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1 Introduction and History

This minicourse is meant to be an introduction to the theory of aperiodic tilings with an

eye towards dynamical systems and operator algebras. We begin giving some history on

the subject, and then give definitions standard in the study of tilings.

Mathematical interest in tilings began with Wang [14] in 1961. Wang considered a

problem in logic known as the “domino problem”: given a finite set F of “dominos” (unit

squares with rules governing which edges could be next to each other), is it possible to tile

the plane with translates of F? He conjectured that if such a set admits a tiling of the

plane, then it must admit a periodic tiling (that is, a tiling which repeats in some direction).

This conjecture was proven false by Wang’s student Berger [2] in 1966 when he found a

set of 20426 dominos which could only tile the plane aperiodically; such a set he called an

aperiodic set. Study then began on finding smaller aperiodic sets; the figure below gives

an aperiodic set with 13 tiles with matching rules given by allowing two edges to meet if

they are the same colours.
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In 1974, Roger Penrose [8] introduced what are now the very famous Penrose tilings.

These are tilings of the plane with two rhombs rotated by multiples of π/5.

As with Berger’s dominos, there are rules about which edges may meet in a tiling. Given

these rules, these rhombs can only tile the plane aperiodically. In addition, every Penrose

tiling has the following properties:

• Given a finite radius r > 0, there are only a finite number of different patches with

radius smaller than r among all Penrose tilings (modulo translation).

• Given some patch P in a Penrose tiling, there is a radius R > 0 such that every ball

of radius R in any Penrose tiling contains a copy of P .

So while tilings do not repeat exactly, the same patches appear infinitely often in all Penrose

tilings, do not appear too far apart. These properties are what are now loosely referred to

as “Aperiodic Order”.

Perhaps the most important event in the study of aperiodic order is an experiment by

Dan Shechtman et al [13] in 1984. Shechtman was studying the properties of certain alloys

when he found a substance with the following diffraction pattern:



The fact that there are peaks of concentration meant that the material must have some

long-range order at the atomic level. The above pattern is rotation symmetric by the angle
π/5, and this would imply that at the arrangement of the atoms has rotational symmetry

by that angle. However, this type of rotational symmetry is impossible for crystals! This

discovery was so unexpected that when Shechtman reported his findings he was ridiculed

and fired from his lab. He was eventually vindicated, as hundreds of examples of such

materials (called quasicrystals) now exist, and in 2011 Shechtman was awarded the Nobel

Prize in Chemistry for his work.

At the atomic level, quasicrystals have similar properties to the Penrose tilings discussed

above – they are aperiodic, but display some long-range order. These tilings and their

3D analogues were therefore seen as natural models for these materials; this led to much

mathematical research into aperiodic tilings.

Despite this seemingly applied perspective, there will be essentially no physics in these

talks. Aperiodic tilings give rise to interesting topological spaces, dynamical systems, and

C*-algebras. Some of these objects of course do have some physical interpretation, but are

presented and developed “in their own right”.

2 Tilings

For us, tilings will exist in the Euclidean space Rd. We let Br(x) denote the open ball of

radius r centred at x in Rd.



Definition 1. In Rd, we define the following:

• A tile is a subset of Rd homeomorphic to the closed unit ball B1(0). Tiles may carry

labels to distinguish identical sets.

• A partial tiling is a set of tiles P such that t1, t2 ∈ P and t1 6= t2 implies that

Int(t1 ∩ t2) = Ø.

• The support of a partial tiling P , denoted supp(P ), is the union of its tiles, that is

supp(P ) =
⋃
t∈P

t.

• A patch is a finite tiling.

• Finally, a tiling is a partial tiling T with supp(T ) = Rd.

For us, d will always be either 1 or 2. For T a partial tiling, we use the following

notation: for U ⊂ Rd we let

T (U) = {t ∈ T | U ∩ t 6= Ø}.

For x ∈ Rd, the set T ({x}) is abbreviated to T (x). Two partial tilings T and T ′ are said to

agree on a set U ⊂ Rd if T (U) = T ′(U). If t is a tile and x ∈ Rd, then t+x = {u+x | u ∈ t}
is also a tile. If T is a (partial) tiling, then T + x = {t+ x | t ∈ T} is also a (partial) tiling.

We say that a tiling T is aperiodic if x ∈ Rd and T + x = T implies that x = 0.

Example 1. Let T = {[n, n+ 1] | n ∈ Z}. Then T is a tiling of R consisting of the closed

intervals between consecutive integers.

Example 2. Let for m,n ∈ Z, let Um,n = {(x, y) ∈ R2 | x ∈ [m,m+ 1], y ∈ [n, n+ 1]}, and

let

T = {Um,n | m,n ∈ Z}.

Then T is the usual grid in R2.

These two examples are periodic. We now give an example of the simplest type of

aperiodic tiling.

Example 3. Let T be as in Example 2, except suppose we colour the square U0,0 black.

Then T + x 6= T unless x = 0, so T is aperiodic.



Example 4. The Penrose tiling.

In this picture we have divided the rhombs in the usual Penrose tiling along their diagonals.

We will refer to this tiling as the Penrose tiling as well, though it is also sometimes referred

to as a tiling by Robinson triangles.

Frequently, a tiling will consist of translates of a finite number of “tile types”. A finite

set of tiles P is called a set of prototiles for a tiling T if for every t ∈ T there exists x ∈ Rd

and p ∈ P such that t = p+x. Notice that we do not allow for rotation of prototiles, so for

the Penrose tiling one would have to choose a prototile set consisting of the two triangle

shapes plus all their rotates by multiples of π/5. Prototiles may carry labels to distinguish

congruent shapes – this was the case in Example 3 where there are two prototiles which are

congruent but which are labeled differently (one “black” and one “white”).

Tiling Spaces

Given a set of tilings X, one can put the following metric on X. For T, T ′ ∈ X, let

d(T, T ′) = inf{1, ε | ∃ x, x′ ∈ Rd 3 |x| , |x′| < ε,

(T − x)(B1/ε(0)) = (T ′ − x′)(B1/ε(0))}.



This is called the tiling metric. In this metric, two tilings are close if they agree on a

large ball around the origin, up to a small translation. In this metric, there are essentially

two ways that T and T ′ can be close:

• T = T ′ + x for some small x′,

• T and T ′ agree on a large ball around the origin.

A common way to obtain a collection of tilings is by taking all possible translates of a single

tiling T .

Definition 2. Let T be a tiling. Then we define the continuous hull of T (or the tiling

space of T ) to be the completion of T + Rd = {T + x | x ∈ Rd} in the tiling metric. This

space is denoted ΩT .

For some examples, the topology of the hull can be quite weird. It is a fact that given

a Cauchy sequence in T +Rd one can find a tiling T ′ which it converges to, so the elements

of ΩT are all tilings. It is clear that if T ′ ∈ ΩT , then T ′ + x ∈ ΩT for all x ∈ Rd, since any

Cauchy sequence converging to T ′ can be translated by x to a Cauchy sequence converging

to T ′ + x.

Definition 3. Let T be a tiling. Then we say that T has finite local complexity (or

FLC) if for every r > 0 there are only a finite number of different patches in T whose

supports have radius less than r.

Proposition 1. ([11], Lemma 2) If T has FLC and admits a finite set of prototiles, then

ΩT is compact.

Example 5. Consider the tiling of R by unit intervals from Example 1. A translate of

this tiling only depends on the placement of the origin within an interval. Furthermore,

translating the origin to any tile boundary yields the same tiling. In this way, one sees that

ΩT
∼= S1, the unit circle.

We see from Example 3 that it can be relatively straightforward to produce aperiodic

tilings – we can simply label or cut up one tile in a periodic tiling to break periodicity.

Producing aperiodic order can be a little more involved. One method of producing aperiodic

order is what is called the substitution method which we now describe.



We start with a finite set of tiles P = {p1, p2, . . . , pNpro}. The similarity of this notation

and that for prototiles is no accident; we will produce tilings for which P is a prototile set.

For now however, there are no tilings in sight.

We let P∗ be the set of all partial tilings consisting of translates of elements of P .

A substitution rule is a function ω : P → P∗ such that there exists λ > 1 such that

supp(ω(p)) = λp for all p ∈ P . In words, a substitution rule is a prescription for splitting

up each prototiles into smaller copies of the prototiles, and then scaling up by a factor of λ

so that the elements of ω(p) are of the same sizes as the originals. If t = p + x for p ∈ P
and x ∈ Rd, then we can extend the definition of ω by setting ω(p + x) = ω(p) + λx. In

this way, we can see ω as a function ω : P∗ → P∗. We call the pair (P , ω) a substitution

tiling system.

Example 6. The following picture illustrates a substitution on a set of prototiles

PPen = {1,2, . . . ,40},

all of which are Robinson triangles. Only four prototiles are shown; the others are obtained

by rotation. Let r denote the counterclockwise rotation of R2 by π/5 and let 2 = r1,

12 = r11, and so on.



Prototiles

(+ rotates by π/5)

γ = golden ratio

γ γ
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1

8
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11
ω
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31 25
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31 2137
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We let Ω ⊂ P∗ be the set of all tilings T such that every patch in T is contained in a

translate of ωn(p) for some n ∈ N and p ∈ P .

Assumption 1. The substitution tiling system (P , ω) is primitive, that is, there exists

N ∈ N such that for all p, q ∈ P , ωn(p) contains a translate of q.

Proposition 2. ([1], Proposition 2.1) The set Ω is nonempty.

Proof. Let p ∈ P , and find k ∈ N such that ωk(p) contains a tile in the interior of its

support. Since the substitution is primitive, there exist x ∈ Rd and m ∈ N such that

p+ x ∈ ωk+m(p) and p+ x is contained in the interior of the supp(ωk+m(p)) = λk+mp. The



function

f : λk+mp→ p+ x

z 7→ λ−(k+m)(z + x)

is continuous and onto, and p + x ⊂ λk+mp. Hence by the Brouwer fixed point theorem f

has a fixed point in its interior; call it z0. That is, z0 satisfies

λk+mz0 = z0 + x

=⇒ x = λk+mz0 − z0

We have

p+ x ∈ ωk+m(p)

p+ λk+mz0 − z0 ∈ ωk+m(p)

p− z0 ∈ ωk+m(p)− λk+mz0

p− z0 ∈ ωk+m(p− z0).

Hence,

{p− z0} ⊂ ωk+m(p− z0) ⊂ · · · ⊂ ωi(k+m)(p− z0) ⊂ ω(i+1)(k+m)(p− z0) ⊂ . . .

is an increasing nested sequence of patches. Further, since p − z0 is in the interior of

ωk+m(p− z0), the supports of these patches are an increasing nested sequence of sets in Rd

whose union is Rd. Thus

T =
∞⋃
i=1

ωi(k+m)(p− z0)

is a tiling.

This proof is best illustrated by the picture below



Here ω4k(p) is an increasing nested sequence of patches whose supports eventually cover

R2.

Not only is Ω nonempty, but it is translation invariant. If T ∈ Ω, then the patches of

T + x are the same as those of T only translated, hence T + x ∈ Ω. We may restrict ω to a

function on Ω, and it is easy to see that ω(Ω) ⊂ Ω. In fact, the other inclusion is also true

(see [1] Proposition 2.2), so the map ω : Ω→ Ω is surjective.

Assumption 2. The map ω : Ω→ Ω is injective.

This assumption is also commonly referred to as “recognizability”. Given the above

assumptions, ω is a bijection and hence has an inverse ω−1. These have the following

interactions with translation:

ω(T + x) = ω(T ) + λnx

ω−1(T + x) = ω(T ) + λ−nx.

Proposition 3. ([1] Proposition 2.3) The set Ω contains no periodic tilings.

Proof. Suppose that T ∈ Ω such that T + x = T for some nonzero x ∈ Rd. Find n ∈ N
such that a ball of radius λ−n‖x‖ is contained in every prototile. Then we have that

ω−n(T ) + λ−nx = ω−n(T ). This is a contradiction, for if t is any tile in ω−n(T ), then t

meets t+ λ−nx in its interior, which is impossible for two tiles in the same tiling.



Assumption 3. Every element of Ω has finite local complexity.

Proposition 4. If T ∈ Ω, then Ω = ΩT .

Proof. The inclusion ΩT ⊂ Ω is obvious, for if a tiling T ′ is approximated around the origin

by translates of T , every patch in T ′ must be a patch in T .

To get the other inclusion, let ε > 0 and let T ′ ∈ Ω. Find N ∈ N as in the definition of

primitivity, and find k ∈ N, p ∈ P , and x ∈ Rd such that T ′(B1/ε(0)) ⊂ ωk(p) + x. Since

ω−N−k(T ) is a tiling, it contains a tile. Hence ωN(ω−N−k(T )) = ω−k(T ) contains a translate

of p, and so ωk(ω−k(T )) = T contains a translate of ωk(p). Translating T so that this patch

sits at the origin aligned with T ′ gives us a translate of T which is ε-close to T ′, and so we

are done.

Since every element of Ω has FLC, this means that Ω is a compact metric space. The

bijection ω satisfies (see [1] Proposition 3.1) that

d(ω(T ), ω(T ′)) ≤ λd(T, T ′)

d(ω−1(T ), ω−1(T ′)) ≤ λd(T, T ′)

and so ω : Ω→ Ω is a homeomorphism.

From now on, we will assume that we are in the setting of a substitution system and that

Assumptions 1–3 hold. The Penrose substitution of Example 6 satisfies these assumptions.

Definition 4. We say that a tiling T has repetitivity (or is repetitive) if for every patch

P ⊂ T there exists R > 0 such that BR(x) contains a translate of P for all x ∈ Rd.

Proposition 5. If T ∈ Ω, then T has repetitivity.

Proof. This follows from primitivity. Let T ∈ Ω and let P ⊂ T be a patch. Then there

exists k ∈ N and p ∈ P such that a translate of P appears in ωk(p). By primitivity, there

exists N ∈ N such that ωN(t) contains a translate of p for all tiles t which are translates

of prototiles. Take r > 0 such that for every T ′ ∈ Ω, there is a tile t ∈ T ′ contained in

the interior of Br(x) for all x ∈ Rd – this is possible because there are a finite number of

prototiles. Thus every ball of radius r contains a tile in ω−N−k(T ), and so every ball of

radius λN+kr in T contains a translate of P .



In this case, we can prove that Ω has some very interesting local structure. Let BΩ
R(T )

denote the open ball of radius R around T in the tiling metric. Let r > 0, T ∈ Ω, and

define

C(T, r) = {T ′ ∈ Ω | T (Br(0)) = T ′(Br(0))} ⊂ BΩ
1/r(T ).

Proposition 6. In the relative topology, C(T, r) is homeomorphic to the Cantor set.

Proof. Recall that a metric space X is homeomorphic to the Cantor set if and only if X

is compact, totally disconnected, and has no isolated points. That C(T, r) is compact is

straightforward – if there is a convergent sequence of tilings that agree with T on a ball of

radius r, its limit must agree with T on the same ball.

To see that C(T, r) is totally disconnected, take T1, T2 ∈ C(T, r) such that T1 6= T2.

Since these are not equal, there exists R > 0 such that T1(BR(0)) 6= T2(BR(0)), ie T1 /∈
C(T2, R). It is not hard to see that (after perhaps taking R larger) that we have

C(T2, R) = C(T, r) ∩BΩ
1/R(T2).

Thus C(T2, R) is closed and open in C(T, r), and so T1 is not in the connected component

of T2. Since T1 and T2 were arbitrary, this shows that the only connected components in

C(T, r) are singletons, and so C(T, r) is totally disconnected.

To see that C(T, r) has no isolated points, we use repetitivity. Let T1 ∈ Ω and ε > 0.

Let P = T1(B1/ε(0)). Then we can find R > 0 and an x ∈ Rd with ‖x‖ > 2R such that

(T1 + x)(B1/ε(0)) = P . Since T1 is aperiodic, T1 + x 6= T1 and so T1 is not isolated.

For T ∈ Ω and δ > 0 small enough relative to the size of the prototiles, we have that

D(T, δ) = {T + x | ‖x‖ < δ} ∼= Bδ(0)

and

D(T, δ) ⊂ BΩ
δ (T ).

One can easily show that the map

σ : Bδ(0)× C(T, r) → Ω

(x, T ′) 7→ T ′ + x

is continuous and a homeomorphism onto its image. Its image is an open set containing

T . Hence each T ∈ Ω has a neighbourhood homeomorphic to the Cartesian product of an

open disc and a Cantor set. This kind of local structure may seem a little odd, but spaces

of this kind show up quite naturally in the study of Dynamical Systems.



3 Dynamical Systems

Let X be a locally compact Hausdorff space and let ϕ : X → X be a homeomorphism.

Then we call the pair (X,ϕ) a dynamical system. A good reference on dynamical systems

is the book [4] by M. Brin and G. Stuck. Definitions, results, and examples in this section

are taken from that book unless otherwise stated.

Definition 5. Let (X,ϕ) be a dynamical system and let x ∈ X. Then the set

O(x) = {ϕn(x) | n ∈ Z}

is called the orbit of x.

Definition 6. If ϕn(x) = x then we say that x is periodic with period n.

We now define the natural notion of equivalence for dynamical systems.

Definition 7. We say that two dynamical systems (X,ϕ) and (Y, ψ) are topologically

conjugate (or simply conjugate) if there exists a homeomorphism h : X → Y such that

the following diagram commutes:

X
ϕ //

h
��

X

h
��

Y
ψ // Y

in other words, if ϕ ◦ h = h ◦ ψ.

Definition 8. Let (X,ϕ) be a dynamical system.

• We say that (X,ϕ) is topologically mixing (or simply mixing) if for every pair of

open sets U, V ⊂ X there exists N ∈ N such that ϕn(U) ∩ V 6= Ø for all n > N .

• Finally, we say that (X,ϕ) is minimal if O(x) = X for all x ∈ X.

These two properties are notions of recurrence for dynamical systems. They are both

preserved by topological conjugacy.

Example 7. Circle rotations

Let S1 = [0, 1] mod 1 be the circle. For α ∈ (0, 1), the map Rα : S1 → S1 defined by

Rα(x) = x+ α mod 1 can be seen as rotation of x clockwise through an angle of 2πα, and



is an isometry and hence a homeomorphism. When α is rational, say α = p/q in lowest

terms, then every point is periodic with period q, as Rq
α is addition of the integer p. When

α is irrational, every orbit is infinite. To see this, if x were some point with finite orbit, we

would be able to find n ∈ N such that Rn
α(x) = x+nα = x mod 1, which would imply that

nα ∈ Z.

We claim that (S1, Rα) is minimal when α is irrational. It is not hard to see that

O(x) = O(0) + x mod 1, and so it suffices to show that the orbit of 0 is dense. Let ε > 0.

Compactness of S1 implies that we may cover S1 with a finite number of open ε-balls. Since

O(x) is infinite, there is at least one ε-ball in our cover which contains two points from

O(0), let these two points be Rn
α(0) and Rm

α (0). The distance between Rn
α(0) and Rm

α (0) is

less than ε and since Rα is an isometry, the distance between Rn−m
α (0) and 0 must be less

than ε. Hence for every ε-ball U there exists k ∈ Z such that R
k(n−m)
α (0) ∈ U , and so O(0)

is dense.

The system (S1, Rα) is not mixing, in fact no isometry of a space with more than one

point is mixing (see [4], Exercise 2.3.1).

Example 8. The 2∞ odometer

Let X = {0, 1}N = {(xn)n∈N | xi ∈ {0, 1}}, the set of all sequences of 0’s and 1’s. For

x = (xn)n∈N and y = (yn)n∈N the formula

d(x, y) = 2−n where n = max{k ∈ N | xi = yi for all i 6= k}

defines a metric on X which generates the product topology. This topology is also generated

by cylinder sets: let y1, y2, . . . , yk be a sequence in {0, 1} and define

C(y1, y2, . . . , yk) = {(xn)n∈N | xi = yi for all 1 ≤ i ≤ k}.

Under this topology X is compact, totally disconnected, and has no isolated points, and

hence is homeomorphic to the Cantor set. We define a map ϕ on X by the following rule: if

x = (xn)n∈N is the constant sequence xi = 1 for all i, then we define ϕ(x) to be the constant

sequence ϕ(x)i = 0 for all i. Otherwise, let k = min{i | xi = 0}, and define

ϕ(x)i =


xi i > k

1 i = k

0 i < k



This can be viewed as “addition of 1 to the first coordinate with rollover”. For instance,

ϕ(0, 0, 0, . . . ) = (1, 0, 0, . . . )

ϕ(1, 0, 0, . . . ) = (0, 1, 0, 0, . . . )

ϕ(0, 1, 0, 0, . . . ) = (1, 1, 0, 0, . . . )

ϕ(1, 1, 0, 0, . . . ) = (0, 0, 1, 0, 0, . . . ).

We see from the above that if

z ∈ C(0, 0, . . . , 0︸ ︷︷ ︸
k

)

and n < 2k+1 then if one reverses the first k entries of the sequence ϕn(z) then one obtains

the binary representation of the integer n. Hence if C(y1, . . . , yk) is a cylinder set and n is

the integer whose binary representation is ykyk−1 . . . y1, we have that ϕn(z) ∈ C(y1, . . . , yk).

Furthermore, if x = (xi)i∈N ∈ X and n is the integer whose binary representation is

xkxk−1 . . . x1, then

ϕ2k−n(x) ∈ C(0, 0, . . . , 0︸ ︷︷ ︸
k

).

Together, these two observations show that the dynamical system (X,ϕ) is minimal.

Example 9. The solenoid

Let T = S1×D2 be the solid torus, with D2 = {(x, y) ∈ R2 | x2+y2 ≤ 1} and S1 = [0, 1]

mod 1. Fix λ ∈ (0,1/2) define a map F : T → T by

F (φ, x, y) = (2φ, λx+ 1
2

cos 2πφ, λy + 1
2

sin 2πφ).

It is perhaps easier to understand what F does visually: F stretches T by a factor of 2 in

the circle direction, contracts T by a factor of λ in the disc direction, and then wraps the

result around twice inside T .



The map F is injective and continuous. If we let

X =
⋂
n∈N

F n(T )

then the restriction of F to X is a homeomorphism and the dynamical system (X,F ) is

known as the solenoid.

The space X is a subspace of the solid torus. If we fix an angle φ0 then the cross-section

Xφ0 = {(φ, x, y) ∈ X | φ = φ0}

is contained in the infinite intersection of discs as pictured below.

It is not hard to see that Xφ0 is totally disconnected, compact and has no isolated

points, and so is homeomorphic to the Cantor set. Furthermore, every point in X has a

neighbourhood of the form Xφ0 × (0, 1). Hence X has the same kind of local structure as

our tiling space Ω.

There is another dynamical system which is topologically conjugate to the solenoid

which is easier to describe. Let

Y = {(yi)i≥0 | yi ∈ S1, yi = 2yi+1 mod 1},

and let Y inherit the product topology from (S1)N0 . Let σ : Y → Y be the map

σ(y0, y1, . . . ) = (2y0, y0, y1, . . . ).



Then σ is a homeomorphism. The space Y is called the inverse limit or projective limit

of S1 under the map “multiplication by 2”.

For x ∈ X, one can show that the first coordinates of the preimages F−n(x) = (φn, xn, yn)

form a sequence h(x) = (φ0, φ1, . . . ) which is an element of the space Y . This defines a

map h : X → Y . One can show that h is a homeomorphism and that the diagram

X
F //

h
��

X

h
��

Y
σ // Y

commutes, which means that the solenoid is conjugate to (Y, σ). We refer the reader to [4],

Section 1.9 for the details.

We claim that (Y, σ) is mixing. Since Y inherits the product topology, it is enough to

let

U = (U1 × U2,× · · · × Ur × S1 × S1 × · · · ) ∩ Y

V = (V1 × V2,× · · · × Vs × S1 × S1 × · · · ) ∩ Y

with the Ui and Vi open in S1 and find N ∈ N such that σn(U) ∩ V is nonempty for all

n > N . It is easy to see that

σ(U) = (2U1, U1 × U2,× · · · × Um × S1 × S1 × · · · ) ∩ Y.

Since U1 is open in S1, we may find an open interval in S1 contained in U . Thus there

exists k ∈ N such that 2kU1 = S1. Let N = k + s. Then for n > N the first s entries of

σn(U) = (2nU1, 2
n−1U1 × · · · × U1 × U2 × · · · × Um × S1 × S1 × · · · ) ∩ Y.

are equal to S1, and so σn(U) ∩ V is nonempty.

Example 9 shows that spaces which are locally the product of a Cantor set and an

open ball can occur naturally as the inverse limits of simpler spaces. It was an important

discovery by Anderson and Putnam in [1] that the space Ω of tilings can also be expressed

in this form. In the presence of the following condition, the space in the inverse limit is the

easiest to describe.

Definition 9. A substitution tiling system (P , ω) is said to force its border if there exists

an n ∈ N such that for all p ∈ P if we have that whenever ωn(p)+x ⊂ T and ωn(p)+x′ ⊂ T ′

then we can conclude that

T (supp(ωn(p) + x))− x = T ′ (supp(ωn(p) + x′))− x′.



In words, a substitution forces its border if there exists an n such that the tiles touching

the patch ωn(p) are the same no matter where in any given tiling one sees a translate of it.

The Penrose substitution of Example 6 forces its border.

Consider

Y = {(x, p) ∈ Rd × P | x ∈ p}

i.e., the disjoint union of the prototiles. We define an equivalence relation on this set as

follows: we declare (x, p) and (y, q) to be equivalent if there is a tiling T in Ω such that,

for some zp, zq ∈ Rd we have p+ zp, q + zq ∈ T and zp + x = zq + y. In words, we treat the

prototiles as disjoint sets and then glue them together wherever they could possibly meet

up in any tiling. If R is the equivalence relation generated by the above, we let

Γ = Y/R.

When our prototiles are polytopes meeting full-face to full-face, then in [1] it is shown

that Γ is a d-dimensional CW complex whose d-cells are the prototiles. The substitution

induces a map γ on Γ in the obvious way – if x is in some prototile p, then ω(p) is a patch

consisting of translates of prototiles, so λx lies inside at least one translate of a prototile

pi + y. So then λx − y is in pi, and we define γ((x, p)) = (λx − y, pi). Even though λx

could lie in more than one tile, and hence the image could be in more than one prototile,

this map is well-defined precisely because such points are identified. It is proved in [1] that

γ is continuous and surjective.

We let

Ω0 = {(x1, x2, . . . ) | xi ∈ Γ, xi = γ(xi+1)}.

This is an inverse limit space similar to that constructed for the solenoid in Example 9.

The map

γ0(x1, x2, . . . ) = (γ(x1), x1, x2, . . . )

is a homeomorphism of (Ω0, γ0).

Theorem 1. ([1], Theorem 4.3) If (P , ω) forces its border, then the dynamical systems

(Ω, ω) and (Ω0, ω0) are topologically conjugate.

Remark 1. The need to force the border is not as restrictive as it looks. The following

argument from ([1], §4) explains why. From a substitution tiling system (P , ω) we form

a new one (P ′, ω′) as follows: for each prototile p ∈ P , look at the set of all patches



Ω(p) = {T (p) | T ∈ Ω}. By finite local complexity, this set is finite. We let

P ′ = {(p, P ) | p ∈ P , P ∈ Ω(p)}.

In words, we create a labeled copy of p for each patch consisting of tiles that intersect p

that could possibly surround it in any tiling in Ω. The substitution extends to this in the

natural way. If we let Γ1 and γ1 be the CW complex and map formed as above but from

(P ′, ω′), and form

Ω1 = {(x1, x2, . . . ) | xi ∈ Γ1, xi = γ(xi+1)}.

then, with ω1 the shift map on the above, (Ω1, ω1) is always topologically conjugate to

(Ω, ω). This procedure is called collaring.

Example 10. The CW complex of the Penrose tiling is given below.



4 C*-algebras from Tilings

In this final section we describe some C*-algebras which may be associated to aperiodic

order. These C*-algebras have some interest from the perspective of physics, as their self-

adjoint elements may be seen as observables for a particle moving through a quasicrystal

modeled by an aperiodic tiling. These C*-algebras are also quite interesting in their own

right, as they are simple, have a unique trace, and have computable K-theory.

The first C*-algebra one may think to associate to our tiling space Ω is the crossed

product associated to translation. Specifically, the map

Ω× Rd → Ω

(T, x) 7→ T + x

is jointly continuous, and so induces an action α of Rd on the continuous functions on Ω.

From this action we may form the crossed product C*-algebra

C(Ω) oα Rd.

Since every Rd orbit in Ω is dense, C(Ω)oαRd is simple (that is, it has no closed two-sided

ideals). The K-theory of this C*-algebra can be computed through the use of the following

theorem.

Theorem 2. (Connes’ Thom Isomorphism, see for example [3] Theorem 10.2.2) If

α : R→ Aut(A), then

Ki(Aoα R) ∼= K1−i(A)

where the index i is read modulo 2.

Hence Ki(C(Ω) oα Rd) ∼= Ki−d(C(Ω)). For a reference on computing the latter, see [1].

We now present what is usually referred to as the C*-algebra of a tiling. It will be

Morita equivalent to C(Ω) oα Rd but will be much easier to work with. The following

construction was introduced in [6], although [7] is another excellent reference.

For each p ∈ P , choose a point xp in the interior of p. This point shall be called the

puncture of p. If t is a tile which is a translate of a prototile p, then t+ x = p and we let

xt = xp +x and call this the puncture of t. After possibly labelling prototiles, the puncture

of a tile is unique. We let Ωpunc ⊂ Ω be the set of all tilings in Ω such that the origin is



the puncture of a tile in T . Locally, this eliminates the “open disc direction” of the local

product structure, and by an argument similar to Proposition 6 Ωpunc is homeomorphic to

the Cantor set in the relative topology. This topology on Ωpunc admits a basis of clopen

sets of the following form. Let P be a patch in some tiling in Ω and let t ∈ P . Then we let

U(P, t) = {T ∈ Ωpunc | P − xt ⊂ T}.

We note that for x ∈ Rd, U(P, t) = U(P + x, t+ x).

We now let

Rpunc = {(T, T + x) | x ∈ Rd;T, T + x ∈ Ωpunc}.

Then Rpunc is an equivalence relation on Ωpunc. There is an embedding of Rpunc into ΩoRd,

and so we give Rpunc the topology inherited from Ω oRd. Given this topology, Rd has the

structure of what is known as an étale equivalence relation, that is:

• Rpunc is locally compact and Hausdorff,

• the subspace ∆ = {(T, T ) | T ∈ Ωpunc} is open in Rpunc, and

• the maps r : Rpunc → Ωpunc and s : Rpunc → Ωpunc given by r(T, T ′) = T and

s(T, T ′) = T ′ are local homeomorphisms.

The second item follows from the fact that the punctures of a given tiling T form a discrete

subset of Rd. For a patch P and tiles t1, t2 ∈ P , we define

V (P, t1, t2) = {(T, T + x) ∈ Rpunc | T ∈ U(P, t1), x = x(t1)− x(t2)}.

Sets of this form generate the topology on Rpunc. We once again note that for x ∈ Rd, we

have that V (P, t1, t2) = V (P + x, t1 + x, t2 + x). In addition,

r(V (P, t1, t2)) = U(P, t1), s(V (P, t1, t2)) = U(P, t2)

and r and s are homeomorphisms when restricted to this domain.

We build another étale equivalence relation on Ωpunc from the substitution. For a tile t

and n ∈ N, we call ωn(t) an nth-order supertile. Since ω is invertible, each tiling T ∈ Ω

has a unique decomposition into nth-order supertiles. Furthermore, these decompositions

are “nested” in the sense that if ωn(t) ⊂ T then ωn(t) is contained in a unique (n+1)th-order

supertile in T .



For each n ∈ N, let Rn be the set of pairs (T, T − x) from Rpunc such that 0 and x are

punctures inside the same nth-order supertile in T . The figure below shows an example

where (T, T − x) ∈ R2.

For each n we must have that Rn ⊂ Rn+1, since if 0 and x are punctures in the same

nth order supertile, they must be in the same (n+ 1)th-order supertile. For each n, Rn is

a compact open subequivalence relation of Rpunc. We let

RAF =
⋃
n∈N

Rn.

It is from these equivalence relations that we build our C*-algebras. The following is a

construction due to Renault; for the more general situation see [12].

Consider Cc(Rpunc), the continuous compactly-supported complex-valued functions on

Rpunc. We define a product and involution on Cc(Rpunc) by the following formulas:

f ∗(T, T ′) = f(T ′, T )

fg(T, T ′) =
∑
T ′′∈[T ]

f(T, T ′′)g(T ′′, T ),

where [T ] denotes the equivalence class of T in Rpunc. These operations give Cc(Rpunc) the

structure of a ∗-algebra. We notice that the sum in the formula for the product must be

finite, since each of f and g is compactly supported. This ∗-algebra may not be complete,

so we complete it in a suitable norm (for details on this norm, see [12] or [9], Definition

1.6). We denote the completion of Cc(Rpunc) by C∗(Rpunc) and call this the C*-algebra of

Rpunc.

The algebra C∗(Rpunc) admits a convenient generating set based on patches and tiles.

Fpr a patch P and tiles t1, t2 ∈ P the set V (P, t1, t2) is a compact open set in Rpunc, and so



its characteristic function is an element of Cc(Rpunc) ⊂ C∗(Rpunc). We let e(P, t1, t2) denote

the characteristic function of V (P, t1, t2), and we now describe some algebraic relations on

these elements. Let P, P ′ be patches and let t1, t2, t ∈ P and t′1, t
′
2 ∈ P ′. Assume without

loss of generality that xt2 = 0 and that xt′1 = 0. Then we have the following.

• The product e(P, t1, t2)e(P ′, t′1, t
′
2) is nonzero precisely when U(P, t1) ∩ U(P, t2) 6= ∅

and the patches P and P ′ agree on the overlap of their supports, i.e., P ∪ P ′ is a

patch. In this case the product is e(P ∪ P ′, t1, t′2).

• e(P, t1, t2)∗ = e(P, t2, t1).

• e(P, t, t)e(P, t, t) = e(P, t, t).

Hence each e(P, t, t) is a projection and e(P, t1, t2) is a partial isometry from e(P, t2, t2) to

e(P, t1, t1) in Cc(Rpunc).

Let

E = {e(P, t1, t2) | P is a patch with t1, t2 ∈ P}.

Then spanC E is a ∗-subalgebra of Cc(Rpunc). It has identity
∑

p∈P e({p}, p, p). In [15],

Lemma 4.13, Whittaker uses a Stone-Weierstrass argument to show that spanC E is dense

in Cc(Rpunc).

The C*-algebra of the subgroupoid RAF ⊂ Rpunc is C∗(RAF ), and we have C∗(RAF ) ⊂
C∗(Rpunc). This C*-algebra is an AF algebra, that is, it is an inductive limit of finite

dimensional C*-algebras. The identity is an element of C∗(RAF ). As a unital AF algebra,

it is completely described by its Bratteli diagram (for a good reference on AF algebras

and Bratteli diagrams, see [5] or see Appendix A). If P = {p1, p2, . . . , pNpro}, then the

Bratteli diagram associated to C∗(RAF ) has pNpro vertices at each level, and there is an

edge from vertex i at level n to vertex j at level (n + 1) for each translate of pi in ω(pj).

The incidence matrix for each level of the Bratteli diagram is constant, and is primitive

precisely because ω is primitive. This implies that C∗(RAF ) is simple and has unique trace.

It is a result of Putnam [10] (generalized by Phillips in [9]) that C∗(RAF ) is “large enough”

inside C∗(Rpunc) for this to imply that C∗(Rpunc) has unique trace as well. In [9], Phillips

also proves that C∗(Rpunc) has real rank zero and tracial rank one.



5 Appendix: AF Algebras

In this appendix we briefly present a well-studied class of C*-algebras, the AF algebras.

Recall that a finite dimensional C*-algebra A is isomorphic to a direct sum of full matrix

algebras, i.e.

A =
k⊕
i=1

Mni
(C).

In particular, a finite dimensional C*-algebra is unital. If

B =
l⊕

i=1

Mmi
(C)

is another finite dimensional algebra, and ϕ : A→ B is a unital ∗-homomorphism, then ϕ

is determined up to unitary equivalence in B by an l× k matrix M of nonnegative integers

such that

M


n1

n2

...

nk

 =


m1

m2

...

ml

 .
The matrix M is called the matrix of partial multiplicities. If M = [Mij], then the

integer Mij is the multiplicity of the embedding of the summand Mnj
(C) of A into the

summand Mmi
(C) of B. For details see [5] Lemma III.2.1.

One way of obtaining the matrix of partial multiplicities is through traces. If τ is a

trace on Mn(C), then it is a positive scalar multiple of the usual matrix trace Tr (this is

the sum of the diagonal entries). If A is a finite dimensional algebra written as before,

A =
k⊕
i=1

Mni
(C).

then for each j,

τAj
(
(ai)

k
i=1

)
= Tr(aj)

is a trace on A. Furthermore, every trace on A can be written as a positive linear combi-

nation of the τAj since restricting to a summand yields a trace on that summand. Let

B =
l⊕

i=1

Mmi
(C)



and suppose that ϕ : A→ B is a unital injective homomorphism of C*-algebras. Then for

each i between 1 and l, τBi ◦ϕ is a trace on A. Furthermore, if we denote by qi the identity

on the ith summand in A, τBi ◦ϕ(qs) should be the trace of qs multiplied by the multiplicity

of the embedding of the summand Mns(C) of A into the summand Mmi
(C) of B. On the

other hand, we know that

τBi ◦ ϕ =
k∑
j=1

Mijτ
A
j (1)

for some positive scalars Mij. Hence,

τBi ◦ ϕ(qs) =
k∑
j=1

Mijτ
A
j (qs) = Misτ

A
s (qs) = Misns,

and so M = [Mij] is the matrix of partial multiplicities of the inclusion. A formula for its

entries is given by manipulating the above,

Mij =
τBi ◦ ϕ(qj)

τAj (qj)
(2)

A C*-algebra A is called approximately finite dimensional or AF if it is the closure

of an increasing union of finite dimensional subalgebras An. When A is unital, it is required

that the A0 consist only of the scalar multiples of the identity of A. Thus in the unital case,

each An contains the identity. Given an AF algebra A = ∪An, the inclusion of An in An+1

is determined up to unitary equivalence in An+1 by the matrix of partial multiplicities. We

may describe this series of inclusions by what is known as a Bratteli diagram.

Definition 10. A Bratteli diagram is an infinite directed graph (E, V ), where E is the

set of edges and V is the set of vertices, with the following properties:

1. The vertex set is a disjoint union finite subsets Vn ⊂ V for n ≥ 0,

2. the set V0 consists of one vertex v0, called the root,

3. if e ∈ E then there exists n ≥ 0 such that i(e) ∈ Vn and t(e) ∈ Vn+1,

4. for v ∈ V \ V0, there exist e1, e2 ∈ E such that t(e1) = i(e2) = v.

In the above, i(e) and t(e) denote the initial vertex and terminal vertex of the edge e

respectively. We say a Bratteli diagram is simple if for every v ∈ Vn and u ∈ Vn+1 there

exists e ∈ E such that i(e) = v and t(e) = u.



A Bratteli diagram is built from an AF algebra A = ∪An as follows: the set Vn consists

of one vertex for every full matrix summand in An. If M(n) is the matrix of partial

multiplicities for the inclusion An ⊂ An+1, then we draw M(n)ij edges from the jth vertex

in Vn to the ith vertex in Vn+1. The requirement that A0 consist of the scalar multiples of

the identity implies that A0
∼= C, and so V0 has one vertex as required.

Example 11. Let An = M2n(C), and let each inclusion An ⊂ An+1 be determined by

a 7→

[
a 0

0 a

]
.

Then the matrix of partial multiplicities of each inclusion is the 1 × 1 matrix [2]. The

Bratteli diagram of this sequence of finite dimensional algebras is

· //// · //// · //// · //// · · ·

This algebra is what is known as the CAR algebra, see [5], Example III.2.4.

We note the following.

Proposition 7. ([5], Proposition III.2.7) Let A = ∪An and B = ∪Bn be two AF algebras.

Then if A and B have the same Bratteli diagram, they are isomorphic.

The act of telescoping also results in isomorphic AF algebras. If (V,E) is a Bratteli

diagram, we may form another by deleting one of the vertex sets. Pick any n ∈ N and let

V ′ =
⋃
i≥0
i 6=n

Vi.

Our new edge set E ′ will consist of all the edges from E which did not have source or range

in Vn. We create a new edge in E ′ for every pair of edges e1, e2 with t(e1) = i(e2) ∈ Vn. The

result (E ′, V ′) will be a Bratteli diagram. The incidence matrix between Vn−1 and Vn+1 will

simply be the product of M(n) and M(n+ 1). The diagrams (E, V ) and (E ′, V ′) will have

isomorphic AF algebras.

One may also form an étale equivalence relation from a Bratteli diagram. Let (V,E) be

a Bratteli diagram. Define

X = {(xi)i∈N | xi ∈ E, s(x1) = v0, i(xi+1) = t(xi)},



the set of all infinite paths in (V,E) which start at the root. If x ∈ X, we define

U(x, k) = {(yi)i∈N | yi = xi, 1 ≤ i ≤ k}.

This is the set of all infinite paths which look like x up to the kth term. We endow X with

the topology generated by sets of this form as x and k vary. If (V,E) is simple, then X

with this topology is homeomorphic to the Cantor set. We let

Rk = {(x, y) ∈ X ×X | xi = yi for all i ≥ k},

R =
⋃
n∈N

Rn.

We see that R is an equivalence relation on X, and two sequences are equivalent if they are

eventually equal. This relation is known as tail equivalence. We note that Rk ⊂ Rk+1

for all k ∈ N and that each Rk contains the diagonal.

Let x, y ∈ X be such that t(xk) = t(yk), i.e., they pass through the same vertex at stage

k. Define

V (x, y, k) = {(z, w) ∈ X ×X | z ∈ U(x, k), w ∈ U(y, k), zi = wi, i > k}.

Then V (x, y, k) ⊂ Rk. We give R the topology generated by the V (x, y, k) as x, y, and k

vary, keeping in mind it is only defined if t(xk) = t(yk). In this topology, Rk is compact and

open in R for all k. We have that r(V (x, y, k)) = U(x, k), and restricted to this domain r

is easily checked to be a homeomorphism. It is a fact that C∗(R) is isomorphic to the AF

algebra associated to (V,E). For details on the above construction, see [12], Section III.1.
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