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ABSTRACT 

In 1934, Aitken and Roth studied the Jordan canonical form of a Kronecker product. In 

this thesis, we use their method to construct the Jordan canonical form of a Kronecker 

product of two matrices whose eigenvalues are not necessarily distinct. We also use 

combinatorics and graph theory which were presented by Brualdi in 1985 to derive 

determinantal divisors of the Kronecker product of two matrices. From this we obtain 

the elementary divisors and the Jordan canonical form.
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Chapter 1: Introduction 

In this chapter, we review basic background information that is needed for the 

evaluation of the Jordan canonical form of the Kronecker product matrix. We give key 

definitions and describe standard operations on matrices. We survey some key theorems 

and propositions, together with their proofs and give some examples. Part of this chapter 

discusses the matrix AB, the Kronecker product of matrices A and B. We then 

conclude this chapter by discussing how to construct the Jordan canonical structure of a 

matrix A. It has been shown that for a matrix A with distinct eigenvalues, this matrix is 

diagonalizable. If a matrix A has repeated eigenvalues, then its Jordan structure may 

contain Jordan blocks, this matrix is quasi-diagonal in the sense that its only non-zero 

entries lie on the diagonal and the superdiagonal. 
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1.1 Standard Operations 

In this section we review some important aspects of the theory of matrices over a field 

K. Most often, K will be the real field R or complex field C. Typically matrices are 

denoted by upper case letters A, B, etc. The vector space K
n
 consists of all n x 1 column 

vectors over K, which will be denoted by lower case bold letters 𝒗, 𝒘 etc. 

 

Definition 1.1.1:  

The determinant of an n x n matrix A = [𝑎𝑖𝑗 ] is given for any fixed 𝑖 by 

det(A) = |A| =


n

j 1

(−1)𝑖+𝑗 𝑎𝑖𝑗 det(𝑀𝑖𝑗 )  

where 𝑀𝑖𝑗  denotes the (n-1) x (n-1) submatrix of the matrix A obtained by deleting the 

𝑖th 
row and 𝑗th

 column of A. The expression (−1)𝑖+𝑗 det(𝑀𝑖𝑗 ) is called the cofactor of the 

element 𝑎𝑖𝑗 . We note that this expansion is independent of the row index 𝑖               

[Pool, p. 264]. 

 

Note that if a matrix A has a zero row, then by cofactor expansion along that row, we get 

det(A) = 0. 

 

Definition 1.1.2:  

For a 2 x 2 matrix A, the determinant is given, in various notations, by 

det(A) = |A|=  
𝑎11 𝑎12

𝑎21 𝑎22
   = 𝑎11𝑎22 – 𝑎12𝑎21. 
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Definition 1.1.3:  

Let A be an n x n matrix. A scalar 𝛾 is an eigenvalue of a matrix A, if there is a nonzero 

column vector 𝒗 ∈K
n
, such that 

A𝒗 = 𝛾𝒗.                                                                                      (1)                                                      

The vector 𝒗 is called an eigenvector of a matrix A corresponding to the eigenvalue 𝛾. 

From equation (1) we have 

A𝒗 = 𝛾𝒗 

                           A𝒗 − 𝛾𝒗 = 0 

                     (A− 𝛾𝐼n)𝒗 = 0.                                                                                        (2)                                                                                                                                                     

Equation (2) has non-trivial solutions if and only if 

det(A − 𝛾𝐼n) = 0.                                                                          (3)                                                                              

Note that, if 𝒗 is an eigenvector and 𝛿 is a nonzero scalar, then 𝛿𝒗 is also an eigenvector. 

It is important again to stress out that an eigenvector should be non-zero, since (1) is 

trivially satisfied by the zero vector for any number 𝛾. 

 

Definition 1.1.4:  

Referring to equation (3) above,  

p(𝑥) = det(A - 𝑥𝐼n)  

is a polynomial of degree n called the characteristic polynomial of the n x n matrix A. 

The characteristic equation is given by 

p(𝑥) = 0. 
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Definition 1.1.5:  

If  

q(𝑥) = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2
 + - - - + 𝑏𝑟𝑥

𝑟  

is any polynomial in K[𝑥], and A is any n x n matrix over K, then 

   q(A) = 𝑏0𝐼𝑛  + 𝑏1A + 𝑏2A
2
 + - - - + 𝑏𝑟A

r
.  

The minimal polynomial of a matrix A is the monic polynomial t 𝑥  of smallest positive 

degree m, such that 

t(A) = 0. 

(Here 0 denotes the n x n zero matrix).  

 

Proposition 1.1.6:  

The minimal polynomial t(𝑥) exists and is unique. Moreover, the minimal polynomial 

divides every polynomial q(𝑥) for which 

q(A) = 0  

[Laub, p. 76]. 

 

Cayley – Hamilton Theorem 1.1.7: 

Let A be an n x n matrix with characteristic polynomial 

   p(𝑥) = 𝑥n
 + cn-1𝑥

n-1
 + - - - + c1𝑥 + c0. 

Then  

   p(A) = A
n
 + cn-1A

n-1
 + - - - + c1A + c0𝐼n = 0. 
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Proof  

Let B be the adjoint of the matrix A, namely the transpose of the matrix of cofactors. 

Then from Definition 1.1.1, 

B = [𝑏𝑖𝑗 ] = [(−1)𝑖+𝑗 det(𝑀𝑖𝑗 )]. 

 Recall that 

AB = det(A)𝐼n.                                                                             (4)          

This result is true for any square matrix with entries in any commutative ring and 

therefore it is true in particular for the matrix (𝑥𝐼n − A). The adjoint B(𝑥) of (𝑥𝐼n − A) is 

an 𝑥-matrix, each element which is a polynomial of degree (n-1) or less in 𝑥, since each 

such entry is a minor of order (n−1) for (𝑥𝐼n − A). In general 

B(𝑥) = Bn-1𝑥
n-1

 + Bn-2𝑥
n-2

 + - - - + B1𝑥 + B0                                 (5)           

where the B𝑖 are n x n matrices with constant entries. Applying the result (4) to            

(𝑥𝐼n − A) we have 

det(𝑥𝐼n − A)𝐼n = (𝑥𝐼n − A)(Bn-1𝑥
n-1

 + Bn-2𝑥
n-2

 + - - - + B1𝑥 + B0)  

                                               = (𝑥n
 + cn-1𝑥

n-1
 + - - - + c0)𝐼n.                                            (6) 

Equating coefficients of powers of 𝑥 we get 

Bn-1              = 𝐼n   

Bn-2 – ABn-1 = cn-1𝐼n   

            ⋮ 

-AB0               = c0 𝐼n 

Multiplying these equations by A
n
, A

n-1
, - - -,𝐼n  and summing gives 

A
n
 + cn-1A

n-1
 + - - - + c0 𝐼n = 0 ∎ 
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[Wilk, p. 38-39]. 

 

We conclude that every square matrix satisfies its own characteristic equation. 

Therefore, the minimal polynomial of a matrix cannot be of degree greater than that of 

the characteristic polynomial, and the minimal polynomial divides the characteristic 

polynomial p(𝑥). 

Later on, we will show that the Jordan canonical form of a matrix A determines the 

minimal polynomial of a matrix A, but the converse is not true. 

 

Definition 1.1.8:  

For each eigenvalue 𝛾 of an n x n matrix A, we have the eigenvector 𝒗 such that 

(A – 𝛾𝐼n)𝒗 = 0. 

The kernel of the matrix A – 𝛾𝐼n contains each such vector 𝒗 and is called the 

eigenspace associated with the eigenvalue 𝛾, denoted by E𝛾: 

E𝛾 = ker(A – 𝛾𝐼n). 

Furthermore, the dimension of the eigenspace E𝛾 is called the geometric multiplicity 

corresponding to the eigenvalue 𝛾. In other words, the geometric multiplicity of the 

eigenvalue 𝛾 is the nullity of the matrix A – 𝛾𝐼n. 

Definition 1.1.9:  

Let 𝐼n be the n x n identity matrix and let A be an n x n matrix. A matrix B of order n is 

called the inverse matrix of a matrix A if and only if  

AB = 𝐼n = BA. 
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Since this condition uniquely determines A, we just write  

B = A
-1

. 

Furthermore, if matrix A
-1

 exists, then 

A A
-1

 = 𝐼n,   

so that  

det(A) ≠ 0. 

We shall say that a matrix A is non-singular or invertible if a matrix A
-1

 exists; 

otherwise, the matrix A is singular. 

 

Example 1.1.10: 

Find the eigenvalues and the corresponding eigenspaces for the following matrix 

   A = 
10 −18
6 −11

 . 

 

Solution  

We first simplify the characteristic polynomial 

  det(A – 𝛾𝐼) = −(10 – 𝛾)(11 + 𝛾) + 108 

                                           = − (110 + 10𝛾 - 11𝛾 – 𝛾2
) + 108 

                                        = 𝛾2
 + 𝛾 – 2 

                                        = (𝛾 − 1) (𝛾 + 2). 

The characteristic equation is 

  (𝛾 − 1)(𝛾 + 2) = 0. 
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It is an easy exercise to confirm the Cayley Hamilton theorem by verifying that 

p(A) = A
2
 + A − 2𝐼 

                                             = 0. 

Since the characteristic polynomial of A has no repeated factors, the minimal 

polynomial of A is equal the characteristic polynomial.  

We have the eigenvalues 

   𝛾1 = 1,      𝛾2 = −2. 

To find an eigenspace for 𝛾1 = 1, we solve for the eigenvector 

   (A – 𝛾1𝐼2)𝒗1 = 0. 

We obtain the redundant system 

   9𝑥 − 18𝑦 = 0 

   6𝑥 − 12𝑦 = 0 

Thus a non-trivial eigenvector for 𝛾1 is 

   𝒗1  = 
2
1
 . 

For 𝛾2, we similarly get 

   𝒗2 = 
3
2
 . 

 

In the next section, we describe a non-singular matrix P such that 

   P
-1

AP = JA 

is the Jordan canonical form for A. Here we make 

   P = 
2 3
1 2

 , 

whose columns are the above eigenvectors. It is then easy to check that 
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  P
-1

AP =  
2 −3

−1 2
  

10 −18
6 −11

  
2 3
1 2

  

             =  
1 0
0 −2

  

   = JA. 

Thus A is diagonalizable. 

 

Definition 1.1.11:  

A matrix A is in row echelon form if it satisfies the following conditions 

(a) If a row is not entirely made out of 0’s, then the first non-zero number in 

the row must equal 1. (This entry is called a leading 1). 

(b)  If there are any rows entirely made out of 0’s, then they are grouped at the 

bottom of the matrix. 

(c)  In any two successive rows that do not consist of 0’s, the leading 1 in the 

lower row occurs further to the right than the leading 1 in the higher row. 

 

Definition 1.1.12: 

The rank of the m x n matrix A is the dimension of its column space, that is, the 

dimension of the subspace of K
n
 spanned by the columns of A. One can show that this 

equals the dimension of the space spanned by the rows of A. It is easy to see that this in 

turn equals the number of non-zero rows in its row echelon form after using elementary 

row operators to change the matrix A into row echelon form [Pool, p. 75]. 
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Theorem 1.1.13: 

If A is an m x n matrix, then  

rank(A) +dim(ker(A)) = n. 

 

Proof  

Suppose A has rank w and let R be the reduced row echelon form of the matrix A. Then 

R has w leading 1’s. Now solve the homogeneous system defined by  

   Ax = 0. 

Then there are w leading variables and n-w free variables in the standard description of 

the solution. Hence 

   dim(ker(A)) = n− w. 

This gives us 

  rank(A) +dim(ker(A)) = w + (n− w)  

                                                          = n. ∎ 

[Pool, p. 203, Th. 3.26]. 

 

Definition 1.1.14:  

The algebraic multiplicity of an eigenvalue 𝛾 for the matrix A is the multiplicity of 𝛾 as 

a root of the characteristic equation p(𝑥) = 0. 

Recall that the geometric multiplicity of an eigenvalue 𝛾 is the number of linearly 

independent eigenvectors associated with 𝛾, that is, the dimension of the eigenspace E𝛾. 
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It is known that, if 𝛾 is an eigenvalue of a matrix A of algebraic multiplicity 𝑧 and 

geometric multiplicity 𝑦, then we must have 

1 ≤ 𝑦 ≤ 𝑧   

[Laub, p. 76]. 

 

I will show in Chapter two that the geometric multiplicity of an eigenvalue 𝛾 gives the 

number of Jordan blocks associated with 𝛾, and for a matrix which has a diagonal form 

then the algebraic multiplicity and geometric multiplicity are the same for each 

eigenvalue.  

 

Definition 1.1.15:  

An n x n matrix A is said to be defective if it has an eigenvalue whose geometric 

multiplicity is less than its algebraic multiplicity. Equivalently, a matrix A is defective if 

it does not have n linearly independent eigenvectors [Laub, p.76]. 
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1.2 The Kronecker Product of Matrices 

This section provides an introduction to the Kronecker product (tensor product) of two 

matrices of arbitrary sizes over a field K. 

 

Definition 1.2.1:  

Let A = [𝑎𝑖𝑗 ] be 𝑛 x 𝑛 matrix and B = [brs] be p x q matrix. The Kronecker product 

matrix AB of the matrices A and B is the np x nq matrix given in block format by 

AB =  
𝑎11𝐵 ⋯ 𝑎1𝑛𝐵

⋮ ⋱ ⋮
𝑎𝑛1𝐵 ⋯ 𝑎𝑛𝑛 𝐵

   

[Laub, p. 140]. 

 

Example 1.2.2: 

Suppose 𝒙K
n
 and 𝒚K

m
 are column vectors. In other words, 

   𝒙 =  

𝑥1

⋮
𝑥𝑛

   and 𝒚 =  

𝑦1

⋮
𝑦𝑚

    

are n x 1 and m x 1 matrices, respectively. Hence their Kronecker product is the mn x 1 

matrix 

   𝒙𝒚 =  

𝑥1𝒚
⋮

𝑥𝑛𝒚
  = 

 
 
 
 
 

𝑥1𝑦1

𝑥1𝑦2

⋮
𝑥𝑛𝑦𝑚−1

𝑥𝑛𝑦𝑚  
 
 
 
 

 ,  

 which we may take to be a vector in K
nm

. 
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Proposition 1.2.3:  

In the following it is assumed that 𝐴, 𝐵, 𝐶 and 𝐷 are matrices over a field K, 

occasionally with dimensions chosen to ensure certain operations are defined. Then: 

1. The Kronecker product is a bilinear operator. Given 𝛿 ∈K 

                   𝐴  𝛿𝐵 = 𝛿(𝐴𝐵) = (𝛿𝐴)𝐵 

               (𝐴 + 𝐵)𝐶 = (𝐴𝐶 + (𝐵𝐶) 

             𝐴   𝐵 + 𝐶  =  𝐴𝐵 + (𝐴𝐶). 

2. The Kronecker product is associative, that is 

                   (𝐴𝐵)𝐶 = 𝐴 (𝐵𝐶 ). 

3. The Kronecker product is not always commutative, that is, usually 

                    𝐴𝐵 ≠ 𝐵𝐴. 

4. Transpose distributes over the Kronecker product: 

                     (𝐴𝐵)T= 𝐴T𝐵T
. 

5. Let A be an 𝑚 x 𝑛 matrix, B an 𝑟 x 𝑠 matrix, C an 𝑛 x 𝑝 matrix and D 

     an 𝑠 x 𝑡 matrix. Then 

                      𝐴𝐵 (𝐶𝐷 = 𝐴𝐶𝐵𝐷. 

    Note that,  𝐴𝐶𝐵𝐷 is an 𝑚𝑟 x 𝑝𝑡 matrix. 

6. Let 𝐼𝑛  and 𝐼𝑚  be identity matrices of order 𝑛 and 𝑚 respectively; 

      then 

              𝐼𝑛  𝐼𝑚  = 𝐼𝑛𝑚  

       where  𝐼𝑛𝑚  is identity matrix of order 𝑛𝑚. 

 7. If 𝐴 and 𝐵 are square invertible matrices, then 
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                       (𝐴𝐵)-1 = 𝐴-1𝐵-1
. 

8. The determinant of the Kronecker product of an n x n matrix 𝐴 and 

     an m x m matrix 𝐵 is given by  

                       det 𝐴𝐵 =det(𝐴)m∙ det(𝐵)n
.  

9. The trace of the Kronecker product is given by 

                       trace(𝐴𝐵) = trace(𝐴) × trace(𝐵). 

10. rank(𝐴𝐵) = (rank 𝐴 )(rank(𝐵)). 

11. Let 𝐴1, 𝐴2, - - - , 𝐴𝑝  and 𝐵1, 𝐵2, - - - , 𝐵𝑞  be given square matrices.  

       Then 

 (𝐴1 𝐴2  . . . 𝐴𝑝) (𝐵1 𝐵2  . . . 𝐵𝑞) = 


q

j

p

i 11

𝐴𝑖 𝐵𝑗 .                       (1)                             

        Note that if (𝐴1 𝐴2  . . . 𝐴𝑝) is an m x m matrix and  

        (𝐵1 𝐵2  . . .𝐵𝑞) is an n x n matrix then the order of the matrix   

         in (1) is mn. 

 

   Proof  

These are mainly routine calculations. For part (5) we note 

  𝐴𝐵 (𝐶𝐷 =  
𝑎11𝐵 ⋯ 𝑎1𝑛𝐵

⋮ ⋱ ⋮
𝑎𝑚1𝐵 ⋯ 𝑎𝑚𝑛 𝐵

  

𝑐11𝐷 ⋯ 𝑐1𝑝𝐷

⋮ ⋱ ⋮
𝑐𝑛1𝐷 ⋯ 𝑐𝑛𝑝 𝐷
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                           = 

 
 
 
 
 
 



n

k 1

𝑎1𝑘𝑐𝑘1𝐵𝐷 ⋯ 


n

k 1

𝑎1𝑘𝑐𝑘𝑝 𝐵𝐷

⋮ ⋱ ⋮




n

k 1

𝑎𝑚𝑘 𝑐𝑘𝑙𝐵𝐷 ⋯ 


n

k 1

𝑎𝑚𝑘 𝑐𝑘𝑝 𝐵𝐷
 
 
 
 
 
 

 

                          =  𝐴𝐶𝐵𝐷   

For part (7), we use part (5) and (6) to get 

  (𝐴𝐵)(𝐴-1𝐵-1) = 𝐼 𝐼 = 𝐼 ∎ 

[Laub, p. 140]. 

 

Theorem 1.2.4: 

Let A be an n x n matrix with an eigenvalue 𝛾 and B an m x m matrix with an 

eigenvalue 𝜇. Then 𝛾𝜇 is an eigenvalue for AB. 

Moreover, if 𝒙1, 𝒙2, - - - , 𝒙𝑝  are linearly independent eigenvectors for A and               

𝒚1, 𝒚2, - - - , 𝒚𝑞  are linearly independent eigenvectors for B, then  

   𝒙𝑖 𝒚𝑗 ,  1 ≤ 𝑖 ≤ 𝑝 and 1≤ 𝑗 ≤ 𝑞, 

are linearly independent eigenvectors for AB. 

If A is diagonalizable with eigenvalues 𝛾1, 𝛾2, - - -, 𝛾𝑛  and B is diagonalizable with 

eigenvalues 𝜇1, 𝜇2, - - -, 𝜇𝑚 , then the products  

   𝛾𝑖𝜇𝑗 ,  1 ≤ 𝑖 ≤ n and 1≤ 𝑗 ≤ m, 

give all eigenvalues for AB. 
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Proof  

Suppose  

   A𝒙 = 𝛾𝒙,  B𝒚 = 𝜇𝒚,   for 𝒙K
n
 and 𝒚K

m
. 

Then by Proposition 1.2.3, part (5), 

(AB)(𝒙𝒚) = A𝒙B𝒚   

                                       = 𝛾𝒙 𝜇𝒚    

                                                             = 𝛾𝜇(𝒙𝒚). 

This proves our first claim. Next suppose 𝑐𝑖𝑗 K with 

   


p

i

q

j 11

𝑐𝑖𝑗 (𝒙𝑖 𝒚𝑗 ) = 0K
nm

. 

Letting  

   𝒘𝑗  =


p

i 1

𝑐𝑖𝑗𝒙𝑖  =  

𝑤1𝑗

⋮
𝑤𝑛𝑗

 ,                                                                  (2) 

say, we obtain  

   


q

j 1

𝒘𝑗 𝒚𝑗 = 0, or   

   

 
 
 
 
 

⋮




q

j 1

wij𝐲j

⋮  
 
 
 
 

 = 

 
 
 
 
 
𝟎
⋮
𝟎
⋮
𝟎 
 
 
 
 

. 

Thus  

   


q

j 1

𝑤𝑖𝑗 𝒚𝑗 = 0. 

Since the 𝒚𝑗  are independent, all  



 

17 

 

   𝑤𝑖𝑗  = 0. 

From (2) the independence of the 𝒙𝑖  gives all 

   𝑐𝑖𝑗  = 0. 

Hence the vectors 𝒙𝑖 𝒚𝑗  are independent. Our final claim now follows, since a matrix 

is diagonalizable if and only if it admits a basis of eigenvectors (see Proposition 1.3.1).∎ 

 

In fact, it is true for any matrices A and B over the complex field C, that all eigenvalues 

for AB have the form 𝛾𝑖𝜇𝑗 , as suggested in the Theorem. However, to prove this we 

must employ the Jordan canonical forms of A and B, as described in the next Chapter. 

 

Example 1.2.5:  

    A = 
5 4
1 2

 ,     B = 
1 −2
1 4

 . 

Then the Kronecker product is given by 

AB =  

5 −10 4 −8
5 20 4 16
1 −2 2 −4
1 4 2 8

 .                

The matrix A has the eigenvalues 𝛾1 = 6 and 𝛾2 = 1, with eigenvectors                                         

𝒗1 = 
4
1
   and 𝒗2 =  

−1
1

 , 

respectively. 

The matrix B has eigenvalues 𝜇1 = 3 and 𝑢2 = 2, with eigenvectors 

𝒘1 = 
−1
1

  and 𝒘1 =  
−2
1

 , 
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respectively. 

Then according to the above Theorem we obtain the eigenvalues and their corresponding 

eigenvectors of the Kronecker product matrix AB as follows: 

The first eigenvalue is given by 

  𝛽1 = 𝛾1𝜇1 = 6 × 3 = 18, 

with eigenvector 

                      𝒙1 = 𝒗1 𝒘𝟏 =  
4
1
   

−1
1

  

                                              =  −4 4 −1 1 T
 

The second eigenvalue is given by 

 𝛽2 = 𝛾1𝜇2 = 6 × 2 = 12 

with eigenvector 

 𝒙2 = 𝒗1  𝒘2 =  −8 4 −2 1 T
. 

The third eigenvalue 

                         𝛽3 = 3 

with eigenvector 

 𝒙3 =  1 −1 −1 1 T
 

The last eigenvalue is given by 

  𝛽4 = 2 

with eigenvector 

  𝒙4 =  2 −1 −2 1 T
. 
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In the next section, we discuss how a non-singular matrix composed of the eigenvectors 

corresponding to the eigenvalues of a diagonalizable matrix A gives the Jordan 

canonical form of a matrix A. 

As shown by the above example, the Kronecker product is very useful in generating 

large and important matrices. In particular, if we know the eigensystems of the matrices 

A and B, we can easily compute the eigenvectors and the eigenvalues of the Kronecker 

products AB, (AB) (AB) and so on. It is this property that makes it simple to 

find the diagonal form of the Kronecker product AB, and we will discuss this in 

details in the next sections. 
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1.3 The Jordan Canonical Form 

In this section we look at the Jordan canonical form of a matrix, introduced by Jordan in 

1870 with the aim of simplifying the discussion of linear substitutions. Most of the 

material covered in this section is paraphrased from Ortega [Orte, p. 117-129]. 

 

Proposition 1.3.1:  

Let A be an n x n matrix. A is similar to the diagonal matrix given by 

JA := diag(𝛾1, 𝛾2, - - -, 𝛾n)                                                            (1)   

if and only if A has n linearly independent eigenvectors 𝒙1, 𝒙2, - - - , 𝒙𝑛 . 

If 𝛾𝑖 , 𝑖 = 1, 2, - - - , n, are the corresponding eigenvalues, then 

S
-1

AS = JA = diag(𝛾1, 𝛾2, - - - , 𝛾n), 

where  

   S = [𝒙1, 𝒙2, - - - , 𝒙𝑛 ] 

is the matrix whose columns are the eigenvectors. 

 

Proof  

First we compute 

AS = A[𝒙1, 𝒙2, - - - , 𝒙𝑛 ] 

                                          = [A𝒙1, A𝒙2, - - - , A𝒙𝑛 ] 

                                           = [𝛾1𝒙1, 𝛾2𝒙2, - - - , 𝛾𝑛𝒙𝑛] 

                                           = [𝒙1, 𝒙2, - - - , 𝒙𝑛 ]JA 
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                                                                  = SJA. 

Then the diagonalization is complete, and we have 

S
-1

AS = JA. 

    

Example 1.3.2: 

Determine the Jordan canonical form of the matrix 

A =  
3 5

−2 −4
 . 

 

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛  

The matrix A has the eigenvalues 𝛾1 = 1 and 𝛾2 = -2. We find eigenvectors 

   𝒙1 =  
−5
2

  for 𝛾1 and 

   𝒙2 =  
−1
1

  for 𝛾2 as before. 

Then 

   S
-1

AS = JA 

                                               =  
1 0
0 −2

 ,  

where S is given by 

S = 
−5 −1
2 1

 . 
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Definition 1.3.3:  

An 𝑛𝑖  x 𝑛𝑖  Jordan block matrix 𝐽𝑛𝑖
(𝛾𝑖) associated with an eigenvalue 𝛾𝑖  over a field K is 

a square matrix whose elements are 0 everywhere except on the main diagonal, where all 

entries equal 𝛾𝑖 , and in the superdiagonal where all equal 1: 

 𝐽𝑛𝑖
(𝛾𝑖) = 

 
 
 
 
𝛾𝑖 1

𝛾𝑖 ⋱

⋱ 1
𝛾𝑖  

 
 
 

  

[Orte, p.120]. 

 

It is easy to check that 𝐽𝑛𝑖
(𝛾𝑖) has just one eigenvalue, namely 𝛾𝑖  with algebraic 

multiplicity 𝑛𝑖 . Up to rescaling, the 𝑛𝑖-dimensional unit vector 𝒆1 is the only 

eigenvector. 

 

Theorem 1.3.4:  

Suppose the underlying field K is algebraically closed. Let the n x n matrix A over K 

have distinct eigenvalues 𝛾1, 𝛾2, - - - , 𝛾𝑟 . Then there exists an invertible n x n matrix S 

such that 

JA = S
-1

AS = block diag(𝐽𝑛1
(𝜑1), 𝐽𝑛2

(𝜑2),  - - - , 𝐽𝑛𝑇
(𝜑𝑇))  

                   = 𝐽𝑛1
(𝜑1)  𝐽𝑛2

(𝜑2)  - - -  𝐽𝑛𝑇
(𝜑𝑇),                                                       (2) 

where the 𝐽𝑛𝑖
(𝜑𝑖) are 𝑛𝑖  x 𝑛𝑖   Jordan block matrices, 

   


T

i 1

𝑛𝑖= n, 
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and {𝛾1, 𝛾2, - - - , 𝛾𝑟} = {𝜑1, 𝜑2, - - - , 𝜑𝑇}.  

The total number 𝑇 of the Jordan blocks in A is equal to the total number of the linearly 

independent eigenvectors of the matrix A [Laub, p. 82, Th. 9.22]. 

 

Of course, 1≤ 𝑇 ≤ n and 1 ≤ 𝑛𝑖  ≤ n in the above theorem. If 𝑇 = n and 𝑛𝑖= 1, for           

𝑖 = 1, 2, - - - , n, then the Jordan canonical form (2) becomes the diagonal matrix of 

Proposition 1.3.1. If 𝑇 = 1 and 𝑛1 = n, then JA itself is a Jordan block of dimension n. All 

possibilities between can occur. 

 

Definition 1.3.5:  

The matrix JA in the above theorem is called the Jordan canonical form of the matrix A. 

 

Definition 1.3.6:  

Let A be an n x n matrix with the Jordan canonical form indicated in (2). The elementary 

divisors of the matrix A are the characteristic polynomials of the Jordan blocks of the 

matrix A. That is, the elementary divisor corresponding to the Jordan block 𝐽𝑛𝑖
 𝜑𝑖  is 

   𝜋(𝑥) = det(𝐽𝑛𝑖
 𝜑𝑖 − 𝑥𝐼𝑛𝑖

)  

                                             = (-1)𝑛𝑖 (𝑥 − 𝜑𝑖)
𝑛𝑖  

 [Laub, p. 84].  

In particular, if all the elementary divisors are linear, then JA is a diagonal matrix. We 

will discuss the elementary divisors in detail in Section 1.5. 
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1.4 Jordan Blocks 

The following algorithm determines the number of Jordan blocks and their dimensions 

for every eigenvalue of A. In section 1.3, we observed that, the Jordan canonical form of 

a matrix A is given by a direct sum of Jordan blocks each corresponding to a particular 

eigenvalue 𝛾𝑖 . We shall show how these Jordan blocks can be determined from the 

nullspaces of the matrices (A - 𝛾𝑖𝐼n)𝑗 . 

 

Jordan Blocks Algorithm 1.4.1:  

Suppose the underlying field K contains all eigenvalues for the n x n matrix A. Let 𝛾 be 

a particular eigenvalue, with algebraic multiplicity k. 

First we solve 

(A – 𝛾𝐼n)𝒗 = 0, 

and we let 𝑚1 be the number of linearly independent solutions, that is, 

   𝑚1 = dim(ker(A - 𝛾𝐼n)). 

Suppose 𝑚1  = k. We recall from Definition 1.1.14 that if the number of linearly 

independent eigenvectors (geometric multiplicity) is equal to its algebraic multiplicity, 

then we get a diagonal form corresponding to the eigenvalue 𝛾, that is 

   𝐽(𝛾) =  
𝛾 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝛾

 . 

However, if 𝑚1 < k, then we continue to solve the following homogeneous system 

   (A – 𝛾𝐼n)
2𝒗 = 0. 

There will be 𝑚2 linearly independent solutions where 𝑚2 > 𝑚1.  
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Again, if we get 𝑚2 = k then we are done. Otherwise, solve 

   (A – 𝛾𝐼n)
3𝒗 = 0. 

We repeat this process until we reach 

   𝑚1 < 𝑚2 < - - - <  𝑚𝑁−1 < 𝑚𝑁 = k. 

The number 𝑁 is the size of the largest Jordan block matrix associated to 𝛾, and 𝑚1 is 

the total number of blocks. 

Let 

 𝑝1 = 𝑚1 ,   𝑝2 = 𝑚2 – 𝑚1, 𝑝3 = 𝑚3  – 𝑚2, - - - , 𝑝𝑁= 𝑚𝑁 –𝑚𝑁−1. 

Then 𝑝𝑖  is the number of Jordan blocks of size at least 𝑖 x 𝑖. 

Finally we put 

𝑞1 = 2𝑚1 – 𝑚2,  𝑞2 = 2𝑚2 – 𝑚1 – 𝑚3, - - - , 𝑞𝑁−1= 2𝑚𝑁−1  – 𝑚𝑁−2 – 𝑚𝑁  

and 𝑞𝑁= .𝑚𝑁 – 𝑚𝑁−1. 

Then 𝑞𝑠 is the number of 𝑠 x 𝑠 Jordan blocks associated to eigenvalue 𝛾.  

After we have done this for all eigenvalues, we easily construct the Jordan canonical 

form JA. Note that as long as we know the eigenvalues for A it is a fast and routine 

matter to compute the Jordan canonical form. 

As we know that the Jordan canonical form is given by S
-1

AS, now we look at how to 

find S. 

For each 𝛾, now order the associated Jordan blocks according to decreasing size, say 

   𝑡1 ≥ 𝑡2 ≥ - - - ≥ 𝑡𝑚1
. 

This list therefore begins with 𝑞𝑁 repeats of 𝑁, followed by 𝑞𝑁−1   repeats of 𝑁 −1, etc. 

Then we find a vector 𝒗11 , such that 

   (A – 𝛾𝐼n)𝑡1𝒗𝟏𝟏= 0 
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but 

   (A – 𝛾𝐼n)𝑡1−1𝒗11 ≠ 0. 

Define 

   𝒗12  = (A- 𝛾𝐼n)𝒗𝟏𝟏,  𝒗13  = (A – 𝛾𝐼n)𝒗𝟏𝟐, 

and so on until we get 𝒗1𝑡1
. 

If we have one block, we are done, otherwise we can find a vector 𝒗21  such that 

   (A – 𝛾𝐼n)𝑡2  𝒗21= 0,  (A – 𝛾𝐼n)𝑡2−1𝒗𝟐𝟏 ≠ 0.  

Define 

   𝒗22  = (A – 𝛾𝐼n)𝒗21  

and so on, until we get to 𝒗2𝑡2
. Then if 𝑚1 = 2, this is the end. If not, then we keep 

going. Eventually we get k linearly independent vectors;                                          

                                     𝒗11 , 𝒗𝟏𝟐, - - - , 𝒗21 , 𝒗22 , - - - , 𝒗𝑚1𝑡𝑚 1
. 

We let 

S𝛾 = (𝒗𝑚1𝑡𝑚 1
, - - - , 𝒗11) 

be the n x k matrix whose columns are these vectors in reverse order. Once we have 

done this for all r distinct eigenvalues, we concatenate the matrices S𝛾 horizontally to 

get an n x n matrix S. Now S will be non-singular and 

   S
-1

AS = JA. 
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Proof  

We refer to [Laub, p. 85-89]. The key idea is that the 𝑛 x 𝑛 Jordan block 𝐽𝑛 (𝛾) has itself 

characteristic equation (𝛾 – 𝑥)𝑛  = 0, with unique eigenvalue 𝛾 having multiplicity k = 𝑛. 

It is easy to see that 

  (𝐽𝑛 (𝛾) − 𝛾𝐼𝑛 )𝑗  
= 

 
 
 
 
 
0 1 0 ⋯ 0
0 0 1 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0
0 ⋯ ⋯ 0 1
0 0 ⋯ ⋯ 0 

 
 
 
 

                                                   (1) 

has kernel spanned by 𝒆𝟏, - - - , 𝒆𝑗 , for 𝑗 ≤ 𝑛, where (𝐽𝑛 (𝛾) − 𝛾𝐼𝑛)𝑗  = 0 for 𝑗 ≥ 𝑛. Now 

suppose A has 𝑏𝑗  blocks of size 𝑗 x 𝑗 for 1 ≤ 𝑗 ≤ k. Then it is easy to check that 

  𝑚𝑗  = dim(ker(A – 𝛾𝐼n)𝑗 ) 

                  = 1𝑏1 + - - - + (𝑗 – 1)𝑏𝑗−1 + 𝑗(𝑏𝑗  + - - - + bk). 

The assertions in the algorithm follow easily from this.∎ 

 

Example 1.4.2:  

Let 

A =  
1 1 −1
1 1 0
2 −2 3

 . 

We will find the Jordan canonical form JA of the above matrix, and find the matrix S 

such that 

S
-1

AS = JA. 
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Solution  

The characteristic equation for A is 

   (𝛾 − 2)
2
(𝛾 − 1) = 0. 

Its eigenvalues are given by 

   𝛾1 = 1,  𝛾2 = 𝛾3 = 2, 

with multiplicity of one and two respectively. 

For 𝛾2 = 2, we first solve (A – 2𝐼)𝒗 = 0, by reducing 

(A – 2𝐼) =  
−1 1 −1
1 −1 0
2 −2 1

  

to     

    
1 −1 0
0 0 1
0 0 0

 . 

Hence, (A – 𝛾2𝐼)𝒗 = 0 has one linearly independent solution, so that 

   𝑚1 = 1,  𝑚1 < k = 2. 

Next we must solve (A – 𝛾2𝐼)
2𝒗 = 0, by reducing 

      
0 0 0

−2 2 −1
−2 2 −1

  

to 

                                 
1 −1

1

2

0 0 0
0 0 0

 . 

Thus (A – 𝛾2𝐼)
2𝒗 = 0

 
has 2 linearly independent solutions and, 

                                     𝑚2 = 2 = k. 

Now we calculate 
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   𝑝1 = 𝑚1  = 1 

   𝑝2  = 𝑚2 – 𝑚1   = 1, 

then 

   𝑞1 = 2𝑚1 – 𝑚2 = 0 

   𝑞2  = 𝑚2 – 𝑚1  = 1. 

Hence, associated with 𝛾2 = 2 there is only one Jordan block of size 2 x 2 in the Jordan 

canonical form of A. 

For 𝛾1, there is one Jordan block of size 1 x 1. 

Hence the Jordan canonical form of the matrix A is given by 

JA =  
1 0 0
0 2 1
0 0 2

 . 

 

Now we compute the matrix S. 

For 𝛾2 = 2, the only Jordan block that we have has size 2. We determine a vector 𝒗11 , 

such that 

   (A – 𝛾2𝐼)
2𝒗𝟏𝟏 = 0 ≠ (A - 𝛾2𝐼)𝒗11 . 

We can take 

   𝒗11  =  
1
0

−2
 , 

then next compute  

   𝒗12  = (A – 𝛾2𝐼)
1𝒗11  =  

1
1
0
 . 

We can now let S2 be the 3 x 2 matrix with columns 𝒗12  and 𝒗𝟏𝟏. That is 
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S2 =  
1 1
1 0
0 −2

 . 

For 

   𝛾1 = 1, 

we find the vector 𝒗21   such that 

   (A – 𝛾1𝐼)
1𝒗21  = 0. 

That vector is given by 

   𝒗21  =  
0
1
1
 , 

so that 

   S1 =  
0
1
1
 . 

Concatenate S1 and S2 to get 

   S =  
0 1 1
1 1 0
1 0 −2

 . 

Hence we obtain 

S
-1

AS =  
1 0 0
0 2 1
0 0 2

 .  

 

It has been stated before in Theorem 1.3.4 that the number of linearly independent 

eigenvectors is equal to the number of Jordan blocks of the matrix A. In the above 

example we have three vectors and two Jordan blocks for the matrix A. This motivates 

another definition. 
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Definition 1.4.3:  

Let A be an n x n matrix. Then 𝒗 is called the principal vector of degree 𝑐 (sometimes 

called the generalized eigenvector) associated with an eigenvalue 𝛾 of a matrix A if and 

only if  

(A – 𝛾𝐼)𝑐𝒗 = 0 ≠ (A –  𝛾𝐼)𝑐−1𝒗. 

 [Laub, p. 85]. 

 

Below we shall describe another way of determining Jordan blocks of matrix A. We start 

by giving the following definitions. 

 

Deefiniton 1.4.4:  

Let 𝛾1, 𝛾2, - - - , 𝛾𝑟  be the distinct eigenvalues of the n x n matrix A. From          

Theorem 1.3.4, we know that there is non-singular matrix S such that 

S
-1

AS = JA  

                                   = block diag(𝐽𝑛1
(𝜑1),  𝐽𝑛2

(𝜑2),  - - - , 𝐽𝑛𝑇
(𝜑𝑇))  

                                   = 𝐽𝑛1
(𝜑1)  𝐽𝑛2

(𝜑2) . . .  𝐽𝑛𝑇
(𝜑𝑇),                   

and if 𝑘𝑖  is the algebraic multiplicity of 𝛾𝑖 , then 

  𝑘1 + 𝑘2 + - - - + 𝑘𝑟  = n. 

 For each 𝑖 let 𝐽(𝛾𝑖) be the block matrix composed of all Jordan blocks for the 

eigenvalue 𝛾𝑖 . 𝐽(𝛾𝑖) is called the Jordan segment corresponding to the eigenvalue 𝛾𝑖 . 

Now from Definition 1.1.8, the geometric multiplicity corresponding to the eigenvalue 
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𝛾𝑖  (which in turn gives the number of the Jordan blocks in Jordan segment 𝐽(𝛾𝑖)) is 

given by                           

                          𝑚𝑖1 = dim(ker(A − 𝛾𝑖𝐼n)). 

Let the order of the largest Jordan block in the Jordan segment 𝐽(𝛾𝑖) be 𝑁𝑖 , where 𝑁𝑖  is 

the index of the eigenvalue 𝛾𝑖 , that is, the smallest positive integer 𝑁𝑖 , such that 

  rank(A − 𝛾𝑖𝐼n)𝑁𝑖  = rank(A − 𝛾𝑖𝐼n)𝑁𝑖+1. 

Then if we let  

           𝑚𝑖𝑗  = dim(ker(A − 𝛾𝑖𝐼n)𝑗 )  

for any positive integer 𝑗 and 1 ≤ 𝑖 ≤ 𝑟, 

we get 

       𝑚𝑖1 ≤ 𝑚𝑖2 ≤ - - - ≤ 𝑚𝑖𝑁𝑖
= 𝑘𝑖 . 

 

From our earlier discussion we can compute from these 𝑚𝑖𝑗  the number and sizes of all 

Jordan blocks for 𝛾𝑖 . This is done in the next section. 

Here we comment on a dual approach. We can use the proof of the Jordan block 

Algorithm 1.4.1, to find, in a slightly different way, the total number of Jordan blocks of 

size 𝑗 x 𝑗 corresponding to the eigenvalue 𝛾𝑖 . First consider the Jordan block 𝐽𝑛𝑖
(𝛾𝑖) with  

eigenvalue 𝛾𝑖  of algebraic multiplicity 𝑘𝑖 , then  

rank(𝐽𝑛𝑖
(𝛾𝑖)

𝑗 ) – rank(𝐽𝑛𝑖
(𝛾𝑖)

𝑗+1) = 0  for any 𝑗 ≥ 1. 

According to (1) in the proof of Jordan Block Algorithm 

rank((𝐽𝑛𝑖
(𝛾𝑖) − 𝛾𝑖𝐼𝑛𝑖

)𝑗 ) − rank((𝐽𝑛𝑖
(𝛾𝑖) − 𝛾𝑖𝐼𝑛𝑖

)𝑗+1)= 0  for j ≥ 𝑘𝑖 . 

But 
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rank((𝐽𝑛𝑖
(𝛾𝑖) − 𝛾𝑖𝐼𝑛𝑖

)𝑗 ) − rank((𝐽𝑛𝑖
(𝛾𝑖) − 𝛾𝑖𝐼𝑛𝑖

)𝑗+1) = 1  for 1 ≤ j< 𝑘𝑖 . 

Let 𝑁𝑖  be the size of the largest Jordan block in the Jordan segment 𝐽(𝛾𝑖), then from the 

preceding above, it is easy to notice that the difference 

                        𝑑𝑖𝑗 (𝛾𝑖) ≡ 𝑟𝑖,𝑗 -1(𝛾𝑖) − 𝑟𝑖𝑗 (𝛾𝑖),   

where   

                        𝑟𝑖𝑗 (𝛾𝑖) = rank(𝐽(𝛾𝑖) − 𝛾𝑖𝐼)𝑗  for 1 ≤ 𝑗 < 𝑁𝑖    

is equal to the total number of Jordan blocks of all sizes 𝑗 ≤ 𝑁𝑖  in 𝐽(𝛾𝑖).   

Thus the total number of Jordan blocks in Jordan segment 𝐽(𝛾𝑖) of size  𝑗 x 𝑗 is equal to: 

  𝑑𝑖𝑗 (𝛾𝑖) − 𝑑𝑖,𝑗 +1(𝛾𝑖) ≡ 𝑟𝑖,𝑗 +1(𝛾𝑖) − 2𝑟𝑖𝑗 (𝛾𝑖) + 𝑟𝑖,𝑗 -1(𝛾𝑖)   

[Meye, p. 587-590]. 
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1.5 Elementary Divisors and Invariant Factors 

This section describes the method used for determining the elementary divisors and 

invariant factors of a matrix A. Elementary divisors were first introduced by Weierstrass 

in 1868. We also relate these ideas to the Jordan canonical form. 

 

Definition 1.5.1:  

An 𝑛 x 𝑛 matrix A is non-derogatory if its minimal polynomial has degree 𝑛, or 

equivalently, if its Jordan canonical form has only one Jordan block associated with each 

distinct eigenvalue [Laub, p. 105]. 

 

Definition 1.5.2:  

Suppose A is a non-derogatory 𝑛 x 𝑛 matrix and suppose its characteristic polynomial is 

given by  

p(𝑥) = 𝑎0 + 𝑎1𝑥 + - - - + 𝑎𝑛−1𝑥𝑛−1 + 𝑥𝑛 .   

Then the matrix 

   AC = 

 
 
 
 
 

0 1 0 ⋯ 0
0 0 1 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0
0 ⋯ ⋯ 0 1

−𝑎0 −𝑎1 ⋯ ⋯ −𝑎𝑛−1 
 
 
 
 

 

is called the companion matrix of A [Orte, p. 39]. 
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Definition 1.5.3: 

Suppose the n x n matrix A has distinct eigenvalues 𝛾1, 𝛾2, - - - , 𝛾𝑟 . For each eigenvalue 

𝛾𝑖 , let  

   𝑚𝑖𝑗 = dim[ker(A − 𝛾𝑖𝐼n)𝑗 ],    𝑗 = 1, 2, - - -. 

From our earlier observations, there is an integer 𝑁𝑖 ≥ 1 such that 

                         𝑚𝑖1 < 𝑚𝑖2 < - - - < 𝑚𝑖𝑁𝑖
 = 𝑘𝑖 , 

where  𝑘𝑖  is the algebraic multiplicity of 𝛾𝑖 . We recall that 𝑁𝑖  is the size of the largest 

Jordan block in the segment 𝐽(𝛾𝑖), and 𝑚𝑖1 is the total number of blocks for 𝛾𝑖 . The 

exact number of blocks of size 𝑗 is 

   𝑞𝑖𝑗  = 2𝑚𝑖𝑗 − 𝑚𝑖,𝑗−1  − 𝑚𝑖,𝑗+1,   1≤ 𝑖 ≤ 𝑟  and 1≤ 𝑗 ≤ 𝑁𝑖 . 

For each 𝑖 we may list the block sizes in non-increasing order as 

[𝑡𝑖𝑗 ] :=[𝑁𝑖 , - - - , 𝑁𝑖 , 𝑁𝑖−1, - - - , 𝑁𝑖 -1, -  - -, 1, - - - 1, 0, - - - , 0]. 

Thus, we have in this list 𝑞𝑖𝑁𝑖
 repeats of 𝑁𝑖 , followed by 𝑞𝑖,𝑁𝑖−1 repeats of𝑁𝑖−1, down to 

𝑞𝑖1 repeats of 1. It is convenient to adjoin                    

   𝑞𝑖0 := n− 𝑚𝑖1, 

 repeats of 0, giving a list of length n. 

 

Definition 1.5.4:  

We may define the invariant factors 𝐸𝑗 (𝑥) for A as follows. 

Let 

                                  𝐸𝑛(𝑥) = (𝑥 – 𝛾1)𝑡11 (𝑥 – 𝛾2)𝑡21 . . .(𝑥 – 𝛾𝑟)𝑡𝑟1 . 
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One can verify that 𝐸𝑛 (𝑥) is the minimal polynomial of the matrix A. (Recall that 𝑡𝑖1 is 

the size of the largest Jordan block corresponding to the eigenvalue 𝛾𝑖  in the Jordan 

canonical form of the matrix A.) Now we delete from the Jordan canonical form of A 

one Jordan block corresponding to each factor (𝑥 – 𝛾𝑖)
𝑡𝑖1  of 𝐸𝑛 (𝑥), and effectively let 

   𝐸𝑛−1(𝑥) = (𝑥 – 𝛾1)𝑡12  . . . (𝑥 – 𝛾𝑟)𝑡𝑟2  

be the minimal polynomial of the remaining Jordan block matrix. Again, if possible, 

delete one block corresponding to each factor (𝑥 – 𝛾𝑖)
𝑡𝑖2  and let 𝐸𝑛−2(𝑥) be the minimal 

polynomial of what remains and so on. In other words, 

   𝐸𝑗 (𝑥) = (𝑥 − 𝛾1)𝑡1,𝑛+1−𝑗 (𝑥 − 𝛾2)𝑡2,𝑛+1−𝑗 . . . (𝑥 − 𝛾𝑟)𝑡𝑟,𝑛 +1−𝑗  

(Recall that several of the exponents could well vanish.) The polynomials 𝐸𝑗 (𝑥),          

𝑗= 1, 2, - - - , n are called the invariant factors of A. (They are just the minimal 

polynomials of the series of successively deflated matrices in which certain Jordan 

blocks are removed at each step.) 

For these invariant factors 𝐸𝑗 (𝑥), we see that 𝐸𝑗 (𝑥) divides 𝐸𝑗 +1(𝑥). It is easy to prove 

that the product of the invariant factors gives the characteristic polynomial of the matrix 

A [HoJo, p. 154]. 

 

Definition 1.5.5:  

Let A be a matrix of order n. Then A is similar to the matrix  

   𝐵𝑅𝑎𝑡  =  

𝐵1 0 ⋯ 0
0 𝐵2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝐵𝑛

 , 
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which is the direct sum of the companion matrices 𝐵𝑗  of the certain uniquely determined 

polynomials 𝐸𝑗 (𝑥), 𝑗 = 1, 2, - - - , n, such that 𝐸𝑗 (𝑥) divides 𝐸𝑗 +1(𝑥) [BhJN, p. 410]. 

 

In fact, these polynomials 𝐸𝑗 (𝑥) are just the invariant factors from before. If 𝐸𝑗 (𝑥) has 

degree 0, as frequently happens, the block 𝐵𝑗  is empty (0 x 0). According to       

Theorem 1.5.8 below, the 𝐸𝑗 (𝑥)’s can be computed in alternative fashion by rational 

operation over the field generated by entries of A. In other words, they can be computed 

without knowledge of the eigenvalues of A. 

 

Definition 1.5.6:  

The matrix 𝐵𝑅𝑎𝑡  is called the Rational canonical form of A [Laub, p. 106]. 

 We can give an alternate explicit description of the invariant factors after a preliminary 

Definition 1.5.7. 

 

Definition 1.5.7: 

Suppose A is an n x n matrix. We define the determinantal divisors 𝑑𝑗 (𝑥) for A as 

follows. For 𝑗 = 0, 𝑑0(𝑥) ≡ 0. For 𝑗 = 1, 2, - - - , n, then 𝑑𝑗 (𝑥) is the greatest common 

divisor of the determinants of the 𝑗 x 𝑗 submatrices of the characteristic matrix (A - 𝑥𝐼n) 

[Boch, p. 269]. 
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Theorem 1.5.8:  

Suppose A is an n x n matrix and 𝑑𝑗 (𝑥) is the greatest common divisor of the 

determinants of the 𝑗 x 𝑗 submatrices of (A − 𝑥𝐼n), for 1≤ 𝑗 ≤ n. Then the invariant 

factors 𝐸1(𝑥), 𝐸2(𝑥), - - - , 𝐸n(𝑥) of the matrix (A - 𝑥𝐼n) are then determined by 

   𝐸𝑗 (𝑥) =  
𝑑𝑗 (𝑥) 

𝑑𝑗−1(𝑥)    
,   𝑗 = 1, 2, - - - , n  

[Brua, p. 33]. 

 

Proposition 1.5.9: 

Let A be a matrix of order n over an algebraically closed field and with invariant 

factors 𝐸1(𝑥), 𝐸2(𝑥), - - - , 𝐸n(𝑥). 

 Recall that characteristic polynomial of the matrix A is given by  

char(A) = det(A − 𝑥𝐼n) = (𝑥 – 𝛾1)𝑘1 (𝑥 – 𝛾2)𝑘2 . . .(𝑥 – 𝛾𝑟)𝑘𝑟  

where 𝛾𝑖  are the distinct eigenvalues of the matrix A and each 𝛾𝑖  has algebraic 

multiplicity 𝑘𝑖 . Then from the definition of the invariant factors we deduce that 

   char(A) = det(A − 𝑥𝐼n) = d𝐸1(𝑥)𝐸2(𝑥) . . . 𝐸n(𝑥),      

where d is a scalar not equal to zero and 𝐸𝑗 (𝑥) are the invariant factors of the matrix A 

for 𝑗 = 1, 2, - - - , n. Since the invariant factors are monic, it follows that d = (-1)
n
 and 

 (𝑥 – 𝛾1)𝑘1 (𝑥 – 𝛾2)𝑘2 . . .(𝑥 – 𝛾𝑟)𝑘𝑟  = (-1)
n𝐸1(𝑥)𝐸2(𝑥) . . . 𝐸n(𝑥).     

Moreover, since 𝐸𝑗 (𝑥) is the divisor of 𝐸𝑗 +1(𝑥), it follows from Definition 1.5.4 that; 

            𝐸1(𝑥) = (𝑥 – 𝛾1)𝑡1𝑛 (𝑥 – 𝛾2)𝑡2𝑛 . . .(𝑥 – 𝛾𝑟)𝑡𝑟𝑛  

            𝐸2(𝑥) = (𝑥 – 𝛾1)𝑡1,𝑛−1 (𝑥 – 𝛾2)𝑡2,𝑛−1 . . .(𝑥 – 𝛾𝑟)𝑡𝑟,𝑛−1  
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                              ⋮ 

            𝐸n(𝑥) = (𝑥 – 𝛾1)𝑡11 (𝑥 – 𝛾2)𝑡21 . . .(𝑥 – 𝛾𝑟)𝑡𝑟1  

  0 ≤ 𝑡𝑖𝑛 ≤ 𝑡𝑖,𝑛−1  ≤ - - - ≤ 𝑡11  . 

[LaTi, p. 266]. 

 

From Definition 1.3.6 we can notice that, each factor (𝑥 – 𝛾𝑖)
𝑡𝑖𝑗  for 1 ≤ 𝑖 ≤ 𝑟 and 

1 ≤ 𝑗 ≤ n appearing in the factorization of the invariant factors in Definition 1.5.9 with 

𝑡𝑖𝑗   ≥ 1 is the elementary divisor of the matrix A. 

 

Example 1.5.10: 

Let A be a matrix of order six and S be a non-singular matrix such that 

 

S
-1

AS = JA = 

 
 
 
 
𝐽2 (𝛾1)

𝐽2(𝛾1)

𝐽1(𝛾3)

𝐽1(𝛾2) 
 
 
 

                                                (1) 

𝐽𝑛𝑖
(𝛾𝑖 ) is the Jordan block of the order 𝑛𝑖  corresponding to the eigenvalue 𝛾𝑖  of the 

matrix A. 

Now consider the matrix JA – 𝑥𝐼6, that is 

(JA –𝑥𝐼6) = 

 
 
 
 
𝐽2(𝛾1 − 𝑥)

𝐽2(𝛾1 − 𝑥)

𝐽1(𝛾3 − 𝑥)

𝐽1(𝛾2 − 𝑥) 
 
 
 

. 



 

40 

 

The determinants of the Jordan blocks of the canonical form JA –𝑥𝐼6 are the elementary 

divisors of the matrix A. Then we can group together the Jordan blocks of the highest 

order in each eigenvalue to give the matrix 𝐺1, then those of the next highest order to 

give the matrix 𝐺2, and so on: 

 JA = 

 
 
 
 
 
𝐽2(𝛾1) ⋮

𝐽1(𝛾2) ⋮

𝐽1(𝛾3) ⋮
⋯ ⋯ ⋯ ⋮ ⋯

⋮ 𝐽2(𝛾1) 
 
 
 
 

 = 
𝐺1 ⋮
⋯ ⋮ ⋯

⋮ 𝐺2

 . 

Then the direct sum of the companion matrices for 𝐺1  and 𝐺2 gives the rational 

canonical form of the matrix A. 

The invariant factors of A are given by 

𝐸1(𝑥) = 1 

𝐸2(𝑥) = 1 

𝐸3(𝑥) = 1 

𝐸4(𝑥) = 1 

𝐸5(𝑥) = (𝛾1 − 𝑥)2
 

𝐸6(𝑥) = (𝛾1 − 𝑥)2(𝛾2 − 𝑥)(𝛾3 − 𝑥). 

Hence, the elementary divisors of the Jordan canonical form JA above are  

 (𝛾1 − 𝑥)2
, (𝛾1 − 𝑥)2

, (𝛾3 − 𝑥), (𝛾2 − 𝑥).  

We observe that the product of the elementary divisors or invariant factors of the matrix 

gives the characteristic polynomial of that matrix. 
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If a matrix has linear elementary divisors, then that matrix has diagonal form, and if a 

matrix has non-linear elementary divisors, then this means that, its Jordan canonical 

form contains non-trivial Jordan blocks [Wilk, p. 12]. 

 

Example 1.5.11: 

The square matrix A of order six with invariant factors (𝑥 + 3)
2
 and (𝑥 + 9)

2
(𝑥 + 3)

2
 has 

the elementary divisors (𝑥 + 3)
2
, (𝑥 + 9)

2
 and (𝑥 + 3)

2
, so that its Jordan canonical form 

has three Jordan blocks of order two, two of them corresponding to the eigenvalue -3 

and the other one corresponding to the eigenvalue –9. 
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1.6 Matrices and Digraphs 

In this section, we introduce directed graphs of Jordan blocks and then we use them in 

Chapter 2 to find the elementary divisors of a Kronecker product of Jordan blocks. Most 

of the material in this section can be found in [BrRy, p. 336-340] and [Brua, p. 33-44]. 

 

Definition 1.6.1: 

Let A = [𝑎𝑖𝑗 ] be an n x n matrix. The directed graph or digraph D(A) = (B, C) of the 

matrix A is an ordered pair of two finite sets B and C, where the set C consists of some 

ordered pairs (𝑖, 𝑗), or briefly 𝑖𝑗 of the elements of the set B. The elements of the set B 

are the vertices {1, 2, - - - , n} of the digraph, and the elements of the set C are the arcs 

𝑖𝑗 from 𝑖 to 𝑗 whenever 𝑖 ≠ 𝑗 and 𝑎𝑖𝑗 ≠ 0 [Brua, p. 33]. 

 

Definition 1.6.2:  

 A path 𝛿 of length 𝑕 ≥ 0 in D(A) is a sequence 𝑖1, 𝑖2, - - - , 𝑖𝑕+1 of (𝑕+1) vertices such 

that 𝑖1𝑖2, - - - , 𝑖𝑕 𝑖𝑕+1  are all arcs. The idea is that the paths should be unidirectional.  

An 𝛼-path in D(A) is a set 𝛿 of vertices which can be partitioned into sets                    

𝑉1, 𝑉2, - - - , 𝑉𝛼 , such that each 𝑉𝑖  is the set of the vertices of a path of D(A). The size of 

the 𝛼-path 𝛿 is the number |𝛿| of vertices in 𝛿. We define 𝑝𝛼 (D) to be the largest number 

of the vertices in any 𝛼-path in D(A).  

Thus 𝑝1(D) is the number of vertices in its largest path in D(A), and we set 𝑝0(D) = 0. 

One can show that there is a smallest positive integer 𝑓 ≤ n such that  
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0 = 𝑝0(D) < 𝑝1(D) < - - - < 𝑝𝑓(D) = - - - = 𝑝𝑛 (D) = n. 

The sequence  

  𝑝(D) = (𝑝0(D), 𝑝1(D), - - -, 𝑝𝑛 (D)) 

is called the path-number sequence of D(A). We call the integer 𝑓 the width of the 

digraph D(A) and denote it by width(D(A)). That is, the width of D(A) is the smallest 

positive integer 𝑓 such that all vertices in D(A) can be partitioned into 𝑓 paths       

[BrRy, p. 336-337]. 

 

Example 1.6.3: 

Consider the matrix 

A =  

0 0 8 0
0 0 0 2
0 0 0 1
0 0 0 0

 . 

Then D(A) = (B, C), where B = { 1, 2, 3, 4, } and C= {(1, 3), (2, 4), (3, 4)}. We can 

draw the digraph as 

  1→3→4←2. 

We can easily see that 𝑝1(D) = 3 (given by a path with vertices 1, 3 and 4). 𝑝2(D) = 4 

(given by a path with vertices 1, 3 and 4 and another path with vertex 2). Furthermore, 

𝑓 = 2. 

 

We shall show how the digraph D(A) of the matrix A determines the Jordan canonical 

form of A, in particular the width of D(A) is equal to the number of Jordan blocks in the 

matrix A. 
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Definition 1.6.4: 

Let 𝜏𝑛1
 be the digraph of the Jordan block  𝐽𝑛1

(𝜑1). Its vertices are 1, 2, - - -, 𝑛1 and its 

arcs are 12, - - -, (𝑛1 −1)𝑛1. (Note that this structure is independent of the value of 𝜑1; in 

particular, it does not matter if 𝜑1= 0.) Then for two digraphs 𝜏𝑛1
 of  𝐽𝑛1

(𝜑1) and 𝜏𝑛2  of 

the block 𝐽𝑛2
(𝜑2) with the vertex sets 𝑉𝑛1

={1, - - -, 𝑛1} and 𝑉𝑛2
={1, - - -, 𝑛2}, 

respectively, the Cartesian product 𝜏𝑛1
× 𝜏𝑛2

 of the digraphs 𝜏𝑛1
and 𝜏𝑛2

 is the digraph 

whose vertex set is the Cartesian product 𝑉𝑛1
 × 𝑉𝑛2

 of the sets 𝑉𝑛1
 and 𝑉𝑛2

, with an arc 

from (𝑖1, 𝑗1) to (𝑖2, 𝑗2) if and only if 𝑖1 = 𝑖2 and there is an arc 𝑗1𝑗2 in 𝜏𝑛2
 or 𝑗1 = 𝑗2 and 

there is an arc 𝑖1𝑖2 in 𝜏𝑛1
 [Brua, p. 34]. 

 

Definition 1.6.5:  

The Cartesian conjuction (𝜏𝑛1   𝜏𝑛2
) has the vertex set 𝑉𝑛1

× 𝑉𝑛2
 where there is an arc 

from (𝑖1, 𝑗1) to (𝑖2, 𝑗2) if and only if there is an arc 𝑖1𝑖2 in 𝜏𝑛1
and an arc 𝑗1𝑗2 in 𝜏𝑛2

 

[Brua, p. 34]. 

 

Definittion 1.6.6:  

The Kronecker product  𝜏𝑛1  𝜏𝑛2
 of digraphs  𝜏𝑛1

and 𝜏𝑛2
 has the vertex set 𝑉𝑛1

× 𝑉𝑛2
. 

Its arc set is the union of the arc set 𝜏𝑛1
× 𝜏𝑛2

 and the arc set 𝜏𝑛1   𝜏𝑛2
, that is, the arc set 

(𝜏𝑛1
× 𝜏𝑛2

) ∪(𝜏𝑛1   𝜏𝑛2
) [Brua, p. 34]. 
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Lemma 1.6.7: 

 If 𝜑1, 𝜑2 ≠ 0, then 

D( 𝐽𝑛1
 𝜑1  𝐽𝑛2

 𝜑2 ) = D(𝐽𝑛1
(𝜑1))𝐷(𝐽𝑛2

 𝜑2 ) 

 [Brua, p. 42]. 

 

Lemma 1.6.8:  

Let 𝑛1 and 𝑛2 be positive integers. Then for 𝛼 = 1, 2, - - -, min(𝑛1, 𝑛2) = 𝛽,                

                      𝑝𝛼 (𝜏𝑛1  𝜏𝑛2
) = 𝑝𝛼 (𝜏𝑛1

× 𝜏𝑛2
) =





1j

[𝑛1 + 𝑛2 −  2𝑗 − 1 ].                         (1) 

 

Proof  

If  

  𝑝𝛼 (𝜏𝑛1  𝜏𝑛2
) = 𝑝𝛼 (𝜏𝑛1

× 𝜏𝑛2
), 

then an 𝛼-path 𝛿 of size 𝑝𝛼 (𝜏𝑛1
× 𝜏𝑛2

) can be partitioned into 𝛼 paths such that the 

longest path 𝛿1 joins the vertex (1, 1) in the lower left corner to the vertex (𝑛1, 𝑛2) in the 

upper right corner of digraph 𝜏𝑛1
× 𝜏𝑛2

. Then the remaining paths 𝛿2, 𝛿3, - - - , 𝛿𝛼  can be 

drawn entirely above or entirely below 𝛿1 such that they do not share vertices. This gives 

us the canonical 𝛼-path of 𝜏𝑛1
× 𝜏𝑛2  which shows that 

                      𝑝𝛼 (𝜏𝑛1   𝜏𝑛2
) = 𝑝𝛼 (𝜏𝑛1

× 𝜏𝑛2
) = 





1j

[𝑛1 + 𝑛2 −  2𝑗 − 1 ].                        

 The entire proof of this Lemma can be found in [Brua, p. 34-38].∎                    
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Definition 1.6.9:  

Let A be a matrix of order 𝑛 and let C be (𝑛 − 𝛼) x (𝑛 − 𝛼) submatrix of A obtained by 

deleting 𝛼 rows and 𝛼 columns from A. Recall Definition 1.5.7. The greatest common 

divisor of the determinants of the submatrices of order 𝑛 − 𝛼 of the matrix (A - 𝑥𝐼𝑛 ) is 

called the (𝑛 − 𝛼)th
 determinantal divisor and is denoted by 𝑑𝑛−𝛼 (𝑥), for                        

𝛼 = 0, 1, 2, - - -, 𝑛. We define 𝑑0(𝑥) = 1 and there exists a positive integer y ≤ 𝑛 and 

integers     

0 = 𝑠0 < 𝑠1 < - - - < 𝑠y = 𝑠y+1 = - - - = 𝑠𝑛  = 𝑛 

such that the degree of 𝑑𝑛−𝛼 (𝑥) is 𝑛 − 𝑠𝛼  for 𝛼 = 0, 1, - - - , 𝑛. We call the sequence 

                       𝑑(A) = (𝑠0, 𝑠1, - - - , 𝑠𝑛 )  

the divisor sequence of the matrix A [BrRy, p. 337]. 

In chapter 2 we prove that 𝑠𝛼  = 𝑝𝛼 (D(A)). 

 

Definition 1.6.10: 

The term rank of the matrix A is the total number of nonzero entries of A having the 

property that no two come from the same row or column [Brua, p. 41]. 

 

Lemma 1.6.11: 

Let A = [𝑎𝑖𝑡𝑗𝑡
] be a matrix of order n with zero entries in the main diagonal. Let 𝛼 be a 

positive integer with 𝛼 ≤ width(D(A)) and let X be an 𝛼-path of the digraph D(A) of 
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size 𝑢. Then there is a submatrix of the matrix A of order (𝑢 - 𝛼) with term rank equal to 

(𝑢 - 𝛼).  

 

Proof  

Since 𝛼 ≤ width(D(A)) the set X can be partitioned into exactly 𝛼 paths 𝜗t joining a 

vertex 𝑖𝑡  to a vertex 𝑗𝑡 , for 𝑡 = 1, 2, - - - , 𝛼. Let B be the principal submatrix of order 𝑢 

of the matrix A determined by the rows and the columns whose indices lie in the set X. 

Let C be the submatrix of B obtained by deleting columns 𝑗1, 𝑗2, - - - , 𝑗𝛼  and rows                      

𝑖𝑖 , 𝑖2, - - - , 𝑖𝛼 . Then C is submatrix of order (𝑢 - 𝛼) of A and C has term rank equal to  

(𝑢 - 𝛼) [BrRy, p. 338]∎ 

 

Lemma 1.6.12:  

Let T be a strictly upper triangular matrix of order n. Let 𝜍 and 𝜀 be the subsets of       

{1, 2, - - - , n} of size 𝑢, and suppose that the submatrix T[𝜍, 𝜀] determined by the rows 

with indices in 𝜍 and the columns with indices in 𝜀 has term rank 𝑢. Then the 

complementary submatrix T[𝜍*
, 𝜀*

] of order (n - 𝑢) is a strictly upper triangular matrix. 

 

Proof  

Let T[𝜍, 𝜀] = [𝑖1, 𝑖2  - - -, 𝑖𝑢 |𝑗1, 𝑗2, - - - , 𝑗𝑢 ] be 𝑢 x 𝑢 submatrix of T formed by rows        

𝑖𝑖 , 𝑖2, - - , 𝑖𝑢  and columns 𝑗1, 𝑗2, - - - , 𝑗𝑢 . Suppose that for some 𝑤 with 1 ≤ 𝑤 ≤ 𝑢, we 

have 𝑗𝑤  ≤ 𝑖𝑤 . Let  
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T[𝜍, 𝜀] = [𝑎𝑖𝑡𝑗𝑡
] for 𝑡 = 1, - - -, 𝑢.  

Then 𝑎𝑖𝑡 𝑗𝑡
 = 0 for 𝑖𝑤 , - - -, 𝑖𝑢  and 𝑗1, - - -, 𝑗𝑤 . Hence T[𝜍, 𝜀] has an (𝑢 – 𝑤 + 1) x 𝑤 zero 

submatrix and the term rank of T[𝜍, 𝜀] cannot be 𝑢. Thus 𝑗𝑤  > 𝑖𝑤  for each                     

𝑤 = 1, 2, - - - ,𝑢. But now it follows that the complementary submatrix T[𝜍*
, 𝜀*

] of order 

(n - 𝑢) is a strictly upper triangular matrix [Brua, p. 41].∎ 

 

Lemma 1.6.13: 

Let T, 𝜍 and 𝜀 satisfy the assumptions of the above Lemma. Let X be a set of 𝑢 non-zero 

elements of T[𝜍, 𝜀] with no two from the same row or column. Then the arcs of the 

digraph D(T) corresponding to the elements of the set X can be partitioned into           

z ≤ (n - 𝑢) pairwise vertex disjoint paths each of which joins a vertex  in 𝜀*
 to a vertex in 

𝜍*
 where T[𝜍*

, 𝜀*
] is a complementary submatrix of T[𝜍, 𝜀]. The vertices on these paths 

form an (n - 𝑢)-path of the digraph D(T) of size (z + 𝑢).  

The proof of this Lemma can be found in [BrRy, p. 339]. 

 

We use these combinatorial ideas in the next chapter to derive the Jordan canonical form 

of Kronecker product of two Jordan blocks.  
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Chapter 2: Jordan Canonical Form of a Kronecker Product 

This chapter discusses the Jordan canonical form of a Kronecker product matrix of the 

two matrices A and B. The Jordan canonical form of a Kronecker product was described 

and the first proof of its existence ad uniqueness was given by Roth in 1934 [Roth]. The 

discussion on the first section represents results from Ortega [Orte] and the last section 

contains some results presented by Horn and Johnson [HoJo]. We also use the work of 

Brualdi [Brua] to derive the elementary divisors of Kronecker product of two Jordan 

blocks using a combinatorial derivation. We first look at the matrices with the distinct 

eigenvalues (that is, geometric multiplicity of each eigenvalue is one), then we discuss 

the more complicated Jordan canonical form of matrices with repeated eigenvalues. A 

large portion of this chapter deals with various aspects of eigenvalues and eigenvectors 

of a matrix that give rise to different Jordan structures. To determine the Jordan 

canonical form of a Kronecker product matrix AB we need to determine the Jordan 

block structure of the Kronecker product matrix given by two Jordan blocks, one from 

matrix A and one from matrix B. After stating the results, I will illustrate the discussion 

by giving some examples. As an application of these ideas, at the end of this chapter we 

use the matrix exponential function to solve a linear system of differential equations. 
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2.1 Direct Sum of Jordan Blocks 

In this section, we look at the contribution to the Jordan canonical form of a Kronecker 

product AB from each pair of the Jordan blocks, one from a matrix A and one from a 

matrix B. 

 

Proposition 2.1.1: 

If the Jordan blocks in the Jordan canonical form of a matrix A are                       

𝐽𝑛1
(𝜑1), 𝐽𝑛2

(𝜑2), - - -, 𝐽𝑛𝑇
(𝜑𝑇) and those of a matrix B are                                    

𝐽𝑚1
(𝜇1), 𝐽𝑚2

(𝜇2), - - -, 𝐽𝑚𝑌
(𝜇𝑌), then a Jordan canonical form of a Kronecker product 

matrix AB is the direct sum of the Jordan canonical forms of the matrices          

𝐽𝑛𝑖
(𝜑𝑖)  𝐽𝑚 𝑗

(𝜇𝑗 ) for 𝑖 = 1, 2, - - - , 𝑇 and 𝑗 = 1, 2, - - - , 𝑌. 

The proof of this follows from Proposition 1.2.3 part (11) [HoJo, p. 261-262]. 

 

𝑬𝒙𝒂𝒎𝒑𝒍𝒆 𝟐. 𝟏. 𝟐:  

Show that the Jordan canonical form of the Kronecker product matrix AB is given by 

the direct sum of the Jordan canonical forms of the Kronecker product of the Jordan 

blocks of the matrices A and B, if 

A =  
1 1 −1
1 1 0
2 −2 3

            B = 
2 3
0 2

 . 
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Solution  

The Jordan canonical form of the matrix A is given by 

JA =  
1 0 0
0 2 1
0 0 2

  

this Jordan canonical form has two blocks which are 

J1(1) =  1   and J2(2) = 
2 1
0 2

 . 

The Jordan canonical form of the matrix B is given by 

   JB = J2(2) =  
2 1
0 2

 , 

so this Jordan canonical form has one Jordan block which is itself. 

Then the first Kronecker product of our Jordan blocks is given by 

   J1(1) J2(2) =  1   
2 1
0 2

  

                                                        =  
2 1
0 2

 . 

The Jordan canonical form of the matrix J1(1) JB is; 

     
2 1
0 2

 . 

The second Kronecker product of our Jordan blocks is given by 

J2(2)  J2(2) =  
2 1
0 2

   
2 1
0 2

  

                                                         =  

4 2 2 1
0 4 0 2
0 0 4 2
0 0 0 4

 . 

The Jordan canonical form of the matrix J2(2) J2(2) is given below; 
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4 1 0 0
0 4 1 0
0 0 4 0
0 0 0 4

 . 

Then the Jordan canonical form of the Kronecker product matrix AB is given; 

J(A    B) = 

 
 
 
 
 
 
4 1 0 0 0 0
0 4 1 0 0 0
0 0 4 0 0 0
0 0 0 4 0 0
0 0 0 0 2 1
0 0 0 0 0 2 

 
 
 
 
 

. 

 

If both matrices A and B are similar to diagonal forms JA and JB, respectively, then the 

direct sum of Jordan canonical forms of Kronecker product of their Jordan blocks is 

equivalent to JA JB. Then we have the following proposition. 

 

Proposition 2.1.3: 

If the number of linearly independent eigenvectors of the matrices A and B are equal to 

the number of eigenvalues (that is each eigenvalue has its own linearly independent 

eigenvector) then the matrix A and B are diagonalizable and thus we can construct the 

complete Jordan structure of the Kronecker product matrix AB as JA JB.  

 

Proof  

In particular if there exists non-singular matrices S and Q such that 

S
-1

AS = JA,   Q
-1

BQ = JB, 
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where JA and JB  are diagonal forms of the matrices A and B, respectively, then we can 

get the diagonal form of the Kronecker product matrix AB by 

  (SQ)
-1

(AB)(SQ) = (S
-1Q

-1
)(AB)(SQ)   

                                                                = (S
-1

AQ
-1

B)(SQ) 

                                                                = (S
-1

AS) (Q
-1

BQ) 

                                                                = JA  JB. 

 

Hence if the matrices A and B are diagonalizable, so is the Kronecker product matrix    

AB, and its diagonal form matrix is given by JA  JB. 

 

Example 2.1.4:  

Find the diagonal form of the Kronecker product matrix AB, if the matrices A and B 

are given by 

A =  
−1 3
2 0

 ,      B =  
2 1
1 2

 . 

 

Solution  

For the matrix A, there is a non-singular matrix S, given by 

S = 
1 −3
1 2

 . 

The matrix S is an eigenvector matrix composed of linearly independent eigenvectors of 

the matrix A such that 
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   S
-1

AS = JA = 
2 0
0 −3

 . 

Also for the matrix B, there is non-singular matrix Q, obtained by putting the linearly 

independent eigenvectors of the matrix B in the columns, and that matrix Q is given by 

Q = 
1 −1
1 1

 . 

Then Q
-1

BQ is the diagonal form matrix of the matrix B, given by 

   Q
-1

BQ = JB = 
3 0
0 1

 . 

The Kronecker product matrix of the matrices A and B is given by 

   AB =  
−1 3
2 0

   
2 1
1 2

   

                                                =  

−2 −1 6 3
−1 −2 3 6
4 2 0 0
2 4 0 0

 . 

The non-singular matrix of our Kronecker product matrix according to the          

Theorem 1.2.4 is given by 

   SQ =  
1 −3
1 2

   
1 −1
1 1

   

                                               =  

1 −1 −3 3
1 1 −3 −3
1 −1 2 −2
1 1 2 2

  

and 

                 (SQ)
-1

 =  

2

5

3

5
−1

5

1

5

   

1

2

1

2
−1

2

1

2
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                                   = 

 
 
 
 
 
 

1

5

1

5

3

10

3

10
−1

5

1

5

−3

10

3

10
−1

10

−1

10

1

10

1

10
1

10

−1

10

−1

10

1

10 
 
 
 
 
 

. 

 Hence the diagonal form matrix for the Kronecker product matrix is                                  

 (SQ)
-1

(AB)(SQ) = JA JB  

                   =  
2 0
0 −3

   
3 0
0 1

   

                                          = 

6 0 0 0
0 2 0 0
0 0 −9 0
0 0 0 −3

 . 

 

From our solution, we should note that, entries on the main diagonal are eigenvalues of 

the Kronecker product matrix AB. 
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2.2 Kronecker Product of Jordan Blocks 

In Chapter one, we discovered that there is a relationship between the eigensystems of 

matrices A and B and the eigensystems of their Kronecker product AB. It is this 

relationship that helps one to compute Jordan canonical forms of large matrices. This 

section discusses results presented by Horn and Johnson [HoJo] and Brualdi [Brua]. 

 

Theorem 2.2.1:  

Let 𝐽𝑛1
(𝜑1) be an 𝑛1 x 𝑛1 Jordan block and let  𝐽𝑛2

(𝜑2) be an 𝑛2 x 𝑛2 Jordan block. 

Then the Jordan canonical form of the Kronecker product 𝐽𝑛1
(𝜑1)  𝐽𝑛2

(𝜑2) is given as 

follows:  

1. If both 𝜑1 and 𝜑2 are nonzero eigenvalues, then associated with the 

eigenvalue 𝜑1𝜑2 of Kronecker product, we have one Jordan block of size 

𝑛1 + 𝑛2 −  2𝛼 − 1  for each 𝛼 = 1, 2, - - - , min(𝑛1, 𝑛2) = 𝛽. 

                      That is, 

   𝐽𝑛1
(𝜑1) 𝐽𝑛2

(𝜑2) ~




 1

𝐽𝑛1+𝑛2−2𝛼+1 𝜑1𝜑2 . 

 

2. If 𝜑1 ≠ 0 and 𝜑2 = 0, then associated with the eigenvalue 𝜑1𝜑2= 0 of      

𝐽𝑛1
(𝜑1) 𝐽𝑛2

(0), there are 𝑛1 Jordan blocks of size 𝑛2.  

                      That is, 

   𝐽𝑛1
(𝜑1) 𝐽𝑛2

(0) ~


n

i

1

1

𝐽𝑛2
(0). 
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3. If φ1 = 0 and  φ2 ≠ 0, then associated with the eigenvalue 𝜑1𝜑2 = 0 there 

are 𝑛2 Jordan blocks of size 𝑛1. 

                      That is, 

   𝐽𝑛1
(0) 𝐽𝑛2

(𝜑2) ~


n

i

2

1

𝐽𝑛1
 0 . 

4. If  𝜑1= 𝜑2= 0, then associated with the eigenvalue zero of the Kronecker 

product there are two Jordan blocks of each size                                         

𝛼 = 1, 2, - - -, min(𝑛1, 𝑛2) – 1 and also there are 𝜌 = (𝑛1 + 𝑛2 - 2𝛽 + 1) 

Jordan blocks of size min(𝑛1, 𝑛2) = 𝛽. 

                      That is, 

                         𝐽𝑛1
(0) 𝐽𝑛2

(0) ~




1

1





  𝐽𝛼(0  𝐽𝛼(0))  {




1i

𝐽𝛽 (0)}                   

                      [HoJo, p. 262-263, Th. 4.3.17]. 

 

Example 2.2.2:  

Evaluate the Jordan canonical form of the Kronecker product of the following matrices 

 

A =  
2 0 −1
0 2 1

−1 −1 2
          B = 

1 2
2 4

 . 
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Solution  

The matrix A has the eigenvalues 𝜑𝑖  = 2, for 𝑖 = 1, 2, 3. This repeated  

eigenvalue is associated with the Jordan block of size three, that is 

JA = 
2 1 0
0 2 1
0 0 2

 . 

The matrix B has two eigenvalues, 𝜇1 = 0 and 𝜇2 = 5. Hence this matrix has the 

following diagonal form 

   JB = 
0 0
0 5

 . 

According to Theorem 1.2.4,  some of the eigenvalues of the Kronecker product matrix 

AB are given by 

  𝜑𝑖𝜇1 = 0, for 𝑖 = 1, 2, 3. 

Here we have 𝑛1 = 3 and 𝑚1 = 1, then according to assertion 2 of the Theorem 2.2.1, 

associated with an eigenvalue zero of the Kronecker product, there are three Jordan 

blocks of size one. 

For 𝜑𝑖𝜇2 = 10, with 𝑖 = 1, 2, 3, 

we use the first assertion, that is, associated with the above eigenvalue of the Kronecker 

product matrix AB, there is one Jordan block of size (𝑛1 + 𝑚2 – (2𝛼 − 1)), for 𝑛1 = 3, 

𝑚2 = 1 and 𝛼 = 1, 2, - - -, min(𝑛1, 𝑚2). 

Therefore, we have one possibility, that is for 𝛼 = 1, which gives the Jordan block of 

size 

(𝑛1 + 𝑚2) – (2𝛼 − 1) = 3. 
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Hence, an eigenvalue 10 is associated with the Jordan block of size three. Now we can 

construct the Jordan canonical form of the Kronecker product AB as follows: 

   

J(A     B) = 

 
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 10 1 0
0 0 0 0 10 1
0 0 0 0 0 10 

 
 
 
 
 

. 

 

Example 2.2.3:  

Find the Jordan canonical form of the Kronecker product matrix AB if the matrices A 

and B are given by 

A =  
1 −1

−1 1
          B =  

1 0
1 1

 . 

 

Solution  

The Jordan canonical forms of the matrices A and B are JA and JB, respectively, and they 

are given below: 

JA =  
0 0
0 2

            JB =  
1 1
0 1

 . 

The matrix A has the eigenvalues 𝜑1 = 0 and 𝜑2 = 2, and the matrix B has the 

eigenvalues 𝜇𝑖  = 1, for 𝑖 = 1, 2.  

We obtain the first two eigenvalues of the Kronecker product as  

   𝜑1𝜇𝑖  = 0, for 𝑖 = 1, 2. 
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Then according to the third assertion of Theorem 2.2.1, associated with the eigenvalue 

zero of the Kronecker product there are two Jordan blocks of size one, since 𝑚1 = 2 and 

𝑛1 = 1. 

The other two eigenvalues of the matrix AB are given by 

   𝜑2𝜇𝑖  = 2, for 𝑖 = 1, 2. 

Then we use the first assertion to obtain the Jordan block associated with an eigenvalue 

2. As we know we should have one Jordan block of size (𝑛2 + 𝑚1 – (2𝛼 – 1)), for         

𝑛2 = 1, 𝑚1 = 2 and 𝛼 = 1. 

Hence, an eigenvalue 2 is associated with the Jordan block of size 2. Now we obtain the 

Jordan canonical form of the Kronecker product matrix AB as follows: 

   J(A    B) =  

0 0 0 0
0 0 0 0
0 0 2 1
0 0 0 2

 . 

 

The following Theorem asserts that, the divisor sequence 𝑑(A) of the matrix A is equal 

to the path-number sequence 𝑝(D) of the digraph D(A). 

 

Theorem 2.2.4:  

Let A be a strictly upper triangular matrix of order n, and let 𝛼 be an integer with                 

𝛼 ≤ width(D(A)). Then the degree (n−𝑠𝛼 ) of the determinantal divisor 𝑑𝑛−𝛼 (𝑥) of the 

matrix A satisfies 

   n−𝑠𝛼  = n −𝑝𝛼 (D(A)). 

 



 

61 

 

Proof  

It follows from Lemma 1.6.11, that there is a submatrix of A of order 𝑝𝛼 (D(A)) − 𝛼 with 

a non-zero term in its determinant expansion. Let C be a submatrix of order n − 𝛼 of 

𝑥𝐼n − A. Then by Lemma 1. 6. 12, the lowest degree of a non-zero term in the 

determinant expansion of C is at least n − 𝑝𝛼 (D(A)). Then 

n − 𝑠𝛼  ≤ n − 𝑝𝛼 (D(A)). 

Now let  

     B = (𝑥𝐼n − A)[𝜍, 𝜀] 

be a submatrix of order n − 𝛼 of 𝑥𝐼n − A such that the det(B) has a non-zero term of 

degree n − 𝑠𝛼 . Then, there exists a set 𝜗 of size n − 𝑠𝛼  with 𝜗𝜍 ∩ 𝜀 such that there is a 

non-zero term in the determinant expansion of the submatrix A[𝜍- 𝜗, 𝜀- 𝜗] of order 

𝑠𝛼 − 𝛼 of the strictly upper triangular complementary submatrix A[𝜗*
, 𝜗*

] of order 𝑠𝛼 .  

By Lemma 1.6.13 where T is strictly upper triangular matrix A[𝜗*
, 𝜗*

] of order 𝑠𝛼   and  

   𝑢 = 𝑠𝛼 − 𝛼, 

we conclude that there exists z-path X of size 𝑠𝛼 − 𝛼 + z in the digraph D(A) where 

z ≤ 𝛼. There are (𝛼 − z) + (n − 𝑠𝛼 ) vertices not on this z-path. Adding any                  

𝛼 − z vertices to X we obtain an 𝛼-path of size 𝑠𝛼 . Hence 𝑝𝛼 (D(A)) ≥ 𝑠𝛼  and thus 

    n − 𝑝𝛼 (D(A)) ≤ n − 𝑠𝛼 . 

Then we conclude that, 

   𝑝𝛼 (D(A)) = 𝑠𝛼 ,    for all 𝛼 = 1, 2, - - - , n                                           

[BrRy, p. 339-340, Th. 9.8.4].∎ 
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Let S and Q be non-singular matrices which transform the n x n matrix A and the m x m 

matrix B to their respective Jordan canonical forms, JA and JB, that is 

S 
-1

AS = JA and Q 
-1

BQ = JB                                                         (i) 

where 

 

JA = 

 
 
 
 
𝐽𝑛1

(𝜑1) 0 ⋯ 0

0 𝐽𝑛2
(𝜑2) ⋯ 0

⋯ ⋯ ⋯ ⋯
0 0 ⋯ 𝐽𝑛𝑇

(𝜑𝑇) 
 
 
 

 ,   

 

JB  =  

 
 
 
 
𝐽𝑚1

(𝜇1) 0 ⋯ 0

0 𝐽𝑚2
(𝜇2) ⋯ 0

⋯ ⋯ ⋯ ⋯
0 0 ⋯ 𝐽𝑚𝑌

(𝜇𝑌) 
 
 
 

                                   (ii) 

 

and we have the Jordan blocks given by 

 

         𝐽𝑛𝑖 
 𝜑𝑖  = 

 
 
 
 
 
𝜑𝑖 1 0 ⋯ 0 0
0 𝜑𝑖 1 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 𝜑𝑖 1
0 0 0 ⋯ 0 𝜑𝑖 

 
 
 
 

 ,  

 𝐽𝑚 𝑗
(𝜇𝑗 ) = 

 
 
 
 
 
𝜇𝑗 1 0 ⋯ 0 0

0 𝜇𝑗 1 ⋯ 0 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 𝜇𝑗 1

0 0 0 ⋯ 0 𝜇𝑗  
 
 
 
 

 

for 𝑖 = 1, 2, - - -, 𝑇 and 𝑗 = 1, 2, - - -, 𝑌. 
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Consequently 𝐴 – 𝑥𝐼𝑛  has the elementary divisors (𝜑𝑖  – 𝑥)𝑛𝑖 , and 𝐵 – 𝑥𝐼𝑚  has the 

elementary divisors (𝜇𝑗  – 𝑥)𝑚 𝑗  [Roth, p. 462-463]. 

 

From Proposition 2.1.1, the Jordan canonical form of the Kronecker product matrix       

AB is similar to the Jordan canonical form of the following matrix; 

  (SQ)-1(AB)(SQ) =


T

i 1



Y

j 1

𝐽𝑛𝑖
(𝜑𝑖)  𝐽𝑚 𝑗

(𝜇𝑗 ). 

The Jordan canonical form of the Kronecker product  𝐽𝑛𝑖
(𝜑𝑖)  𝐽𝑚 𝑗

(𝜇𝑗 ) can be easily 

determined using Theorem 2.2.1. 

It is very important to note that, the geometric multiplicity of an eigenvalue is equal to 

the number of elementary divisors associated with it and the algebraic multiplicity of an 

eigenvalue is equal to the sum of the degrees of all the elementary divisors associated 

with it. 

With the above definition we can restate the Theorem 2.2.1 as follows 

 

Theorem 2.2.5:  

Let A be a matrix of order n and let B be a matrix of order m, and let A have an 

elementary divisor (𝜑1– 𝑥)𝑛1  corresponding to a Jordan block 𝐽𝑛1
 𝜑1  of order 𝑛1 in the 

Jordan canonical form of the matrix A and let B have an elementary divisor (𝜇1– 𝑥)𝑚1  

corresponding to a Jordan block  𝐽𝑚1
 𝜇1  of order 𝑚1 in the Jordan canonical form of 

the matrix B, and if  𝛽 = min(𝑛1, 𝑚1), then the elementary divisors of the matrix                              

((𝐽𝑛1
 𝜑1  𝐽𝑚1

 𝜇1 )  – 𝑥𝐼𝑛1𝑚1
) in the Jordan canonical form of AB are as follows: 
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(1)  (𝜑1𝜇1– 𝑥)𝑛1+𝑚1−2𝛼+1 for 𝛼 = 1, 2, - - -, 𝛽, if  𝜑1𝜇1 ≠ 0. 

 

(2)  𝑥𝑛1  occurring 𝑚1 times, if 𝜑1 = 0 and 𝜇1 ≠ 0. 

 

(3)  𝑥𝑚1  occurring 𝑛1 times, if 𝜑1 ≠ 0 and 𝜇1 = 0. 

                 

               (4)  𝑥, 𝑥2
, - - -, 𝑥𝛽−1 each occurring twice and 𝑥𝛽  occurring 

                      (𝑛1 + 𝑚1 − 2 𝛽 + 1) times, if 𝜑1 = 𝜇1 = 0. 

 

Proof  

The elementary divisors of ((𝐴𝐵) – 𝑥𝐼nm) are identical with those of                       

((JA JB) – 𝑥𝐼nm) since 

  (SQ)-1
{(𝐴𝐵) – 𝑥𝐼nm}(SQ) = (JA JB) – 𝑥𝐼nm. 

Then by Proposition 2.1.1, the elementary divisors of ((AB) – 𝑥𝐼nm) are identical 

with the aggregate of those of the 𝑇𝑌 matrices  

(𝐽𝑛𝑖
(𝜑𝑖)  𝐽𝑚 𝑗

(𝜇𝑗 )) − 𝑥𝐼𝑛𝑖𝑚 𝑗
, for 𝑖 = 1, 2, - - - , 𝑇 and 𝑗 = 1, 2, - - -,𝑌 

each taken independently, where 𝐽𝑛𝑖
(𝜑𝑖) is the 𝑛𝑖  x 𝑛𝑖  Jordan block in the Jordan 

canonical form of the matrix A, and 𝐽𝑚 𝑗
(𝜇𝑗 ) is the 𝑚𝑗  x 𝑚𝑗  block in the Jordan canonical 

form of the matrix B. 

If 𝜇1 ≠ 0, 𝜑1 ≠ 0 and 𝐽𝑛1
 𝜑1  is a non-singular matrix, then 

                                     ((𝐽𝑛1
 𝜑1  𝐽𝑚1

 𝜇1 )  – 𝑥𝐼𝑛1𝑚1
)                                                  (iii) 
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is the block matrix with 

                                    𝜑1𝐽𝑚1
 𝜇1 − 𝑥𝐼𝑚1

                                                                           (iv)  

appearing 𝑛1 times along the main diagonal and 𝐽𝑚1
 𝜇1  appearing (𝑛1 – 1) times along 

the super diagonal. Let 

          𝐽𝑛1
 𝜑1  𝐽𝑚1

 𝜇1  = H and 𝑛1𝑚1 = 𝑙. 

Then, according to Definition 1.6.9, the determinantal divisor 𝑑𝑛−𝛼 (𝑥) is given by    

(𝜑1𝜇1– 𝑥)𝑙−𝑠𝛼  for 𝛼 = 1, 2, - - - , min(𝑛1, 𝑚1) = 𝛽. It follows from Theorem 2.2.4 that 

         𝑠𝛼  = 𝑝𝛼 (D(H)) 

such that 

         𝑑𝑛−𝛼 (𝑥) = (𝜑1𝜇1– 𝑥)𝑙−𝑝𝛼 (D(H))
. 

Then, it follows from Lemma 1.6.8 that,  

          𝑝𝛼 (D(H)) =




1j

[𝑛1 + 𝑚1 −  2𝑗 − 1 ].                       . 

Hence 

       𝜋(𝑥) = 
𝑑𝑛−𝛼+1(𝑥)

𝑑𝑛−𝛼 (𝑥) 
 = (𝜑1𝜇1– 𝑥)𝑛1+𝑚1−2𝛼+1 

is an elementary divisor of the matrix H by Definition 1.5.8. Since the product of the 

elementary divisors of the matrix H gives the characteristic polynomial of H which has 

the degree 𝑛1𝑚1 and 

                           




 1

[𝑛1 + 𝑚1 −  2𝛼 − 1 ] = 𝑛1𝑚1  , for 𝛽 = min(𝑛1, 𝑚1), 

then we can say that, these are all the elementary divisors of the matrix H. Therefore, the 

elementary divisors of (iii) are given by 
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      𝜋(𝑥) =(𝜑1𝜇1– 𝑥))𝑛1+𝑚 1−2𝛼+1
  for 𝛼 = 1, 2, - - - , min(𝑛1, 𝑚1). 

This proves the first assertion of our Theorem. 

If 𝜑1= 0, then we can easily notice that the elementary divisors of the matrix 

𝜑1𝐽𝑚1
 𝜇1 − 𝑥𝐼𝑚1

 are 𝑥 occurring 𝑚1 times, but 𝜑1𝐽𝑚1
 𝜇1 − 𝑥𝐼𝑚1

 is appearing 𝑛1 

times along the main diagonal of the matrix (iii), hence if 𝜑1= 0, then the elementary 

divisors of the matrix (iii) are 𝑥𝑛1  occurring 𝑚1 times . This proves the second assertion 

of our Theorem. 

If 𝜇1= 0 and 𝜑1 ≠ 0, then the Kronecker product matrix H  is the nilpotent matrix such 

that its 𝑚1
th

 power is zero but no lower power vanishes. Hence, in this case, the matrix 

(iii) has only elementary divisors of the form 𝑥𝑡 , where 𝑡 ≤ 𝑚1. But since 𝜑1 ≠ 0, then 

the matrix in (iii) has non-singular minor of the order  𝑚1 − 1 𝑛1 which is independent 

of 𝑥, hence by Rank Theorem 1.1.13, at most 

   𝑛1𝑚1 −  𝑚1 − 1 𝑛1 = 𝑛1  

elementary divisors can be powers of 𝑥. The determinant of the matrix in (iii) is 𝑥𝑛1𝑚1  if 

𝜇1 = 0, consequently 𝑛1 elementary divisors must be 𝑥𝑚1 . This establishes the third case 

under the theorem. 

Let 𝜑1 = 𝜇1 = 0, then if we remove the first columns and the last rows of the blocks 

Jn1
(𝜑1) and 𝐽𝑚1

(𝜇1), respectively, we get (𝑛1 − 1) ones and  𝑚1 − 1  ones on the 

diagonals of the matrices 𝐽𝑛1−1(𝜑1) and 𝐽𝑚1−1(𝜇1), respectively, hence H has         

(𝑛1 − 1) 𝑚1 − 1  ones in the 𝑚1
th

 diagonal above its super diagonal and all the 

remaining entries are zeros. From the non-singular minor matrix of the order (𝑛1 −
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1) 𝑚1 − 1 , which is independent of 𝑥, and by the Rank Theorem 1.1.13, the matrix in 

(iii) has 

   𝑛1𝑚1 − (𝑛1 − 1) 𝑚1 − 1 = 𝑛1 + 𝑚1 − 1 

elementary divisors which are powers of 𝑥. Now H is nilpotent of the degree         

min(𝑛1, 𝑚1) for in the present case  

   (𝐽𝑛1
(𝜑1))𝛽  

= 0  

or  

     (𝐽𝑚1
(𝜇1))𝛽   = 0,     where  𝛽 = min(𝑛1, 𝑚1) 

but for 𝑔 < min(𝑛1, 𝑚1), then 

   (𝐽𝑛1
(𝜑1))𝑔 ≠ 0 and (𝐽𝑚1

(𝜇1))𝑔 ≠ 0. 

Consequently the matrix in (iii) has (𝑛1 + 𝑚1 − 1) elementary divisors 𝑥𝑐 , whose 

degree 𝑐 does not exceed 𝛽 = min(𝑛1, 𝑚1) and must at least one of degree 𝛽. We may, 

therefore, assume that the matrix in (iii) has the elementary divisors 𝑥𝑐 ,  occurring 𝑣𝑐  

times, for 𝑐 = 1, 2,- - -, 𝛽. Hence its determinant is (– 𝑥) raised to the power, 

   𝑣1 + 2𝑣2 + - - - + 𝛽𝑣𝛽  = 𝑛1𝑚1.                                                    (v) 

Now let the Jordan canonical form of the Kronecker product matrix                     

 𝐽𝑛1
 𝜑1  𝐽𝑚1

 𝜇1  be 𝐽𝑛1𝑚1
(𝜑1𝜇1). 

Then (𝐽𝑛1𝑚1
(𝜑1𝜇1))𝑐 has 

                        𝑣𝑐+1 + 2𝑣𝑐+2 + - - -+ (𝛽 – 𝑐)𝑣𝛽  

ones in the 𝑐th
 diagonal above its main diagonal and zeros else where, and    

(𝐽𝑛1
 𝜑1  𝐽𝑚1

 𝜇1 )c  has  𝑛1 − 𝑐 (𝑚1 − 𝑐) ones in the 𝑐(𝑚1 + 1)th
 diagonal above its 



 

68 

 

main diagonal and zeros else where. Since these two matrices are of the same rank for 

all values of 𝑐, we have  

𝑣𝑐+1 + 2𝑣𝑐+2 + - - -+(𝛽 – 𝑐)𝑣𝛽  =  𝑛1 − 𝑐 (𝑚1 − 𝑐),  for  𝑐 = 1, 2, - - -, 𝛽 - 1.            (vi) 

Thus combining (v) and (vi) we obtain the triangular system of equations 

             𝑣1 + 2𝑣2 + - - - + 𝛽𝑣𝛽  = 𝑛1𝑚1 

                             𝑣2 + 2𝑣3 + - - - + (𝛽 – 1)𝑣𝛽  = (𝑚1 − 1) 𝑛1 − 1  

     ⋮    

                       (𝛽 – (𝛽 – 1)𝑣𝛽  = {(𝑛1 – (𝛽 – 1))(𝑚1 – (𝛽 – 1))} 

which has the solution  

           𝑣𝑛1
 = 𝑚1 − 𝑛1 + 1. 

If we let 

           min(𝑛1, 𝑚1) = 𝛽 = 𝑛1 

and  

           𝑣𝑐  = 2,   𝑐 = 1, 2, - - - , 𝑛1 −1. 

Thus in the case when  

           𝜑1 = 𝜇1 = 0 

the matrix in (iii) has  𝑚1 + 𝑛1 − 1  elementary divisors as stated by the above 

Theorem [Roth, p. 463-464, Th. 1].∎ 
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2.3 Matrix Exponential Function 

In the following section, we use the Kronecker products in transforming matrix 

equations into corresponding matrix-vector equations. Then, we use the Jordan 

canonical form to derive solutions of differential equations. 

 

Definition 2.3.1:  

Let 𝐴j denote the j
th

 column of an 𝑚 x 𝑛 matrix 𝐴. Then 𝑚𝑛 column vector of A is 

defined as 

   𝑣(𝐴) =  
𝐴1

⋮
𝐴𝑛

   

[HoJo, p. 244]. 

 

Lemma 2.3.2: 

Let 𝐴 be an m x n matrix, 𝐵 be an n x 𝑝 matrix and 𝐶 be 𝑝 x q matrix for which the 

matrix 𝐴𝐵𝐶 is defined, then 

   𝑣(𝐴𝐵𝐶) = (𝐶T𝐴)𝑣(𝐵). 

 

Proof  

For a given matrix 𝑅, let 𝑅𝑏  denote the 𝑏th
 column of 𝑅. Let 

   𝐶 = [𝑐𝑖𝑗 ]. 

Then  
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   (𝐴𝐵𝐶)𝑏  = 𝐴(𝐵𝐶)𝑏   

                                                         = 𝐴𝐵𝐶𝑏  

                                                  = 𝐴{


p

i 1

𝑐𝑖𝑏𝐵𝑖}  

                                                  = [𝑐1𝑏𝐴  𝑐2𝑏𝐴 . . . 𝑐𝑝𝑏 𝐴]𝑣(𝐵) 

                                                  = (𝐶𝑏
T𝐴)𝑣(𝐵). 

Thus, 

   𝑣(𝐴𝐵𝐶) =  
𝐶1

𝑇 𝐴
⋮

𝐶𝑞
𝑇 𝐴

 𝑣(𝐵). 

But this product is just (𝐶T𝐴)𝑣(𝐵) since the transpose of a column of 𝐶 is a row of 𝐶T
 

[HoJo, Lem 4.3.1, p. 254-255].∎ 

 

Definition 2.3.3:  

For any matrix 𝑋, its matrix exponential function is given by 

   𝑒𝑡𝑋  = 


0d

 
(𝑡𝑋)𝑑

𝑑!
 . 

This converges for any matrix as shown in James M. Ortega [Orte, p. 177]. 

 

Proposition 2.3.4:  

For matrices 𝐴 and 𝐵 of order n and if 𝐴 and 𝐵 commutes, that is, if 𝐴𝐵 = 𝐵𝐴, then 

   𝑒𝑡(𝐴+𝐵) = 𝑒𝑡𝐴𝑒𝑡𝐵  = 𝑒𝑡𝐵𝑒𝑡𝐴 . 
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Proof  

From Definition 2.3.3, 

  𝑒𝑡(𝐴+𝐵) = 𝐼n + 𝑡(𝐴 + 𝐵) + 
𝑡2

2!
(𝐴 + 𝐵)2 + . . . 

and 

  𝑒𝑡𝐴𝑒𝑡𝐵  = (𝐼n + 𝑡𝐴 + 
𝑡2

2!
𝐴2 + . . .)( 𝐼n + 𝑡𝐵 + 

𝑡2

2!
𝐵2 + . . .) 

while 

  𝑒𝑡𝐵𝑒𝑡𝐴  = (𝐼n + 𝑡𝐵 + 
𝑡2

2!
𝐵2 + . . .)(𝐼n + 𝑡𝐴 + 

𝑡2

2!
𝐴2 + . . .). 

Comparing coefficients of like powers of 𝑡 in the first equation and the second or third 

equation gives us the desired results [Laub, p. 110].∎ 

   

Definition 2.3.5: 

Let A1 and A2 be matrices of order 2. Then (A1, A2) is a matrix resolution of the identity 

if, 

(A1)
2
 = A1,  (A2)

2
 = A2 

   A1A2 = A2 A1 = 0 

   A1 + A2 = 𝐼2                                                                                  (1) 

where 𝐼2  is 2 x 2 identity matrix. 

Suppose A is a diagonalizable matrix of order 2 and 𝛾1 and 𝛾2 are eigenvalues of the 

matrix A, then the spectral decomposition of A is given by 

   A = 𝛾1A1 + 𝛾2A2.                                                                         (2) 
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Now we can show how to obtain the matrices A1 and A2. From (1), we can replace A2 by 

(𝐼2 – A1) in (2) obtaining 

A1 = (𝛾1 – 𝛾2)
-1

(A – 𝛾2𝐼2). 

With the same argument we can obtain  

   A2 = (𝛾2 − 𝛾1)
-1

(A – 𝛾1𝐼2).        

The matrices A1 and A2 are called the spectral bases of A and the set of distinct 

eigenvalues of A is called the spectrum. 

In general if A is a diagonalizable matrix of order 𝑛 and (𝛾1,𝛾2, - - - , 𝛾𝑛 ) are its 

eigenvalues. Then the spectral bases of the matrix A are given by 

    A𝑖 = 




n

ij

j 1

(𝛾𝑖 − 𝛾𝑗 )




n

ij

j 1

(A– 𝛾𝑗 𝐼𝑛),  for  𝑖 = 1, 2, - - - , 𝑛   

[Meye, p. 520]. 

 

Proposition 2.3.6:  

Let A be a diagonalizable matrix whose eigenvalues are (𝛾1, 𝛾2, - - - , 𝛾𝑛 ), then the 

exponential function of A is given by 

   𝑒𝐴𝑡  = 𝑒𝛾1𝑡A1+ 𝑒𝛾2𝑡A2 + - - - + 𝑒𝛾𝑛 𝑡An 

where the A𝑖 are the spectral bases. The proof is in [Meye, p. 530]. 
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 Definition 2.3.7:  

Theorem 1.3.4 stated that, for any matrix  𝐴, there is non-singular matrix that transforms 

𝐴 into its Jordan canonical form, that is 

S
-1𝐴S = 𝐽A = block diag(𝐽𝑛1

(𝜑1),  𝐽𝑛2
(𝜑2),  - - - , 𝐽𝑛𝑇

(𝜑𝑇))  

                              = 𝐽𝑛1
(𝜑1)  𝐽𝑛2

(𝜑2)  - - -  𝐽𝑛𝑇
(𝜑𝑇),        

where 𝐽𝑛𝑖
(𝜑𝑖) are the 𝑛𝑖  x 𝑛𝑖  Jordan blocks associated with the eigenvalue 𝜑𝑖 , it then 

follows from Definition 2.3.3 that the exponential function of A is given by 

   𝑒𝐴𝑡  = S𝑒𝑡𝐽𝐴 S
-1

 = S 
⋱

𝑒 𝐽𝑛𝑖
 𝜑 𝑖 𝑡

⋱

 S
-1

. 

If we let 𝑁𝑗  be the nilpotent matrix associated with the eigenvalue 𝜑𝑖  for  

𝑖 = 1, 2, - - - , 𝑇 and for 𝑗 = 0, 1, 2, - - - , 𝑛𝑖  – 1, where 𝑛𝑖  = index(𝜑𝑖). 

Again by Definition 2.3.3 

                                  𝑒 𝐽𝑛𝑖
(𝜑 𝑖)𝑡  = 𝑒𝛾𝑖𝐼𝑡+𝑁𝑡   

                                                =𝑒𝜑 𝑖𝑡(𝐼+ 𝑡𝑁 + 
1

2!
 𝑡2𝑁2+ - - - + 

1

(𝑛𝑖−1)!
𝑡𝑛𝑖−1𝑁𝑛𝑖−1) 

                                                = 𝑒𝜑 𝑖𝑡 




1

0

ni

j

 
1

𝑗 !
𝑡
𝑗
𝑁

𝑗
 

                                                 = 𝑒𝜑 𝑖𝑡

 
 
 
 
 
 1 𝑡

𝑡2

2!
⋯

𝑡𝑛𝑖−1

(𝑛𝑖−1)!

0 1 𝑡 ⋱ ⋮

0 ⋱ ⋱ ⋱
𝑡2

2!

⋮ ⋮ 0 1 𝑡
0 0 ⋯ 0 1  

 
 
 
 
 

.    

 [Laub, p. 114-115]. 
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Example 2.3.8: 

Find the solution of the 2 x 2 matrix differential equation 

   
𝑑𝑋

𝑑𝑡
 = 𝐴𝑋𝐵  

with  

   𝐴 =  
10 −18
6 −11

  ,     𝐵 =  
𝑎 0
0 𝑏

   and 𝑎 ≠ 𝑏. 

Solution  

The eigenvalues of the matrix 𝐴 are 1 and -2. Let  

   𝑋 =  
𝑥11 𝑥12

𝑥21 𝑥22
 , 

then  

  
𝑑𝑋

𝑑𝑡
 = 𝐴𝑋𝐵 

   
𝑑

𝑑𝑡
 
𝑥11 𝑥12

𝑥21 𝑥22
  =  

10 −18
6 −11

  
𝑥11 𝑥12

𝑥21 𝑥22
  

𝑎 0
0 𝑏

    

                                                 =  
10𝑎𝑥11 − 18𝑎𝑥21 10𝑏𝑥12 − 18𝑏𝑥22

6𝑎𝑥11 − 11𝑎𝑥21 6𝑏𝑥12 − 11𝑏𝑥22
 . 

Then according to Definition 2.3.1, we get 

  
𝑑

𝑑𝑡
  

𝑥11

𝑥21

𝑥12

𝑥22

 =  

10𝑎𝑥11 − 18𝑎𝑥21

6𝑎𝑥11 − 11𝑎𝑥21

10𝑏𝑥12 − 18𝑏𝑥22

6𝑏𝑥12 − 11𝑏𝑥22

 . 

This matrix equation can be written as 

  
𝑑𝑣(𝑋)

𝑑𝑡
 = (𝐵𝑇 𝐴)𝑣 𝑋                                                                            (3) 
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with     

  (𝐵𝑇 𝐴) =  
𝑎 0
0 𝑏

   
10 −18
6 −11

  

                  =  

10𝑎 −18𝑎 0 0
6𝑎 −11𝑎 0 0
0 0 10𝑏 −18𝑏
0 0 6𝑏 −11𝑏

 .  

The solution to equation (3) is  

   𝑣 𝑋  = 𝑒(𝐵𝑇  𝐴)𝑡𝑣(𝑋(0)) 

such that  

   𝑋(𝑡) = 𝑒𝐴𝑡𝑋(0) 𝑒𝐵𝑡 . 

Then by Definition 2.3.5 the spectral decompositions are given by 

   𝐴= 𝐴1 - 2𝐴2,    𝐵 = 𝑎𝐵1 + 𝑏𝐵2 

and the spectral bases are given by 

   𝐴1 = 
1

3
 (𝐴 + 2𝐼2) =  

4 −6
2 −3

  

          𝐴2 = 
−1

3
 (𝐴 − 𝐼2) =  

−3 6
−2 4

  

     𝐵1 = (𝑎 – 𝑏)
-1

(𝐵 − 𝑏𝐼2) =  
1 0
0 0

  

                                    𝐵2 = (𝑏 – 𝑎)
-1

(𝐵 − 𝑎𝐼2) =  
0 0
0 1

  

𝐼2 is just 2 x 2 identity matrix.  

Then from Definition 2.3.6 we can immediately write down the solution as 

𝑋(𝑡) = (𝑒(1+𝑎)𝑡𝐴1 + 𝑒(−2+𝑎)𝑡𝐴2)𝑋(0) 𝐵1 + (𝑒(1+𝑏)𝑡𝐴1 + 𝑒(−2+𝑏)𝑡𝐴2)𝑋(0)𝐵2.               (4) 

Let  

   𝑋(0) =  
𝑥11(0) 𝑥12(0)
𝑥21(0) 𝑥22(0)

 .  
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Then from (4) we get 

𝑋(𝑡) = (𝑒(1+𝑎)𝑡𝐴1 + 𝑒(−2+𝑎)𝑡𝐴2) 
𝑥11(0) 0
𝑥21(0) 0

  +(𝑒(1+𝑏)𝑡𝐴1 + 𝑒(−2+𝑏)𝑡𝐴2) 
0 𝑥12(0)
0 𝑥22(0)

 . 

 

General Solution  

Let 

   
𝑑𝑋

𝑑𝑡
 = 𝐴𝑋𝐵 

which can be transformed into 

   
𝑑𝑣(𝑋)

𝑑𝑡
 =  𝐵𝑇 𝐴 𝑣 𝑋 , 

this has the general solution 

   𝑣 𝑋  = 𝑒(𝐵𝑇  𝐴)𝑡𝑣(𝑋(0)).                                                                      (5) 

 

Application of Main Theorem 2.2.5:  

Let the Jordan canonical form for 𝐵𝑇 be 𝑛 x 𝑛 Jordan block 𝐽𝑛(𝜑) associated with non-

zero eigenvalue 𝜑 and let the Jordan canonical form for 𝐴 be 𝑚 x 𝑚 Jordan block 𝐽𝑚 (𝜇) 

corresponding to non-zero eigenvalue 𝜇. 

Let 

                      𝐽𝑛 (𝜑) 𝐽𝑚 (𝜇) = 𝐶,  

 then by Theorem 2.2.1, there exists a non-singular matrix S, such that 

S
-1𝐶S = 𝐽𝐶  =





 1

𝐽𝑛+𝑚−2𝛼+1(𝜑𝜇)                                                                          (6) 
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where  𝐽𝐶  is the Jordan canonical form for 𝐶. 

Then by Definition 2.3.7, the solution of (5) is given by 

  𝑋(𝑡) = S𝑒𝑡𝐽𝐶 S
-1𝑋(0). 

Let min(𝑛, 𝑚) = 𝛽 = 𝑛, then from (6) and Definition 2.3.7, 

S𝑒𝑡𝐽𝐶 S
-1

 = S  
𝑒 𝐽𝑛+𝑚 −1 𝜑𝜇  𝑡

⋱
𝑒 𝐽𝑚 −𝑛+1 𝜑𝜇  𝑡

 S
-1 

        
          = 𝑒𝜑𝜇𝑡 S{



n

1





2

0

mn

j

(
1

𝑗 !
 𝑁𝑛+𝑚−2𝛼+1

𝑗
𝑡𝑗 )}S

-1
, 

where 𝑁𝑛+𝑚−2𝛼+1 is a nilpotent matrix of order 𝑛 + 𝑚 − 2𝛼 + 1 for each 𝛼 = 1, - - -, 𝑛. 
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