(U({p}, p))−λnx and ωn(U({p′}, p′))−λnx′

also have this property for any positive integer n.

Let n ∈ N and take p ∈ P . Let Punc(n, p) be the set of all the punctures in

ωn(p), i.e.

Punc(n, p) = {xt | t ∈ ωn(p)}.

For each pair x, y ∈ Punc(n, p) we define

En
p (x, y) = {(ωn(T )− x, ωn(T )− y) | T ∈ U({p}, p)} .

Since x and y are both punctures in ωn(p), ωn(T ) − x and ωn(T ) − y are both in

Ωpunc. The second is a translate of the first by x − y, so En
p (x, y) ⊂ Rpunc. We also

define, for x ∈ Punc(n, p)

En
p (x) = {ωn(T )− x | T ∈ U({p}, p)} = r

(
En
p (x, y)

)
.

Lemma 3.4.4 The sets En
p (x, y) are clopen in Rpunc for each n ∈ N, p ∈ P and

x, y ∈ Punc(n, p).
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Proof: Since Rpunc inherits its topology from Ωpunc × Rd, we write

En
p (x, y) = {(ωn(T )− x, x− y) | T ∈ U({p}, p)} .

We prove that En
p (x) is clopen. Suppose we have a convergent sequence (ωn(Ti)− x)i∈N

converging to S ∈ Ωpunc. Then

ωn(Ti)− x −→ S

Ti − λ−nx −→ ω−n(S)

Ti −→ ω−n(S) + λ−nx.

The Ti are all in U({p}, p), which is closed. Hence ω−n(S) + λ−nx ∈ U({p}, p). Now

ωn
(
ω−n(S) + λ−nx

)
− x = S.

Thus S ∈ En
p (x) and so En

p (x) is closed.

To prove that En
p (x) is open we use that ω is locally invertible (see Definition

2.4.8). Recall from the discussion after Definition 2.4.8 that local invertibility implies

local invertibility of ωn. Take ωn(T )−x ∈ En
p (x), and let r > 0 be the radius obtained

from the definition of local invertibility of ωn. Let t = (ωn(T )− x)(0) and

P = (ωn(T )− x) (Br(0)).

The tiling ωn(T )−x is in the basic open set U(P, t); we claim that this set is contained

in En
p (x). Let S ∈ U(P, t). Then T ′ = ω−n(S) + λ−nx is a tiling such that

(ωn(T ′)− x) (Br(0)) = S(Br(0)) = (ωn(T )− x) (Br(0)).

Thus by local invertibility we have that (T − λ−nx)(0) = (T ′ − λ−nx)(0). Since

ωn(T )−x ∈ En
p (x), then (T −λ−nx)(0) = p−λ−nx, and so (T ′−λ−nx)(0) = p−λ−nx

as well. Thus T ′(0) = p, giving us that T ′ ∈ U({p}, p) and S = ωn(T ′) − x, i.e.

S ∈ En
p (x). Thus U(P, t) ⊂ En

p (x), and hence En
p (x) is clopen.
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Now we just find a radius δ around x− y small enough so that

En
p (x)×Bδ(x− y) ∩Rpunc = En

p (x)× {x− y}.

This is possible because the punctures are in the interiors of tiles.

Let

Rn,p =
⋃

x,y∈ Punc(n,p)

En
p (x, y).

The sets Rn,p are disjoint for different choices of p. They are finite unions of compact

open sets, and are hence compact and open. We let

Rn =
⋃
p∈P

Rn,p.

It’s easy to see that for each n, Rn is a subgroupoid of Rpunc with unit space equal

to Ωpunc.

Lemma 3.4.5 Let (Rn)n∈N be as above. Then for n ≥ 1 we have

Rn ⊂ Rn+1;

that is, the sequence (Rn)n∈N is nested.

Proof: Following the notation of [33], for any p ∈ P we let

Ip := {(p′, x′) | p′ ∈ P , p+ x′ ∈ ω(p′)}.

Since ω is invertible, if T ∈ U({p}, p), there is one and only one pair (p′, x′) ∈ Ip such

that T ∈ ω (U({p}, p))− x′. Hence we can write U({p}, p) as

U({p}, p) =
⋃̇

(p′,x′)∈Ip

(ω (U({p}, p))− x′) (3.4.1)

where the dot indicates that the union is of disjoint sets. Now we have

En
p (x, y) = {(ωn(T )− x, ωn(T )− y) | T ∈ U({p}, p)}
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=
⋃̇

(p′,x′)∈Ip

{(ωn(ω(T ′)− x′)− x, ωn(ω(T ′)− x′)− y) | T ′ ∈ U({p′}, p′)}

=
⋃̇

(p′,x′)∈Ip

{(
ωn+1(T ′)− λnx′ − x, ωn+1(T ′)− λnx′ − y

)
| T ′ ∈ U({p′}, p′)

}
=

⋃̇
(p′,x′)∈Ip

En+1
p′ (λnx′ + x, λnx′ + y) .

Thus En
p (x, y) can be written as a disjoint union of compact open sets in Rn+1, so

Rn ⊂ Rn+1.

Now we can let

RAF :=
⋃
n∈N

Rn.

This is an increasing union of compact open subgroupoids of Rpunc, with unit space

equal to Ωpunc, which we know is homeomorphic to a Cantor set. Hence RAF is an

AF Cantor Groupoid in the sense of Definition 3.2.8. The following result originates

in [52] and is in [47], Theorem 7.1.

Theorem 3.4.6 The groupoid Rpunc is an almost AF Cantor Groupoid, with RAF

being the sub-AF groupoid.



Chapter 4

C*-algebras of a Tiling

4.1 C*-algebras

In this section we recall terms often used in C*-algebra theory. For a good basic

reference on C*-algebras, see [17].

A C*-algebra is a Banach algebra A with an involution ∗ whose norm satisfies

the C*-condition: for all a ∈ A we have

‖a∗a‖ = ‖a‖2 .

A C*-algebra A need not have an identity, but if it does we call it unital and denote

the identity 1A. A projection is an element p for which p∗ = p = p2. Two projections

p and q are called Murray-von Neumann equivalent (or simply equivalent) if

there is an element v ∈ A such that p = vv∗ and q = v∗v. A projection q is called

a subprojection of p if qp = pq = q, and we write q ≤ p. If q is equivalent to a

subprojection of p then we write q - p. A projection in a C*-algebra A is called finite

if it is not equivalent to a proper subprojection of itself. A unital C*-algebra A is

called finite if its identity is finite. If A is a C*-algebra, then the n× n matrices with

entries in A, denoted Mn(A), is also a C*-algebra with obvious product, involution,

and operator norm. We call A stably finite if Mn(A) is finite for all n.

46
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An element a ∈ A is called normal if a commutes with a∗, a is called self-

adjoint if a∗ = a and a is called unitary if a∗a = aa∗ = 1A. The spectrum of

an element a of a unital C*-algebra A is the set of all complex numbers z such that

a − z1A is not invertible – if A is not unital the spectrum of a ∈ A is the set of all

complex numbers z such that a− z1Ã is not invertible in the unitization Ã of A. An

ideal in A is a closed sub-C*-algebra I ⊂ A such that ab and ba are in I whenever

a ∈ A, b ∈ I. We call A simple if the only closed ideals of A are {0} and A.

The C*-algebra A is said to have real rank zero if self-adjoint elements with

finite spectrum are dense in the set of all self-adjoint elements of A, and A is said to

have stable rank one if invertible elements are dense in A.

A trace on a C*-algebra A is a positive linear functional τ : A → C such that

τ(ab) = τ(ba) for all a, b ∈ A. A tracial state or normalized trace is a trace τ such

that τ(1A) = 1. We denote the set of tracial states on A by T (A). If τ is a tracial

state, then it induces a unique tracial state on the C*-algebra Mn(A) by summing

the value of τ along the diagonal and dividing by n, we also denote this tracial state

τ . We say that the order on projections over A is determined by traces if for

every n ∈ N and projections p, q ∈ Mn(A) such that τ(p) < τ(q) for every τ ∈ T (A)

we have p - q.

A commutative and unital C*-algebra can be canonically identified with C(X),

the continuous complex-valued functions on some compact Hausdorff space X. For

us, the primary space of interest is the tiling space Ω.

4.2 The Crossed Product

If A is a C*-algebra, we let Aut(A) denote the group of ∗-automorphisms on A,

equipped with the topology of pointwise norm convergence. This topology gives

Aut(A) the structure of a topological group.
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Definition 4.2.1 Let A be a C*-algebra, let G be a locally compact group and suppose

we have a continuous homomorphism α : G → Aut(A). Then the triple (A,G, α) is

called a C*-dynamical system.

In this thesis, we mainly deal with 2-dimensional tilings, and the groups that

will be acting will all be subgroups of the Euclidean group E(2). In fact, the groups

we deal with will either be R2 or the semidirect product of R2 by a finite subgroup

of O(2). In the following definitions we assume that the group in question is one of

these groups, so the definitions simplify somewhat. They of course may be defined in

a more general setting (see [73] for a thorough treatment).

Definition 4.2.2 Let (A,G, α) be a C*-dynamical system. A covariant represen-

tation of (A,G, α) is a pair (π, U) where π : A→ B(H) is a representation of A on

a Hilbert space H and u : G → U(H) is a unitary representation of G on the same

Hilbert space such that

π(αg(a)) = u∗gπ(a)ug.

The existence of such pairs may be in doubt, so suppose that ρ : A → B(Hρ) is a

representation of A on Hρ. Then we may define, using the notation of [73], IndGe ρ

to be a pair (ρ̃, u) of representations on the Hilbert space L2(G,Hρ) ∼= L2(G) ⊗ Hρ

given by

ρ̃(a)h(r) := ρ(α−1
r (a))(h(r)) ush(r) := h(s−1r), (4.2.1)

for h ∈ L2(G,Hρ) and s, r ∈ G. One checks that IndGe ρ = (ρ̃, u) is a covariant

representation of (A,G, α). Representations of this form are called regular repre-

sentations.

Let (A,G, α) be a C*-dynamical system and consider Cc(G,A), the space of

continuous functions with compact support from G to A. We define a product on

this space by using Haar measure:

f ? g(s) :=

∫
G

f(r)αr
(
g(r−1s)

)
dµ(r).
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We also define an involution by

f ∗(s) = (f(s−1))∗.

These make Cc(G,A) into a ∗-algebra. That f ?g ∈ Cc(G,A) and f ?(g?h) = (f ?g)?h

are given in [73], page 48. We have that

‖f‖1 :=

∫
G

‖f(s)‖dµ(s)

is a norm on Cc(G,A) such that ‖f ∗‖1 = ‖f‖1 and ‖f ? g‖1 ≤ ‖f‖1‖g‖1 for all

f, g ∈ Cc(G,A). If (π, u) is a covariant representation of (A,G, α), we define

π o u(f) :=

∫
G

π(f(s))usdµ(s)

for f ∈ Cc(G,A). Thus defined, π o u is a ∗-representation of Cc(G,A), and

‖π o u(f)‖ ≤ ‖f‖1

for all f ∈ Cc(G,A). The representation π o u is called the integrated form of the

covariant representation of (π, u). We now define

‖f‖ := sup{‖π o u(f)‖ | (π, u) is a covariant representation of (A,G, α)}.

One can show (for example [73], Lemma 2.27) that this is a norm on Cc(G,A) which

is dominated by ‖ · ‖1 and satisfies the C*-condition. We call it the universal norm.

Definition 4.2.3 Let (A,G, α) be a C*-dynamical system. Then the completion of

Cc(G,A) in the universal norm is called the crossed product of A by G and is

denoted Aoα G.

When the action is implicit we often write A o G. Since the universal norm can be

difficult to work with, one can also define the reduced norm on Cc(G,A) as follows:

let IndGe ρ be any regular representation of (A,G, α) with ρ faithful. We define

‖f‖red := ‖IndGe ρ(f)‖
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where IndGe ρ(f) is understood to be the integrated form of IndGe ρ on f . One shows that

this is independent of the faithful representation chosen. We denote the completion

of Cc(G,A) in the reduced norm as A oα,r G and call this the reduced crossed

product. The reduced norm is always dominated by the universal norm, and when

G is amenable they coincide. We will only be concerned with cases where G is

amenable, so we may work with the reduced norm. For a detailed discussion, see [73].

In some special cases the crossed product is easier to describe.

Example 4.2.4 If G is a finite group, then we can realize A oα G as the set of all

formal sums ∑
g∈G

agδg ag ∈ A

where multiplication is determined by the rule (aδg)(bδh) = aαg(b)δgh and involution

is (aδg)
∗ = αg−1(a∗)δg−1 . If f ∈ C(G,A), we see it as the sum

∑
f(g)δg. In this case,

there is no need to complete. We claim that the reduced norm satisfies

max
g∈G
{‖ag‖A} ≤

∥∥∥∥∥∑
g∈G

agδg

∥∥∥∥∥
red

≤
∑
g∈G

‖ag‖A. (4.2.2)

The right hand term is clearly the ‖ · ‖1 norm, so we check the left inequality. Let

ρ be a faithful representation of A on a Hilbert space Hρ and consider the covariant

pair IndGe ρ = (ρ̃, u) from Equation (4.2.1). Let ξ be a norm 1 vector in Hρ, let t ∈ G

and let ζt ∈ L2(G,Hρ) be defined by

ζt(s) =

ξ if s = t

0 otherwise.

Then ζt is a norm 1 vector in L2(G,Hρ). For f ∈ C(G,A) and s ∈ G we calculate

(
IndGe ρ(f)

)
ζt(s) =

(∑
g∈G

ρ̃(f(g))ug

)
ζt(s)

=
∑
g∈G

ρ̃(f(g))ζt(g
−1s)
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=
∑
g∈G

ρ(αg−1s(f(g)))ζt(g
−1s)

= ρ(αt−1(f(st−1)))ξ.

The last equality is due to the fact that the only nonzero term in the sum occurs

when g−1s = t, and so g = st−1. We have that

‖
(
IndGe ρ(f)

)
ζt‖2

2 =
∑
s∈G

‖ρ(αt−1(f(st−1)))ξ‖2
2.

Since ζt is norm 1 and ρ is faithful we may conclude that∑
s∈G

‖ρ(αt−1(f(st−1)))ξ‖2
2 ≤ ‖f‖2

red

Now taking the supremum over all norm 1 vectors ξ and noticing that ρ and αt−1 are

isometric allows us to conclude that∑
s∈G

‖f(st−1)‖2
A ≤ ‖f‖2

red.

Hence we must have that ‖f(g)‖2
A ≤ ‖f‖2

red for all g ∈ G, and so

max
g∈G
{‖f(g)‖A} ≤ ‖f‖red.

Example 4.2.5 When A is commutative and unital, i.e. when A = C(X) for some

compact Hausdorff space X, one can show (see for example the discussion in [73] on

page 53) that the inclusion Cc(G × X) ⊂ Cc(G,C(X)) is dense in the norm above.

Hence when working with crossed products of the form C(X)oαG we can work with

elements from Cc(G×X). The formulae for the product and involution on Cc(G×X)

become

f ? g(s, x) =

∫
G

f(r, x)g(r−1s, r−1x)dµ(r)

f ∗(s, x) = f(s−1, s−1x).

Example 4.2.6 Suppose that G and H are locally compact groups and that ϕ : H →

Aut(G) is a homomorphism such that the map H ×G to G given by (h, g) 7→ ϕh(g)
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is continuous. Then we recall that the semidirect product GoϕH is the set G×H

which becomes a group under the operations

(g1, h1)(g2, h2) = (g1ϕh1(g2), h1h2), (g, h)−1 = (ϕh−1(g−1), h−1).

When given the product topology from G × H, the semidirect product G oϕ H is

locally compact. One also sees that G and H are subgroups of GoϕH. We will need

the following proposition to study crossed products associated with tilings

Proposition 4.2.7 Let A be a C*-algebra, let G be a finite subgroup of O(2) and

suppose that (A,R2 oϕ G,α) is a C*-dynamical system. Then there exists an action

β : G→ Aut(Aoα|R2 R
2)

such that for all f ∈ Cc(R2, A) we have

βg(f)(x) = αg (f(ϕg(x))) .

In this case, the natural map

ι : C(G,Cc(R2, A))→ Cc(R2 oϕ G,A)

extends to an isomorphism from (Aoα|R2 R
2) oβ G to Aoα (R2 oϕ G)

Proof: This is a special case of [73], Proposition 3.11 (for example).

Let U(A) denote the group of unitary elements of A. If α : G → Aut(A) factors

through U(A)→ Aut(A) (via u 7→ Adu), we say that α is an inner action. In this

case, we have the following fact.

Lemma 4.2.8 ([73], Lemma 2.73) Let A be a C*-algebra and let α : G→ Aut(A) be

an inner action of G on A Then

Aoα G ∼= A⊗max C
∗(G).
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4.3 The C*-algebra of a Groupoid

In this section we present the C*-algebra of a locally compact Hausdorff groupoid

as defined by Renault in [59]. Muhly’s book [42] provides a more direct path to the

definition of this C*-algebra, so we follow its development. The groupoids we work

with directly in this thesis are mostly r-discrete, so we also state what the definitions

reduce to in this case.

Let G be a locally compact Hausdorff groupoid with Haar system {µx}x∈G (0) .

Then we may define a product and involution on Cc(G ) by integration with respect

to the Haar system: if f1, f2 ∈ Cc(G ) and γ ∈ G define

f1 ? f2(γ) =

∫
f1(η)f2(η−1γ) dµr(γ)(η) =

∫
f1(γη)f2(η−1) dµs(γ)(η),

f ∗1 (γ) = f1(γ−1).

With these operations, and when given the inductive limit topology, Cc(G ) becomes

a topological ∗-algebra. Recall that the inductive limit topology on Cc(G ) is given

by saying that a sequence {fn} converges to f in Cc(G ) if and only if there exists a

compact subset K ⊂ G such that the support of f is contained in K, the support of

{fn} is eventually in K, and {fn} converges uniformly to f on K. In particular, this

is stronger than uniform convergence. A representation of Cc(G ) is a continuous

∗-homomorphism from Cc(G ) with the inductive limit topology into B(H) with the

weak operator topology. For f ∈ Cc(G ) define

‖f‖r = sup
x∈G (0)

{∫
|f(γ)| dµx(γ)

}
,

‖f‖s = sup
x∈G (0)

{∫
|f(γ−1)| dµx(γ)

}
,

‖f‖I = max{‖f‖r, ‖f‖s}.

The norm ‖f‖I is a ∗-algebra norm on Cc(G ), and the topology it determines is coarser

than the inductive limit topology, see [59] Proposition II.1.4. If π is a representation
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of Cc(G ) then ‖π(f)‖ ≤ ‖f‖I for any f ∈ Cc(G ). Thus one can show that

‖f‖ := sup{‖π(f)‖ | π is a representation of Cc(G )}

defines a norm on Cc(G ) which satisfies the C*-condition. Hence the completion of

Cc(G ) in this norm is a C*-algebra, called the C*-algebra of G and denoted C∗(G ).

As in the case of the crossed product, there is another norm defined in terms of

some explicit representations. Given a Haar system {µu}u∈G (0) with each µu supported

on G u we can define measures µu supported on Gu by composing with the groupoid

inverse map: if U is a Borel set then µu(U) = µu(U−1). For f ∈ Cc(G ), x ∈ G (0) and

ξ ∈ L2(Gx, µx) define

λx(f)ξ(γ) =

∫
Gx

f(γη−1)ξ(η) dµx(η).

Then each λx is a representation of Cc(G ). The formula

‖f‖red := sup
x
{‖λx(f)‖}

defines a norm on Cc(G ) which satisfies the C*-condition. Hence the completion

of Cc(G ) in this norm is a C*-algebra, called the reduced C*-algebra of G and

denoted C∗r (G ). We mention that it is possible to define the C*-algebra of G when G

is not necessarily Hausdorff, but in this case it is still required that G (0) be Hausdorff.

In this thesis we deal with two types of groupoids - transformation group groupoids

and r-discrete groupoids. As discussed in [42], [59], and elsewhere, the (reduced)

C*-algebra of a transformation group groupoid coincides with the (reduced) crossed

product discussed last section.

Theorem 4.3.1 Let X be a locally compact Hausdorff space and let G be a locally

compact group acting on X. Let G = (X,G) be the transformation group groupoid of

this action. Then

C∗(G ) ∼= C(X) oG, and

C∗r (G ) ∼= C(X) or G.
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When G is r-discrete, its C*-algebra is easier to describe than in the general case.

Recall from Section 3.2 that if G is a locally compact Hausdorff r-discrete groupoid,

then if it has a Haar system it essentially consists of counting measures, and it has a

Haar system if and only if r and s are local homeomorphisms. Suppose that this is

the case. For f, g ∈ Cc(G ) and γ ∈ G , the product f ? g is then given by

f ? g(γ) :=
∑
η∈G

r(η)=s(γ)

f(γη)g(η−1)

The following is a special case of the construction of the reduced C*-algebra when G

is r-discrete, and is presented as the definition of the reduced C*-algebra by Phillips

[47].

Proposition 4.3.2 ([47], Definition 1.6) Let G be a locally compact Hausdorff r-

discrete groupoid with counting measures as the Haar system. Let Gx = {γ ∈ G |

s(γ) = x} and let Cc(G ) act on the Hilbert space l2(Gx) by

λx(f)ξ(γ) =
∑
η∈G
s(η)=x

f(γη−1)ξ(η).

Then we have

‖f‖red := sup
x
{‖λx(f)‖}.

When G is r-discrete, the formulas for ‖ · ‖r, ‖ · ‖s, and ‖ · ‖I become

‖f‖r = sup
u∈G (0)

 ∑
r(γ)=u

|f(γ)|

 , (4.3.1)

‖f‖s = sup
u∈G (0)

 ∑
s(γ)=u

|f(γ)|

 , (4.3.2)

‖f‖I = max{‖f‖r, ‖f‖s}. (4.3.3)

If f ∈ Cc(G ), then

‖f‖∞ ≤ ‖f‖red ≤ ‖f‖I ,
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for details see [59], Proposition II.4.2.

Recall from Definition 3.2.7 that a locally compact Hausdorff r-discrete groupoid

with counting measures as Haar system is a Cantor groupoid if its unit space is

homeomorphic to a Cantor set. If G is such a groupoid, then Definition 3.2.10 states

that G is an almost AF Cantor groupoid if:

1. There exists an open AF subgroupoid G0 ⊂ G which contains the unit space

such that whenever K is a compact subset of G \ G0, we have that s(K) is thin

in the sense of Definition 3.2.9.

2. For every closed invariant subset E ⊂ G (0), and every nonempty relatively open

subset U ⊂ E, there is a G -invariant Borel probability measure µ on G (0) such

that µ(U) > 0.

In defining these terms in [47], Phillips notes the following.

Proposition 4.3.3 ([47], Proposition 2.13) Let G be a Cantor groupoid. Then G

is an almost AF Cantor groupoid if it satisfies Condition 1 of Definition 3.2.10 and

either C∗r (G ) or C∗r (G0) is simple.

This condition can be checked by using the following.

Proposition 4.3.4 ([59], Proposition II.4.6) Let G be an r-discrete locally compact

Hausdorff essentially principal groupoid. If the only open invariant subsets of G (0)

are G (0) and the empty set, then C∗r (G ) is simple.

4.4 Strong Morita Equivalence

In this section, we describe a well-known notion of equivalence for C*-algebras, that

of strong Morita equivalence. Many of the definitions in this section are from the

development in [42]. Another excellent reference is [55].
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Definition 4.4.1 Let A be a C*-algebra and let X be a right module over A. We call

X a right Hilbert module over A if there is a sesquilinear map 〈·, ·〉 : X×X→ A,

which is conjugate linear in the first variable, such that

(1) 〈x, ya〉 = 〈x, y〉a for all x, y ∈ X and a ∈ A.

(2) 〈x, y〉∗ = 〈y, x〉 for all x, y ∈ X.

(3) 〈x, x〉 ≥ 0 in A and 〈x, x〉 = 0 only when x = 0.

A left Hilbert module over A is defined similarly, except that 〈·, ·〉 is conjugate

linear in the second variable and (1) above is replaced with

(1a) 〈ax, y〉 = a〈x, y〉 for all x, y ∈ X and a ∈ A.

If X is a right Hilbert module over A we can define a norm on X via

‖x‖ = ‖〈x, x〉‖1/2
A . (4.4.1)

We call this the norm on X coming from A.

Definition 4.4.2 Let A and B be C*-algebras. Then we say X is an (A,B)-equivalence

bimodule (or an (A,B)-imprimitivity bimodule) if the following conditions are

satisfied:

1. X has A- and B-valued sesquilinear maps making X a left Hilbert module over

A and a right Hilbert module over B.

2. The sesquilinear maps satisfy the relation

A〈x, y〉z = x〈y, z〉B

for all x, y, z ∈ X.
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3. The following inequalities are satisfied for a ∈ A, b ∈ B, x ∈ X:

〈ax, ax〉B ≤ ‖a‖2〈x, x〉B

A〈xb, xb〉 ≤ ‖b‖2
A〈x, x〉

4. The linear span of elements of the form A〈x, y〉, for x, y ∈ X, is dense in A and

elements of the form 〈x, y〉B are dense in B (it is sometimes said that X has

full support in both A and B).

The C*-algebras A and B are said to be strongly Morita equivalent if there

exists an (A,B)-equivalence bimodule. In this case, we write A ∼m B.

Strong Morita equivalence is a weaker notion of equivalence than isomorphism

– if two C*-algebras are isomorphic then they are strongly Morita equivalent, see

for example [55], Example 3.14. For separable C*-algebras, there is an equivalent

formulation of strong Morita equivalence that will be useful.

Definition 4.4.3 Let K denote the C*-algebra of compact operators on a separable

infinite dimensional Hilbert space. We say that two C*-algebras A and B are stably

isomorphic if A⊗K is isomorphic to B ⊗K.

Theorem 4.4.4 (Brown-Green-Rieffel, see for example [55], Theorem 5.55) Let

A and B be two separable C*-algebras. Then A and B are strongly Morita equivalent

if and only if they are stably isomorphic.

The notion of strong Morita equivalence given in Definition 4.4.1 resembles that of

Definition 3.3.5, and this similarity is no accident. Suppose, as in Definition 3.3.5 that

we have locally compact Hausdorff groupoids G and H with Haar systems {µu} and

{βu} and that the space X is a (G ,H )-equivalence. As in [42], we let Ac = Cc(G ) and

Bc = Cc(H ) and define a Ac-Bc-bimodule structure on Cc(X). Take a ∈ Ac, b ∈ Bc
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and ϕ ∈ Cc(X). Then we define

a ? ϕ(x) :=

∫
G

a(γ)ϕ(γ−1x)dµr(x)(γ) (4.4.2)

ϕ ? b(x) :=

∫
H

ϕ(xη)b(η−1)dβs(x)(η). (4.4.3)

It can be shown that these do define elements in Cc(X) and that these operations

make Cc(X) into a Ac-Bc-bimodule. We can also define Cc(X)-valued inner products

on Ac and Bc:

A〈ϕ, ψ〉(γ) =

∫
H

ϕ(γxη)ψ(xη)dβs(x)(η) (4.4.4)

〈ϕ, ψ〉B(η) =

∫
G

ϕ(γ−1x)ψ(γ−1xη)dµr(x)(γ). (4.4.5)

It is important to note that these are module structures in the traditional sense, i.e.,

they are not necessarily Hilbert bimodules. However, we may still define norms as in

(4.4.1).

The following theorem is from [43] and restated in [42].

Theorem 4.4.5 If G and H are second countable locally compact Hausdorff groupoids

and if X is a (G ,H )-equivalence, then the completion of Cc(X) with respect to the

norm coming from either Ac or Bc is an equivalence bimodule between C∗(G ) and

C∗(H ) with respect to the operations given in (4.4.2)-(4.4.5)

The authors in [65] prove a similar version of Theorem 4.4.5 for reduced groupoid

algebras.

Theorem 4.4.6 ([65], Theorem 13) If G and H are second countable locally compact

Hausdorff groupoids which are equivalent in the sense of Definition 3.3.5, then C∗r (G )

and C∗r (H ) are strongly Morita equivalent.
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4.5 AF Algebras

In this section we briefly present a well-studied class of C*-algebras, the AF algebras.

Recall that a finite dimensional C*-algebra A is isomorphic to a direct sum of

full matrix algebras, i.e.

A =
k⊕
i=1

Mni(C).

In particular, a finite dimensional C*-algebra is unital. If

B =
l⊕

i=1

Mmi(C)

is another finite dimensional algebra, and ϕ : A → B is a unital ∗-homomorphism,

then ϕ is determined up to unitary equivalence in B by an l × k matrix M of non-

negative integers such that

M


n1

n2

...

nk

 =


m1

m2

...

ml

 .

The matrix M is called the matrix of partial multiplicities. If M = [Mij], then the

integer Mij is the multiplicity of the embedding of the summand Mnj(C) of A into

the summand Mmi(C) of B. For details see [17] Lemma III.2.1.

One way of obtaining the matrix of partial multiplicities is through traces. If τ

is a trace on Mn(C), then it is a positive scalar multiple of the usual matrix trace Tr

(this is the sum of the diagonal entries). If A is a finite dimensional algebra written

as before,

A =
k⊕
i=1

Mni(C).

then for each j,

τAj
(
(ai)

k
i=1

)
= Tr(aj)
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is a trace on A. Furthermore, every trace on A can be written as a positive linear

combination of the τAj since restricting to a summand yields a trace on that summand.

Let

B =
l⊕

i=1

Mmi(C)

and suppose that ϕ : A → B is a unital injective homomorphism of C*-algebras.

Then for each i between 1 and l, τBi ◦ ϕ is a trace on A. Furthermore, if we denote

by qi the identity on the ith summand in A, τBi ◦ ϕ(qs) should be the trace of qs

multiplied by the multiplicity of the embedding of the summand Mns(C) of A into

the summand Mmi(C) of B. On the other hand, we know that

τBi ◦ ϕ =
k∑
j=1

Mijτ
A
j (4.5.1)

for some positive scalars Mij. Hence,

τBi ◦ ϕ(qs) =
k∑
j=1

Mijτ
A
j (qs) = Misτ

A
s (qs) = Misns,

and so M = [Mij] is the matrix of partial multiplicities of the inclusion. A formula

for its entries is given by manipulating the above,

Mij =
τBi ◦ ϕ(qj)

τAj (qj)
(4.5.2)

A C*-algebra A is called approximately finite dimensional or AF if it is

the closure of an increasing union of finite dimensional subalgebras An. When A is

unital, it is required that the A0 consist only of the scalar multiples of the identity

of A. Thus in the unital case, each An contains the identity. Given an AF algebra

A = ∪An, the inclusion of An in An+1 is determined up to unitary equivalence in

An+1 by the matrix of partial multiplicities. We may describe this series of inclusions

by what is known as a Bratteli diagram.

Definition 4.5.1 A Bratteli diagram is an infinite directed graph (E, V ), where

E is the set of edges and V is the set of vertices, with the following properties:
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1. The vertex set is a disjoint union finite subsets Vn ⊂ V for n ≥ 0,

2. the set V0 consists of one vertex v0, called the root,

3. if e ∈ E then there exists n ≥ 0 such that i(e) ∈ Vn and t(e) ∈ Vn+1,

4. for v ∈ V \ V0, there exist e1, e2 ∈ E such that t(e1) = i(e2) = v.

In the above, i(e) and t(e) denote the initial vertex and terminal vertex of the edge e

respectively. We say a Bratteli diagram is simple if for every v ∈ Vn and u ∈ Vn+1

there exists e ∈ E such that i(e) = v and t(e) = u.

A Bratteli diagram is built from an AF algebra A = ∪An as follows: the set Vn

consists of one vertex for every full matrix summand in An. If M(n) is the matrix of

partial multiplicities for the inclusion An ⊂ An+1, then we draw M(n)ij edges from

the jth vertex in Vn to the ith vertex in Vn+1. The requirement that A0 consist of

the scalar multiples of the identity implies that A0
∼= C, and so V0 has one vertex as

required.

Example 4.5.2 Let An = M2n(C), and let each inclusion An ⊂ An+1 be determined

by

a 7→

 a 0

0 a

 .
Then the matrix of partial multiplicities of each inclusion is the 1× 1 matrix [2]. The

Bratteli diagram of this sequence of finite dimensional algebras is

· //// · //// · //// · //// · · ·

This algebra is what is known as the CAR algebra, see [17], Example III.2.4.

We note the following.

Proposition 4.5.3 ([17], Proposition III.2.7) Let A = ∪An and B = ∪Bn be two

AF algebras. Then if A and B have the same Bratteli diagram, they are isomorphic.
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The act of telescoping also results in isomorphic AF algebras. If (V,E) is a Bratteli

diagram, we may form another by deleting one of the vertex sets. Pick any n ∈ N

and let

V ′ =
⋃
i≥0
i 6=n

Vi.

Our new edge set E ′ will consist of all the edges from E which did not have source

or range in Vn. We create a new edge in E ′ for every pair of edges e1, e2 with

t(e1) = i(e2) ∈ Vn. The result (E ′, V ′) will be a Bratteli diagram. The incidence

matrix between Vn−1 and Vn+1 will simply be the product of M(n) and M(n + 1).

The diagrams (E, V ) and (E ′, V ′) will have isomorphic AF algebras.

In Definition 3.2.8 we defined an AF Cantor groupoid, and as the terminology

suggests there is a connection between this concept and AF algebras. Let (V,E) be

a Bratteli diagram. Define

X = {(xi)i∈N | xi ∈ E, s(x1) = v0, i(xi+1) = t(xi)},

the set of all infinite paths in (V,E) which start at the root. If x ∈ X, we define

U(x, k) = {(yi)i∈N | yi = xi, 1 ≤ i ≤ k}.

This is the set of all infinite paths which look like x up to the kth term. We endow X

with the topology generated by sets of this form as x and k vary. If (V,E) is simple,

then X with this topology is homeomorphic to the Cantor set. We let

Rk = {(x, y) ∈ X ×X | xi = yi for all i ≥ k},

R =
⋃
n∈N

Rn.

We see that R is an equivalence relation on X, and two sequences are equivalent if

they are eventually equal. This relation is known as tail equivalence. We note that

Rk ⊂ Rk+1 for all k ∈ N and that each Rk contains the diagonal.
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Let x, y ∈ X be such that t(xk) = t(yk), i.e., they pass through the same vertex

at stage k. Define

V (x, y, k) = {(z, w) ∈ X ×X | z ∈ U(x, k), w ∈ U(y, k), zi = wi, i > k}.

Then V (x, y, k) ⊂ Rk. We give R the topology generated by the V (x, y, k) as x, y,

and k vary, keeping in mind it is only defined if t(xk) = t(yk). In this topology, Rk is

compact and open in R for all k. We have that r(V (x, y, k)) = U(x, k), and restricted

to this domain r is easily checked to be a homeomorphism. Hence, if (V,E) is simple

(possibly after telescoping), the equivalence relation R is an AF Cantor groupoid.

Furthermore, C∗(R) is isomorphic to the AF algebra associated to (V,E). For details

on the above construction, see [59], Section III.1.

Example 4.5.4 ([16], Chapter 2 Section 3 and Appendix D) As mentioned in the

introduction, Connes associated an AF algebra to a space of Penrose tilings. This was

done by constructing a Bratteli diagram (V,E) from the substitution. The diagram

we present here is actually obtained from his by telescoping, since it is obtained from

a slightly different Penrose substitution. For each n ∈ N, Vn consists of two vertices,

Vn = {vn,1, vn,2},

one for the small Robinson triangle and one for the large one. Then there is an edge

between vn,i and vn+1,j for each instance of tile i in tile j after substituting tile j.

We also put an one edge each between the root and v1,1 and v1,2, see Figure 4.1 (this

figure is taken from [35]). The incidence matrix at each stage is

 1 1

1 2

.

There is a finite path of length k starting with v1,i and ending at vk,j for each

possible way tile i appears in the substitution applied k times to tile j. Because

the Penrose substitution forces its border, each infinite path determines a unique

tiling of the plane by Robinson triangles up to orientation. Connes shows that the
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Figure 4.1: Connes’ Bratteli diagram from Penrose tilings.
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equivalence relation R on the space X of infinite paths corresponds to equivalence of

Penrose tilings by any isometry of the plane.

Example 4.5.4 is an example of a special class of AF algebras which we will be

important to us. Suppose that {Ai}∞i=1 is an increasing sequence of finite dimensional

C*-algebras along with unital inclusions φi : Ai ↪→ Ai+1 such that Ai has n summands

at every stage and the matrix of partial multiplicities associated to φi is a constant

matrix M . Suppose also that the matrix M is primitive, i.e. there exists a k such

that the entries of Mk are all strictly positive. Then by [28], Theorem 4.1, the AF

algebra ∪Ai is simple and has a unique tracial state.

4.6 C*-algebras Associated with Tilings

We have seen in Example 4.5.4 how Connes associated an AF algebra to the Penrose

substitution. In further studies on C*-algebras associated to tilings, Kellendonk [35]

considers translational equivalence and obtains an algebra that is not AF. In Chapter

5 we link the these two constructions. In this section, we describe the C*-algebras

studied by Kellendonk (and later Putnam) in arbitrary dimension. Once again we

assume a primitive substitution tiling system (P , ω) which satisfies the conditions of

Remark 2.5.8.

The first is simply the crossed product C(Ω) oRd where Rd acts on Ω by trans-

lation. The action of Rd on Ω is minimal so the crossed product is simple ([73],

Corollary 8.22, for example). The group Rd is amenable so C(Ω)oRd ∼= C(Ω)orRd.

The second is the C*-algebra of the r-discrete principal groupoid Rpunc. Kellen-

donk and Putnam denote this algebra as AT = C∗r (Rpunc). The groupoid Rpunc is

an almost AF Cantor groupoid with AF subgroupoid RAF , and so the results of [47]

apply. In particular, C∗r (Rpunc) has real rank zero, stable rank one, and the order

on its projections is determined by traces. These properties are of importance to
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questions we will consider in the next chapter, such as whether this algebra or its

crossed products are classifiable by their K-theory.

We also have the following lemma which follows directly from the definition of

the convolution product. We will omit the convolution product ? from now on for

notational convenience.

Lemma 4.6.1 Let K be a compact open subset of Ωpunc. Then the characteristic

function on K, p = χK is a projection in Cc(Rpunc). Furthermore, if f ∈ Cc(Rpunc),

then

(fp)(T, T ′) =

 f(T, T ′) T ′ ∈ K

0 T ′ /∈ K
(pf)(T, T ′) =

 f(T, T ′) T ∈ K

0 T /∈ K

For a proof, see [47], Lemma 2.7.

We now present a generating set for C∗r (Rpunc) that will be easier to work with

than general compactly supported functions. Recall that the topology on Rpunc is

generated by sets of the form

V (P, t1, t2) = {(T, T + x) ∈ Rpunc | T ∈ U(P, t1), x = x(t1)− x(t2)},

where P is a patch and t1, t2 are tiles in the patch. These sets are clopen, so the

functions

e(P, t1, t2) = χV (P,t1,t2)

are in Cc(Rpunc), and so are in C∗r (Rpunc).

Lemma 4.6.2 ([35], Section 2.2) Let P, P ′ be patches and let t1, t2, t ∈ P and t′1, t
′
2 ∈

P ′. Assume without loss of generality that xt2 = 0 and that xt′1 = 0. Then we have

the following.

1. The product e(P, t1, t2)e(P ′, t′1, t
′
2) is nonzero precisely when U(P, t1)∩U(P, t2) 6=

∅ and the patches P and P ′ agree on the overlap of their supports, i.e., P ∪ P ′

is a patch. In this case the product is e(P ∪ P ′, t1, t′2).
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2. e(P, t1, t2)∗ = e(P, t2, t1).

3. e(P, t, t)e(P, t, t) = e(P, t, t). Hence each e(P, t, t) is a projection and e(P, t1, t2)

is a partial isometry from e(P, t2, t2 to e(P, t1, t1) in Cc(Rpunc).

Proof: We verify statement 1. The formula for the product is

e(P, t1, t2)e(P ′, t′1, t
′
2)(T, T ′) =

∑
T ′′∈[T ]

e(P, t1, t2)(T, T ′′)e(P ′, t′1, t
′
2)(T ′′, T ′), (4.6.1)

where [T ] denotes the equivalence class of T in Ωpunc. For a given term

e(P, t1, t2)(T, T ′′)e(P ′, t′1, t
′
2)(T ′′, T ′)

to be nonzero, we first need T ∈ U(P, t1). In this case, there is only one T ′′ for which

e(P, t1, t2)(T, T ′′) is nonzero, and that is

T ′′ = T + xt1 − xt2 = T + xt1

where the second equality is because we assumed that xt2 = 0. In this case, we have

T ′′ ∈ U(P, t2). For the term e(P ′, t′1, t
′
2)(T ′′, T ′) to be simultaneously nonzero, we

need T ′′ ∈ U(P ′, t′1) and

T ′ = T ′′ + xt′1 − xt′2 = T ′′ − xt′2

where again the second equality is because we assumed that xt′1 = 0. Rearranging

these two equations gives us

T ′ = T + xt1 − xt′2 .

Hence the sum in Equation (4.6.1) has at most one nonzero term, and this term is

nonzero if and only if U(P, t1) ∩ U(P, t2) 6= ∅, T ∈ U(P, t1), and T ′ = T + xt1 − xt′2 .

In this case, e(P, t1, t2)e(P ′, t′1, t
′
2)(T, T ′) = 1. This is exactly the definition of e(P ∪

P ′, t1, t
′
2)(T, T ′).

The other two statements are verified in a similar manner, see [71], Section 4.2

for details.
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Let

E = {e(P, t1, t2) | P is a patch with t1, t2 ∈ P}.

Then spanC E is a ∗-subalgebra of Cc(Rpunc). It has identity
∑

p∈P e({p}, p, p). In

[71], Lemma 4.13, Whittaker uses a Stone-Weierstrass argument to show that spanC E

is dense in Cc(Rpunc) with respect to the inductive limit topology. With the follow-

ing two lemmas we expand this result and show that we may restrict the patches

considered to those whose supports have connected interior. Let Ec denote the set of

elements of the form e(P, t1, t2) where the support of P has connected interior.

Lemma 4.6.3 Let P be a patch with t1, t2 ∈ P and xt1 = 0. Let r > 0 be such that

supp(P ) ⊂ Br(0) and let

Y = {T (Br(0)) | T ∈ U(P, t1)}.

Then Y is a finite set and

V (P, t1, t2) =
⋃̇
P ′∈Y

V (P ′, t1, t2)

where the union is disjoint.

Proof: That Y is finite follows from finite local complexity. Take P1, P2 ∈ Y with

P1 6= P2, and suppose that (T, T + x) ∈ V (P1, t1, t2)∩ V (P2, t1, t2). This implies that

T ∈ U(P1, t1) ∩ U(P2, t1), and hence P1, P2 ∈ T . But this means that

P1 = P1(Br(0)) = T (Br(0)) = P2(Br(0)) = P2,

a contradiction, and hence the sets V (P ′, t1, t2) are pairwise disjoint.

Let (T, T + x) ∈ V (P ′, t1, t2) for some P ′ ∈ Y . Then since P ⊂ P ′, we must

have that (T, T + x) ∈ V (P, t1, t2). Conversely suppose that (T, T + x) ∈ V (P, t1, t2).

Then define P ′ = T (Br(0)). We have P ′ ∈ Y and so (T, T + x) ∈ V (P ′, t1, t2).
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Hence, keeping the notation of Lemma 4.6.2, we have

e(P, t1, t2) =
∑
P ′∈Y

e(P ′, t1, t2)

and so every element in E can be written as the sum of elements in Ec, whence

spanC Ec = spanC E . Thus when working with this dense subalgebra, we can consider

only patches whose support has connected interior.1 This allows us to present a finite

generating set of spanC E . Let

E2 = {e({t1, t2}, t1, t2) | the interior of t1 ∪ t2 is connected}.

This is the set of all two-tile patches whose support has connected interior – one may

also think of them as “edge patterns”. Because of finite local complexity, this set is

finite.

Lemma 4.6.4 If e(P, t1, t2) ∈ Ec, it is a finite product of elements of E2.

Proof: Let P = {t1, t2, t3, . . . , tn}. Assume without loss of generality that xt1 = 0.

Let VP = {s1 ∩ s2 ∩ · · · ∩ sd+1 | si ∈ P} be the set of all points in supp(P ) that are

(d + 1)-way intersections of tiles in P . As VP is contained in the set of vertices of

tiles in P , this set is finite. The set Int(supp(P )) \ VP is still connected, because we

have removed a finite set of points from an open connected subset of Rd. For each

i = 2, 3, . . . , n find a path pi : [0, 1]→ Int(supp(P ))\VP with pi(0) = 0 and pi(1) = xti .

Furthermore, we may assume there exist 0 < y1 < y2 < . . . yki < 1 such that if pi(y)

is on the boundary of some tile in P , then y = ym for some m with 1 ≤ m ≤ ki. For

x ∈ (ym, ym+1), pi(x) ∈ tjm for some tile tjm . Hence e({tjm , tjm+1}, tjm , tjm+1) ∈ E2 for

all m with 1 ≤ m ≤ ki − 1. We note that tj1 = t1 and tjki = ti. Then if we define

wi := e({tj1 , tj2}, tj1 , tj2)e({tj2 , tj3}, tj2 , tj3) · · · e({tjk−1
, tjki}, tjki−1

, tjki ).

1We note that we could have been even more restrictive with the patches considered by insisting
that the interiors of the supports of the patches be simply connected. In this case, the product of
elements e(P, t1, t2) and e(P ′, t′1, t

′
2) may not result in another element of this form (since the union

of two simply connected sets need not be simply connected), but this problem can be remedied by a
similar argument to the one that got us from arbitrary patches to those whose support has connected
interior.
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Then we see that

wi = e

(
ki−1⋃
m=1

{tjm}, t1, ti

)
and

wiw
∗
i = e

(
ki−1⋃
m=1

{tjm}, t1, t1

)
.

Finally, if we take the product of all of these, we see that the patch obtained must

contain each tile in P , so that

n∏
i=1

wiw
∗
i = e(P, t1, t1),

and so (
n∏
i=1

wiw
∗
i

)
w∗2 = e(P, t1, t1)e

(
k2−1⋃
m=1

{tjm}, t1, t2

)
= e(P, t1, t2).

Thus, the ∗-algebra spanC E is generated by the finite set E2. Therefore we get:

Corollary 4.6.5 The C*-algebra C∗r (Rpunc) is generated by the set

E2 = {e({t1, t2}, t1, t2) | the interior of t1 ∪ t2 is connected}.

In particular, C∗r (Rpunc) is finitely generated.

Putnam and Kellendonk define another C*-algebra associated with a tiling, an

AF algebra derived from the substitution. This AF algebra is well-studied - see for

example [33], [34] or [52]. For this reason we supply more references than proofs. This

AF algebra will be different than the one presented in Example 4.5.4, and later we

will see that the AF algebra from Example 4.5.4 can be written as a crossed product

of the algebra below.

We follow the description and notation in [33]. Recall from Section 3.4 that for

x, y ∈ Punc(n, p) we defined

En
p (x, y) = {(ωn(T )− x, ωn(T )− y) | T ∈ U({p}, p)} .
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These sets are clopen, and since the vector x − y is fixed, they are compact. We

denote by

enp (x, y) = χEnp (x,y),

the characteristic function of En
p (x, y). These are elements of Cc(Rpunc).

Lemma 4.6.6 If we let

An,p = spanC
{
enp (x, y) | x, y ∈ Punc(n, p)

}
then An,p is a ∗-subalgebra of C∗r (Rpunc) isomorphic to the (m×m)−matrices, where

m = #Punc(n, p). Furthermore, if p 6= p′, then An,p and An,p′ are orthogonal, and

hence their direct sum

An :=
⊕
p∈P

An,p

is also a subalgebra of C∗r (Rpunc).

Proof: We calculate

enp (x, y)enp′(x
′, y′)(T, T ′) =

∑
T ′′∈[T ]

enp (x, y)(T, T ′′)enp′(x
′, y′)(T ′′, T ′).

A term enp (x, y)(T, T ′′)enp′(x
′, y′)(T ′′, T ′) is only nonzero when

(T, T ′′) ∈ En
p (x, y) and (T ′′, T ′) ∈ En

p′(x
′, y′)

which implies

T ′′ = ωn(S)− y for some S ∈ U({p}, p),

T ′′ = ωn(Q)− x′ for some Q ∈ U({p′}, p′).

Applying ω−n to both sides gives us

S − λ−ny = Q− λ−nx′.



4.6. C*-algebras Associated with Tilings 73

Now suppose that p 6= p′. Since the punctures y and x′ are in the interior of p and p′

respectively, we get that

p− λ−ny = (S − λ−ny)(0) = (Q− λ−nx′)(0) = p′ − λ−nx′.

Since prototiles are assumed to not be translates of each other, we get that

enp (x, y)enp′(x
′, y′) = 0 if p 6= p′. (4.6.2)

Now if p = p′ we get

p− λ−ny = p− λ−nx′

which is only true if y = x′. Hence

enp (x, y)enp′(x
′, y′) = 0 if p = p′ and y 6= x′. (4.6.3)

In the case that p = p′ and y = x′, a term enp (x, y)(T, T ′′)enp (y, y′)(T ′′, T ′) is only

nonzero when

T = ωn(S)− x for some S ∈ U({p}, p),

T ′′ = ωn(S)− y,

which implies

T ′ = ωn(S)− y′.

These imply that

enp (x, y)enp (y, y′)(T, T ′) =

1 (T, T ′) ∈ En
p (x, y′)

0 otherwise.

Thus

enp (x, y)enp′(x
′, y′) = enp′(x, y

′) p = p′ and y = x′. (4.6.4)

By labeling the elements of Punc(n, p) = {x1, . . . xm}, Equations (4.6.3) and (4.6.4)

imply that

An,p = spanC
{
enp (x, y) | x, y ∈ Punc(n, p)

} ∼= Mm
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via

enp (xi, xj) 7→ eij.

Equation (4.6.2) implies the orthogonality of An,p and An,p′ for p 6= p′.

In the proof of Lemma 3.4.5 we have the equation

En
p (x, y) =

⋃̇
(p′,x′)∈Ip

En+1
p′ (λnx′ + x, λnx′ + y) .

Since the union on the right is disjoint, we have the equation

enp (x, y) =
∑

(p′,x′)∈Ip

en+1
p′ (λnx′ + x, λnx′ + y) .

This equation implies that An ⊂ An+1. As discussed in Section 4.5, this inclusion is

determined up to unitary equivalence in An+1 by the matrix of partial multiplicities

M . Referring to [34], Equation (67) and the discussion on page 24 in [33], the Mij

entry in the incidence matrix for our substitution is the number of occurrences of

copies of pj in ω(pi). We notice that primitivity of the substitution implies primitivity

of the matrix M in the traditional sense, that is Mn has strictly positive entries for

some n ∈ N.

Example 4.6.7 In the case of the Penrose substitution, the entries of M can be read

off Figure 2.7. For instance, when one substitutes prototile 1 one obtains one copy of

prototile 8 and one copy of prototile 24. Hence the first column of M will have a 1

in the 8th entry and 24th entry and have 0 in each other entry. For the full matrix,

see [68], Section 5.2.

We denote the union

AFω =
⋃
n∈N

An

where the closure is with respect to the norm on C∗r (Rpunc). We note that in [33] and

[52], Kellendonk and Putnam denote this algebra AFT for historical reasons. Since
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each of the generators is a characteristic function of a compact open subset of RAF ,

we have that AFω is a subalgebra of C∗r (RAF ). These algebras are in fact equal, see

for example [59], Section III.1 or [52] p. 596.

We now turn our attention to traces on C∗r (Rpunc). In [47] Proposition 2.11,

Phillips proves that if G is an almost AF Cantor groupoid with AF subgroupoid

G0, then the set of tracial states on C∗r (G ) is the same as the set of tracial states

on C∗r (G0). In our case, C∗r (G0) = AFω is an AF algebra whose matrix of partial

multiplicities, M , is primitive. By [28] Theorem 4.1, such an AF algebra has a unique

tracial state. Hence C∗r (Rpunc) has a unique tracial state as well. This trace is well

known – for instance see [35], [33] or [52]. We describe the essential properties of this

trace and how to calculate it on elements of AFω.

Since the matrix M is primitive, by the Perron-Frobenius Theorem M admits left

and right eigenvectors whose entries are all positive and whose eigenvalue is positive

and strictly larger in modulus than the other eigenvalues of M . For a primitive sub-

stitution tiling system (P , ω) in Rd with expansion constant λ, the Perron eigenvalue

is λd. Furthermore, if P = {p1, p2, . . . , pN} and vR is the vector whose ith entry is the

volume of pi, then vR is a right Perron-Frobenius eigenvector of M , see [66], Corollary

2.42. If vL is the vector whose ith entry is the relative frequency of translates of the

prototile pi in any tiling T ∈ Ω, then vL is a left Perron-Frobenius eigenvector of M ,

see [35], Section 4.

Now, given a basis element enp (x, y), its trace is

τ(enpi(x, y)) =

 λ−2nvL(i) if x = y

0 if x 6= y
. (4.6.5)

As before, this is a general fact about AF algebras with constant primitive partial

multiplicity matrix. We normalize vL so that τ is a tracial state, i.e. we need the

2Note that the substitution matrix as defined by Solomyak is the transpose of our substitution
matrix.
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following to hold:

1 = τ(1)

= τ

(∑
pi∈P

e0
pi

(0, 0)

)
=

∑
pi∈P

τ(e0
pi

(0, 0))

=
∑
pi∈P

vL(i).

We note that if we fix n ∈ N, we have∑
pi∈P

∑
x∈Punc(n,pi)

enpi(x, x) = 1.

Therefore we also obtain the equation

1 = τ(1)

= τ

∑
pi∈P

∑
x∈Punc(n,pi)

enpi(x, x)


=

∑
pi∈P

∑
x∈Punc(n,pi)

λ−2nvL(i)

=
∑
pi∈P

#Punc(n, pi)λ
−2nvL(i). (4.6.6)

We conclude this chapter by summarizing what is known about the C*-algebras

associated to a primitive substitution tiling system. The following facts are all present

in the existing literature, but we gather them here for convenience.

Remark 4.6.8 Let (P , ω) be a primitive substitution tiling system in Rd satisfying

the assumptions of Remark 2.5.8, and let Ω be the associated tiling space. The crossed

product C(Ω) oRd is simple ([73] Corollary 8.22) and strongly Morita equivalent to

C∗r (Rpunc) (Corollary 3.4.2 together with Theorem 4.4.5). Strong Morita equivalence

preserves ideal structure, so C∗r (Rpunc) is simple as well. The groupoid Rpunc is

amenable ([54] Theorem 1.1) and so C∗(Rpunc) = C∗r (Rpunc).
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The groupoid Rpunc contains an AF groupoid RAF relative to which Rpunc has

the structure of an almost AF Cantor groupoid (Definition 3.2.10). The C*-algebra

C∗r (RAF ) is an AF algebra which we call AFω with a unique tracial state given by

Equation (4.6.5). By Phillips’ results on almost AF Cantor groupoids, C∗r (Rpunc)

has real rank zero and stable rank one, and has unique tracial state which when

restricted to AFω agrees with its unique tracial state ([47] Theorem 4.6, Theorem

5.2 and Proposition 2.11). Furthermore, the order of projections over C∗r (Rpunc) is

determined by traces ([52], and [47], Corollary 5.4).



Chapter 5

Finite Group Actions

Many of the tilings we study are acted upon naturally by finite symmetry groups.

These groups act on the groupoids and C*-algebras formed from these tilings. We

assume for the rest of this work that (P , ω) is a primitive substitution tiling system

of R2 satisfying the assumptions in Remark 2.5.8. We restrict to dimension 2 because

this case strikes a good balance between richness of examples and complexity (or

rather, lack thereof) of the symmetry groups.

5.1 Finite Group Actions on the Tiling Space

We begin by making precise a notion discussed at the end of Section 2.4.

Definition 5.1.1 Let (P , ω) be a substitution tiling system. We say that a subgroup

G of O(2,R) is a symmetry group for (P , ω) if for all p ∈ P and g ∈ G we have

that:

1. The set gp = {gx | x ∈ p} is an element of P, and

2. ω(gp) = gω(p).

78
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If G is such a group, then we say that SG ⊂ P is a set of standard position

prototiles for G if GSG = P and SG does not properly contain any other such set.

If G is a symmetry group for (P , ω), then Condition 1 says that G acts on the set

P in the traditional sense. This also implies that each g ∈ G is a bijection of P .

Note for Condition 2 that a group element acts on any translate of a prototile via

the formula g(p + x) = gp + gx. Recall that G acts freely on P if gp = p for some

p ∈ P if and only if g = e. In the case that G acts freely on P , a set SG of standard

position prototiles has the property that gSG ∩ SG = ∅ for g 6= e. In this work, we

only consider tilings which admit finite symmetry groups, and so from now on we

assume that all symmetry groups we consider are finite.

Example 5.1.2 Consider the Penrose substitution of Example 2.4.10. As mentioned

at the end of Section 2.4, a sample symmetry group for (PPen, ω) is the dihedral group

D10 generated by r, the counterclockwise rotation by π/5 and f , the reflection over

the x-axis. These elements satisfy the relations

r10 = f 2 = e, frf = r−1.

In this case, we can take SD10 = {1,21}. Here, D10 acts freely on PPen, that is, if

gp = p for some g ∈ D10 and p ∈ PPen, then g = e. We note that for the subgroup 〈r〉

we have S〈r〉 = {1,11,21,31} and the action of 〈r〉 also free. In both cases the action

commutes with the substitution by definition – it is defined on SG and extended by

symmetry.

Example 5.1.3 Consider the octagonal substitution of Figure 2.5. Then one sym-

metry group for the substitution is the dihedral group D8 generated by r, the coun-

terclockwise rotation by π/4 and f , the reflection over the x-axis. In this case SD8

consists of a rhomb and a triangle. Here, the action of D8 on P is not free, as the

rhomb is fixed by r4, rf , and r5f . In Example 2.4.12 we replaced our substitution
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system with one on which the action of D8 is free, see Figure 2.6. The tilings obtained

from this new substitution system are mutually locally derivable from tilings obtained

from the original substitution, yielding homeomorphic tiling spaces by Lemma 2.3.2.

Definition 5.1.4 Let G be a topological group that acts on a topological space X

on the left. We say that X is a G-space if the map from G × X to X defined by

(g, x) 7→ gx is continuous. We say that a locally compact Hausdorff G-space X is

proper if the map from G×X → X ×X defined by (g, x) 7→ (gx, x) is proper.

Recall that a continuous map f : X → Y is proper if f−1(K) is compact in X for

every compact K ⊂ Y . We note that if G is finite, then every G-space is a proper

G-space. We also note that if X is a G-space then for each g ∈ G the map x 7→ gx

is a homeomorphism of X.

Lemma 5.1.5 Suppose that G is a symmetry group for (P , ω) and suppose that Ω is

the tiling space associated to (P , ω). For T ∈ Ω and g ∈ G, let

gT = {gt | t ∈ T}.

Then gT ∈ Ω.

Proof: If P is a patch in gT , then g−1P ⊂ T and so appears in ωn(p) for some

n ∈ N and p ∈ P . But that means gg−1P = P appears in gωn(p) = ωn(gp). Every

patch of gT appears in ωn(q) for some prototile q and some n ∈ N, so gT ∈ Ω.

It is clear that this defines an action of G on Ω. We now prove that Ω is a G-space.

Lemma 5.1.6 Suppose that G is a symmetry group for (P , ω) and suppose that Ω is

the tiling space associated to (P , ω). Then Ω is a G-space.

Proof: The symmetry group G is finite and Ω is compact; it is enough to show that

the map g : Ω→ Ω is continuous. Let 0 < ε < 1 and suppose that d(T1, T2) < ε. Then
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by definition there exist x1, x2 ∈ R2 with |x1|, |x2| < ε such that (T1− x1)(B1/ε(0)) =

(T2 − x2)(B1/ε(0)). Since B1/ε(0) is invariant under G,

g
(
(T1 − x1)(B1/ε(0))

)
= g

(
(T2 − x2)(B1/ε(0))

)
(gT1 − gx1)(B1/ε(0)) = (gT2 − gx2)(B1/ε(0))

Since |gxi| = |xi|, i = 1, 2, this shows that d(gT1, gT2) < ε and proves the continuity

of g.

We note that the proof above implies that the action of G on Ω is isometric. Since G

acts on the prototiles, the action of G on Ω induces a continuous action on Ωpunc as

well.

5.2 The Orbit Space Ω/G

Definition 5.2.1 Let X be a G-space, and write x ∼G y if gy = x for some g ∈ G.

Then the orbit space X/G is defined as the set X/ ∼G with the quotient topology.

The natural quotient map π : X → X/G is an open map. Indeed, if U is open in X,

then π−1(π(U)) = ∪g∈GgU , and each of the gU are open since each g is open. We

denote the image of x under π as Gx.

Lemma 5.2.2 If X is a proper G-space and X is locally compact and Hausdorff,

then X/G is locally compact and Hausdorff.

The goal of this section is to describe the orbit space of the tiling space Ω as-

sociated to a primitive substitution tiling system (P , ω) by a finite symmetry group

G. We will use the description of the tiling space as an inverse limit of CW com-

plexes in Theorem 2.5.3. Since these CW complexes are quotients themselves, we

first prove some general facts about the interaction of group actions with quotients

by equivalence relations.
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Theorem 5.2.3 Let G be a locally compact Hausdorff group and let X be a locally

compact Hausdorff G-space. Let R be an equivalence relation on X such that for any

g ∈ G, (x, y) ∈ R if and only if (gx, gy) ∈ R. Then

1. X/R is a G-space,

2. the equivalence relation R induces an equivalence relation RG on X/G such that

(Gx,Gy) ∈ RG if and only if there exists g ∈ G such that (x, gy) ∈ R, and

3. (X/G)/RG
∼= (X/R)/G.

Proof: 1. Let QR denote the quotient map determined by R, and denote the

equivalence class of x in R by [x]R. Each g ∈ G determines a homeomorphism

g : X → X, and so QR ◦ g : X → X/R is a continuous and surjective quotient map.

Thus

(x, y) ∈ R ⇔ (gx, gy) ∈ R

⇔ QR(gx) = QR(gy)

⇔ QR ◦ g(x) = QR ◦ g(y).

Hence there is a homeomorphism fg : X/R → X/R such that fg ◦QR = QR ◦ g. We

have

fg ◦QR(x) = QR ◦ g(x)

fg([x]R) = [gx]R.

That this defines a left G-action on X/R is obvious. The product map G×X/R →

X/R is continuous because it is the composition of the product map G × X → X

with QR. Hence X/R is a G-space with g[x]R = [gx]R.
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2. We denote the usual quotient space maps by

P : X → X/G,

x 7→ Gx,

PR : X/R → (X/R)/G,

[x]R 7→ G[x]R.

The map PR ◦ QR : X → (X/R)/G is a continuous and surjective quotient map.

Suppose we have x, y ∈ X such that x = gy for some g ∈ G. Then

PR ◦QR(x) = PR([x]R)

= G[x]R

= G[gy]R

= G(g[y]R)

= G[y]R

= PR ◦QR(y).

Thus there exists a continuous surjective quotient map φ : X/G → (X/R)/G such

that φ ◦ P = PR ◦QR. For x ∈ X we have

φ(Gx) = PR ◦QR(x) = G[x]R.

Let RG be the equivalence relation on X/G determined by the fibres of φ. That is,

we say that (Gx,Gy) ∈ RG if and only if φ(Gx) = φ(Gy).

3. Let x, y ∈ X. Then φ(Gx) = φ(Gy) if and only if (Gx,Gy) ∈ RG. Since

φ : X/G → (X/R)/G is a surjective quotient map, this implies that (X/G)/RG
∼=

(X/R)/G.

We also have the following fact about continuous maps on a G-space.
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Lemma 5.2.4 Let G be a locally compact Hausdorff group and let X be a locally

compact Hausdorff G-space. Let f : X → X be continuous and surjective, and

suppose that for all g ∈ G we have that f(gx) = gf(x). Then there exists a continuous

surjective map f̃ : X/G→ X/G such that f̃(Gx) = Gf(x).

Proof: Once again let P : X → X/G denote the usual quotient map. The map

P ◦ f is continuous and surjective. Let x, y ∈ X such that x = gy for some g ∈ G.

Then

P ◦ f(x) = Gf(x) = G(f(gy)) = G(gf(y)) = Gf(y) = P ◦ f(y).

Since P ◦ f(x) is constant on orbits, there exists a continuous map f̃ : X/G→ X/G

such that f̃ ◦ P = P ◦ f . If x ∈ X then

f̃(Gx) = f̃ ◦ P (x) = P ◦ f(x) = Gf(x).

Surjectivity of f trivially implies surjectivity of f̃ .

Let G be a symmetry group for (P , ω) which acts freely on P . Recall from

Section 2.5 that we consider the disjoint union of the prototiles

Y = {(x, p) ∈ R2 × P | x ∈ p}

and define an equivalence relation R which is the transitive closure of the relation

that declares (x, p) and (y, q) to be equivalent if there is a tiling T in Ω such that for

some zp, zq ∈ R2 we have p+ zp, q + zq ∈ T and zp + x = zq + y. The space

Γ = Y/R.

corresponds to gluing prototiles together along edges that could be next to each other

in some tiling. Since G acts on the prototiles, it is trivial that Y is a G-space on setting

g(x, p) = (gx, gp). It is also clear that each g ∈ G is a cellular map (see Definition

2.5.1).
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Lemma 5.2.5 Let G be a symmetry group for (P , ω) which acts freely on P, and

suppose that Y is the disjoint union of the prototiles as above. If (x, p), (y, q) ∈ Y are

R-equivalent, then for all g ∈ G, (gx, gp), (gy, gq) are R-equivalent.

Proof: It is enough to show that if x ∈ p ∈ P , y ∈ q ∈ P such that there is

a tiling T ∈ Ω and zp, zq ∈ R2 with p + zp, q + zq ∈ T and zp + x = zq + y, then

(gx, gp) and (gy, gq) are R-equivalent. By Lemma 5.1.5, gT ∈ Ω. We have that

gp+ gzp, gp+ gzq ∈ gT and gzp + gx = gzq + gy, and hence (gx, gp) and (gy, gq) are

R-equivalent.

Notice that this implies that for all g ∈ G we have that (x, y) ∈ R if and only if

(gx, gy) ∈ R.

Corollary 5.2.6 Let G be a symmetry group for (P , ω) which acts freely on P. Then

Γ is a G-space, there is an equivalence relationRG on Y/G such that (G(x, p), G(y, q)) ∈

RG if and only if there exists g ∈ G such that ((x, p), g(y, q)) ∈ R, and

(Y/G)/RG
∼= Γ/G.

Proof: This follows from Theorem 5.2.3 with Corollary 5.2.5.

We now describe (Y/G)/RG. Since Y is the disjoint union of the prototiles and G

is a symmetry group which acts freely on P , then Y/G homeomorphic the disjoint

union of the prototiles in standard position,

Y/G ∼= {(x, p) | x ∈ p, p ∈ SG}.

From Corollary 5.2.6, (G(x, p), G(y, q)) ∈ RG if and only if there exists g ∈ G such

that ((x, p), g(y, q)) ∈ R. Hence, RG is the (transitive) equivalence relation generated

after declaring that (x, p) and (y, q) are equivalent if there exists T ∈ Ω, zp, zq ∈ R2

and g ∈ G such that p+ zp, gq+ gzq ∈ T and zp +x = gzq + gy. In words, (Y/G)/RG

is formed by gluing together the standard position prototiles along edges where they
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could appear next to each other in a tiling in any orientation. From this, it is clear

that (Y/G)/RG is a CW complex whose 2-cells are the standard position prototiles.

Hence by Corollary 5.2.6, Γ/G is homeomorphic to a finite CW complex.

Recall from Section 2.5 that Ω is homeomorphic to the inverse limit of the space

Γ under repeated application of the map γ : Γ → Γ which was defined via the

substitution ω. The following tells us that this map descends to the quotient.

Lemma 5.2.7 Let G be a symmetry group for (P , ω) which acts freely on P. Let

Γ be the CW complex associated with (P , ω), and let γ : Γ → Γ be defined as in

Section 2.5. Then there exists a unique continuous map γ̃ : Γ/G → Γ/G such that

γ̃(Gx) = Gγ(x).

Proof: Let [x, p]R ∈ Γ, g ∈ G. Then ω(p) = {q1 + y1, q2 + y2, . . . , qm + ym} for

some qj ∈ P , yj ∈ R2 for 1 ≤ j ≤ m. Hence, λx ∈ qi + yi for some i, giving us that

γ([x, p]R) = [λx− yi, qi]R. Thus gγ([x, p]R) = [λ(gx)− gyi, gqi]R.

On the other hand, x ∈ p implies that gx ∈ gp. Since substitution commutes

with the action of G, ω(gp) = {gq1 + gy1, gq2 + gy2, . . . , gqm + gym}. Furthermore,

gλx = λ(gx) ∈ gqi + gyi implies that λ(gx)− gyi ∈ gqi. Now the result follows from

Lemma 5.2.4.

The following lemma follows directly from the fact that G acts freely on P and the

discussion after Corollary 5.2.6.

Lemma 5.2.8 Let G be a symmetry group for (P , ω) which acts freely on P. Let Γ

be the CW complex associated with (P , ω). Then the quotient map from Γ to Γ/G

given by x 7→ Gx is a CW map.

Recall that if X is a compact Hausdorff space and γ : X → X is a continuous

surjection, then the inverse limit X = lim
←

(X
γ← X) is the subset of

∏
n∈NX consist-

ing of all sequences (xn)n∈N such that γ(xn+1) = xn for all n ∈ N, with the relative
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topology from the product topology. For an open set U ⊂ X and n ∈ N, let BX
U,n

denote the set

BX
U,n = {(xi)i∈N | xi ∈ γn−i(U), i = 0, 1, . . . , n}.

The collection of sets BX
U,n forms a basis for the topology on X . Before we state the

next lemma, we recall that if a G is a finite group and X is a compact Hausdorff

G-space, then the orbit space X/G is a compact Hausdorff space – this is by Lemma

5.2.2 and the fact that the quotient of a compact space is compact.

Lemma 5.2.9 Let G be a finite group and let X be a compact Hausdorff G-space.

Suppose that γ : X → X is a continuous surjection and that γ(gx) = gγ(x) for all

g ∈ G and x ∈ X. Let γ̃ : X/G → X/G be the continuous surjection induced by γ

from Lemma 5.2.4 such that γ̃(Gx) = Gγ(x) for all x ∈ X. Then:

1. If X = lim
←

(
X

γ← X
)

denotes the inverse limit, then X is a G-space. If g ∈ G

and (xi)i∈N the formula for the action is g(xi)i∈N = (gxi)i∈N.

2. The inverse limit XG = lim
←

(
X/G

γ̃← X/G
)

is canonically homeomorphic to

X /G.

Proof: 1. This formula clearly defines a left action. Since G is finite, it is enough

to show that each g defines a continuous map. If g ∈ G, U ⊂ X open and n ∈ N we

have

gBX
U,n = {g(xi)i∈N | xi ∈ γn−i(U), i = 0, 1, . . . , n}

= {(gxi)i∈N | gxi ∈ gγn−i(U), i = 0, 1, . . . , n}

= {(gxi)i∈N | gxi ∈ γn−i(gU), i = 0, 1, . . . , n}

= BX
gU,n.

Since g acts by homeomorphisms on X, this is open and so g is continuous.

2. We define

f : X →XG
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(xi)i∈N 7→ (Gxi)i∈N.

This map is well defined because of part 2 above. To prove that this is surjective, we

take (Gxi)i∈N ∈XG and show that there exists (xi)i∈N ∈X such that Gxi = Gxi for

all i ∈ N. Let x1 = x1 and proceed by induction. We know that

γ̃(Gx2) = Gγ(x2) = Gx1

which implies that there exists g ∈ G such that gγ(x2) = x1 = x1. Since gγ(x2) =

γ(gx2), set x2 = gx2. Clearly Gx2 = Gx2 so we have so far that

(Gx1, Gx2, Gx3, . . . ) = (Gx1, Gx2, Gx3, . . . ).

Now suppose we can find xk, 1 ≤ k ≤ i such that

(Gx1, Gx2, Gx3, . . . ) = (Gx1, Gx2, Gx3, . . . , Gxi, Gxi+1, . . . )

such that γ(xk+1 = xk, 1 ≤ k ≤ i− 1. Once again we have that

γ̃(Gxi+1) = Gγ(xi+1) = Gxi ⇒ ∃h ∈ G such that xi = hγ(xi+1) = γ(hxi+1).

Set xi+1 = hxi+1. Then

(Gx1, Gx2, Gx3, . . . ) = (Gx1, Gx2, Gx3, . . . , Gxi, Gxi+1, Gxi+2, . . . ).

Hence f ((xi)i∈N) = (Gxi)i∈N ∈XG, so f is surjective.

We now need to show that for (xi)i∈N, (yi)i∈N ∈ X we have that f ((xi)i∈N) =

f ((yi)i∈N) if and only if there exists g ∈ G such that (xi)i∈N = g(yi)i∈N. The “if”

direction is obvious, so we need to prove the “only if”. Suppose that (Gxi)i∈N =

(Gyi)i∈N. Then there exist gi ∈ G such that xi = giyi. If i > j, then it is easy to see

that

gjyj = xj = γi−j(xi) = γi−j(giyi) = giγ
i−j(yi) = giyj.
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Since G is a finite group, there is an element g ∈ G and a subsequence in such that

gin = g for all n. Now if k ∈ N, we can find n such that in > k. Hence by the above

we have that

xk = gkyk = ginyk = gyk

giving us that xk = gyk for all k ∈ N.

Lastly we need to show that f is a continuous quotient map, that is, we need

to show that V ⊂ XG open if and only if f−1(V ) is open in X . Let π : X → X/G

denote the quotient map π(x) = Gx. Then if U ⊂ X/G open and n ∈ N we have

BXG
U,n = {(Gxi)i∈N | Gxi ∈ γ̃n−i(U), i = 0, 1, . . . , n}

f−1
(
BXG
U,n

)
= {(xi)i∈N | Gxi ∈ γ̃n−i(U), i = 0, 1, . . . , n}

= {(xi)i∈N | xi ∈ π−1(γ̃n−i(U)), i = 0, 1, . . . , n}

= {(xi)i∈N | xi ∈ π−1γn−i(π−1(U)), i = 0, 1, . . . , n}

= BX
π−1(U),n.

Since π is a quotient map, this set is open and so f is continuous. Now, suppose

V ⊂ XG with f−1(V ) open. If (Gxi)i∈N ∈ V , then (gxi)i∈N ∈ f−1(V ) for all g ∈ G.

Thus we can find U ∈ X open and n ∈ N such that (xi)∈N ∈ BX
U,n ⊂ f−1(V ), and

since gBX
U,n = BX

gU,n we may choose U and n so that gBX
U,n ⊂ f−1(V ) for all g ∈ G as

well. We have

f

(⋃
g∈G

BX
gU,n

)
=

⋃
g∈G

{(Gyi)i∈N | yi ∈ γn−i(gU), i = 0, 1, . . . , n}

= {(Gyi)i∈N | yi ∈ γn−i
(⋃
g∈G

gU

)
, i = 0, 1, . . . , n}

= {(Gyi)i∈N | yi ∈ γn−i
(
π−1(π(U))

)
, i = 0, 1, . . . , n}

= {(Gyi)i∈N | yi ∈ π−1
(
γn−i(π(U))

)
, i = 0, 1, . . . , n}

= {(Gyi)i∈N | Gyi ∈ γn−i(π(U)), i = 0, 1, . . . , n}

= BX
π(U),n
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and (Gxi)i∈N ∈ BX
π(U),n ⊂ V . Hence f is a quotient map and we obtain that

XG
∼= X /G.

Corollary 5.2.10 Suppose that G is a symmetry group for (P , ω) and suppose that

Γ is the CW complex associated to (P , ω). Suppose also that G acts freely on P. Then

if Ω/G is the orbit space of Ω under the action of G, we have

Ω/G ∼= lim
←

(
Γ/G

γ̃← Γ/G
)
.

Corollary 5.2.10 allows us to identify the quotient space Ω/G as (homeomorphic to)

the inverse limit of CW complexes. In [45] Ormes, Radin and Sadun calculated the

cohomology of Ω/G for the Penrose tiling when G is the rotation group Z10. Below,

we do the calculation in detail for the octagonal tiling.

Example 5.2.11 Octagonal tiling, G = Z8.

The cohomology of the orbit space can be calculated by taking the orbit space of

the CW complex and then taking its direct limit. Referring to Figure 2.9, there are

32 prototiles in the CW complex for the octagonal, so the orbit space has 4 different

2-cells. We take SZ8 = {17,25,1,5}, and rename these tiles A = 17,B = 25,C = 1,

and D = 5. By identifying each of the standard position prototiles with their orbits

under Z8, we see that the all the edges in the set {9, 10, . . . , 16} become one edge in

the orbit space, call it a. Similarly, the edges in the set {1, 2, . . . , 8} are renamed b, the

edges in the set {17, 18, . . . , 24} are renamed c and the edges in the set {25, 26, . . . , 32}

are renamed d. Let E = {a, b, c, d} and F = {A,B,C,D}. There are five vertices

before modding out by Z8, and 4 of them get identified. Call them α, β and set

V = {α, β}. The cochain complex for the integer cohomology for Γ/Z8 is isomorphic

to (see for example [29], Theorem 3.5)

0→ C(V,Z)→ C(E,Z)→ C(F,Z)→ 0
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Figure 5.1: Γ/Z8 for the octagonal tiling with substitution rule.

which becomes

0 −→ Z2 ∂0−→ Z4 ∂1−→ Z4 −→ 0.

One obtains the matrices ∂0 and ∂1 from Figure 5.1 after giving each element of F

a clockwise orientation:

∂0 =


0 0

0 0

−1 1

1 −1

 ∂1 =


−1 2 0 0

1 −2 0 0

0 −1 1 1

0 1 −1 −1

 ,

where, for instance, the first row of ∂1 indicates that the boundary of the tile A has

two copies of edge b and one copy of edge a. The −1 indicates that the boundary of

A contains one copy of a and arrow on the a runs against the clockwise orientation

of A. The +2 indicates that the boundary of A contains two copies of b and arrows

of both copies run with the clockwise orientation of A. We have

ker ∂0 =

〈 1

1

〉 Im∂0 =

〈


0

0

1

−1


〉
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ker ∂1 =

〈


0

0

1

−1

 ,


2

1

0

1


〉

Im∂1 =

〈

−1

1

0

0

 ,


0

0

1

−1


〉
.

This gives us

H0(Γ/Z8,Z) = ker ∂0
∼= Z

H1(Γ/Z8,Z) = ker ∂1/Im∂0
∼= Z

H2(Γ/Z8,Z) = Z4/Im∂1
∼= Z2.

The space Ω/Z8 is homeomorphic to the inverse limit of Γ/Z8 by the map γ̃ obtained

from the substitution. The map γ̃ is cellular. The group H i(Γ/Z8,Z) is a subgroup of

Zn(i), where n(i) is the number of i-cells in the CW complex Γ/Z8, and the cohomology

groups H i(Ω/Z8,Z) are obtained by taking the stationary direct limit of the groups

H i(Γ/Z8,Z) under the (n(i) × n(i)) matrix Ai whose (k, j) entry is the number of

copies of the kth i-cell obtained when one performs the substitution on the jth i-cell

(for details on this see [1]). These substitution matrices can be read off Figure 5.1:

A0 =

 1 0

0 1

 A1 =


1 1 0 0

2 1 0 0

0 0 2 1

0 0 1 0

 A2 =


2 1 1 0

1 2 0 1

4 4 1 2

4 4 2 1

 ,

where, for instance, the first column of A2 indicates that substituting the tile A results

in two copies of A, one copy of B, and four copies each of C and D. All of these have

determinant either ±1, so they are invertible over the integers. One calculates these

inverse limits to be

H0(Ω/Z8,Z) = lim
(
H0(Γ/Z8,Z)

A0−→ H0(Γ/Z8,Z)
)
∼= Z

H1(Ω/Z8,Z) = lim
(
H1(Γ/Z8,Z)

A1−→ H1(Γ/Z8,Z)
)
∼= Z

H2(Ω/Z8,Z) = lim
(
H2(Γ/Z8,Z)

A2−→ H2(Γ/Z8,Z)
)
∼= Z2.
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Example 5.2.12 As stated above, the cohomology of the orbit space Ω/Z10 was

calculated in [45] to be

H0(Ω/Z10,Z) ∼= Z

H1(Ω/Z10,Z) ∼= Z

H2(Ω/Z10,Z) ∼= Z2.

Before leaving this section, we note that in [5] the authors provide a framework for

computing the cohomology of the orbit space for a more general class of tilings.

5.3 Fixed Points of Ω Under the Group Action

Once again we let (P , ω) be a primitive substitution system and let G be a finite

symmetry group which acts freely on P . We describe in this section what the fixed

points of Ω are under the action of G. Descriptions of tilings of this type were

mentioned in [34] among other places, but since our calculations depend on the exact

nature of such tilings we derive conditions necessary and sufficient for a tiling to be

fixed by a given group element. Since G is always a finite subgroup of O(2,R), it

consists of rotations and/or reflections.

Suppose g ∈ G is a rotation and suppose that gT = T . Recall that Ω is home-

omorphic to Ω0, the inverse limit of the spaces Γ under the map γ. Suppose that

T = (x1, x2, . . . ) when viewed as an element of Ω0. If gT = T then gxi = xi for all

i. Since G acts freely on the prototiles, we must have that xi is either a vertex or on

an edge in the CW complex Γ (that is, xi is a 0-cell or in a 1-cell). If xi is in an edge

and gxi = xi, then g must be rotation by π and xi must be in the middle of an edge.

If we create a new vertex at xi, then this does not change the cohomology of the CW

complex or that of its direct limit, nor does it change the fact that the quotient map

from Γ to Γ/G is a CW map. Hence if we create a vertex in the middle of every edge
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whose middle is fixed by g, we may assume that gT = T implies that xi is a vertex

for all i.

Since the action of G commutes with the substitution, gT = T implies that

(ωn(T )(0))n∈Z is a bi-infinite sequence of vertex patterns, each of which is fixed by g.

By finite local complexity there are only finitely many such patterns, and hence this

bi-infinite sequence must be periodic. To see this, consider (ωn(P )(0))n∈Z\N. Since

the number of vertex patterns is finite one of them, say Q, must repeat infinitely

often in (ωn(P )(0))n∈Z\N. Furthermore, the gaps between the Qs must be constant,

because the ith term in the sequence is determined by the (i−1)th term. This implies

periodicity of (ωn(P )(0))n∈Z and hence periodicity of (ωn(P )(0))n∈N. Conversely, if

one finds a vertex pattern P such that gP = P and ωn(P )(0) = P , then we can build

a tiling via

T =
∞⋃
i=1

ωin(P )

and in this case, gT = T . Thus, tilings for which gT = T are in one-to-one corre-

spondence with vertex patterns P for which gP = P and ωn(P )(0) = P .

Finding tilings for which gT = T then comes down to writing down all the vertex

patterns fixed by g and iteratively substituting each of them and seeing if the pattern

at the origin repeats. Also notice that this implies that the set of tilings fixed by G

is a finite (and hence isolated) set; this will become important for calculations in the

next chapter. We record the above discussion in the following lemma.

Lemma 5.3.1 Suppose that g is a rotation. Let

P∗g = {P | P = T ′(0) for some T ′ ∈ Ω, gP = P, and ωn(P )(0) = P for some n ∈ N}

Then the set of tilings T ∈ Ω for which T = gT is in one-to-one correspondence with

P∗g . Furthermore, there are only a finite number of such tilings.
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Example 5.3.2 Consider the Penrose tiling with r denoting rotation counterclock-

wise by π/5, see Example 5.1.2 and Figure 2.7. By repeatedly applying the substi-

tution, one finds that the only vertex patterns which are fixed under some rotation

are the two “star” patterns in the bottom left of Figure 2.7 which we call P1 and P3,

as well as the patches in the centers of ω(P1) and ω(P3) which we call P2 and P4.

These are fixed by 〈r2〉 ⊂ D10. The two decagons in the top left of Figure 2.7 are

fixed by some rotation, but do not appear in tilings in Ω. This is seen by noticing

that the smallest edges are only shared by the small triangles, and no edge between

small triangles is ever deleted under ω−1. One finds that

ω(P1)(0) = P2,

ω(P2)(0) = P3,

ω(P3)(0) = P4,

ω(P4)(0) = P1.

Hence all four of these patches give rise to tilings fixed under the subgroup 〈r2〉,

defined by

Ti =
∞⋃
k=0

ω4k(Pi).

We also note that rT1 = T3, rT2 = T4.

Example 5.3.3 Consider the octagonal tiling whose cell complex is given in Figure

2.9, and let r denote rotation counterclockwise by π/4. After writing down all vertex

patterns one finds that there are only five vertex patterns which are fixed under

rotations. The patch in the middle of Figure 2.9 has stabilizer Z8; we call this patch

P1. The patch P2 = {1,5,9,13} has stabilizer 〈r4〉 ∼= Z2. If we let rP2 = P3,

rP3 = P4 and rP4 = P5, then these have stabilizer 〈r4〉 ∼= Z2 as well. Also,

ω(P1) = P1,
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ω2(Pi) = Pi, i = 2, 3, 4, 5.

Hence we get five tilings fixed under rotations,

T1 =
∞⋃
k=1

ωk(P1),

Ti =
∞⋃
k=1

ω2k(Pi), i = 2, 3, 4, 5.

We again note that T5 = rT4 = r2T3 = r3T2.

When g is a reflection, it is a little more difficult to describe the tilings which

are fixed by g.

Definition 5.3.4 Let G be a finite symmetry group of (P , ω) and let g ∈ G be a

reflection. Let Γ be the CW complex associated with (P , ω), and let E be the set of

1-cells in this complex. Let `g be the axis of symmetry of g. We say an edge e ∈ E

parallel to `g is substitution symmetric if whenever we have T = (x1, x2, . . . )

and x1 ∈ Int(e), then ω(T )(0) = gω(T )(0). Let SS(g) be the set of all substitution

symmetric edges which are parallel to `g.

In other words, an edge is substitution symmetric if whenever you substitute any

pattern containing it, the tiles which intersect the substituted edge’s interior are fixed

by reflection over the edge. Notice that the group element g is fixed once you specify

the edge since there is only one line which it parallel to it. Since the substitution

commutes with g, substituting a substitution symmetric edge results in a union of

substitution symmetric edges. We define

Γg = {x ∈ Γ | x ∈ e, e ∈ SS(g)}.

If gT = T with T = (x1, x2, . . . ), again we have that gxi = xi for all i. Thus xi has

to be contained in an edge parallel to `g. The converse is not true in general. For

example, consider the collaring procedure from Remark 2.5.4 where each prototile
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Figure 5.2: After collaring, edges may fail to be substitution symmetric.

was replaced by finitely many labeled copies with the label depending on the possible

configurations of tiles surrounding them in tilings. As Figure 5.2 shows, collaring Pen-

rose tiles results in a substitution for which not all edges are substitution symmetric.

Lemma 5.3.5 Suppose that we have T = (xi)i∈N such that xi is in a substitution

symmetric edge for all i. Then there exists a reflection g such that xi is in a substi-

tution symmetric edge in the direction `g for all i and gT = T .

Proof: Since there are only a finite number of reflections possible, there exists a
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strictly increasing sequence of positive integers (in)n∈N and a group element g such

that xin ∈ Γg for all n ∈ N. In addition, if xj+1 ∈ Γg, γ(xj+1) = xj ∈ Γg as well.

Together, these imply that xi ∈ Γg for all g.

We now want to show that gT = T , or equivalently that xi = gxi for all i. If

xi+1 ∈ Γg then γ(xi+1) = xi and whenever we have a tiling S = (xi, y1, y2, . . . ), we

must have that ω(S)(0) = gω(S)(0). This means precisely that gxi = xi. Since i was

arbitrary, gxi = xi for all i.

We state but do not use the following result.

Lemma 5.3.6 The elements of SS(g) are the prototiles for a one-dimensional sub-

stitution tiling system. The tiling space of this system is denoted Ωg. This is a closed

subspace of Ω. In addition,

Ωg = lim
←

(
Γg

γ← Γg

)
.

Proof: The second statement is by definition; Ωg is the subspace of the inverse

limit such that each element in the sequence is in SS(g).

5.4 The Semidirect Product Groupoid

If G is a symmetry group for substitution tiling system (P , ω), then G acts on the

groupoids associated to (P , ω).

Lemma 5.4.1 Let G be a symmetry group for (P , ω), let Ω be the tiling space as-

sociated to (P , ω) and let (Ω,R2) denote the transformation group groupoid associ-

ated to the translation action on Ω. Then α : G → Aut(Ω,R2) defined for g ∈ G,

(T, x) ∈ (Ω,R2), by

αg(T, x) = (gT, gx)
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is a homomorphism. Furthermore, each αg is continuous.

Proof: If g, h ∈ G, then αgh(T, x) = (ghT, ghx) = αg(hT, hx) = αg ◦ αh(T, x). If

g ∈ G, (T, x) ∈ (Ω,R2), then αg(T, x) = (gT, gx). This is continuous in each of the

coordinates hence continuous. It is also easy to see that this has continuous inverse

given by αg−1 .

If (T, x), (T + x, y) ∈ (Ω,R2), then

αg((T, x)(T + x, y)) = αg(T, x+ y)

= (gT, gx+ gy)

= (gT, gx)(gT + gx, gy)

= αg(T, x)αg(T + x, y)

αg((T, x)−1) = αg(T + x,−x)

= (gT + gx,−gx)

= (αg(T, x))−1.

Since G acts on the prototiles, the action above restricts to an action on Rpunc. That

is, αg|Rpunc
is a continuous automorphism of Rpunc, and g 7→ αg|Rpunc

defines a group

homomorphism from G to Aut(Rpunc). From now on, we will simply write gγ in place

of αg(γ) for γ ∈ Rpunc or γ ∈ (Ω,R2).

If G is a symmetry group for (P , ω), then G acts on R2 and so we can form

the semidirect product group R2 o G. As a set, R2 o G is R2 × G and it becomes a

group under the binary operation (x, g)(y, h) = (x + gy, gh) and inverse (x, g)−1 =

(−g−1x, g−1). Since (x, g) = (x, e)(0, g), R2 oG acts on the left on Ω via the formula

(x, g)T = gT + x,

and Lemma 5.1.6 together with the discussion above imply that it acts by homeomor-

phisms on Ω. Hence we can form the transformation group groupoid G = (Ω,R2oG).
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The unit space of G is Ω. The space Ωpunc ⊂ Ω is closed and intersects every orbit in

G. Hence to use Example 3.3.6 we must show the following.

Lemma 5.4.2 Restricted to GΩpunc = {γ ∈ G | s(γ) ∈ Ωpunc}, the maps r and s are

both open.

Proof: Suppose that V ⊂ GΩpunc is open. Then there exists W open in G such

that V = W ∩ GΩpunc . Let T ∈ r(V ). Then we can find g ∈ R2 o G such that

(g−1T, g) ∈ V . Since W is open, we can find U ⊂ Ω, H ⊂ R2 o G both open such

that

g−1T ∈ U, g ∈ H, U ×H ⊂ W.

Now we have

r
(
(U ×H) ∩ GΩpunc

)
=

{
T ′ ∈

⋃
h∈H

hU | T ′ ∈ Ωpunc

}
=

⋃
h∈H

hU ∩ Ωpunc

This set is open in the relative topology, is contained in r(V ) and contains T . There-

fore the restriction of r is open.

To prove s is open, again take V = W ∩ GΩpunc open. Let T ∈ s(V ) and find

(x, g) ∈ R2 o G such that (T, (x, g)) ∈ V . In particular gT + x ∈ Ωpunc. Find ε > 0

such that

BΩ
ε (T )×B ε

2
(x, g) ⊂ W.

By taking ε smaller if necessary, we may assume that |x| < 1
2ε

, B ε
2
(x, g) = {(x′, g) |

|x− x′| < ε
2
} and S(B2ε(0)) = S(0) for all S ∈ Ωpunc.

We claim that BΩ
ε/4(T ) ⊂ s(V ). Let T ′ ∈ BΩ

ε/4(T ). Then by definition there exists x′

with |x′| < ε
2

such that

(T ′ + x′)(B 4
ε
(0)) = T (B 4

ε
(0)).

Since |x| < 4
ε

and (x, g)T is punctured, (x, g)(T ′ + x′) must be as well. But

(x, g)(T ′ + x′) = gT ′ + gx′ + x = (gx′ + x, g)T ′.
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We have that T ′ ∈ BΩ
ε (T ) and (gx′ + x, g) ∈ Bε/2(x, g) and (gx′ + x, g)T ′ ∈ Ωpunc.

Thus T ′ ∈ s(V ), hence s is an open map.

We now prove that (Ω,R2 oG) and (Ω,R2) oG are naturally isomorphic.

Lemma 5.4.3 If H is the semidirect product groupoid (Ω,R2) o G, then the map

ϕ : G →H defined by

ϕ((T, (x, g))) =
(
(T, g−1x), g−1

)
, for (T, (x, g)) ∈ G ,

is a topological groupoid isomorphism.

Proof: Let us first prove that ϕ is a groupoid homomorphism. If γ, η ∈ G form a

composable pair, then there exist g ∈ G, x ∈ R2 and T ∈ Ω such that

γ = (T, (x, g)), η = (gT + x, (y, h)), γη = (T, (hx+ y, hg)).

Then

ϕ(γη) =
(
(T, (hg)−1(hx+ y)), (hg)−1

)
=

(
(T, g−1x+ g−1h−1y), g−1h−1

)
We calculate

ϕ(γ) =
(
(T, g−1x), g−1

)
ϕ(η) =

(
(gT + x, h−1y), h−1

)
=

(
(g(T + g−1x), h−1y), h−1

)
.

We have that r(ϕ(γ)) = gT + x = s(ϕ(η)) so (ϕ(γ), ϕ(η)) is composable in H . By

the definition of the product in the semidirect product groupoid we have

ϕ(γ)ϕ(η) =
(
(T, g−1x), g−1

) (
(g(T + g−1x), h−1y), h−1

)
=

(
(T, g−1x), g−1

) (
(g−1 · (T + g−1x), g−1h−1y), h−1

)
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=
(
((T, g−1x)(T + g−1x), g−1h−1y), g−1h−1

)
=

(
(T, g−1x+ g−1h−1y), g−1h−1

)
= ϕ(γη).

The map from Ω×R2×G→ Ω×R2×G given by (T, x, g) 7→ (T, g−1x, g−1) is clearly

a bijection (in fact as a set map it is its own inverse). Under this map, an open set

U × V ×W gets mapped to U ×W−1V ×W−1. The sets U and W−1 are open and

W−1V =
⋃
g∈W

g−1V

is a union of open sets, hence open. Thus ϕ is a homeomorphism that is also a

groupoid homomorphism, hence it is a topological groupoid isomorphism.

The above lemma gives us the following.

Corollary 5.4.4 If G = (Ω,R2 oG), then G
Ωpunc

Ωpunc

∼= Rpunc oG.

Theorem 5.4.5 Let G be a symmetry group for (P , ω), and let Ω be the tiling space

associated to (P , ω). Then the groupoids G = (Ω,R2oG) and RpuncoG are equivalent

in the sense of Definition 3.3.5. The space GΩpunc is the (G ,Rpunc oG)-equivalence.

Proof: This combines Example 3.3.6 with the Corollary 5.4.4.

By Proposition 3.2.5, Rpunc o G is r-discrete and admits a Haar system. We now

show that if G acts freely on P then RpuncoG is almost AF in the sense of Definition

3.2.10.

Lemma 5.4.6 Suppose that G is a finite symmetry group for (P , ω) and that G acts

freely on P. Let RAF be that AF Cantor groupoid associated to (P , ω). Then RAFoG

is an AF Cantor groupoid in the sense of Definition 3.2.8.

Proof: It is enough to show that RAF oG is an increasing union of compact open

principal subgroupoids each with unit space Ωpunc. For N ∈ N consider RN oG. Let
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((T1, T1 +x1), g1) and ((T2, T2 +x2), g2) be elements of RNoG and suppose they have

the same range and source. As for i = 1, 2,

r((Ti, Ti + xi), gi) = (r(Ti, Ti + xi), e) = ((Ti, Ti), e),

then T1 = T2. Let T = T1 = T2, making our two elements ((T, T + x1), g1) and

((T, T + x2), g2). Since for i = 1, 2,

s((T, T + xi), gi) = (s(T, T + xi) · gi, e) = (g−1
i (T + xi), g

−1
i (T + xi), e),

then g−1
1 (T + x1) = g−1

2 (T + x2), or

T + x1 = g1g
−1
2 (T + x2)

The pairs (T, T + x1) and (T, T + x2) are both in RN . This means that ω−N(T + x1)

and ω−N(T+x1) are both tilings with the same tile around the origin, only translated.

That is to say that ω−N(T + x1)(0) = t and ω−N(T + x2)(0) = t + λ−N(x1 − x2).

But the above then implies that t = g1g
−1
2 (t + λ−N(x1 − x2)) which is only possible

if x2 = x1 and g1 = g2 since G acts freely on the prototiles. Thus each RN o G is

principal. It is easy to see that

RAF oG =
⋃
N∈N

RN oG

and so RAF oG is an increasing union of compact principal groupoids. Since RN oG

inherits the product topology from RN ×G and RN is open in RN+1, we must have

that RN oG is open in RN+1 oG. This completes the proof.

The following lemma helps us simplify verification of Definition 3.2.10.

Lemma 5.4.7 Suppose that G is a finite symmetry group for (P , ω). Then the only

open invariant subsets of Ωpunc with respect to the groupoid RpuncoG are ∅ and Ωpunc.

Hence, C∗r (Rpunc oG) is simple.
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Proof: EveryRpuncoG-orbit in Ωpunc is the union ofRpunc-orbits, and eachRpunc-

orbit is dense in Ωpunc. Hence every Rpunc oG-orbit is dense. That C∗r (Rpunc oG) is

simple follows from Lemma 4.3.4.

We are now in a position to prove the following important theorem.

Theorem 5.4.8 Suppose that G is a finite symmetry group for (P , ω) and that G

acts freely on P. Then Rpunc o G is an almost AF Cantor groupoid with respect to

the sub-AF groupoid RAF oG.

Proof: By Lemma 5.4.7, C∗r (Rpunc oG) is simple. Thus by Proposition 4.3.3 we

only need to check Condition 1 of Definition 3.2.10.

Consider the sets

Lr = {(T, T − x) ∈ Rpunc \ RAF | |x| ≤ r}

Mr = {((T, T − x), g) ∈ (Rpunc oG \ RAF oG) | |x| ≤ r}

Then Mr = Lr ×G. In [51] it is shown that Lr is compact and that any compact set

in Rpunc \ RAF is contained in Lr for some suitable r. Notice that r(Mr) = r(Lr).

Suppose that K ⊂ (Rpunc oG \ RAF oG) is compact. Then

K =
⋃
g∈G

Kg where Kg = K ∩ (Rpunc \ RAF )× {g}.

Each of the Kg is compact because (Rpunc \RAF )×{g} is closed. If π1 : Rpunc oG→

Rpunc is the usual projection, then π1(Kg) is compact, and hence included in Lrg for

some rg. Let r = max{rg} and consider Mr. We have

K =
⋃
g∈G

Kg ⊂
⋃
g∈G

(Lrg × {g}) ⊂
⋃
g∈G

(Lr × {g}) = Mr

giving us that K ⊂ Mr and thus r(K) ⊂ r(Mr) = r(Lr). Since r(Lr) is thin, r(K)

must also be thin in the sense of Definition 3.2.9. Thus Condition 1 of Definition

3.2.10 is satisfied and we have that Rpunc oG is an almost AF Cantor groupoid.
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The above theorem yields the following, which we will use in Section 5.7.

Corollary 5.4.9 Suppose that G is a finite symmetry group for (P , ω) acting freely

on P. Then the C*-algebra C∗r (Rpunc o G) has real rank zero, stable rank one, and

order on its projections is determined by traces.

Proof: This follows from the above theorem together with [47] Theorem 4.6, The-

orem 5.2, Corollary 5.4 and Proposition 2.11.

5.5 The Crossed Product C∗r (Rpunc) oG

Finite symmetry groups act on the C*-algebras associated to the tilings. In this

section, we prove that the groupoid C*-algebra C∗r (Rpunc o G) is isomorphic to the

crossed product C*-algebra C∗r (Rpunc)oG. Then in Theorem 5.5.2 we compile results

from the previous section and come up with a list of C*-algebras strongly Morita

equivalent to C∗r (Rpunc oG).

The first proposition of this section is certainly well-known, but for the sake of

completeness we include the proof.

Proposition 5.5.1 Let G be a locally compact Hausdorff r-discrete groupoid which

admits a Haar system, let G be a finite group, and let α : G → Aut(G ) be a homo-

morphism. Recall from Proposition 3.2.5 that G oα G is r-discrete and admits Haar

system. Then:

1. α induces an action β : G→ Aut(C∗r (G )) such that

βg(f)(γ) = f(α−1
g (γ)), f ∈ Cc(G ), γ ∈ G . (5.5.1)

2. There exists a ∗-isomorphism

Φ : C∗r (G ) oβ G→ C∗r (G oα G)
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such that

Φ(fδh)(γ, g) =

f(γ) if g = h

0 otherwise,

f ∈ Cc(G ), γ ∈ G , g, h ∈ G. (5.5.2)

Proof: Let X be the unit space of G , that is X = G (0). We recall from the

definition of the semidirect product groupoid (Definition 3.1.8) that the unit space of

G oα G is also X and that r(γ, g) = r(γ) for all γ ∈ G and g ∈ G. For γ ∈ G and

g ∈ G we will also use the notation γ · g := αg−1(γ) introduced in Definition 3.1.8 and

note that it defines a right action.

1. We first prove that (5.5.1) defines a ∗-automorphism of the ∗-algebra Cc(G ).

Let f1, f2 ∈ Cc(G ), g ∈ G and γ ∈ G . Then

βg(f1 ? f2)(γ) = f1 ? f2(γ · g)

=
∑
η∈G

r(η)=s(γ·g)

f1((γ · g)η)f2(η−1)

=
∑
η′∈G

r(η′)=s(γ)

f1((γη′) · g)f2(η′−1 · g) (letting η′ = η · g−1)

=
∑
η′∈G

r(η′)=s(γ)

βg(f1)(γη′)βg(f2)(η′−1)

= βg(f1) ? βg(f2)(γ).

βg(f
∗
1 )(γ) = f ∗1 (γ · g)

= f1 ((γ · g)−1)

= f1 (γ−1 · g)

= βg(f1) (γ−1)

= βg(f1)(γ)∗.

For each g ∈ G, each βg is clearly linear and bijective, and so is a bijective ∗-algebra
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homomorphism. To prove continuity, we first let g ∈ G, x ∈ X and ξ ∈ l2(Gx). Then

‖ξ‖2
2 =

∑
η∈Gx

|ξ(η)|2

=
∑

αg(η)∈Gαg(x)

|ξ(η)|2

=
∑

γ∈Gαg(x)

|ξ(γ · g)|2

Thus we may define β′g : l2(Gx)→ l2(Gαg(x)) by

β′g(ξ)(γ) = ξ(γ · g), γ ∈ Gαg(x),

and β′g ∈ B
(
l2(Gx), l2(Gαg(x))

)
with ‖β′g‖ = 1. We are now in a position to prove that

each βg is continuous. Let x ∈ X and consider the representation

λx(f) : Cc(G )→ B(l2(Gx))

λx(f)ξ(γ) =
∑
η∈Gx

f(γη−1)ξ(η)

from Proposition 4.3.2. For f ∈ Cc(G ), x ∈ X, ξ ∈ l2(Gx), γ ∈ Gx and g ∈ G we have

λx(βg(f))ξ(γ) =
∑
η∈Gx

βg(f)(γη−1)ξ(η)

=
∑
η∈Gx

f((γη−1) · g)ξ(η · gg−1)

=
∑
η∈Gx

f((γ · g)(η−1 · g))β′g−1(ξ)(η · g)

=
∑

η′∈Gx·g

f((γ · g)η′−1)β′g−1(ξ)(η′) (letting η′ = η · g)

= λx·g(f)β′g−1(ξ)(γ · g)

= β′g(λx·g(f)β′g−1(ξ))(γ).

If ‖ξ‖2 = 1, we have

‖λx(βg(f))ξ‖2 = ‖β′g(λx·g(f)β′g−1)(ξ)‖2



5.5. The Crossed Product C∗r (Rpunc) oG 108

≤ ‖β′g(λx·g(f)β′g−1)‖

= ‖λx·g(f)β′g−1‖

≤ ‖λx·g(f)‖

≤ ‖f‖red.

Now, taking the supremum of the left side over ξ ∈ l2(Gx) of norm 1 and x ∈ G

gives us that ‖βg(f)‖red ≤ ‖f‖red. Hence βg is continuous for each g and extends to

a ∗-automorphism of C∗r (G ). That β is a homomorphism is obtained by calculating

βgh(f)(γ) = f(γ · gh) = βh(f)(γ · g) = βg(βh(f))(γ) = βg ◦ βh(f)(γ)

for all γ ∈ G , g, h ∈ G, and f ∈ Cc(G ). That β is continuous is immediate due to G

being discrete.

2. The ∗-algebra

Cc(G )G =

{∑
g∈G

fgδg | fg ∈ Cc(G )

}

(see Example 4.2.4) is a dense subalgebra of C∗r (G ) oβ G. The map Φ is defined on

elements fδg and extended by linearity to Cc(G )G. We check that Φ as defined in

(5.5.2) is a ∗-automorphism of the ∗-algebra Cc(G )G; if f1, f2 ∈ Cc(G ), g, g1, g2 ∈ G

and γ ∈ G , then we have

Φ(f1δg1f2δg2)(γ, g) = Φ(f1βg1(f2)δg1g2)(γ, g)

=

f1βg1(f2)(γ) if g = g1g2

0 otherwise

=


∑
η∈G

r(η)=s(γ)

f1(γη)βg1(f2)(η−1) if g = g1g2

0 otherwise
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=


∑
η∈G

r(η)=s(γ)

f1(γη)f2(η−1 · g1) if g = g1g2

0 otherwise.

On the other hand,

Φ(f1δg1) ? Φ(f2δg2)(γ, g) =
∑

(η,h)∈GoG
r(η,h)=s(γ,g)

Φ(f1δg1)((γ, g), (η, h))Φ(f2δg2)((η, h)−1)

Now, we have

r(η, h) = r(η), s(γ, g) = s(γ) · g, (η, h)−1 = (η−1 · h, h−1).

Hence, Φ(f1δg1)((γ, g), (η, h)) is only nonzero if g1 = gh and Φ(f2δg2)((η, h)−1) is

nonzero if g2 = h−1. These together imply that g = g1g2. We also have

(γ, g)(η, h) = (γ, g)((η · g−1) · g, g−1
2 ) = (γ(η · g−1), gg−1

2 ) = (γ(η · g−1), g1).

In this case we have that

Φ(f1δg1)(γ(η · g−1), g1) = f1(γ(η · g−1))

and

Φ(f2δg2)(η
−1 · g−1

2 , g2) = f2(η−1 · g−1
2 ).

Hence we obtain

Φ(f1δg1) ? Φ(f2δg2)(γ, g) =


∑
η∈G

r(η)=s(γ)·g

f1(γ(η · g−1))f2(η−1 · g−1
2 ) if g = g1g2

0 otherwise.

If we let ν = η · g−1, then r(ν) = s(γ) and straightforward computation shows that

η−1 · g−1
2 = ν · g1. Thus,

Φ(f1δg1) ? Φ(f2δg2)(γ, g) =


∑
ν∈G

r(ν)=s(γ)

f1(γν)f2(ν · g1) if g = g1g2

0 otherwise
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= Φ(f1δg1f2δg2)(γ, g).

Thus Φ respects the product. Now let f ∈ Cc(G ), γ ∈ G and g, h ∈ G. Then

Φ((fδh)
∗)(γ, g) = Φ(βh−1(f ∗)δh−1)(γ, g)

=

βh
−1(f ∗)(γ) if g = h−1

0 otherwise

=

f
∗(γ · h−1) if g = h−1

0 otherwise

=

f(γ−1 · h−1) if g = h−1

0 otherwise

=

f(γ−1 · g) if g = h−1

0 otherwise

= Φ(fδh)(γ−1 · g, g−1)

= Φ(fδh) ((γ, g)−1)

= Φ ((fδh)
∗) (γ, g).

The map Φ is clearly injective. Let f ∈ Cc(G oαG), and suppose that K is a compact

subset of G oα G such that supp(f) ⊂ K. Since the set G × {g} is closed in G oα G

for all g ∈ G, the complex-valued function

eg(f) : G → C

γ 7→ f(γ, g)

is continuous and supported on K ∩ G × {g}, and hence is an element of Cc(G ) for

each g ∈ G. We see that if (γ, h) ∈ G oα G then

Φ

(∑
g∈G

eg(f)δg

)
(γ, h) = eh(f)(γ) = f(γ, h)
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and so Φ is surjective. We also note that

eg

(
Φ

(∑
h∈G

fhδg

))
= fg. (5.5.3)

It remains to show that Φ is continuous. The norm on Cc(G oα G) is determined by

the representations

πx : Cc(G oα G)→ B(l2(G oα Gx))

πx(f)ξ(γ, g) =
∑

(η,h)∈GoαGx

f((γ, g)(η, h)−1)ξ(η, h)

for x ∈ X, ξ ∈ l2(G oα Gx) and (γ, g) ∈ G oα Gx. If ξ ∈ l2(G oα Gx) then the

function ξg(γ) := ξ(γ · g−1, g) is an element of l2(Gx) and ‖ξh‖2 ≤ ‖ξ‖2 for all h ∈ G.

Straightforward computation also shows that

(γ, g)(η, h)−1 = (γ(η−1 · hg−1), gh−1).

Thus, for k ∈ Cc(G oα G)

πx(k)ξ(γ, g) =
∑

(η,h)∈GoαGx

k(γ(η−1 · hg−1), gh−1)ξ(η, h)

=
∑
h∈G

 ∑
η∈G

s(η)=x·h−1

kgh−1(γ(η−1 · hg−1))ξh(η · h)


=

∑
h∈G

 ∑
η∈G

s(η)=x·h−1

βg−1(kgh−1)((γ · g)(η−1 · h))ξh(η · h)


=

∑
h∈G

∑
ν∈G
s(ν)=x

βg−1(kgh−1)((γ · g)ν−1)ξh(ν)

 (ν = η · h)

=
∑
h∈G

λx (βg−1(kgh−1)) ξh(γ · g).

So if we take an arbitrary element∑
g∈G

fgδg ∈ Cc(G )G,
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and define

f := Φ

(∑
g∈G

fgδg

)
then Equation (5.5.3) tells us that eg(f) = fg, that is to say fg(γ) = f(γ, g) for all

γ ∈ G and g ∈ G. So we let x ∈ X, ξ ∈ l2(G oα Gx) with ‖ξ‖2 ≤ 1, and calculate

‖πx(f)ξ‖2
2 =

∑
(γ,g)∈GoαGx

|πx(f)ξ(γ, g)|2

=
∑

(γ,g)∈GoαGx

∣∣∣∣∣∑
h∈G

λx (βg−1(fgh−1)) ξh(γ · g)

∣∣∣∣∣
2

≤
∑

(γ,g)∈GoαGx

∑
h∈G

|λx (βg−1(fgh−1)) ξh(γ · g)|2

=
∑
g,h∈G

 ∑
s(γ)=γ·g−1

|λx (βg−1(fgh−1)) ξh(γ · g)|2


=
∑
g,h∈G

‖λx (βg−1(fgh−1)) ξh‖2
2

≤
∑
g,h∈G

‖λx (βg−1(fgh−1)) ‖2

≤
∑
g,h∈G

‖βg−1(fgh−1)‖2
red

=
∑
g,h∈G

‖fgh−1‖2
red

≤ (#G)2 max
g∈G
{‖fg‖2

red}

≤ (#G)2

∥∥∥∥∥∑
g∈G

fgδg

∥∥∥∥∥
2

red

,

where the last inequality is by Equation (4.2.2). Taking the supremum of the left

hand side over norm one vectors and x ∈ X yields∥∥∥∥∥Φ

(∑
g∈G

fgδg

)∥∥∥∥∥
2

red

≤ (#G)2

∥∥∥∥∥∑
g∈G

fgδg

∥∥∥∥∥
2

and so Φ is continuous. Hence it extends to a ∗-isomorphism

Φ : C∗r (G ) oβ G→ C∗r (G oα G)
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as required.

We are now ready to prove the following.

Theorem 5.5.2 Let (P , ω) be a substitution tiling system satisfying the assumptions

of Remark 2.5.8 and let G be a finite symmetry group for (P , ω). Let Ω and Ωpunc

be the topological spaces associated with (P , ω), and let Rpunc denote translational

equivalence on Ωpunc. We denote, as in Lemma 5.4.3

G = (Ω,R2 oG), H = (Ω,R2) oG.

Then the following C*-algebras strongly Morita equivalent:

(1) (C(Ω) oR2) oG,

(2) C(Ω) o (R2 oG),

(3) C∗r (G ),

(4) C∗r (H ),

(5) C∗r (Rpunc) oG,

(6) C∗r (Rpunc oG), and

(7) C∗r (G
Ωpunc

Ωpunc
).

Proof:

• (1)∼m(2) – this follows from Proposition 4.2.6; in fact, these C*-algebras are

isomorphic.

• (2)∼m(3) – C(Ω)o(R2oG) ∼= C∗(G ) by [42], Example 2.34 and C∗(G ) ∼= C∗r (G )

by [59] Proposition II.3.2, Definition II.3.6 and Example 3.10.

• (3)∼m(4) – this follows from Lemma 5.4.3 and Example 3.3.7.

• (3)∼m(7) – by Lemma 5.4.2, the groupoids G
Ωpunc

Ωpunc
and G are equivalent in the

sense of Definition 3.3.5. Hence by [65], Theorem 13 we have that C∗r (G
Ωpunc

Ωpunc
)

and C∗r (G ) are strongly Morita equivalent.
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• (5)∼m(6) – this follows from Proposition 5.5.1 and Theorem 3.4.3; in fact, these

C*-algebras are isomorphic.

• (6)∼m(7) – this is due to Corollary 5.4.4 and Example 3.3.7.

Since strong Morita equivalence preserves ideal structure, by Lemma 5.4.7 each of

the above C*-algebras is simple.

5.6 The Crossed Product AFω oG

In this section, we examine the crossed product of the AF algebra AFω by a finite

symmetry group G and explicitly compute incidence matrices for our examples.

Our first definition describes the crossed product actions we encounter when

studying the crossed product of AFω by a finite symmetry group G.

Definition 5.6.1 Let n ≥ 1 and k ≥ 2 be integers and let A be the finite dimensional

algebra

A =
n⊕
i=1

Mk = C(I)⊗Mk

where I = {1, 2, . . . , n}. Let G be a finite group and let α : G → Aut(A) be a

homomorphism. Then we say α transitively permutes the summands of A if

the restriction of α on C(I) acts by transitively permuting I.

If A is as above and G transitively permutes the summands of A, then the restriction

of α to the Z(A) (the center of A) acts transitively on Z(A) = C(I). For i ∈ I, let

qi = χ{i} ⊗ 1k where 1k is the k × k identity matrix, and let Gi denote the stabilizer

subgroup of qi. The element qi is the identity on the ith summand. The set of cosets

G/G1 has n elements, g1 = e, g2, . . . gn such that
∑
αgi(q1) = 1A.
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Proposition 5.6.2 Let n ≥ 1 and k ≥ 2 be integers and let A be the finite dimen-

sional algebra

A =
n⊕
i=1

Mk = C(I)⊗Mk

where I = {1, 2, . . . , n}. Let G be a finite group and let α : G→ Aut(A) be an action

which transitively permutes the summands of A. Then there exists a ∗-isomorphism

Φ : Mn ⊗ (q1AoG1)→ AoG

such that

eij ⊗ q1aδg 7→ (1δgi)(q1aδg)(1δg−1
j

)

= qiαgi(a)δgigg−1
j
,

where the gi are as above.

Proof: We first note that since G acts transitively on I, for i ∈ I we have

G · i = I. By counting elements, this implies that #G = #Gi · n. We also note that

both Mn ⊗ (q1A o G1) and A o G are finite dimensional as complex vector spaces.

We have

dim(AoG) = dim(A) ·#G = (k2n)(n ·#G1) = k2n2#G1,

dim(Mn ⊗ (q1AoG1)) = n2 · k2 ·#G1.

Hence, it is enough to show that Φ as defined is a ∗-homomorphism and either surjec-

tive or injective – we will show surjective. The map Φ defined on elementary tensors

is extended by linearity. If the product of eij ⊗ q1aδg and elk ⊗ q1bδh is nonzero, then

j = l. So we compute

Φ ((eij ⊗ q1aδg)(ejk ⊗ q1bδh)) = Φ(eik ⊗ (q1aδg)(q1bδh))

= (1δgi)(q1aδg)(q1bδh)(1δg−1
k

)

= (1δgi)(q1aδg)(1δg−1
j

)(1δgj)(q1bδh)(1δg−1
k

)
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= Φ(eij ⊗ q1aδg)Φ(ejk ⊗ q1bδh)

Φ((eij ⊗ q1aδg)
∗) = Φ(eji ⊗ δ∗ga∗q∗1)

= (1δgj)δ
∗
ga
∗q∗1(1δg−1

i
)

= (1δg−1
j

)∗δ∗ga
∗q∗1(1δgi)

∗

= ((1δgi)q1aδg(1δg−1
j

))∗

= (Φ(eij ⊗ q1aδg))
∗ .

To see that Φ is surjective, we notice that for every 1 ≤ i ≤ n, the sets {giG1g
−1
j }Lj=1

form a partition of G. Thus for h ∈ G and 1 ≤ i ≤ n there is exactly one 1 ≤ j ≤ n

such that g−1
i hgj ∈ G1. Then for b ∈ A, h ∈ G we have

Φ

 ∑
1≤i,j≤n

g−1
i

hgj∈G1

eij ⊗ q1αg−1
i

(b)δg−1
i hgj

 =
∑

1≤i,j≤n
g−1
i

hgj∈G1

Φ
(
eij ⊗ q1αg−1

i
(b)δg−1

i hgj

)

=
∑

1≤i,j≤n
g−1
i

hgj∈G1

qiαgi

(
αg−1

i
(b)
)
δh

=

 ∑
1≤i,j≤n

g−1
i

hgj∈G1

qib

 δh

= bδh.

The last equality is because every 1 ≤ i ≤ n is represented in the sum exactly once.

We obtain the following in the case that q1 (and hence qi) have trivial stabilizer.

Corollary 5.6.3 Suppose that A and G are as in Definition 5.6.1 and suppose in

addition that G permutes the summands freely. Then

AoG ∼= M#G ⊗ (q1A) ∼= M#G·k.
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If g ∈ G1, then αg(q1) = q1. Since all automorphisms of simple finite dimensional

algebras are inner, there exists a unitary ug such that αg(a) = ugaug−1 for all a ∈

A1 = q1A.

Lemma 5.6.4 Suppose that A and G are as in Definition 5.6.1. Then there exists a

∗-isomorphism Ψ : q1AoG1 → q1A⊗ C∗(G1) such that aδg 7→ aug ⊗ δg.

Proof: This follows from Lemma 4.2.8 and its proof in [73], Lemma 2.73.

Let AFω be the AF subalgebra of C∗r (Rpunc) presented in Section 4.6. Recall

that

AFω =
⋃
n∈N

An,

where

An =
⊕
p∈P

An,p,

with

An,p = spanC {enp (x, y) | x, y ∈ Punc(n, p)}

∼= M#Punc(n,p).

Let G be a finite symmetry group for (P , ω), and as before let β denote the action

induced by G. For g ∈ G we have

βg(e
n
p (x, y))(T, T ′) = enp (x, y)(g−1T, g−1T ′)

=

 1 (g−1T, g−1T ′) ∈ En
p (x, y)

0 otherwise

=


1 (g−1T, g−1T ′) = (ωn(S)− x, ωn(S)− y),

S ∈ U({p}, p)

0 otherwise
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=


1 (T, T ′) = (ωn(gS)− gx, ωn(gS)− gy),

gS ∈ U({gp}, gp)

0 otherwise

= engp(gx, gy)(T, T ′).

By definition of An,p, we then have βg(An,p) = An,gp. Let SG be a set of standard

position prototiles for G and assume that G acts freely on P . Because P = GSG, we

have

An =
⊕
p∈SG

(⊕g∈GAn,gp) ∼=
⊕
p∈SG

(
C(Gp)⊗M#Punc(n,p)

)
,

where Gp is the finite set {gp | g ∈ G}. Let Bn,p = ⊕g∈GAn,gp ∼= C(Gp)⊗M#Punc(n,p).

The action β acts freely and transitively on the set Gp, that is, β restricted to each of

the Bn,p transitively permutes the summands of Bn,p in the sense of Definition 5.6.1.

Hence we have

An oβ G =

(⊕
p∈SG

Bn,p

)
oβ G

=
⊕
p∈SG

(Bn,p oβ G)

∼=
⊕
p∈SG

M#G·Punc(n,p).

We are now ready to describe the crossed product AFωoG, which by Proposition

5.5.1 is isomorphic to C∗r (RAF oG).

Theorem 5.6.5 Let G be a symmetry group for (P , ω). Then

AFω oG ∼=
⋃
n∈N

An oG.

If G acts freely on P, the number of summands in the finite dimensional algebras

An o G is the number of elements of SG, and if M is the incidence matrix for the

unital inclusion An o G ⊂ An+1 o G, then Mij is the number of images of pj under

the action of R2 oG in ω(pi).



5.6. The Crossed Product AFω oG 119

Proof: We denote the inclusion of An in An+1 by ι. Then there is an inclusion

I : An oG ↪→ An+1 oG

aδg 7→ ι(a)δg.

The unit for each of these algebras is 1δe, and since ι is unital I is as well. Since each

of the An o G is a sub C*-algebra of AFω o G and they are nested, their union is a

sub ∗-algebra of AFω oG. Hence the closure is a sub C*-algebra of AFω oG. To get

the other inclusion, let ε > 0 and take∑
g∈G

agδg ∈ AFω oG ag ∈ AFω.

For each g ∈ G, find bg ∈ ∪An such that ‖bg − ag‖ < ε
#G

. Since G is finite we may

take each of the bg to be in the same An. So
∑

g∈G bgδg ∈ An oG, and∥∥∥∥∥∑
g∈G

agδg −
∑
g∈G

bgδg

∥∥∥∥∥ =

∥∥∥∥∥∑
g∈G

(ag − bg)δg

∥∥∥∥∥
≤

∑
g∈G

‖ag − bg‖

<
∑
g∈G

ε

#G

= ε.

Hence
∑

g∈G agδg ∈
⋃
n∈NAn oG, and we have proved the first statement. The second

statement is by the discussion directly above the theorem.

We now find the incidence matrix of the inclusions. To do this, we use Equation

(4.5.2). Let qn,p denote the identity of An,p. Then the identity of the pth summand

of An oG is ∑
g∈G

qn,gpδe.

The trace on the pth summand is

τAnoGp (aδg) =

 Tr
(
a
∑

h∈G qn,hp
)

if g = e

0 otherwise.
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And we have

I

(∑
g∈G

qn,gpδe

)
= ι

(∑
g∈G

qn,gp

)
δe

=
∑
g∈G

ι (qn,gp) δe

Thus for pi, pj ∈ SG we have

τAn+1oG
pi

◦ I

(∑
g∈G

qn,gpjδe

)
= τAn+1oG

pi

(∑
g∈G

ι(qn,gp)δe

)

= Tr

((∑
h∈G

qn+1,hpi

)(∑
g∈G

ι(qn,gpj)

))
=

∑
h∈G

∑
g∈G

Tr
(
qn+1,hpiι(qn,gpj)

)
The term Tr

(
qn+1,hpiι(qn,gpj)

)
is the number of translates of gpj in ω(hpi), by the

discussion in Section 4.5. Hence

τAn+1oG
pi

◦ I

(∑
g∈G

qn,gpjδe

)
=

∑
h∈G

∑
g∈G

#Punc(n, pj)

 # of translates of

gpj in ω(hpi)


= #Punc(n, pj)

∑
h∈G

∑
g∈G

 # of translates of

h−1gpj in ω(pi)


For fixed h,

∑
g∈G (# of translates of h−1gpj in ω(pi)) is the number of images of pj

under the action of R2 oG in ω(pi). Hence

τAn+1oG
pi

◦ I

(∑
g∈G

qn,gpjδe

)
= #Punc(n, pj)

∑
h∈G

 # of images of pj under the

action of R2 oG in ω(pi)


= #G#Punc(n, pj)

 # of images of pj under the

action of R2 oG in ω(pi)


On the other hand,

τAnoGpj

(∑
g∈G

qn,gpjδe

)
= #G#Punc(n, pj)
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because
∑

g∈G qn,gpjδe is the identity on the pjth summand, τAnoGpj
is the matrix trace

restricted to the pjth summand, and the size of the pjth summand is #G#Punc(n, pj).

Hence

τAn+1oG
pi

◦ I
(∑

g∈G qn,gpjδe

)
τAnoGpj

(∑
g∈G qn,gpjδe

) =

 # of images of pj under the

action of R2 oG in ω(pi)

 .

Thus by Equation (4.5.2), the incidence matrix of the inclusion is as given in the

statement of the theorem.

Notice that the incidence matrix does not depend on n. In fact, it is the same for each

inclusion, just as it is for AFω. Primitivity of the substitution implies primitivity of

the incidence matrix for AFω oG.

Proposition 5.6.6 Let G be a finite symmetry group for (P , ω) such that G acts

freely on the prototiles. Then both AF algebra AFω o G and C∗r (Rpunc) o G have

unique tracial states.

Proof: As stated before, that AFω o G has a unique tracial state is a general

fact about AF algebra with constant primitive substitution matrix, again see [28],

Theorem 4.1. As mentioned in Section 4.6, that the tracial states of C∗r (Rpunc) o G

and AFω oG coincide is a general fact about almost AF Cantor groupoids, see [47],

Proposition 2.11.

Example 5.6.7 Penrose tiling, G = D10.

Referring to Figure 2.4, we set SD10 = {1,21}. Then ω(1) contains one image

each of 1 and 21 under the action of R2 o D10, and ω(21) contains one image of 1

and two images of 21 under the action of R2 oD10. Hence the incidence matrix for
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AFω oD10 is

β =

 1 1

1 2

 .
Example 5.6.8 Octagonal tiling, G = D8.

Here we see that the structure of AFω o G depends on the exact form of the

substitution. Recall that we replaced the substitution in Figure 2.5 by that in Figure

2.6 to break symmetry and allowD8 to act freely on P . This resulted in homeomorphic

CW complexes and hulls, but does not result in isomorphic AFω oG.

We first consider the substitution given in Figure 2.6. Here the action is free so

we can read the incidence matrix off the substitution. Let p1 be the small right angle

triangle and let p2 be the isosceles triangle. Then ω(p1) contains three images of p1

and one image of p2 under the action of R2 oD8, and ω(p2) contains eight images of

p1 and three images of p2 under the action of R2 oD8. Hence the incidence matrix

for AFω oD8 is

M =

 3 1

8 3

 .
In the case of the substitution in Figure 2.5, D8 still acts on AFω and this action is

locally representable, so AFωoD8 is an AF algebra. For consistency with Proposition

5.5.1 we denote this action β. We cannot use Theorem 5.6.5, but Lemma 5.6.4 still

applies. The calculation in this case is quite long, and involves keeping track of the

values of traces composed with the inclusion.

The algebras An each have 20 summands, 16 corresponding to triangles, and 4

to rhombs. The summands corresponding to the triangles are permuted transitively

and freely by D8, while the 4 rhomb summands are permuted transitively but not

freely. Thus, if we let p1 denote the rhomb in standard position and p2 denote the

triangle in standard position we have

An =

(
4⊕
i=1

M#Punc(n,p1)

)
⊕

(
16⊕
i=1

M#Punc(n,p2)

)
. (5.6.1)
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Let q1 be the identity on the first summand; this corresponds to the rhomb in standard

position. Its stabilizer subgroup is G1 = {e, r4, f, r4f}, where r is rotation by π/4 and

f is the reflection over the line through the origin which makes an angle of π/8 with

the x-axis. We choose for our elements of our cosets g1 = e, g2 = r, g3 = r2 and

g4 = r3. In this case we get that An oD8 decomposes into a direct sum

An oD8
∼= (M4 ⊗ q1An oG1)⊕M16·#Punc(n,p2)

∼= (M4 ⊗ q1An ⊗ C∗(G1))⊕M16·#Punc(n,p2)

In this case G1 is a finite abelian group with 4 characters

χ1


e

f

r4

r4f

 =


1

1

1

1

 , χ2


e

f

r4

r4f

 =


1

−1

1

−1



χ3


e

f

r4

r4f

 =


1

−1

−1

1

 , χ4


e

f

r4

r4f

 =


1

1

−1

−1

 ,

and C∗(G1) is isomorphic to C4 via the isomorphism

δg 7→ (χ1(g), χ2(g), χ3(g), χ4(g)) .

Thus

q1An oG1
∼= q1An ⊗G1

∼=
4⊕
i=1

M#Punc(n,p1)

aδg 7→ aug ⊗ δg 7→ (augχ1(g), augχ2(g), augχ3(g), augχ4(g)) .

Then the matrix trace on each summand, denoted ρ
(n)
i for i = 1, 2, 3, 4 when composed

with this isomorphism is given by

ρ
(n)
i (aδg) = Tr(aug)χi(g).



5.6. The Crossed Product AFω oG 124

We have

An oD8
∼= (M4 ⊗ q1An ⊗ C∗(G1))⊕M16·#Punc(n,p2)

If a is in the first four summands in Equation (5.6.1), then under this isomorphism

aδg 7→

( ∑
1≤i,j≤4

eij ⊗
(
q1βg−1

i g(qj)βg−1
i

(a)ug−1
i ggj

)
⊗ δg−1

i ggj
, 0

)

The traces on the first four summands, denoted τk for k = 1, 2, 3, 4 when composed

with this isomorphism are given by

τ
(n)
k (aδg) =

4∑
i=1

ρ
(0)
i

(
q1βg−1

i g(qi)βg−1
i

(a)ug−1
i ggi

δg−1
i ggi

)
=

4∑
i=1

Tr
(
q1βg−1

i g(qi)βg−1
i

(a)ug−1
i ggi

)
χk(g

−1
i ggi)

The product inside the Tr is nonzero if and only if g−1
i ggi ∈ G1, so the χk make sense

here. Let Q
(n)
1 and Q

(n)
2 be the identities on the first and second group of summands

respectively in Equation (5.6.1). Referencing Corollary 5.6.3, the trace on the last

summand is given by

τ
(n)
5 (aδg) =

Tr(Q
(n)
2 a) if g = e

0 otherwise.

The inclusion

I : An ↪→ An+1

gives rise to an inclusion An oD8 ↪→ An+1 oD8 which we also call I:

I(aδg) = I(a)δg.

We obtain the incidence matrix of this inclusion by using the fact that traces on the

algebra An+1 oD8 give rise to traces on An oD8, and these must be positive linear

combinations of the traces on the matrix summands of An oD8. In other words,

τ
(n+1)
k ◦ I = ck1τ

(n)
1 + ck2τ

(n)
2 + ck3τ

(n)
3 + ck4τ

(n)
4 + ck5τ

(n)
5 . (5.6.2)
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By Equation (4.5.1), the matrix [cij] will be the matrix of partial multiplicities. We

can solve for the constants cij by applying both sides of (5.6.2) to various elements

of An oD8. For instance

τ
(n+1)
5 ◦ I(Q

(n)
2 δe) = τ

(n+1)
5 (I(Q

(n)
2 )δe)

= Tr(Q
(n+1)
2 I(Q

(n)
2 ))

= 3 · 16 ·#Punc(n, p2).

We get the third line in the above equation because there are 3 triangles in the

substitution of each triangles, and there are 16 triangles total. On the other hand,

if we apply the right hand side of Equation (5.6.2) to Q
(n)
2 δe, the only nonzero term

will come from c55τ
(n)
5 , and we get

c55τ
(n)
5 (Q

(n)
2 δe) = c55Tr(Q

(n)
2 ) = c5516 ·#Punc(n, p2),

giving us that c55 = 3. We calculate the traces on the right hand side of (5.6.2)

on Q
(n)
1 δe, Q

(n)
1 δf , Q

(n)
2 δr4 and q

(n)
1 δf . For these calculations, we keep in mind that

βg(Q
(n)
i ) = Q

(n)
i for i = 1, 2 and that q1ug = ug for all g ∈ G1. For k = 1, 2, 3, 4,

τ
(n)
k (Q

(n)
1 δe) =

4∑
i=1

Tr
(
q1βg−1

i e(qi)βg−1
i

(Q
(n)
1 )ug−1

i egi

)
χk(g

−1
i egi)

=
4∑
i=1

Tr
(
q1βg−1

i
(Q

(n)
1 )ue

)
=

4∑
i=1

Tr (q1)

= 4 ·#Punc(n, p1).

τ
(n)
k (Q

(n)
1 δf ) =

4∑
i=1

Tr
(
q1βg−1

i f (qi)βg−1
i

(Q
(n)
1 )ug−1

i fgi

)
χk(g

−1
i egi)

= Tr
(
q1βf (q1)Q

(n)
1 uf

)
χk(f) +

· · ·+ Tr
(
q1βr−1f (q2)Q

(n)
1 ur−1fr

)
χk(r

−1fr) +
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· · ·+ Tr
(
q1βr−2f (q3)Q

(n)
1 ur−2fr2

)
χk(r

−2fr2) +

· · ·+ Tr
(
q1βr−3f (q4)(Q

(n)
1 ur−3fr3

)
χk(r

−3fr3)

= Tr(q1uf )χk(f) + 0 + Tr(q1ur4f )χk(r
4f) + 0

= Tr(uf )χk(f) + Tr(ur4f )χk(r
4f).

τ
(n)
k (Q

(n)
1 δr4) =

4∑
i=1

Tr
(
q1βg−1

i r4(qi)βg−1
i

(Q
(n)
1 )ug−1

i r4gi

)
χk(g

−1
i r4gi)

= Tr
(
q1βr4(q1)Q

(n)
1 ur4

)
χk(r

4) + Tr
(
q1βr3(q2)Q

(n)
1 ur4

)
χk(r

4) +

· · ·+ Tr
(
q1βr2(q3)Q

(n)
1 ur4

)
χk(r

4) +

· · ·+ Tr
(
q1βr(q4)(Q

(n)
1 ur4

)
χk(r

4)

= 4Tr(ur4)χk(r
4).

To find τ
(n)
k (q1δf ), we notice that the only summand which will be nonzero will be

the one corresponding to g1 = e; for others βgi(q1) will be orthogonal to q1. Hence

τ
(n)
k (q1δf ) = Tr(q1uf )χk(f)

= Tr(uf )χk(f)

If we apply τ
(n+1)
5 ◦ I to each of these, we will get a system of 4 linear equations in

the 4 unknowns c5k, k = 1, 2, 3, 4. The map τ
(n+1)
5 ◦ I will be 0 on all of them except

Q
(n)
1 δe, on which we get

τ
(n+1)
5 ◦ I(Q

(n)
1 δe) = Tr

(
Q

(n+1)
2 I(Q

(n)
1 )
)

= 2 · 16 ·#Punc(n, p1).

We get this because there are 2 rhombs in each substituted triangle, and there are 16

triangles total. For convenience of the calculation, we let

b1 = Tr(uf ),

b2 = Tr(ur4f ),
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b3 = #Punc(n, p1),

and we also note that Tr(ur4) = 1 because r4 fixes exactly one tile in the rhomb.

From the above we get the system of equations
4b3 4b3 4b3 4b3

(b1 + b2) (−b1 − b2) (−b1 + b2) (b1 − b2)

4b2 4b2 −4b2 −4b2

b1 −b1 −b1 b1




c51

c52

c53

c54

 =


32b3

0

0

0


which has solution c5k = 2 for k = 1, 2, 3, 4.

Now recall that the right hand side of Equation (5.6.2) applied to Q2δe is

16ck5#Punc(n, p2) no matter what k is. For k 6= 5, the left hand side is

τ
(n+1)
k ◦ I(Q

(n)
2 δe) = τ

(n+1)
k (I(Q

(n)
2 )δe)

=
4∑
i=1

Tr(q1I(Q
(n)
2 ))

= 4 · 4 ·#Punc(n, p2).

The second line is due to the fact that βg(I(Q
(n)
2 )) = I(Q

(n)
2 ) for any g ∈ G and the

third line is due to there being 4 equal summands each corresponding to there being 4

triangles present when one substitutes the rhomb in standard position. Hence ck5 = 1

for k = 1, 2, 3, 4. One calculates

τ
(n+1)
k ◦ I(Q

(n)
1 δe) = 12b3

τ
(n+1)
k ◦ I(Q

(n)
1 δr4) = 4χk(r

4)

τ
(n+1)
k ◦ I(Q

(n)
1 δf ) = (2b1 + b2)χk(f) + b1χk(r

4f)

τ
(n+1)
k ◦ I(q

(n)
1 δf ) = b1(2χk(f) + χi(r

4f))

We omit the details, but they are along the same lines as the calculations done so

far. The corresponding linear systems can be solved to give the matrix of partial
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multiplicities M for the inclusion An oD8 ↪→ An+1 oD8 to be

M =



c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

c41 c42 c43 c44 c45

c51 c52 c53 c54 c55


=



2 0 0 1 1

0 2 1 0 1

0 1 1 1 1

1 0 1 1 1

2 2 2 2 3


.

5.7 The Rokhlin Property and Tracial Rokhlin Prop-

erty

In Proposition 5.6.2, we considered the crossed product of a finite dimensional C*-

algebra A by a finite group G in the case where the identity of A could be decomposed

as a sum of projections which were permuted by the elements of G. In Corollary 5.6.3,

we saw that the crossed product had a particularly nice form when G permuted the

projections freely.

In this section we present weaker versions of the above conditions for actions

of finite groups on unital C*-algebras which are still strong enough to imply some

results about the crossed products. We also discuss to what extent these properties

are satisfied for actions of finite symmetry groups on tiling C*-algebras.

Definition 5.7.1 ([48], Definition 2.1) Let A be a unital C*-algebra, and let α : G→

Aut(A) be an action of a finite group G on A. We say that α has the Rokhlin

property if for every finite set F ⊂ A and every ε > 0 there are mutually orthogonal

projections eg ∈ A for g ∈ G such that:

1. ‖αg(eh)− egh‖ < ε for all g, h ∈ G.

2. ‖egf − feg‖ < ε for all g ∈ G and all f ∈ F .

3.
∑

g∈G eg = 1.
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We call the (eg)g∈G a family of Rokhlin projections for α,F and ε.

As we can see, this is a weakening of the conditions in Corollary 5.6.3. The below is

a further weakening of this property.

Definition 5.7.2 ([48], Definition 3.1) Let A be an infinite dimensional unital C*-

algebra, and let α : G→ Aut(A) be an action of a finite group G on A. We say that

α has the tracial Rokhlin property if for every finite set F ⊂ A, every ε > 0, and

every positive element x ∈ A with ‖x‖ = 1, there are mutually orthogonal projections

eg ∈ A for g ∈ G such that:

1. ‖αg(eh)− egh‖ < ε for all g, h ∈ G.

2. ‖egf − feg‖ < ε for all g ∈ G and all f ∈ F .

3. If e =
∑

g∈G eg, then 1 − e is Murray-von Neumann equivalent to a projection

in xAx.

4. Taking e as above, ‖exe‖ > 1− ε.

This definition simplifies somewhat when A is finite, in this case the 4th condition

is not needed – see Lemma 1.12 of [50]. It is also clear that the Rokhlin property is

strictly stronger than the tracial Rokhlin property provided A is infinite dimensional –

if e = 1 the last two conditions in Definition 5.7.2 are automatically satisfied. We will

see in Lemma 5.7.5 why the “tracial” modifier is used in the name of this property.

For A and B C*-algebras with B ⊂ A, a ∈ A and ε > 0, we write a ∈ε B if

inf{‖b− a‖ | b ∈ B} < ε. We state a definition of Lin.

Definition 5.7.3 ([38], Definition 2.1) Let A be a unital simple C*-algebra. Then

we say A has tracial rank zero if for any ε > 0, any finite set F ⊂ A, and any

positive x 6= 0 there exists a finite dimensional C*-algebra F ⊂ A with p = 1F such

that
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1. ‖pf − fp‖ < ε for all f ∈ F ,

2. pfp ∈ε F for all f ∈ F , and

3. 1− p is Murray-von Neumann equivalent to a projection in xAx.

The tracial rank zero property was first defined by Lin in [38]. Tracial rank can be

seen as a noncommutative analogue of topological dimension, see [39]. In further

work on tracial rank zero algebras, Lin proves in [39] the following, which was stated

as below by Brown in [14]:

Theorem 5.7.4 ([14], Theorem 4.5.1) Let A be a simple C*-algebra. Then A has

tracial rank zero if and only if A has real rank zero, stable rank one, the order of

projections on A is determined by traces, and for every finite subset F ⊂ A and ε > 0

there exists a finite dimensional subalgebra F ⊂ A with p = 1F such that:

1. ‖pf − fp‖ < ε for all f ∈ F ,

2. pfp ∈ε F for all f ∈ F , and

3. τ(e) > 1− ε for all τ ∈ T (A).

That an action has the tracial Rokhlin property is somewhat easier to verify in the

presence of tracial rank zero, as the following lemma shows.

Lemma 5.7.5 ([49], Lemma 1.8) Let A be a separable infinite dimensional simple

unital C*-algebra with tracial rank zero. Let α : G→ Aut(A) be an action of a finite

group G on A. Suppose that for every finite set F ⊂ A and each ε > 0 that there is

for each g ∈ G a positive element ag ∈ A with 0 ≤ ag ≤ 1 such that

1. agah = 0 for each g, h ∈ G with g 6= h,

2. ‖αg(ah)− agh‖ < ε for all g, h ∈ G,
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3. ‖agf − fag‖ < ε for all g ∈ G and f ∈ F , and

4. τ
(

1−
∑

g∈G ag

)
< ε for every normalized trace τ on A.

Then α has the tracial Rokhlin property.

In this section we prove two results. The first is that if G is a symmetry group

of the primitive substitution tiling system (P , ω) and G acts freely on P , then the

action of G on AFω has the Rokhlin property. This follows from the following more

general result:

Proposition 5.7.6 Suppose that A = ∪An is a unital AF algebra and that α : G→

Aut(A) is an action of a finite group G on A. Suppose that for each n ∈ N there

exists a positive integer k(n) such that

An =
⊕
i∈I(n)

(⊕
g∈G

Mk(n)

)

and that the restriction of α freely and transitively permutes the summands of⊕
g∈GMk(n). Then α has the Rokhlin property.

Proof: For An written as above, let qi,g denote the identity of the summand corre-

sponding to i ∈ I(n) and g ∈ G. Since G acts freely and transitively on
⊕

g∈GMk(n)

we lose no generality by supposing that gqi,e = qi,g. Let F ⊂ A be a finite set, and

let ε > 0. There exists n ∈ N such that for each f ∈ F there exists af ∈ An such

that ‖af − f‖ < ε
2
. The identity of An is the identity of A, and can be expressed as

the sum of the projections

1An = 1A =
∑
i∈I(n)
g∈G

qi,g.

We let

eg =
∑
i∈I(n)

qi,g,
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then eg is the sum mutually orthogonal central projections, and hence are themselves

central projections. Thus they commute with every element of An. Hence, for any

g ∈ G and f ∈ F we have

‖egf − feg‖ = ‖egf − egaf + egaf − feg‖

= ‖egf − egaf + afeg − feg‖

≤ ‖egf − egaf‖+ ‖afeg − feg‖

≤ ‖eg‖‖f − af‖+ ‖af − f‖‖eg‖

<
ε

2
+
ε

2
= ε.

Furthermore, it is also easy to see that geh = egh, and so Condition 1 of Definition 5.7.1

is satisfied. Condition 3 of Definition 5.7.1 also follows directly from the definition of

the qi,g.

The following theorem follows as a corollary of Proposition 5.7.6.

Theorem 5.7.7 Let G be a symmetry group for (P , ω), and suppose that G acts

freely on P. Then the action of G on AFω has the Rokhlin property.

Proof: In the proof of the above theorem, we take I(n) to be SG for every n. For

p ∈ SG we take qs,g =
∑

x∈Punc(n,p) e
n
gp(gx, gx).

The second result of this section is that if C∗r (Rpunc) has tracial rank zero, then

the action of G on C∗r (Rpunc) has the tracial Rokhlin property. Phillips conjectures

that if G is an almost AF Cantor groupoid, then C∗r (G ) has tracial rank zero ([47],

Question 8.1), though this is currently unresolved. The following result may therefore

be vacuous, though we believe it provides insight into how one might tackle Phillips’

conjecture. In the interests of readability, for the remainder of this section we will

write ‖a‖ for the reduced norm of a for any a ∈ C∗r (Rpunc).
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First, we need a lemma of Putnam. In what follows, ∂(X) denotes the topological

boundary of the space X.

Lemma 5.7.8 ([52], Lemma 2.3) Let (P , ω) be a substitution tiling system satisfying

the conditions of Remark 2.5.8. For p ∈ P, n ∈ N, and x ∈ Punc(n, p), we define

D(x) to be

D(x) = sup{‖x− y‖ | y ∈ ∂(supp(ωn(p)))}.

Then the quotient
#{x ∈ Punc(n, p) | D(x) < R}

#Punc(n, p)

converges to 0 as n goes to infinity.

Intuitively, the numerator scales with the perimeter of a tile while the denominator

scales with the area, and so the limit being 0 is expected. This allows us to build

positive elements which approximately commute with the generating set

E2 = {e({t1, t2}, t1, t2) | the interior of t1 ∪ t2 is connected}

of C∗r (Rpunc) and have large trace.

Lemma 5.7.9 For any ε > 0 we can find a positive element ag ∈ C∗r (Rpunc) for each

g ∈ G with 0 ≤ ag ≤ 1 such that

1. agah = 0 for each g, h ∈ G with g 6= h,

2. ‖αg(ah)− agh‖ < ε for all g, h ∈ G,

3. ‖agf − fag‖ < ε for all g ∈ G and f ∈ E2, and

4. τ
(

1−
∑

g∈G ag

)
< ε, where τ is the unique trace on C∗r (Rpunc) described at the

end of Section 4.6.
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Proof: For x ∈ Punc(n, p) let t(x) be the tile such that x ∈ t(x), and if X is a

set of punctures denote the set of tiles with elements of X as punctures by t(X). We

define, for k ≥ 0, collections of punctures ρk(n, p) as follows:

ρ0(n, p) = {x ∈ Punc(n, p) | t(x) ∩ ∂(supp(ωn(p))) 6= ∅}

ρk(n, p) =
{
x ∈ Punc(n, p) | t(x) ∩

(
∂
(
supp

(
ωn(p) \ ∪k−1

i=0 t(ρ
i(n, p))

)))
6= ∅
}

Here, ∂(A) denotes the topological boundary of the set A ⊂ R2. Loosely speaking,

ρ0(n, p) is the set of punctures around the edge of the patch ωn(p), ρ1(n, p) is the set

of punctures around the edge of the patch ωn(p) \ t(ρ0(n, p)) and so on.

In this picture, the punctures of the darkest tiles are ρ0(n, p), the punctures of the

next darkest are ρ1(n, p) and the punctures of the lightest gray are ρ2(n, p). We notice

that there exists k′ ∈ N such that for all k > k′ we have that ρk(n, p) is empty.

Let ε > 0 and find N ∈ N such that N > 2
ε
. Let d be the maximum diameter

among the prototiles, and let R > 0 be such that R > 2Nd. By Lemma 5.7.8, there

exists s ∈ N such that

#{x ∈ Punc(s, p) | D(x) < R}
#Punc(s, p)

< ε. (5.7.1)

Since punctures can be no more than 2d apart by the triangle inequality, for all i with

0 ≤ i ≤ N and x ∈ ρi(s, p) we must have that D(x) < R. Let bk be numbers such
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that b0 = 0, 0 < bj − bj−1 <
ε
2
, and bk = 1 for all k > N . We may find these numbers

because N · ε
2
> 1. For the identity element e ∈ G, let

ae =
∞∑
k=0

bk ∑
p∈SG

x∈ρk(s,p)

esp(x, x)

 ,

and more generally

ag = gae =
∞∑
k=0

bk ∑
p∈SG

x∈ρk(s,p)

esgp(gx, gx)

 .

Notice that these sums are finite because ρk(s, p) are eventually empty, and that each

ag is an element of the finite dimensional algebra As. In addition, each ag is a real-

valued function in C(Ωpunc) ⊂ C∗r (Rpunc) which takes values between 0 and 1. Hence

both ag and 1− ag have positive square roots, and so 0 ≤ ag ≤ 1 for all g ∈ G.

Let us pause for a moment to give an intuitive description of the ag. If we think

of them as functions on Punc(s, p), they take the value 0 on the punctures around the

boundary of ωs(p), they take the value 1 on most of the punctures in the interior, and

the values increase gradually from 0 to 1 as we move from the boundary towards the

middle. The values that the ag take on punctures whose tiles share an edge always

differ by less than ε. Furthermore, they only take values less than 1 in a relatively

small band of punctures near the boundary.

Since ag is supported on the diagonal of Rpunc for all g ∈ G, we have that for any

given T ∈ Ωpunc, ag(T, T
′) is only possibly nonzero if T = T ′, and so by Equations

(4.3.1) and (4.3.2)

‖ag‖r = sup
T∈Ωpunc

∑
T ′∈[T ]

|ag(T, T ′)|

 = sup
T∈Ωpunc

|ag(T, T )| = 1,

‖ag‖s = sup
T∈Ωpunc

∑
T ′∈[T ]

|ag(T ′, T )|

 = sup
T∈Ωpunc

|ag(T, T )| = 1.
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Since ‖ag‖I is the max of these two norms and ‖ag‖I dominates the reduced

norm, we have ‖ag‖ ≤ 1. The ag elements satisfy Condition 1 trivially, and from the

previous section we see that gah = agh.

To prove Condition 3, recall that esp(x, x) is the characteristic function of the

set Es
p(x, x), which is a compact open subset of the unit space. Hence we may use

Lemma 4.6.1 to calculate the products of the ag with elements of E2. Take

q = e({t1, t2}, t1, t2) ∈ E2,

and calculate

(agq)(T, T
′) =

∞∑
k=0

bk ∑
p∈SG

x∈ρk(s,p)

esgp(gx, gx)q(T, T ′)

 .

We know from Lemma 4.6.1 that

esgp(gx, gx)q(T, T ′) =

q(T, T
′) if T ∈ Es

gp(gx, gx)

0 otherwise

=


1 if (T, T ′) ∈ V ({t1, t2}, t1, t2) and

T ∈ Es
gp(gx, gx)

0 otherwise.

Given T ∈ Ωpunc, there exist unique g ∈ G, p ∈ P and x ∈ Punc(s, p) such that

T ∈ Es
gp(gx, gx). This puncture x must be an element of ρk(s, p) for some k. Then

in this case we have

(agq)(T, T
′) =

 bk if (T, T ′) ∈ V ({t1, t2}, t1, t2)

0 otherwise.

Now we calculate qag:

(qag)(T, T
′) =

∞∑
k=0

bk ∑
p∈SG

x∈ρk(s,p)

qesgp(gx, gx)(T, T ′)

 ,
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and similar to above

qesgp′(gy, gy)(T, T ′) =

 q(T, T ′) if T ′ ∈ Es
gp′(gy, gy),

0 T ′ /∈ Es
gp′(gy, gy)

=


1 if (T, T ′) ∈ V ({t1, t2}, t1, t2) and

T ′ ∈ Es
gp(gy, gy)

0 otherwise.

As above, given T ′ ∈ Ωpunc there exist unique g ∈ G, p ∈ P and y ∈ Punc(s, p) such

that T ∈ Es
gp(gy, gy). This puncture y must be an element of ρm(s, p) for some k.

Then in this case we have

(qag)(T, T
′) =

 bm if (T, T ′) ∈ V ({t1, t2}, t1, t2)

0 otherwise.

Hence, we may calculate the difference

(agq − qag)(T, T ′) =



bk − bm (T, T ′) ∈ V ({t1, t2}, t1, t2),

T ∈ Es
gp(gx, gx), x ∈ ρk(s, p), and

T ′ ∈ Es
gp′(gy, gy), y ∈ ρm(s, p′)

0 otherwise.

If we are in the first case and p 6= p′, then k and m must both be zero. Indeed, if

p 6= p′, then {t1, t2} is a two-tile pattern whose edge lies along the boundary of gp and

gp′, and hence t(x) and t(y) intersect the boundaries of ωs(p) and ωs(p′) respectively.

Thus x ∈ ρ0(s, p) and y ∈ ρ0(s, p′). In the case where p = p′, the conditions in the

first case above imply that the patch {t(gx), t(gy)} is a translate of {t1, t2}. Hence

the difference between k and m is at most 1, and by the definition of the bi this

implies that |bk − bm| < ε
2
. Furthermore, if T ∈ Ωpunc, there is at most one T ′ for

which (agq − qag)(T, T ′) is nonzero, namely T ′ = T + xt1 − xt2 if T happens to be in

U({t1, t2}, t1). Hence

‖agq − qag‖r = sup
T∈Ωpunc

∑
T ′∈[T ]

|(agq − qag)(T, T ′)|

 ≤ ε

2
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‖agq − qag‖s = sup
T ′∈Ωpunc

∑
T∈[T ′]

|(agq − qag)(T, T ′)|

 ≤ ε

2

‖agq − qag‖ ≤ max{‖agq − qag‖r, ‖agq − qag‖s} ≤
ε

2
< ε.

Hence Condition 3 is satisfied. To prove Condition 4 we use Equation (5.7.1). The

function 1−
∑

g ag is nonnegative and is only nonzero on elements (T, T ) such that

(T, T ) ∈
⋃
p∈P

N−1⋃
i=0

⋃
x∈ρi(s,p)

Es
p(x, x).

Notice that the above union is a disjoint union. Hence for every T ∈ Ωpunc we have

that (
1−

∑
g

ag

)
(T, T ) ≤

∑
p∈P

N−1∑
i=0

∑
x∈ρi(s,p)

esp(x, x)(T, T ).

Recall from Section 4.6 that C∗r (Rpunc) has a unique trace τ such that for all n ∈ N,

p ∈ P and x ∈ Punc(n, p) we have τ(enp (x, x)) = λ−2nvL(p), where λ is the scaling

constant of (P , ω) and vL(p) is the pth entry of the left Perron eigenvector associated

to the matrix M of partial multiplicities for AFω. We calculate

τ

(
1−

∑
g

ag

)
=

∫
Ωpunc

(
1−

∑
g

ag

)
(T, T ) dµ(T )

≤
∫

Ωpunc

∑
p∈P

N−1∑
i=0

∑
x∈ρi(s,p)

esp(x, x)(T, T ) dµ(T )

=
∑
p∈P

N−1∑
i=0

∑
x∈ρi(s,p)

∫
Ωpunc

esp(x, x)(T, T ) dµ(T )

=
∑
p∈P

N−1∑
i=0

∑
x∈ρi(s,p)

τ(esp(x, x))

=
∑
p∈P

N−1∑
i=0

∑
x∈ρi(s,p)

λ−2svL(p)

≤
∑
p∈P

#{x ∈ Punc(s, p) | D(x) < R}λ−2svL(p)
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< ε
∑
p∈P

#Punc(s, p)λ−2svL(p)

= ε

where the last line is by Equation (4.6.6).

Since E2 is a generating set for C∗r (Rpunc), we can use Lemma 5.7.9 to prove the

following theorem.

Theorem 5.7.10 Suppose that G is a symmetry group for (P , ω) that acts freely on

P, let Ωpunc be the punctured hull associated to (P , ω) and let Rpunc be the usual

groupoid of translational equivalence on Ωpunc. If C∗r (Rpunc) has tracial rank zero,

then the action of G on C∗r (Rpunc) has the tracial Rokhlin property.

Proof: Here we invoke Theorem 5.7.4 as well as Lemmas 5.7.5 and 5.7.9. That

the order on projections is determined by traces is the main theorem of [52] (Theorem

1.1). In addition to generalizing this result in [47], Phillips also proves that if G is

an almost AF Cantor groupoid, then C∗r (G ) has real rank zero and stable rank one.

Hence we may use Lemma 5.7.5.

Let F = {fi}i∈I be a finite set, and let ε > 0. For each i ∈ I, find λ
(i)
j ∈ C and

x
(i)
j,k ∈ E2 with 1 ≤ j ≤ Ji, 1 ≤ k ≤ Ki such that∥∥∥∥∥fi −

Ji∑
j=1

λ
(i)
j

(
Ki∏
k=1

x
(i)
k,j

)∥∥∥∥∥ < ε

3
.

Let

yi =

Ji∑
j=1

λ
(i)
j

(
Ki∏
k=1

x
(i)
k,j

)
Λ = max{|λ(i)

j |, 2}

J = max{Ji, 2}

K = max{Ki, 2}

δ =
ε

3JKΛ
.
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Apply Lemma 5.7.9 with the positive number δ and obtain positive elements ag for

g ∈ G such that

• agah = 0 for each g, h ∈ G with g 6= h,

• ‖βg(ah)− agh‖ < δ for all g, h ∈ G,

• ‖agf − fag‖ < δ for all g ∈ G and f ∈ E2, and

• τ
(

1−
∑

g∈G ag

)
< δ.

Since δ < ε, Conditions 1, 2 and 4 of Lemma 5.7.5 are satisfied. We now must check

Condition 3. We note that the elements and nonzero products of elements of E2 are

partial isometries, and hence they have norm 1. For some ag and yi we have

‖agyi − yiag‖ =

∥∥∥∥∥ag
Ji∑
j=1

λ
(i)
j

(
Ki∏
k=1

x
(i)
k,j

)
−

Ji∑
j=1

λ
(i)
j

(
Ki∏
k=1

x
(i)
k,j

)
ai

∥∥∥∥∥
=

∥∥∥∥∥
Ji∑
j=1

λ
(i)
j

(
ag

Ki∏
k=1

x
(i)
k,j −

Ki∏
k=1

x
(i)
k,jag

)∥∥∥∥∥
≤

Ji∑
j=1

Λ

∥∥∥∥∥ag
Ki∏
k=1

x
(i)
k,j −

Ki∏
k=1

x
(i)
k,jag

∥∥∥∥∥
= Λ

Ji∑
j=1

∥∥∥∥∥ag
Ki∏
k=1

x
(i)
k,j − x

(i)
1,jag

Ki∏
k=2

x
(i)
k,j + x

(i)
1,jag

Ki∏
k=2

x
(i)
k,j −

Ki∏
k=1

x
(i)
k,jag

∥∥∥∥∥
≤ Λ

Ji∑
j=1

(∥∥∥agx(i)
1,j − x

(i)
1,jag

∥∥∥∥∥∥∥∥
Ki∏
k=2

x
(i)
k,j

∥∥∥∥∥+ . . .

· · ·+
∥∥∥x(i)

1,j

∥∥∥∥∥∥∥∥ag
Ki∏
k=2

x
(i)
k,j −

Ki∏
k=2

x
(i)
k,jag

∥∥∥∥∥
)

= Λ

Ji∑
j=1

(∥∥∥agx(i)
1,j − x

(i)
1,jag

∥∥∥+

∥∥∥∥∥ag
Ki∏
k=2

x
(i)
k,j −

Ki∏
k=2

x
(i)
k,jag

∥∥∥∥∥
)
.

We can see that we can apply the same triangle inequality argument on the right

portion of the sum for 2 ≤ k ≤ Ki and obtain

‖agyi − yiag‖ ≤ Λ

Ji∑
j=1

Ki∑
k=1

∥∥∥agx(i)
k,j − x

(i)
k,jag

∥∥∥
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< Λ

Ji∑
j=1

Ki∑
k=1

δ

= ΛJK
ε

3ΛJK

=
ε

3
.

Hence

‖agfi − fiag‖ = ‖agfi − agyi + agyi − yiag + yiag − fiag‖

≤ ‖ag‖‖fi − yi‖+ ‖agyi − yiag‖+ ‖yi − fi‖‖ag‖

<
ε

3
+
ε

3
+
ε

3

= ε.

We notice that there was nothing special about the form of the ag in the above proof

– indeed if A is generated by a finite set F and one can satisfy the conditions for the

tracial Rokhlin property for F , one can satisfy them for an arbitrary finite set using

a similar argument.

Corollary 5.7.11 Suppose that G is a finite group that acts freely on P. If C∗r (Rpunc)

has tracial rank zero, then C∗r (Rpunc) oG has tracial rank zero.

Proof: This follows from Theorem 5.7.10 and [50], Theorem 2.6.

We conclude this section by remarking on Corollary 5.7.11. In [47], Question

8.1, Phillips asks the question of whether every C*-algebra of an almost AF Cantor

groupoid has tracial rank zero. If the answer to this question is yes, then it would

appear that Corollary 5.7.11 would follow immediately, as both Rpunc and Rpunc oG

are almost AF Cantor groupoids. However, it is a fact that if Rpunc is the groupoid

formed from any tiling of R2 consisting of polygons which meet full-edge to full-edge
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which has repetitivity and strong aperiodicity, then there exists a minimal transfor-

mation group groupoid (X,Z2) with X homeomorphic to the Cantor set and a clopen

U ⊂ X such that Rpunc is isomorphic to (X,Z2)UU , see [63]. There is no such result

for the groupoid Rpunc oG. Hence Corollary 5.7.11 would tell us that C∗r (Rpunc)oG

has tracial rank zero if one could prove that C(X) o Z2 has tracial rank zero for all

minimal actions of Z2 on the Cantor set X.



Chapter 6

K-Theory

K-theory is an important invariant for C*-algebras. Topological K-theory is an invari-

ant for topological spaces based on vector bundles over the space. This invariant turns

out to generalize to “noncommutative spaces”, i.e. C*-algebras. For some classes of

algebras, such as AF algebras, it is a complete invariant. In this chapter we briefly

define K-theory and compute it for some of our examples.

6.1 K0(A) and K1(A)

This section is a brief development of K-theory culminating in the definition of K0(A)

and K1(A) for a unital C*-algebra A. Each C*-algebra we consider in this thesis is

either unital or strongly Morita equivalent to a unital C*-algebra, so we do not give

up anything by only defining these groups in the unital case only. We follow [60] very

closely.

Consider Mn(A), all n × n matrices with entries in A. Let Pn(A) be the set

of all projections in Mn(A). There is a natural inclusion Pn(A) ↪→ Pn+1(A): given

143
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p ∈ Pn(A) then

p ↪→

p 0

0 0

 ∈ Pn+1(A).

Let

P∞(A) =
∞⋃
n=1

Pn(A).

We put an equivalence relation ∼0 on P∞(A) by saying that p ∈ Pn(A) is equivalent

to q ∈ Pm(A) if there exists an element v ∈ Mm,n(A) (this is the (m × n)-matrices

with entries in A) such that p = v∗v and q = vv∗. We define an addition ⊕ on P∞(A)

as follows: given p ∈ Pn(A), q ∈ Pm(A),

p⊕ q =

 p 0

0 q

 ∈ Pn+m(A)

Let D(A) = P∞(A)/ ∼0. Denote by [p]0 the equivalence class of a projection in D(A).

One can show that the class of p+ q depends only on the classes of p and q, so that

[p]0 + [q]0 := [p⊕ q]0

is a well-defined operation on D(A). This operation gives D(A) the structure of an

abelian semigroup (see for example [60], Proposition 2.3.2).

Definition 6.1.1 If A is a unital C*-algebra, then K0(A) is the Grothendieck group

associated to the abelian semigroup D(A).

In [60], Proposition 3.1.7, the authors prove that

K0(A) = {[p]0 − [q]0 | p, q ∈ Pn, n ∈ N}.

Intuitively, K0(A) is the group consisting of formal differences of equivalence classes

of projections.

The group K0(A) carries a natural order structure, which we will now describe.
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Definition 6.1.2 Let G be an abelian group and G+ be a subset of G. Then the pair

(G,G+) is an ordered abelian group if

1. G+ +G+ ⊂ G+,

2. G+ ∩ (−G+) = {0}, and

3. G+ −G+ = G.

This induces an order ≤ on G by saying that x ≤ y if y−x ∈ G+. A homomorphism of

ordered abelian groups is a group homomorphism that sends positive elements to pos-

itive elements. We shall call such homomorphisms positive group homomorphisms.

The abelian group K0(A) carries a natural order structure, by declaring the elements

of the form [p]0 to be positive, i.e. by letting K0(A)+ = {[p]0 | p ∈ Pn, n ∈ N}.

For arbitrary unital C*-algebra A, (K0(A), K0(A)+) need not satisfy Condition 2 in

Definition 6.1.2 – for instance, K0 of the Cuntz algebras On for n ≥ 3 does not satisfy

this (in this case, we actually have K0(A)+ = K0(A), see [60] Exercise 4.5). Under

the additional assumption that A is unital and stably finite, (K0(A), K0(A)+) is an

ordered abelian group (see [60], Proposition 5.1.5).

An order unit in an ordered abelian group (G,G+) is an element u ∈ G+ such

that for every g in G there is a positive integer n such that −nu ≤ g ≤ nu. We call

the triple (G,G+, u) an ordered abelian group with distinguished order unit

u. Such triples form a category where a morphism between (G,G+, u) and (H,H+, v)

is a positive group homomorphism ϕ : G → H such that ϕ(u) = v. If A is unital,

then [1A]0 is an order unit for (G,G+).

We now define the K1 group of a unital C*-algebra A. Let U(A) denote the set

of unitary elements in A. Let

Un(A) = U(Mn(A)) U∞(A) =
∞⋃
n=1

Un(A).
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The inclusion of Un(A) ↪→ Um(A) is given by concatenating with 1 along the diagonal:

given u ∈ Un(A) then

u ↪→

 u 0

0 1

 .
As with defining K0, we define an operation on U∞(A) by concatenation along the

diagonal: if u ∈ Un(A) and v ∈ Um(A), let

u⊕ v =

 u 0

0 v

 ∈ Un+m(A).

We define an equivalence relation ∼1 on U∞ based on homotopy equivalence. If

u ∈ Un(A) and v ∈ Um(A), we say u ∼1 v if we can find an integer k > m, n such that

there is a continuous path of unitaries from u ⊕ 1k−n to v ⊕ 1k−m in Uk(A). Denote

by [u]1 the equivalence class of u in this relation. We let

K1(A) = U∞(A)/ ∼1

and bestow it with an operation [u]1 + [v]1 = [u⊕ v]1. This operation is well-defined

and gives K1(A) the structure of an abelian group (see for example [60], Lemma

8.1.4).

We note that K0 and K1 may be defined for a nonunital C*-algebra A in terms

of its unitization, see [60] for details. As defined above, it is clear that K0 and K1 are

isomorphism invariant.

Recall from Definition 4.4.3 that two C*-algebras are stably isomorphic if A⊗K ∼=

B ⊗ K where K is the C*-algebra of compact operators on an infinite dimensional

separable Hilbert space.

Theorem 6.1.3 ([60], Propositions 6.4.1 and 8.2.8) If A is a C*-algebra, then

Ki(A⊗K) ∼= Ki(A), i = 0, 1.
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Corollary 6.1.4 Suppose that A and B are separable C*-algebras that are strongly

Morita equivalent. Then

Ki(A) ∼= Ki(B) i = 0, 1.

Example 6.1.5 As mentioned at the beginning of the chapter, C*-algebra K-theory

is a generalization of topological K-theory of a space X, denoted K∗(X), which

we do not define here. We do note the following facts about topological K-theory:

• If A = C(X) for some compact Hausdorff X, then K∗(A) ∼= K∗(X).

• If X is a CW complex of dimension at most two, then

K∗(X) =
⊕
k even

H∗+k(X,Z)

where the latter are simplicial cohomology groups with coefficients in Z. This is

a consequence of the Atiyah-Hirzebruch spectral sequence, see [1], Proposition

6.2 for an example of a calculation of such and [2] for more generality.

• If X = lim
←
Xi is an inverse limit of spaces, then K∗(X) = lim

→
K∗(Xi).

In [1], the authors use these facts to calculate the K-theory of C∗r (Rpunc). We will

use them along with Corollary 6.1.4 and Theorem 5.5.2 to calculate the K-theory of

C∗r (Rpunc) oG.

6.2 K-theory of AF Algebras

Both K0 and K1 are functors from the category of C*-algebras to the category of

abelian groups, see [60] Chapter 4 and Section 8.2. Computation of Ki(A) is made

easier by the fact they are both continuous functors, that is if A = lim
(
An

φn→ An+1

)
is an inductive limit of C*-algebras An, then

Ki(A) = lim
(
Ki(An)

Ki(φn)→ Ki(An+1)
)
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where the limit is taken in the category of abelian groups. Both functors also respect

direct sums,

Ki(A⊕B) = Ki(A)⊕Ki(B).

It is not hard to show that, for any n ∈ N,

K0(Mn(C)) = Z K1(Mn(C)) = 0,

see for example [60] Examples 3.3.2 and 8.1.8. The above combine to tell us that if

A = ∪An is an AF-algebra with inclusion maps ιn, then K1(A) = 0 and

K0(A) = lim
(
Zk(n) Ki(ιn)→ Zk(n+1)

)
,

where k(n) is the number of matrix summands in An. In [17] Example IV.3.1 (for

example), it is proved that Ki(ιn) is the matrix of partial multiplicities associated to

the unital inclusion ιn defined in Section 4.5. Hence calculating K0 of an AF algebra

comes down to calculating an inductive limit of abelian groups. As ordered abelian

groups, the order on K0(An) ∼= Zk(n) is given by saying that v ∈
(
Zk(n)

)+
if each

entry in v is nonnegative (this is called the simplicial order on Zk(n)). The entries

of the matrices of partial multiplicities are always nonnegative, so (K0(A), K0(A)+)

is isomorphic to the direct limit of the (K0(An), K0(An)+) in the category of ordered

abelian groups (see [60], Chapter 6). Direct limits of free abelian finitely generated

groups with the simplicial order under positive homomorphisms are quite important

and are known as dimension groups. The theory of dimension groups has many

diverse and deep applications beyond AF algebras, such as the classification of mini-

mal Z actions on the Cantor set, see [27]. An abstract characterization of dimension

groups was given in a celebrated theorem of Effros, Handelman, and Shen, see [21].

In [22], Elliott proved the remarkable result that the triple (K0(A), K0(A)+, [1A]0)

is a complete invariant for unital AF algebras. That is, two unital AF algebras A and

B are isomorphic if and only if (K0(A), K0(A)+, [1A]0) and (K0(B), K0(B)+, [1B]0) are

isomorphic in the category of ordered abelian groups with distinguished order unit.
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Moreover, if ϕ is the positive group isomorphism between (K0(A), K0(A)+, [1A]0) and

(K0(B), K0(B)+, [1B]0), there is a C*-algebra isomorphism Φ : A → B such that

K0(Φ) = ϕ. For a proof one can also see [60] Theorem 7.3.4 or [17] Theorem IV.4.3.

Computation of the K0 group for AF algebras which have constant primitive in-

cidence matrix is well-understood; see for example [17], Example IV.3.5. We compute

these groups for the octagonal and the Penrose tiling examples.

Example 6.2.1 Octagonal, G = D8.

This is a continuation of Example 5.6.8. There we computed that the incidence

matrix for the AF algebra AFω oD8 to be

M =

 3 1

8 3

 .
Hence we need to compute the limit H of

Z2

 3 1

8 3


−→ Z2

 3 1

8 3


−→ Z2 −→ . . .

in the category of ordered abelian groups with distinguished order unit. One calculates

that the Perron-Frobenius eigenvalue and left eigenvector are

ρ = 3 + 2
√

2 = (1 +
√

2)2, vL =
[

2
√

2 1
]
.

We have the following commutative diagram

Z2 M //

π0

  B
BB

BB
BB

B Z2 M //

π1

��

Z2

π2~~||
||

||
||

M // . . .

R

where πi(x) =
x · vL
ρi

. Since

ρ−1 =
1

3 + 2
√

2
= 3− 2

√
2,
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we have that the image of each πi is Z + 2
√

2Z. Since the πi(x) are each injective,

this means that H ∼= Z + 2
√

2Z, and H+ ∼= (Z + 2
√

2Z)+, the positive elements of

Z+ 2
√

2Z when viewed as a subgroup of R. The identity element of AFω oD8 when

viewed in A0 oD8 gets mapped to the vector

 1

1

 ∈ Z2, and

π0

 1

1

 = 1 + 2
√

2.

Hence we have(
K0(AFω oD8), K0(AFω oD8)+, [1]0

) ∼= (Z + 2
√

2Z, (Z + 2
√

2Z)+, 1 + 2
√

2
)
.

It is sometimes convenient to have the order unit equal to 1. In this case, we can

write

K0(AFω oD8) ∼=
Z + 2

√
2Z

1 + 2
√

2
⊂ R

with order and 1 inherited from R.

Recall that when one does not break symmetry, one gets that AFω oD8 is still

AF, but has incidence matrix

M =



2 0 0 1 1

0 2 1 0 1

0 1 1 1 1

1 0 1 1 1

2 2 2 2 3


.

Since M2 has strictly positive entries, it is primitive. The matrix M also has Perron-

Frobenius eigenvalue ρ = 3 + 2
√

2 with left eigenvector vL =
[

1 1 1 1
√

2
]
.

The matrix M has determinant −1, and hence is invertible over the integers. Thus

as a group, K0(AFω oD8) is isomorphic to Z5. In fact, we once again have

Z5 M //

π0

  B
BB

BB
BB

B Z5 M //

π1

��

Z5

π2~~||
||

||
||

M // . . .

R
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where πi(x) = x·vL
ρi

. The {πi} induce a map τ̂ : K0(AFω o D8) → R such that

[p]0 ∈ K0(AFω oD8)+ if and only if τ̂([p]0) ≥ 0. The image of τ̂ is clearly Z +
√

2Z,

as this is the result of taking the dot product of vL with integer vectors. Hence we

can choose a generating set for Z5 such that

K0(AFω oD8) ∼=
(
Z +
√

2Z
)
⊕ Z3

where an element (a, b) is positive if and only if a ≥ 0 when viewed as a real number.

The order unit once again arises by taking the dot product of vL by the vector of all

ones. Hence our distinguished order unit in K0(AFω o D8) is (4 +
√

2, 0). We may

once again scale the group so that the order unit is equal to 1. In this case, we have

τ̂ (K0(AFω oD8)) =
Z +
√

2Z
4 +
√

2
.

This example shows that changing the substitution changes the form of AFωoG.

Example 6.2.2 Penrose, G = D10.

This is a continuation of Example 5.6.7. There we computed the incidence matrix

to be

M =

 1 1

1 2

 .
Computing the stationary limit of Z2 under this matrix is [17], Example IV.3.5. Using

the same techniques as Example 6.2.1, one gets

K0(AFω oD10) ∼= Z + γ−1Z ⊂ R

where γ is the golden ratio, with order and unit inherited from R. This is in fact the

same ordered group that Connes obtains in [16], Section 2.3 for an AF algebra arising

from the space of Penrose tilings, see our Example 4.5.4. In his example, he considers

a space homeomorphic to Ωpunc and declares two tilings to be equivalent if one can

be carried to the other by any isometry of the plane. It may seem odd that we get
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the same result, since one would imagine that equivalence by any isometry could be

bigger than the equivalence relation RAF oD10. It is a fact for Penrose tilings that

if (T, T ′) ∈ Rpunc \ RAF , then there exists g ∈ D10 such that (T, gT ′) ∈ RAF , see for

example [35], Section 4.2.1. This means that RAF oD10 is in fact equivalence by any

isometry on Ωpunc, and is a consequence of every edge in the Penrose cell complex

being substitution symmetric, see Definition 5.3.4.

We make a final note on this example. By the above comments one notices that

as sets,

Rpunc ⊂ RAF oD10

since the left is equivalence on Ωpunc by any translation and the right is equivalence

by any isometry. This may lead one to believe that C∗(Rpunc) ⊂ AFω oD10, which

would imply that C∗r (Rpunc) is embeddable in an AF algebra. Unfortunately, the

relative topology inherited from RAF o D10 does not coincide with the topology on

Rpunc, so it is unknown whether C∗r (Rpunc) can be embedded in an AF algebra.

6.3 K-theory of Crossed Products by Almost Con-

nected Groups

The main goal for the rest of this chapter is to calculate the K-theory of the C*-

algebras listed in Theorem 5.5.2. These C*-algebras are all strongly Morita equivalent,

so they will have the same K-theory. This section and the next outline the techniques

for calculating the K-theory of algebra (2) in Theorem 5.5.2, that is C(Ω)o (R2oG).

In [32], Kasparov obtains a result for computing the K-theory of C(X) o H,

where H is as follows.

Definition 6.3.1 Let H be a locally compact group and let H0 denote the connected

component of the identity in H. Then we say that H is almost connected if H/H0

is compact.
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If H is an almost connected group, then H has a maximal compact subgroup L and

H/L is homeomorphic to a Euclidean space (see for example [67], Theorem 32.5). We

denote by V the Euclidean space H/L. We will also need the following definition.

Definition 6.3.2 Let A, B, and C be groups. By a central extension of C by A

we mean a short exact sequence of groups

1 −→ A −→ B −→ C −→ 1

such that A is contained in the centre of B. Two such extensions

1→ A→ B → C → 1 and 1→ A→ B′ → C → 1

are said to be isomorphic if there exists a group isomorphism from B to B′ such

that

1 // A // B //

��

C // 1

1 // A // B′ // C // 1

commutes. The set of all isomorphism classes of central extensions of C by A is

denoted H2(C,A).1

The following result is due to Kasparov ([32], 5.10) and is stated in the following form

in [18], Theorem 3.1 and [15], §7.

Theorem 6.3.3 (Kasparov) Let H be an amenable2 almost connected group and

let L be the maximal compact subgroup of H. Let A be an arbitrary C*-algebra acted

upon by H. Then

Ki(AoH) ∼= Ki((A⊗ C0(V )) o L).

1The notation H2(G,A) is due to the fact that the isomorphism classes of extensions can be
naturally identified with the cohomology group H2(G,A) where G acts trivially on A, see [70],
Chapter V.

2Amenability is not an assumption as stated in [18], Theorem 3.1. However, to state this result
without mentioning KK-theory or equivariant topological K-theory, we need to restrict to a class of
groups for which the Baum-Connes conjecture holds. Amenable groups form such a class, see [30].
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Suppose further that H/L is even dimensional when viewed as a real vector space,

and that the action

Ad : L→ Aut(H/L)

Adg(h+ L) = ghg−1 + L

is orientation preserving. Then

Ki(AoH) ∼= Ki((A⊗K) o L)

for some algebra of compact operators K, where the action of L on K is determined by

an element in H2(L,T) which vanishes if and only if H/L carries an H-equivariant

spinc structure. If this is the case then the action of L on K is trivial, and we have

Ki(AoH) ∼= Ki(Ao L).

With regards to tilings, we consider C(Ω)o (R2 oG) where G is a finite subgroup of

O(2). The connected component of the identity in R2 o G is isomorphic to R2, and

the quotient is G, a finite group. The maximal compact subgroup of R2oG is G, and

R2 oG/G ∼= R2. One notices that in Theorem 6.3.3 we do not define what it means

for V to have an H-equivariant spinc structure.3 When G is orientation-preserving,

G is isomorphic to Zn for some n, and it is easy to show that Zn has no nontrivial

extensions by T.

Corollary 6.3.4 Let (P , ω) be a substitution tiling system satisfying the conditions

of Remark 2.5.8, and let Ω be the associated tiling space. Suppose that G is a finite

symmetry group for (P , ω) which consists only of rotations. Then

Ki(C(Ω) o (R2 oG)) ∼= Ki(C(Ω) oG).

We close this section by noting that Theorem 6.3.3 is a generalization of the following

well-known theorem concerning the crossed products by R.

3This is a technical condition regarding the group of complex spinors of the real vector space
H/L; see [20] for a full treatment.
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Theorem 6.3.5 (Connes’ Thom Isomorphism, see for example [13] Theorem

10.2.2) If α : R→ Aut(A), then

Ki(Aoα R) ∼= K1−i(A)

where the index i is read modulo 2.

Hence crossed products by R2 cause two dimension shifts in K-theory, and by Bott

periodicity we have Ki(Aoα R2) ∼= Ki(A).

6.4 K-theory of C(Ω) oG

By Lemma 6.3.4, calculating the K-theory of C(Ω) o (R2 oG) when G is a group of

rotations can be accomplished by finding the K-theory of C(Ω)oG. In [19], Emerson

and Echterhoff consider proper actions of general locally compact groups on locally

compact spaces. They write C0(X)oG as a generalized fixed point algebra, produce

an ideal which is strongly Morita equivalent to C0(G\X) and use excision to write

down a six-term exact sequence containing Ki(C0(X) oG). When G is finite and X

is compact, their construction simplifies considerably. For instance, every action of a

finite group is proper. We describe their construction in this setting.

First, we state a theorem of Baum and Connes. Let X be a locally compact

Hausdorff space and let G be a finite group acting on G. For g ∈ G let

Xg = {x ∈ X | gx = x},

and let

Zg = {h ∈ G | gh = hg}.

Let [g] denote the conjugacy class of g in G and let [G] denote the set of all conjugacy

classes in G. Also, if H is an abelian group, let

HC = H ⊗Z C.
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Then we have the following.

Theorem 6.4.1 (Baum-Connes, [4]) Let G be a finite group and let X be a locally

compact Hausdorff G-space. Then

K∗(C(X) oG)C ∼=
⊕

[g]∈[G]

K∗(C(Xg/Zg))C,

where the isomorphism is of complex vector spaces.

For a proof, see for example [19], Section 5.1. Since tensoring with C eliminates

torsion, this tells us the rank of the K-groups.

Definition 6.4.2 ([19], after Lemma 2.1) Let X be a compact G-space, with G finite.

Suppose B is any C*-algebra equipped with an action β : G → Aut(B) of G. Then

we define

C(X ×G,β B) = {f ∈ C(X,B) | f(gx) = βg(f(x)) for all g ∈ G}.

Let g ∈ G and let ρg : L2(G) → L2(G) be given by ρgξ(h) = ξ(hg). Then ρg defines

a unitary element of K(L2(G)). We can then define an action of G on K(L2(G))

Adρ : G→ Aut(K(L2(G)))

Adρg(K) = Ad(ρg)(K)

Lemma 6.4.3 ([19], Corollary 2.11) Let X be a compact G-space, and let K =

K(L2(G)). Then

C(X) oG ∼= C(X ×G,Adρ K).

Since G is a finite group, K is isomorphic to M#G(C). Hence for each g ∈ G, ρg is a

unitary (#G×#G)-matrix, and C(X ×G,AdρK) can be seen as the set of continuous

functions from X into the (#G × #G)-matrices such that if gx = x, then f(x)

commutes with the unitary matrix ρg.
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Let p = 1
#G

∑
g∈G δg. Then p is a projection in C(X) o G, and IX := (C(X) o

G)p(C(X) o G) is an ideal of C(X) o G. We describe the image of IX under the

above isomorphism. For each x ∈ X, let Gx = {g ∈ G | gx = x} be the stabilizer

subgroup of x. Let

L2(G)1Gx
= {ξ ∈ L2(G) | ξ(gk) = ξ(g)∀k ∈ Gx} ∼= L2(G/Gx).

Then when viewed as an ideal in C(X ×G,Adρ K) it is ([19], (3.7))

IX = {f ∈ C(X ×G,Adρ K) | f(x) ∈ K(L2(G)1Gx
)}.

In [19], Lemma 3.9, the authors prove that IX is Morita equivalent to C(X/G).

Example 6.4.4 Penrose tiling, G = Z10.

First we compute the free part of the K-groups using the theorem of Baum and

Connes. This means we must compute

K∗(C(Ω) oG)C ∼=
⊕

[g]∈[G]

K∗(Xg/Zg)C

For G = Z10 = 〈r | r10 = e〉, [G] = Z10 and each of the Zg is Z10. As discussed in

Example 5.3.2, there are four tilings T1, T2, T3, T4 such that r2Ti = Ti for all 1 ≤ i ≤ 4.

Also, we have that rT1 = T3 and rT2 = T4. Hence, for g = r2n, Xg is a four-point

space, and Xg/Zg = {T1, T2}.

K∗(C(Ω) o Z10)C ∼= K∗(Ω/Z10)⊕
4⊕
i=1

K∗({T1, T2})C

=

 K∗(Ω/Z10)C
⊕4

i=1 C2 ∗ = 0

K∗(Ω/Z10)C ∗ = 1

=

 C3 ⊕ C8 ∗ = 0

C ∗ = 1
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Now we calculate the K-theory using 6.4.3. We have that K(L2(Z10)) ∼= M10, and

relative to the standard basis

ρr =



0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0



.

If we let z = e
iπ
5 , then we can diagonalize the above so that relative to a suitable

basis {vi}10
i=1 we have

ρr2 =



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 z2 0 0 0 0 0 0 0

0 0 0 z2 0 0 0 0 0 0

0 0 0 0 z4 0 0 0 0 0

0 0 0 0 0 z4 0 0 0 0

0 0 0 0 0 0 z6 0 0 0

0 0 0 0 0 0 0 z6 0 0

0 0 0 0 0 0 0 0 z8 0

0 0 0 0 0 0 0 0 0 z8



.

Hence

C(Ω) o Z10
∼= {f ∈ C(Ω,M10) | f(gx) = Adρg(f(x)), f(Ti)ρr2 = ρr2f(Ti), i = 1, 2}.
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If f(Ti)ρr2 = ρr2f(Ti), then f(Ti), i = 1, 2, must take the form

f(Ti) =



B1

B2

B3

B4

B5


, Bi ∈M2.

Relative to the basis which gives ρr2 the form above, we have

L2(Z10)1〈r2〉
= span{v1, v2}.

Hence our IΩ is all the functions in C(Ω) o Z10 such that f(Ti), i = 1, 2, is of the

form

f(Ti) =



B1

02

02

02

02


, B1 ∈M2.

where 02 denotes the 2× 2 zero matrix. Let q ∈M10 be the projection

q =

 02

I8


where I8 is the 8× 8 identity matrix. The ∗-homomorphism

ϕ : C(Ω) o Z10 →

(
4⊕
i=1

M2

)
⊕

(
4⊕
i=1

M2

)

f 7→ (qf(T1), qf(T2))

has kernel IΩ, and so we obtain the short exact sequence

0 −→ IΩ −→ C(Ω) o Z10
ϕ−→

(
4⊕
i=1

M2

)
⊕

(
4⊕
i=1

M2

)
−→ 0.
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This short exact sequence leads to six-term exact sequence in K-theory,

K0(IΩ) // K0(C(Ω) o Z10) // K0(QΩ)

��
K1(QΩ)

OO

K1(C(Ω) o Z10)oo K1(IΩ)oo

Using the fact that IΩ is strongly Morita equivalent to C(Ω/Z10), that K0(Mn) = Z,

and K1(Mn) = 0, along with the computation in Example 5.2.12, and Example 6.1.5

we obtain

0 // Z3 // K0(C(Ω) o Z10) // Z8 ∂ // Z // K1(C(Ω) o Z10) // 0

We know that K1(C(Ω)oZ10)⊗C ∼= C, so K1(C(Ω)oZ10) must be isomorphic to a

subgroup of the rationals direct sum with some torsion group. We know that Z maps

surjectively onto K1(C(Ω) o Z10), and hence it must be singly generated. Thus it

must be isomorphic to Z, making the second to last map an isomorphism and ∂ = 0.

This means the left hand side is a short exact sequence, and since Z8 is free we have

K0(C(Ω) o Z10) = Z3 ⊕ Z8

K1(C(Ω) o Z10) = Z

By Corollary 6.3.4, Theorem 5.5.2, and Corollary 6.1.4 we conclude that

K0(C∗r (Rpunc) o Z10) = Z3 ⊕ Z8

K1(C∗r (Rpunc) o Z10) = Z.

Example 6.4.5 Octagonal, G = Z8.

Again we consider a full rotation group Z8 = 〈r〉, this time on the octagonal

tiling. The computations are similar to Example 6.4.4 so here we are more brief. As

discussed in Example 5.3.3 there are two orbits, that of T1 with stabilizer Z8 and T2
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with stabilizer Z2. By Example 5.2.11 and Example 6.1.5 we know that the K-theory

of the orbit space is

K0(Ω/Z8) ∼= Z3,

K1(Ω/Z8) ∼= Z.

We first calculate the free part by using the theorem of Baum and Connes

K∗Z8
(Ω)C ∼=

⊕
[g]∈[Z8]

K∗(Ωg/Zg)C

We have

Xe/Ze = Ω/Z8 Ωr4/Zr4 = {T1, T5}

Ωri/Zri = {T5} i 6= 0, 4

Hence

K∗(C(Ω) o Z8)C ∼=
⊕

[g]∈[Z8]

K∗(Xg/Zg)C

= K∗(Ω/Z8)C ⊕

(
6⊕
i=1

Kj({T1})C

)
⊕K∗({T1, T2})C

=

 C3 ⊕ C8 ∗ = 0

C ∗ = 1

Here we get

C(Ω) o Z8
∼= {f ∈ C(Ω,M8) | f(gx) = Adρgf(x), f(T1)ρr = ρrf(T1),

f(T2)ρr4 = ρr4f(T2)}
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where relative to a suitable basis and z = e
πi
4 , we have

ρr =



1 0 0 0 0 0 0 0

0 z4 0 0 0 0 0 0

0 0 z 0 0 0 0 0

0 0 0 z5 0 0 0 0

0 0 0 0 z2 0 0 0

0 0 0 0 0 z6 0 0

0 0 0 0 0 0 z3 0

0 0 0 0 0 0 0 z7



,

ρ4
r =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1



.

This implies that f(T1) is diagonal and f(T2) ∈ M4 ⊕M4 ⊂ M8. Further, IΩ is the

functions in C(Ω)oZ8 where f(T1) is only possibly nonzero in the top-left entry and

f(T2) is only possibly nonzero in the top-left 4× 4 block. Hence, as before,

QΩ = C(Ω) o Z8/IΩ
∼= C7 ⊕M4.

Once again we obtain an exact sequence

0 // Z3 // K0(C(Ω) o Z8) // Z8 ∂ // Z // K1(C(Ω) o Z8) // 0

where an argument similar to Example 6.4.4 gives us that K1(C(Ω) o Z8) ∼= Z and

hence

K0(C(Ω) o Z8) ∼= Z8 ⊕ Z3.
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Once again, Corollary 6.3.4, Theorem 5.5.2, and Corollary 6.1.4 allow us to conclude

that

K0(C∗r (Rpunc) o Z8) = Z3 ⊕ Z8

K1(C∗r (Rpunc) o Z8) = Z.

Notice in these two examples that computation of the K-theory was possible due to

the fact that K1(Ω/G) was a free abelian group. This simplified the exact sequence

which arose. We know of no examples where K1(Ω/G) is not free abelian, though we

do not claim to have a proof of this statement in generality.

Remark 6.4.6 The results of Examples 6.4.4 and 6.4.5 may be alarming, since we

obtain the same groups in the case of both the Penrose tiling and the octagonal tiling.

These algebras are almost certainly not isomorphic, as their ordered K0 groups are

almost certainly different (though we do not claim to have calculated these). If

we ignore the fact that they have different symmetry groups, these two tilings are

philosophically very similar. While the inflation constant for the Penrose is the golden

ratio γ, the inflation constant for the octagonal is 1 +
√

2, the so-called “silver ratio”.

The continued fraction expansions of these numbers are

γ = 1 +
1

1 +
1

1 +
1

1 + . . .

,

1 +
√

2 = 2 +
1

2 +
1

2 +
1

2 + . . .

.
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Conclusion

We have studied the action of finite symmetry groups G on substitution tiling systems

(P , ω) satisfying the conditions of Remark 2.5.8 and have obtained many new results,

which we summarize over the next three paragraphs. In the case where G acts freely

on P , we have shown that C∗r (Rpunc)oG is isomorphic to the C*-algebra of an almost

AF Cantor groupoid, and hence it has real rank zero, stable rank one, and the order

on its projections is determined by its unique trace. We have proved that the action

of G on AFω has the Rokhlin property and that the action of G on C∗r (Rpunc) has

the tracial Rokhlin property if one assumes that C∗r (Rpunc) has tracial rank zero. As

the remark after Corollary 5.7.11 indicates, this is tied to the question of whether the

crossed product associated to a minimal action of Z2 on the Cantor set has tracial

rank zero.

In addition, we have shown that the K-theory is computable for the crossed

products in many of the cases of interest. The K-theory for the AF algebra AFω oG

can be computed whether or not G acts freely on P and whether or not the action of

G on R2 preserves orientation. Example 5.6.7 illustrates that computing the matrix of

partial multiplicities of AFωoG is quite straightforward if G acts freely on P , whereas

the second part of Example 5.6.8 shows that the calculation gets longer if G does not
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act freely on P . Furthermore, Example 6.2.1 shows that breaking symmetry on the

prototiles to make the action of a given G on P free results in possibly nonisomorphic

AFω oG.

We have shown that when the action of G on R2 preserves orientation, we can

compute K-theory of C∗r (Rpunc) o G. As in the case of the AF crossed products,

we can compute these groups whether G acts freely on P or not. In both of our

examples K1(Ω/G) was a free abelian group; this allowed us to easily calculate the

K-theory of C∗r (Rpunc) o G from the cohomology of Ω/G and the points in Ω fixed

under some element of G. We do not know of any case where K1(Ω/G) is not free, so

at least in known examples the techniques of Examples 6.4.4 and 6.4.5 should allow

computation of the K-theory of C∗r (Rpunc)oG when G is a rotation group. This leads

to the question of how to proceed when G does not preserve orientation; this is an

interesting question for further study.

This thesis raises many other questions for future work. One obvious question to

consider is how our results generalize to tilings in which tiles sit in an infinite number

of orientations; an example of such a tiling is the pinwheel tiling. The C*-algebra

associated to such a tiling was considered by Whittaker [72], and he showed that in

this case C∗r (Rpunc) has a large subalgebra which is an AT algebra – i.e., an inductive

limit of matrix algebras over C(T). Obvious candidates for symmetry groups here

are either the torus T or T o Z2. In this case the groups are not finite and Ω is not

an inverse limit of 2-dimensional CW complexes – this means that our techniques do

not immediately carry over.

Another direction to consider is the case of cut-and-project tilings considered

by the authors in [24]. Putnam [51] provides a framework to study the C*-algebras

associated to such a tiling on which a symmetry group would naturally act. Some

of the techniques in Chapter 6 apply to crossed products by nondiscrete groups and

in [51] the algebras considered are crossed products by a discrete lattice, so different

techniques will be needed to compute the K-theory of these crossed products.
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Since the physical motivation for studying tilings is quasicrystals, and these ob-

jects are modelled by three dimensional tilings, another question which one might

naturally consider is the extent to which our results apply to higher dimensions. One

has to take slightly more care with the CW structure of the orbit space in this case,

but this should certainly be within reach. Furthermore, finite symmetry groups in this

case need no longer be either cyclic or a semidirect product of two cyclic groups, and

even in the orientation-preserving case the question of satisfying the spinc condition

in Theorem 6.3.3 (for example) is less clear.

A fourth problem to pursue in relation to this work is attempting to prove that

C∗r (Rpunc) has tracial rank zero by using the definition. We believe that the techniques

of Lemma 5.7.9 could possibly be adapted to produce a commuting set of projections

for the finite set E2. The main obstruction seems to be ensuring that the elements

constructed are projections – indeed, Lemma 5.7.9 produces elements that satisfy all

the conditions of the tracial Rokhlin property except being projections.
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