Chapter 12. Complex Differential Forms

In the present chapter we introduce a powerful method of differential forms to handle many calculus problems. We will state some rules of thumb, explained briefly but not proved with mathematical rigor, and a few examples to illustrate the ease of working with them. Let us begin with a complex function \(f(z) \) with variable \(z = x + iy \). We may consider it as a function of two real variables \(x \) and \(y \) so that the partial derivatives \(\partial f/\partial x \) and \(\partial f/\partial y \). The differential \(df \) of \(f \) is related to these partial derivatives as follows:

\[
df = \frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy.
\]

But normally we do use this identity to compute \(df \); instead, we use the following rules (the product rule, the quotient rule and the chain rule:

\[d(\frac{uv}{v^2}) = \frac{vdu - u dv}{v^2},\]

\[d f = \frac{df}{du} \, du \text{ for } f = f(u)\]

Example 12.1. To compute \(d|z| \), we write \(v = |z| \). Then \(v^2 = |z|^2 = x^2 + y^2 \). So \(d(v^2) = 2x \, dx + 2y \, dy \). On the other hand \(d(v^2) = 2vdv \). Thus \(2vdv = 2x \, dx + 2y \, dy \), giving us \(dv = (x \, dx + y \, dy)/v \), or

\[d|z| = \frac{x \, dx + y \, dy}{|z|}.
\]

As usual, we write \(r = |z| \). Then

\[
\frac{dr}{r} = \frac{x \, dx + y \, dy}{|z|^2} = \frac{x \, dx + y \, dy}{x^2 + y^2}.
\]

(12.2)

If we start with the polar form \(z = re^{i\theta} \), then, using the product rule, we have

\[dz = d(re^{i\theta}) = e^{i\theta} \, dr + re^{i\theta} \, d\theta = e^{i\theta} \, dr + i \, re^{i\theta} \, d\theta = re^{i\theta} \left(\frac{dr}{r} + id\theta \right).
\]

Consequently we have

\[
\frac{dz}{z} = \frac{dr}{r} + i d\theta.
\]

(12.3)

This identity should be read with care. First, we require \(z \neq 0 \); otherwise the left hand side does not make sense. In this case we have \(r > 0 \) and we can rewrite \(dr/r \) as \(d\ln r \). However, writing \(dz/z \) as \(d\ln z \) is problematic! Second, there is some ambiguity about the
way to define θ. If we do this carefully, then we have to talk about “branches of θ”. To avoid the potential trouble caused by θ in $d\theta$, in the future we often write ω instead of $d\theta$.

Example 12.2. We can use $z = x + iy$ to put dz/z in terms of x and y:

$$
\frac{dz}{z} = \frac{\overline{z} dz}{zz} = \frac{(x - iy)d(x + iy)}{x^2 + y^2} = \frac{xdx + ydy}{x^2 + y^2} + i \frac{xdy - ydx}{x^2 + y^2} \tag{12.4}
$$

Comparing the imaginary parts of the last expression with (12.3), we obtain

$$
\omega = \frac{xdy - ydx}{x^2 + y^2}
$$

which will be called the **angular form**. As we have mentioned above, the expression $d\theta$ on the left hand side is problematic. But the right hand side is fine, as long as $x + iy \neq 0$. Comparing the real parts of (12.4) and (12.3), we have $dr/r = (xdx + ydy)/(x^2 + y^2)$. But this is not new. It is just (12.2) above.

Exercise 12.1. Check that the angular form is homogenous in the sense that, if $f = f(x, y)$ is any no-where vanishing function, and if $u = fx$ and $v = fy$, then $(udv - vdu)/(u^2 + v^2) = (xdy - ydx)/(x^2 + y^2)$.

The complex conjugate of $z = x + iy$ is $\overline{z} = x - iy$. Now we have two pairs of variables: $\{x, y\}$ and $\{z, \overline{z}\}$, which are related by

$$
z = x + iy, \quad \overline{z} = x - iy, \quad \text{and} \quad x = \frac{z + \overline{z}}{2}, \quad y = \frac{z - \overline{z}}{2i}.
$$

These identities can be formally carried over to differentials:

$$
dz = dx + idy, \quad d\overline{z} = dx - idy, \quad dx = \frac{dz + d\overline{z}}{2}, \quad dy = \frac{dz - d\overline{z}}{2i}. \tag{12.5}
$$

As we know, the real variables x and y are independent of each other and hence so are their differentials. But the complex variables z and \overline{z} are related. They cannot be regarded as independent variables. However, their differentials dz and $d\overline{z}$ are *linearly independent* in the sense of the following:

Fact If $g dz + h d\overline{z} = 0$, then $g = 0$ and $h = 0$.

Here g and h are arbitrary (complex-valued) functions in z. We explain why this is true. Indeed, substituting $dz = dx + idy$ and $d\overline{z} = dx - idy$ in $g dz + hd\overline{z} = 0$, we have
\[g(dx + idy) + h(dx - idy) = 0, \] which is equivalent to \((g + h)dx + (ig - ih)dy = 0. \) Since \(dx \) and \(dy \) are independent, we have \(g + h = 0 \) and \(ig - ih = 0 \) (by Rule DF6 in §1.2), from which it follows that \(g = 0 \) and \(h = 0. \)

In (12.1), the differential \(df \) of \(f \) is expressed in terms of \(dx \) and \(dy \). Using (12.5), we can express \(df \) in terms of \(dz \) and \(\overline{dz} \). Indeed,

\[
\frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \overline{z}} d\overline{z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) dz + \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) d\overline{z}. \tag{12.6}
\]

Now we define \(\frac{\partial f}{\partial z} \) and \(\frac{\partial f}{\partial \overline{z}} \) in such a way that the identity

\[
df = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \overline{z}} d\overline{z} \tag{12.7}
\]

holds. Comparing (12.7) with the previous identity (12.6), naturally we define:

\[
\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \quad \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right). \tag{12.8}
\]

The second identity gives the definition of the so-called \(\overline{\mathcal{D}} \) - operator \(\partial / \partial \overline{z} \); (here \(\mathcal{D} \) is pronounced as “dee bar”). We interpret these operators as rates of change. Consider the change \(\Delta f = f(z + \Delta z) - f(z) \) in \(f \) caused by an increment \(\Delta z \equiv \Delta x + i \Delta y \) in \(z \equiv x + iy \).

Under what condition does the limit \(\lim_{|\Delta z| \to 0} \Delta f / \Delta z \) exist, which gives the complex derivative \(f'(z) \) of \(f \) at \(z \)? To answer this question, let us begin with identity (12.1). This identity can be viewed as a “infinitesimal version” of the following more precise one:

\[
\Delta f = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + o \left\{ \sqrt{(\Delta x)^2 + (\Delta y)^2} \right\}. \tag{The little “o” notation \(o\{ \ldots \} \) will be explained soon.}
\]

Substitute \(\Delta x \) by \(\frac{1}{2} (\Delta z + \overline{\Delta z}) \), and \(\Delta y \) by \(\frac{1}{2i} (\Delta z - \overline{\Delta z}) \). Replace \(\sqrt{(\Delta x)^2 + (\Delta y)^2} \) by \(|\Delta z| \). Following a computation similar to (1.3), it is easy to get

\[
\Delta f = \frac{\partial f}{\partial z} \Delta z + \frac{\partial f}{\partial \overline{z}} \overline{\Delta z} + o(|\Delta z|). \tag{12.11}
\]

Here, \(o(|\Delta z|) \) is a quantity less than \(\epsilon |\Delta z| \) if \(|\Delta z| \) is small enough, where \(\epsilon \) is an arbitrarily small positive number given beforehand. Dividing both sides by \(\Delta z \), we see that the difference quotient \(\Delta f / \Delta z \) has a limit as \(\Delta z \) tends to zero, provided that \(f \) satisfies the following so-called Cauchy-Riemann equation:

\[
\frac{\partial f}{\partial \overline{z}} = 0,
\]
and, in that case, the complex derivative $f'(z)$ is given by $\partial f/\partial z$. Notice that, when $\Delta z \to 0$, the quotient $\Delta z/\Delta z$ has a limits $+1$ if we let Δz move along the real axis and a different limit -1 if Δz moves along the imaginary axis. Hence, if the Cauchy-Riemann equation fails at a certain point, then the difference quotient $\Delta f/\Delta z$ does not have a limit as Δz tends to zero. We have shown,

(CR-equation). A (smooth) function f defined in C is complex differentiable if and only if it satisfies the Cauchy-Riemann equation $\partial f/\partial \bar{z} = 0$, and in that case the derivative of f is given by $f' = \partial f/\partial z$.

A (smooth) function f defined on an open set in C is called an **analytic function** or a **holomorphic function** if it satisfies the Cauchy-Riemann equation, or, equivalently, it has a complex derivative at each point in its domain.

The operator $\Delta \equiv 4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}$ is the **Laplacian**. Indeed, an easy computation shows

$$\Delta = \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) = \left(\frac{\partial}{\partial x} \right)^2 + \left(\frac{\partial}{\partial y} \right)^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

The usual definition of the Laplacian is given by the last expression. Thus

$$\Delta = 4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}. \quad (1.6)$$

We call a (smooth) function f defined on an open set in C a **harmonic function** if it satisfies the so-called Laplace equation $\Delta f = 0$. (We apologize for using the symbol Δf to denote two completely different notions: increment in f and the Laplacian of f. The context will make the meaning of this symbol clear whenever it appears.) Analytic functions are harmonic since a function satisfying the Cauchy-Riemann equation clearly satisfies the Laplace equation. The Laplacian, unlike the ∂-operator $\partial/\partial \bar{z}$, is a “real” operator: if f is a real-valued function, then its Laplacian Δf is also real-valued. Thus, the real part (or the imaginary part) of a harmonic function is also harmonic. But the real part of an analytic function in general is not analytic. In fact, a real-valued analytic function must be a constant.

Example 12.3. To prove the last statement, let f be a real-valued analytic function. Then $2 \frac{\partial f}{\partial \bar{z}} \equiv \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0$. As f is real, $\partial f/\partial x$ and $\partial f/\partial y$ are also real and hence they must vanish. Thus we have $df = (\partial f/\partial x)dx + (\partial f/\partial y)dy = 0$ and hence f is a constant.
The operators $\partial/\partial z$ and $\partial/\partial \bar{z}$ behave like usual partial derivatives, if we consider a function of x, y as a function of z, \bar{z} instead. The following example shows how they work:

Example 12.4. Show that the so-called Poisson kernel $P(z, e^{it})$, given below, which is regarded as a function of z for $|z| < 1$, is a harmonic function; (the Poisson kernel is used for describing solutions to Dirichlet’s problem over the unit disk).

$$P(z, e^{it}) = \frac{1 - |z|^2}{|e^{it} - z|^2}; \quad t \in \mathbb{R}, \quad |z| < 1.$$ \hspace{1cm} (12.9)

(Here $e^{it} = \cos t + i \sin t$.)

Solution: First we apply the $\overline{\partial}$-operator to $P(z, e^{it})$. For simplicity, write w for e^{it}.

$$\frac{\partial}{\partial \bar{z}} P(z, w) = \frac{\partial}{\partial \bar{z}} \frac{1 - |z|^2}{|w - z|^2} = \frac{\partial}{\partial \bar{z}} \left(\frac{1}{(w - z)(\bar{w} - \bar{z})} \right) = \frac{z\bar{z}}{(w - z)(\bar{w} - \bar{z})}$$

$$= \frac{1}{w - z} \frac{\partial}{\partial \bar{z}} \frac{1}{\bar{w} - \bar{z}} - \frac{z}{w - z} \frac{\partial}{\partial \bar{z}} \frac{\bar{z}}{\bar{w} - \bar{z}}$$

$$= \frac{1}{w - z} \frac{1 - z\bar{w}}{(w - z)(\bar{w} - \bar{z})} = \frac{(w - z)\bar{w}}{(w - z)(\bar{w} - \bar{z})^2} = \frac{w}{(1 - \bar{z}w)^2}.$$

Since the last expression does not involve z, we have $(\partial/\partial z) w/(1 - \bar{z}w)^2 = 0$. Hence

$$\Delta_z P(z, e^{it}) = 4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}} P(z, w) = 4 \frac{\partial}{\partial z} \frac{w}{(1 - \bar{z}w)^2} = 0.$$

(Here Δ_z means that the Laplacian is taken with respect to z.) Therefore the Poisson kernel $P(z, e^{it})$, as a function of z varying within $|z| < 1$, is a harmonic function.

Exercise 12.2. Verify that, when $z = re^{i\theta}$, the Poisson kernel given in (12.9) above is essentially the same as the one given in Chapter 7, by checking the following identity:

$$\frac{1 - |z|^2}{|e^{it} - z|^2} = \frac{1 - r^2}{1 - 2r \cos(t - \theta) + r^2},$$

with $z = re^{i\theta}$.

More precisely, all differential forms we have studied so far should be called 1–forms. Next we study the so called 2–forms. One can get a 2–form by taking the so–called wedge
product or the exterior product $\alpha \wedge \beta$ of 1-forms α and β. Since every 1-form in two variables x and y can be expressed in the form $f \, dx + g \, dy$, the following rule

$$dx \wedge dx = 0, \quad dy \wedge dy = 0, \quad dy \wedge dx = -dx \wedge dy$$

tells us how to compute $\alpha \wedge \beta$ in practice. For generally, given 1–forms α and β, we have

$$\alpha \wedge \alpha = 0, \quad \alpha \wedge \beta = -\beta \wedge \alpha. \quad (12.10)$$

Example 12.5. Verify the following identities:

$$dz \wedge dz = 0, \quad d\bar{z} \wedge d\bar{z} = 0, \quad \text{and} \quad d\bar{z} \wedge dz = -dz \wedge d\bar{z} = 2i \, dx \wedge dy. \quad (12.11)$$

Solution. Here we go:

$$dz \wedge dz = (dx + idy) \wedge (dx + idy)$$

$$= dx \wedge dx + i \, dy \wedge dx + i \, dx \wedge dy - dy \wedge dy$$

$$= 0 + i(-dx \wedge dy) + i \, dx \wedge dy - 0 = 0,$$

$$d\bar{z} \wedge dz = (dx - idy) \wedge (dx + idy)$$

$$= dx \wedge dx - i \, dy \wedge dx + i \, dx \wedge dy + dy \wedge dy$$

$$= 0 - i(-dx \wedge dy) + i \, dx \wedge dy + 0 = 2i \, dx \wedge dy.$$

In the same way we can show that $d\bar{z} \wedge d\bar{z} = 0$ and $-dz \wedge d\bar{z} = 2i \, dx \wedge dy$.

Example 12.6. Given 1-forms $\omega_1 = f_1 dz + g_1 d\bar{z}$ and $\omega_2 = f_2 dz + g_2 d\bar{z}$, we wish to find $\omega_1 \wedge \omega_2$. Now

$$\omega_1 \wedge \omega_2 = (f_1 dz + g_1 d\bar{z}) \wedge (f_2 dz + g_2 d\bar{z}) = f_1 g_2 \, dz \wedge d\bar{z} + g_1 f_2 \, d\bar{z} \wedge dz$$

$$= (f_1 g_2 - f_1 h_2) \, dz \wedge d\bar{z} \equiv \begin{vmatrix} f_1 & g_1 \\ f_2 & g_2 \end{vmatrix} \, dz \wedge d\bar{z}.$$

We may replace $dz \wedge d\bar{z}$ by $2i \, dx \wedge dy$ if we wish. This example shows that a 2-form in variables $x \, y$ can be expressed as $f \, dx \wedge dy$ for some function f.

Besides taking wedge products, there is another way to obtain 2-forms: taking the differential $d\omega$ of a 1–form, by following the rule:

$$d(f \, dg) = df \wedge dg \quad (12.12)$$
In other words, if \(\omega = f \, dg \), then \(d\omega = df \wedge dg \). A particular case of this rule is

\[
d(df) = 0, \quad \text{or} \quad d^2 = 0. \tag{12.13}
\]

The reason is that we can regard \(df \) as \(1 \, df \) and hence \(d(df) = d(1 \, df) = d1 \wedge df = 0 \), in view of the fact that the differential of a constant function is always zero.

Example 12.7. Verify that 1-form \(\omega = zd\bar{z} + \bar{z}dz \) is closed, that is, \(d\omega = 0 \).

Solution: \(d\omega = dz \wedge d\bar{z} + d\bar{z} \wedge dz = dz \wedge d\bar{z} - dz \wedge d\bar{z} = 0 \). Alternatively, we can proceed as follows: \(d(zd\bar{z} + \bar{z}dz) = d(d(z\bar{z})) = 0 \), in view of \(d^2 = 0 \).

We say that a 1–form \(\omega \) is **closed** if \(d\omega = 0 \), and a 1–form \(\omega \) is **exact** if \(\omega \) can be written as \(df \) for some function \(f \). Identity (12.13) tells us: exact forms are closed. We will learn that closed 1–forms are “locally exact” but not necessarily (globally) exact. (This kind of situations is not just a result of mathematically investigation – it actually occurs in nature, e.g. the Aharonov–Bohm effect.)

Example 12.8. Recall the angular form

\[
\omega = \frac{xdy - ydx}{x^2 + y^2},
\]

which is defined for all \((x, y) \neq (0, 0)\). We rewrite it as \(\omega = f \wedge dx + gdy \), where \(f = -y/(x^2 + y^2) \) and \(g = x/(x^2 + y^2) \). Then \(d\omega = df \wedge dx + dg \wedge dy \). A brute force computation by using the quotient rule shows

\[
df = \frac{2xydx + (x^2 - y^2)dy}{(x^2 + y^2)^2}, \quad \text{and} \quad dg = -\frac{2xydy + (y^2 - x^2)dx}{(x^2 + y^2)^2}.
\]

Thus we have

\[
d\omega = \frac{2xy}{(x^2 + y^2)^2}dx \wedge dx + \frac{y^2 - x^2}{(x^2 + y^2)^2}dx \wedge dy + \frac{y^2 - x^2}{(x^2 + y^2)^2}dy \wedge dx + \frac{2xy}{(x^2 + y^2)^2}dy \wedge dy = 0,
\]

By using \(dx \wedge dx = 0 \), \(dy \wedge dy = 0 \), and \(dy \wedge dx = -dx \wedge dy \). Alternatively, from example 12.2 above, we know that \(\omega \) is the imaginary part of \(dz/z \). So it is enough to check that \(dz/z \) is closed. Now \(d(dz/z) = d(z^{-1}dz) = d(z^{-1}) \wedge dz = -z^{-2}dz \wedge dz = 0 \). So \(dz/z \) is closed. In the next chapter we will see that the angular form (which is defined for all \((x, y) \neq (0, 0)\)) is not exact.