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Abstract

For systems of polynomial equations where the Hasse principle holds, there exists a
finite process through which enough local (p-adic) information can be gathered to
decide the existence of a global (rational) solution. For instances where the Hasse
principle fails, knowledge of obstructions to global solutions may advance the problem
asking for a similar finite process. The first chapters of this thesis consist of an
expository development of the background content on p-adic numbers, the Brauer
group, the Brauer-Manin obstruction and the Hasse principle. The final chapter
describes an example of a variety for which the Hasse principle does not hold and
another example where the failure of the Hasse principle is explained by the Brauer-
Manin obstruction.
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Introduction

The tenth of David Hilbert’s celebrated problems asks if there exists a finite process

to decide whether any multivariate polynomial equation with integral coefficients has

integral solutions or not. Although this problem was negatively put to rest in the early

1970’s [13], a similar problem concerned with the solubility over the rational numbers

still remains unsolved today. This open problem provides some of the motivation

behind the research into the topic with which this thesis is concerned.

Looking more closely at this second problem, we can make some progress by

searching for solutions in ‘natural’ extensions of Q called the fields of p-adic numbers,

denoted Qp (one for each of the infinitely many primes p), and in the field of real

numbers R (which we will, from time to time, refer to as Q∞). A particularly desirable

property of these p-adic fields is, as will be seen later, that deciding the existence of

a p-adic solution to a multivariate polynomial equation, is a finite problem. In fact,

although this leaves infinitely many p-adic fields to verify, it is still a finite problem

to decide if there exist any which do not contain a solution to the given equation.

This finite process will sometimes be enough to prove the non-existence of rational

solutions. If any of the p-adic fields fail to contain a solution, then there can be no

rational solutions since rational numbers are also p-adic numbers (by virtue of the

extension through which all fields Qp came to be and which will be described later).

What is much more remarkable is that in situations where the Hasse principle

is said to hold, if there exist non-trivial solutions to an equation in all infinitely

many p-adic fields and in R, then there has to exist a non-trivial solution in Q. The

unfortunate fact is that it is not always clear if the equation we are studying is such

that the Hasse principle holds.

Hasse himself, (to whom we can attribute the said principle) was aware of the
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existence of some counter-examples to his principle. In 1970, Yuri Manin [12] brought

together all counter-examples to the Hasse principle known until then, and explained

them by the presence of a particular obstruction called the Brauer-Manin obstruc-

tion. Since then, some have proposed new obstructions which cannot be explained

by Manin’s work [18].

The first three chapters of this thesis will develop the required material to describe

the Brauer-Manin obstruction. This will include a construction of the p-adic fields,

a description of their elements, and results related to computations. We will then

prove that verifying the solubility of Diophantine problems over all p-adic fields is

a finite process and will describe Hensel’s lemma and the role it plays in the proof.

We will also build the Brauer group of a field as well as of a ring and make some

connections with Galois cohomology. In part to help motivate the rest of the content,

a trivial example of a failure of the Hasse principle will also be included. We will

then see the fundamental exact sequence of global class field theory, bring together

all previous chapters and discuss the Brauer-Manin obstruction before we finally

dissect two examples of failures of the Hasse principle. Throughout the chapters,

will assume exposure to standard results from introductory number theory (such as

quadratic reciprocity), algebraic geometry and abstract algebra.
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Chapter 1

p-adic Numbers

This chapter will describe three areas of the theory of p-adic numbers, developing a

crucial foundation for many results which will be required in later chapters. This will

include a general introduction to the p-adic numbers, some details on Hensel’s lemma

(an indispensable tool for working over Qp), as well as a discussion of the finitude of

the problem of deciding the solubility of a system of polynomial equations over all

p-adic fields and over R. Often, only a sketch of a proof will be included, or the proof

may altogether be omitted and simply referenced.

1.1 Construction

The methods used to build each p-adic field Qp are very similar to the ones used to

build the real numbers R from the rational numbers Q. The following definitions will

provide a starting point.

Definition 1.1.1. An absolute value over a field k is a function | · | : k→ R+, where

|x| = 0 iff x = 0, |xy| = |x|·|y| for all x, y ∈ k, and |x+y| ≤ |x|+|y| for all x, y ∈ k.

We denote the usual absolute value | · |∞ where

|x|∞ =

 x if x ≥ 0

−x if x < 0.
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For a choice of prime p, if we let x = pordp x · a
b
, where p - ab, one can verify that

the following function |x|p = p− ordp x is an absolute value regardless of the choice of

p. Note also that setting |x| = 1 if x 6= 0 and |0| = 0 gives yet another absolute value.

For obvious reasons, this last example is referred to as the trivial absolute value. A

theorem by Ostrowski states that every non-trivial absolute value on Q is equivalent

to one of the absolute values | · |p where p is a prime or p = ∞. A proof of this

theorem can be found on page 44 of [6].

As we will soon be concerned with the convergence of sequences in a field, we

need the following definition.

Definition 1.1.2. Let k be a field. A sequence of elements of k is Cauchy with

respect to an absolute value | · |p, if for every ε > 0 there exists M ∈ N such that for

all m,n ≥M, |xn − xm|p ≤ ε.

Although many Cauchy sequences will converge in a field, being Cauchy is not a

sufficient condition to guarantee convergence in some fields. As the following defini-

tion implies, it is possible to enlarge the base field to force every Cauchy sequence to

converge in the new field.

Definition 1.1.3. A field k is complete with respect to an absolute value | · |p if every

Cauchy sequence of elements of k has a limit in k.

Intuitively, this is saying that in a complete field, every sequence which “should”

converge, actually converges. The field Q is not complete under the usual absolute

value | · |∞ since 3, 3.1, 3.14, . . . (where the nth term is the first n digits of the decimal

expansion of π), is a Cauchy sequence of rational numbers whose limit is π /∈ Q. The

completion of a field k with respect to a certain absolute value is the smallest field

which contains k and is also complete with respect to the same absolute value. We
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thus construct R as the completion of Q under the usual absolute value by defining

R to be equivalent to the set of all limits of rational Cauchy sequences (with respect

to | · |∞) modulo an equivalence relation. This equivalence relation treats two Cauchy

sequences s1 = {ai}, and s2 = {bi} as equivalent if |ai − bi|∞ → 0 as i→∞.

It is clear that this construction of the real numbers from the rational numbers is

dependent on a choice of absolute value. Next, we define the fields of interest in this

chapter.

Definition 1.1.4. Using term-wise addition and multiplication, let Cp be the ring

of rational Cauchy sequences with respect to | · |p. Let Np be the ideal generated by

all rational (trivially Cauchy) sequences that tend to zero with respect to | · |p. Then

Qp := Cp/Np.

Note that Np is a maximal ideal in Cp and hence Cp/Np is a field. We also see

that we have an inclusion Q ↪→ Qp for any prime p since for x ∈ Q, we can take

the constant, (trivially Cauchy) sequence (x, x, x, ....) as a representative of x in Qp.

Details about this definition can be found in p26-28 of [1].

In preparation for the next theorem, we make the following definition.

Definition 1.1.5. The set of p-adic integers is Zp = {x ∈ Qp | |x|p ≤ 1}.

In an effort to provide a concrete description of the elements of Qp, we see the

following theorem.

Theorem 1.1.6. Every equivalence class α in Zp has exactly one representative

Cauchy sequence of the form {αi} for which 0 ≤ αi < pi, and αi ≡ αi+1 (mod pi)

for all i ∈ N.

A proof of this can be found in [9], p.11-13.
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To extend the previous description to all p-adic numbers, notice that if |a|p > 1,

then |a·|a|p|p ≤ 1. Theorem 1.1.6 provides a representative sequence for a·|a|p, and we

thus get a convenient description of elements of Qp as infinite base p expansions with

m ∈ Z as α = a0

pm + a1

pm−1 +. . . + am−1

p
+am+am+1p+am+2p

2+. . . . We can also represent

α as its canonical abbreviated p-adic expansion a0a1 . . . am−1.amam+1am+2 . . . .

1.2 Hensel’s Lemma

At this point it seems natural to seek a solution to a polynomial equation over Qp.

Example 1.2.1. Solve x2 = q over Qp where 0 ≤ q < p, q ∈ Z. Equivalently,

we require a p-adic expansion a0a1a2a3 . . . , such that 0 ≤ ai < p, ai ∈ Z, and

(a0 + a1 · p+ . . .+ ai · pi + . . .)2 ≡ q + 0 · p+ 0 · p2 + . . . (mod pm) for every m ∈ N.

From our definition of the p-adic expansion, if there exists a solution to the equation

above, we can find a0 by solving (a0)2 ≡ q (mod p). Knowing a value for a0, we can

repeat the process seeking ai in (a0 +a1 ·p+. . . +ai ·pi)2 ≡ q (mod pi+1) for increasing

values of i.

In a sense, each step of the process utilized in Example 1.2.1 provides an ap-

proximation to the solution while an exact solution would come from infinitely many

iterations. Unfortunately, for some (potentially very large) values of i in the process

above, it is possible that no value of ai allows for the approximation to continue.

The following theorem does however give conditions under which we are guaranteed

a p-adic solution for a polynomial equation over Qp.

Theorem 1.2.2 (Hensel’s lemma). Let f(x) = a0 + a1x + a2x
2 + . . . + akx

k be a

polynomial with integral coefficients and suppose that there exists α0 ∈ Z and some

N ∈ N such that f(α0) ≡ 0 (mod pN) while f ′(α0) 6≡ 0 (mod pM) where f ′ is the
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formal derivative of f(x) and M ≤ 1
2
N . Then there exists α ∈ Zp such that α ≡ α0

(mod pM) and f(α) = 0.

Proof. To complete the proof, we show that under the theorem’s conditions, we can

construct

α = lim
n→∞

αn, with αn+1 = αn −
f(αn)

f ′(αn)
,

and that α is as required. We therefore will show that for all n, f(αn) ≡ 0 (mod pN+n)

hence f(α) = 0. We will also show that αn+1 ≡ αn (mod pM+n), and therefore α ≡ α0

(mod pM). This last congruence ensures that f ′(αn) is always nonzero.

First, we start by showing that given αn, we can find the required αn+1. Assum-

ing f(αn) ≡ 0 (mod pN+n) and f ′(αn) 6≡ 0 (mod pM), then |f(αn)|p ≤ p−N−n and

|f ′(αn)|p > p−M . From this, we are assured that

∣∣∣ f(αn)

f ′(αn)

∣∣∣
p

=
|f(αn)|p
|f ′(αn)|p

<
p−N−n

p−M
= p−N+M−n.

Therefore
∣∣∣ f(αn)
f ′(αn)

∣∣∣
p
≤ p−N+M−n−1 and there exists kn ∈ Zp such that f(αn)

f ′(αn)
= knp

N−M+n+1.

Setting

bn = −knpN−M+n+1,

we find that

f(αn) + f ′(αn)bn = 0. (1.1)
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Now, if αn+1 = αn − f(αn)
f ′(αn)

, then

f(αn+1) = f(αn + bn)

= f(αn) + f ′(αn)bn +
f ′′(αn)(bn)2

2!
+
f ′′′(αn)(bn)3

3!
+ · · ·

=
f ′′(αn)(bn)2

2!
+
f ′′′(αn)(bn)3

3!
+ · · · (by equation 1.1)

≡ 0 (mod pN+n+1).

We also find that αn+1 = αn + bn = αn − knp
N−M+n+1 ≡ αn (mod pM+n), hence

f ′(αn+1) 6= 0.

The case for n = 0 follows from our assumption, and we have therefore shown induc-

tively that given α0 such that f(α0) ≡ 0 (mod pN) and f ′(α0) 6≡ 0 (mod pM), it is

possible to find αn+1 = αn − f(αn)
f ′(αn)

for larger and larger n constructing the required

α.

This completes the proof of Hensel’s lemma.

While this version of the theorem is for a univariate polynomial equation, an

analogue for a multivariate equation is similarly available on page 67 of [7] as is a

further generalization for k equations in r variables.

1.3 Finitude of the Problem

We have seen so far that under some relatively relaxed conditions (for details on

how they could be relaxed even further, see p.3185 of [5]) we can guarantee a so-

lution to a polynomial equation (or even to a system of multivariate polynomial

equations) over some p-adic field. The problem now is that as mentioned ear-

lier, we would like to be able to decide if there exist non-trivial solutions over
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every such field (including Q∞ = R) but since there are infinitely many p-adic

fields, the task seems daunting. Further, if there were no non-trivial solutions to

a multivariate polynomial equation in some Qp, it is not clear how many times we

might find solutions (αi) (mod pi+1) where the derivative condition is not met for

increasing i before we failed and decidedly found that no non-trivial solutions ex-

isted over that particular field. It is therefore somewhat spectacular that given a

system of polynomial equations fm(x1, x2, . . . , xn) ∈ Z[x1, x2, . . . , xn], we can ver-

ify whether or not there exist solutions (α1, α2, . . . , αn) 6= (0, 0, . . . , 0) such that

f1(α1, α2, . . . , αn) = f2(α1, α2, . . . , αn) = . . . = fm(α1, α2, . . . , αn) = 0 in all p-adic

fields in finitely many steps. Before we can advance any further, we introduce some

useful language and notation from algebraic geometry.

Definition 1.3.1. Let K be a field. For any ideal I /K[x1, x2, . . . , xn], we say Z(I) =

{(α1, α2, . . . , αn) ∈ Kn | fi(α1, α2, . . . , αn) = 0 for all fi ∈ I} is an algebraic subset

of Kn. Then an algebraic K-variety V is an algebraic subset of Kn which is not

a union of two proper algebraic subsets of Kn. If k ⊂ K, we will write V (k) for

{(α1, α2, . . . , αn) ∈ kn | fi(α1, α2, . . . , αn) = 0 for all fi ∈ I}. Note that this definition

of a variety is sometimes referred to more specifically as an affine variety. Projective

varieties can similarly be defined and therefore the rest of this thesis could have been

written in the language of projective geometry.

With the concept of a variety defined, we can now move ahead to gain some insight

in the finite process of deciding whether or not a system of polynomial equations has

non-trivial solutions in every completion of Q. We look at the next two theorems in

the case of a single polynomial equation. The first of these theorems, due to Cassels,

can be found on page 204 of [3] and reduces the number of p-adic fields which need

to be considered.
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Theorem 1.3.2. Given f(x1, x2, . . . , xn) ∈ Z[x1, x2, . . . , xn], there exists some P ∈

Z, computable in terms of f , such that for all primes p > P , there exists some

0 6= (x1, x2, . . . , xn) ∈ Qn
p with f(x1, x2, . . . , xn) = 0

Proof. For all but a finite set of primes A, every nonsingular point of the variety

defined by f over the rational numbers, gives rise to a nonsingular point of the

variety defined by f over the field of p elements. By a result of Lang and Weil, [10],

the number of points of V (Z/pZ) is equal to pr +O(pr−
1
2 ) where r is the dimension of

V (Q) and O(pr−
1
2 ) can be computed explicitly. Since the singular points of V (Z/pZ)

are on a proper subvariety, there are O(pr−1) such points which leads to the conclusion

that for all primes larger than the largest prime in A and sufficiently large to make

pr +O(pr−
1
2 )−O(pr−1) > 0, we find that V (Z/pZ) has nonsingular points which, by

Hensel’s lemma lead to p-adic points.

There are now only finitely many p-adic fields left to verify. Although we have

reduced the number of cases to a finite one, we still need to show that we can decide

whether or not a polynomial equation has a non-trivial solution in each Qp in a

finite number of steps. This time, we will look at the case of a univariate polynomial.

Hensel’s lemma is a crucial part of the process but because of the possibility of finding

solutions αi (mod pi+1) for larger and larger values of i where for each i, f ′(αi) ≡ 0

(mod p) we will use the following theorem of Cassels from p.203 of [3].

Theorem 1.3.3. Let f(x) ∈ Z[x] be irreducible in Q[x]. Then there exists an N

which can be given explicitly in terms of f(x) such that if f(α) ≡ 0 (mod pN), then

f ′(α) 6≡ 0 (mod pb
N
2
c−1).

Proof. If f(x) is irreducible in Q[x], then f(x) and f ′(x) are coprime in Q[x]. By the

Euclidean algorithm in Q[x], there then exist p(x) and q(x) such that p(x)f(x) +
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q(x)f ′(x) = GCD(f(x), f ′(x)) ∈ Q ⊂ Q[x]. By clearing denominators, we can

find r(x) and s(x) in Z[x] such that r(x)f(x) + s(x)f ′(x) = t ∈ Z. If f(α) ≡ 0

(mod pN) and f ′(α) ≡ 0 (mod pb
N
2
c−1) for all N , then t ≡ r(α)f(α) + s(α)f ′(α) ≡ 0

(mod pb
N
2
c−1) for every N which is impossible. We therefore find that when there

exists an α such that f(α) ≡ 0 (mod pN) with pb
N
2
c−1 larger than the t found by

clearing denominators, we are guaranteed that f ′(x) 6≡ 0 (mod pb
N
2
c−1).

Given an α as in Theorem 1.3.3, Hensel’s lemma then allows us to deduce a p-

adic solution to f(x). Theorem 1.3.3 along with Theorem 1.3.2 then confirm that

the solubility of a univariate polynomial equation over all the p-adic fields can be

verified in a finite number of steps. Both of the previous theorems could be proven in

more generality, to include systems of multivariate polynomial equations. For details

surrounding the more general cases, see page 204 of [3].

Finally, the case where p = ∞, (or Qp = R) is handled by Tarski’s results on

decidability in elementary algebra [20] which imply that the process of deciding if

f(x1, x2, . . . , xn) = 0 has any non-trivial solutions over Rn is finite. These results also

take care of the situation involving a system of multivariate polynomial equations

since solving f1 = f2 = . . . = fm = 0 is equivalent to solving f 2
1 + f 2

2 + . . . + f 2
m = 0.

We have hence seen that we can verify whether or not a system of multivariate

polynomial equations has non-trivial solutions over Qp (for primes p and p = ∞) in

a finite (albeit possibly excruciatingly large) number of operations.
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Chapter 2

The Brauer Group

As it has already been hinted, the Brauer groups of fields and rings play a vital role in

the description of the Brauer Manin-Obstruction. In Section 2.1, we state definitions

and results required to construct the Brauer group. In Section 2.2, we construct

the Brauer group of a field k, denoted Br(k), and via crossed product algebras and

Galois cohomology, find ways of describing elements of Br(k). Finally, in Section 2.3,

we construct the Brauer group of a commutative ring which allows us to discuss the

Brauer group of an affine variety.

2.1 Preliminaries

Unless specified otherwise, for the remainder of this section, we will assume that R is

a commutative ring. Material from this chapter is adapted from [4] and most proofs

of theorems are omited.

To get started, the following theorem provides a description of the tensor product,

an operation which will be needed later.

Theorem 2.1.1. : Let M and N be R-modules. Then there exists an R-module T ,

and a bilinear map i : M × N −→ T such that given any R-module P , and any

bilinear map f : M ×N −→ P , there exists a unique homomorphism f ′ such that the
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following diagram commutes:

M ×N i //

f

��

T

f ′{{
P

T is referred to as the tensor product of M and N over R, denoted M ⊗R N and is

unique up to isomorphism.

For a proof of Theorem 2.1.1, see [4] p.12-13.

We next define some special rings and modules.

Definition 2.1.2. : Let R be a ring and A be a ring which is also an R-module. If

x(ab) = (xa)b = a(xb) for all x ∈ R, a, b ∈ A, then A is an R-algebra.

We then extend the concept of homomorphisms and tensor products to algebras.

Definition 2.1.3. : Let A and B be R-algebras. If f : A −→ B is an R-module

homomorphism, and a compatible ring homomorphism, then f is an R-algebra homo-

morphism.

Theorem 2.1.4. : Let k be a field and R and S be k-algebras. If we let

(r ⊗ s) · (r′ ⊗ s′) = rr′ ⊗ ss′

for all r, r′ ∈ R and s, s′ ∈ S, then R⊗k S is a k-algebra.

For a proof, see [4] p.81-82.

The next proposition extends an algebra to another related algebra.

Proposition 2.1.5. If R is a k-algebra, and K is a field extension of k, then K⊗kR

is a K-algebra. We say K⊗k R is the extension of scalars.
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For a proof, see [4] p.83.

With k-algebras and some related concepts defined, we discuss division rings and

simple algebras in preparation for the Wedderburn-Artin theorem.

Definition 2.1.6. A division ring D is a ring (not necessarily commutative) where

1 6= 0 and every non-zero element is invertible. A commutative division ring is

therefore a field.

Definition 2.1.7. A k-algebra S is simple if, as a ring, it contains no proper, non-

zero two-sided ideals.

Theorem 2.1.8 (Wedderburn-Artin). Let S be a finite dimensional simple k-algebra.

Then S 'Mn(D) for some division ring D where D is unique up to isomorphism.

For a proof, see [8] p.48.

The next three definitions will be necessary to describe an equivalence relation

used in the definition of the Brauer group.

Definition 2.1.9. The center of a k-algebra S is Z(S) := {x ∈ S | xs = sx for all s ∈

S}.

Definition 2.1.10. S is a central k-algebra if Z(S) = k. S is central simple if it is

central and simple.

Definition 2.1.11. Let S and T be finite dimensional central simple k-algebras and

D and E be division rings. We say S and T are similar if whenever S 'Mn(D) and

T 'Mm(E) then D ' E.

As we are about to see, the next definition will allow the description of the inverses

of elements of the Brauer group.
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Definition 2.1.12. Let A be a central simple k-algebra. The opposite algebra of A,

A◦ is the algebra whose set and addition of elements are the same as those of A, but

whose multiplication ∗ gives a ∗ b = ba for a, b ∈ A.

The following theorem will be useful in describing elements of the Brauer group

via crossed product algebras.

Theorem 2.1.13 (Skolem-Noether). Let S be a finite dimensional central simple k-

algebra and let A, B be simple k-subalgebras of S. Given any isomorphism α : A −→

B where α(k) = k for all k ∈ k, there exists x ∈ S such that, for all a ∈ A, α(a) =

x−1ax.

Putting S = A = B, we find that every automorphism of S which leaves elements

of k fixed (that is every k-automorphism of S) is an inner automorphism. For a proof,

see [8] p.99-100.

2.2 The Brauer Group of a Field

We are now ready for the construction of the Brauer group of a field k

Definition/Theorem 2.2.1. The Brauer group of a field k, denoted Br(k) is the

group of equivalence classes of finite dimensional central simple k-algebras where the

tensor product over k is the group operation, the equivalence class of k, denoted [k]

is the identity element, and S ∼ T if S and T are similar according to Definition

2.1.11. Furthermore, for the equivalence class [A] of a central simple k-algebra A, the

inverse is [A◦].

Theorem 2.2.2. Let k and K be fields, and φ : k −→ K be a field homomorphism.

Then there is a group homomorphism Br(φ) : Br(k) −→ Br(K) given by A 7→ A⊗kK

such that Br(φ ◦ ψ) = Br(φ) ◦Br(ψ) and Br(id) = id.
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Theorem 2.2.2 is stating, using category theory language, that Br(·) is a covariant

functor. A proof of this theorem can be found in [11] on pages 28 and 29. The group

homomorphism we obtain will provide us access to Br(K/k), the relative Brauer

group of K over k which, as we will see later is in many ways easier to work with.

Definition 2.2.3. Using the group homomorphism from Theorem 2.2.2, the relative

Brauer group of K over k is Br(K/k) := ker(Br(k) −→ Br(K)).

Elements of Br(K/k) are therefore finite dimensional central simple k-algebras

whose tensor product over k with K is isomorphic to matrices over K.

Definition 2.2.4. Let K/k be a finite field extension. We say K/k is a normal

extension if every irreducible polynomial in one variable with coefficients in k and a

root in K has all its roots in K. We also say K/k is a separable extension if for every

k ∈ K, every monic polynomial of least degree satisfying f(k) = 0 has distinct roots in

K̄ the algebraic closure of K. Finally, K/k is a Galois extension if it is both normal

and separable.

Definition 2.2.3 and 2.2.4 allows a fresh new look at Br(k).

Theorem 2.2.5. With Br(K/k) as in Definition 2.2.3, we have Br(k) '
⋃

KBr(K/k)

where the union is taken over all finite Galois extensions K of k.

Sketch of proof. The fact thatBr(k) ⊇
⋃

KBr(K/k) is clear since elements ofBr(K/k)

are by definition in Br(k). We have the other inclusion since given an element

A ∈ Br(k), we can find a division ring D such that A ' Mn(D) (by Theorem

2.1.8), therefore A ∼ D and hence [A] = [D]. Since A ∈ Br(k), Z(A) = k hence

Z(D) = Z(Mn(D)) = k. From such a D, we can always find a finite Galois extension

K/k for which A′ ∈ [D] is such that K ⊗k A
′ ' Mn(K) hence A′ ∈ Br(K/k). For a

more complete argument, see [4] (p.109-117).
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As we are about to see, we can find ways of describing the structure of Br(K/k)

by way of factor sets and crossed product algebras. In preparation, we need these

following definitions.

Definition 2.2.6. For any algebra A and subset K ⊆ A, the centralizer of K in A is

CA(K) := {a ∈ A | xa = ax for all x ∈ K}

Definition 2.2.7. Given a simple k-algebra A, a subfield K ⊆ A containing k with

CA(K) = K, is a maximal subfield of A.

While a more natural definition of maximality might be expected to come from

inclusion of subfields, the definitions agree for division algebras, but not in general.

For examples pointing out some of the differences, see p. 114 of [4].

Definition 2.2.8. The Galois group of a field extension K/k is the set of

k-automorphisms of K with composition as an operation.

A proof that this set actually forms a group under this operation can be found in

[19] p.91.

Theorem 2.2.9. Let K/k be a finite Galois extension, G be the Galois group of

this extension, and A be a central simple k-algebra which contains K as a maximal

subfield. Then for any k-automorphism σ ∈ G, Theorem 2.1.13 guarantees an xσ ∈

A such that xσa(xσ)−1 = σ(a) for all a ∈ K. If also xσ
′a(xσ

′)−1 = σ(a), then

(xσ(xσ
′)−1)a(xσ(xσ

′)−1)−1 = xσ(σ)−1(a)(xσ)−1 = a for all a ∈ A. This means that

xσ(xσ
′)−1 ∈ CA(K), which is equivalent to

xσ = kσxσ
′ (2.1)

for some kσ ∈ K∗, hence, xσ is unique up to multiplication by an element of K∗.
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Definition 2.2.10. With composition being the operation in G, we find that στ(a) =

σ(τ(a)) and therefore

xσxτ = kσ,τxστ (2.2)

for some kσ,τ ∈ K∗. For a choice of {xσ}{σ∈G}, we define a factor set of A relative to

K to be {kσ,τ}{σ,τ∈G}.

Naturally, the choices we make in selecting {xσ}{σ∈G} will have an effect on the

factor set we obtain. We can nevertheless describe the relationship that will hold

between corresponding elements of all factor sets of A relative to K.

Theorem 2.2.11. If {kσ,τ} and {kσ,τ ′} are two factor sets of A relative to K which

came from different choices of {xσ}{σ∈G}, then there exists {kσ}{σ∈G} such that

kσ,τ
′ =

kσσ(kτ )

kστ
kσ,τ . (2.3)

for some kσ, σ(kτ ), kστ ∈ K∗, kσ,τ ∈ {kσ,τ}, kσ,τ ′ ∈ {kσ,τ ′}.

Proof.

kσ,τ
′kστxστ = kσ,τ

′xστ
′ (by equation 2.1)

= xσ
′xτ
′ (by equation 2.2)

= kσxσkτxτ (by equation 2.1)

= kσσ(kτ )xσxτ (by Theorem 2.1.13)

= kσσ(kτ )kσ,τxστ (by equation 2.2)

Hence kσ,τ
′kστ = kσσ(kτ )kσ,τ , which implies the result.

It can be shown that as long as a set {kσ,τ} ⊂ K∗ satisfies the following constraint,
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(due to the required associativity)

ρ(kσ,τ )kρ,στ = kρ,σkρσ,τ (2.4)

then the set is a factor set relative to K for a central simple k-algebra. For a proof of

this claim, see [4] p.119.

Definition 2.2.12. The central simple k-algebra referred to above is called the crossed

product algebra of K and G relative to the factor set {kσ,τ}, denoted

{K, G, kσ,τ} :=
⊕
σ∈G

Kxσ

with multiplication defined by xσk = σ(k)xσ for all k ∈ K and xσxτ = kστxστ .

It can also be shown that crossed product algebras of K and G relative to factor

sets related by equation 2.3 are isomorphic, and furthermore, elements of Br(K/k)

are in one-to-one correspondence with equivalence classes of factor sets relative to K

with the equivalence relation given by equation 2.3. For proofs of the claims in this

last section, see [4] p.119-122.

This last correspondence is the final result needed to change perspective in our

study of elements of Br(K/k). We will gain new insights in the inner workings of

elements of this group by combining results. The following point of view comes

from homological algebra, more specifically, Galois cohomology. We will first start by

defining the objects of interest. Then we will show how the second Galois cohomology

group of the extension K/k with coefficients in K∗ relates to Br(K/k).

Definition 2.2.13. Given a finite Galois extension K/k, and G = Gal(K/k), we

define the nth cochain group of G with coefficients in K∗, to be Cn(G,K∗) = {f | f :
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Gn −→ K∗} where the group operation is pointwise multiplication of functions. The

elements of Cn(G,K∗) are called the n-cochains of G with coefficients in K∗.

Definition 2.2.14. Next, we define homomorphisms called n-boundary maps

δn : Cn(G,K∗) −→ Cn+1(G,K∗) by

δn(f)(g1, g2, . . . , gn+1) = g1

(
f(g2, . . . , gn+1)

)
×

n∏
i=1

[
f(g1, . . . , gi−1, gigi+1, . . . , gn+1)(−1)i]

× f(g1, g2, . . . , gn)(−1)n+1

for n > 0, and,

δ0(f)(g1) = g1(f)× f−1.

Definition 2.2.15. We then define a cochain complex as a sequence (Cn)n∈Z of

abelian groups with homomorphisms φn taking the nth abelian group of the sequence

to the n+ 1st, and satisfying φn ◦ φn+1 = 0.

From the previous definitions, we can see that the cochain groups of G with

coefficients in K∗, and Cn(G,K∗) along with the n-boundary maps δn form a cochain

complex.

Definition 2.2.16. The group of n-cocycles, denoted Zn, is defined to be ker(δn) while

im(δn−1) denoted Bn is defined to be the group of n-coboundaries. Since Bn ⊆ Zn,

and Zn is abelian, we can define Zn/Bn = Hn(G,K∗), the nth Galois cohomology

group of G with coefficients in K∗.

It is the 2nd Galois cohomology group which gives us a new look into Br(K/k).

Elements of Z2 are functions f for which δ2(f) = 1 (when writing K∗ multiplicatively).
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This is nothing more than satisfying equation 2.4, hence, 2-cocycles of C2(G,K∗) are

factor sets relative to K. Elements of B2 are functions in the image of δ1(f)(σ, τ) =

f(σ)σ(f(τ))f(στ)−1. This implies that elements of H2(G,K∗) are factor sets relative

to K where factor sets represent the same element if they are related by equation 2.3.

Since equivalence classes of factor sets relative to K are in one-to-one correspondence

with elements of Br(K/k), we can now see that elements of H2(G,K∗) and Br(K/k)

are in one-to-one correspondence. We could further show that the correspondence

is an isomorphism of groups with H2(G,K∗) ' Br(K/k). For details regarding this

relationship, see [4] p126.

2.3 The Brauer Group of an Affine Variety

While the close relationship between elements of Br(K/k) and H2(G,K∗) can be very

useful, we will also describe the Brauer group of an affine variety. We will achieve

this construction by extending our definition of the Brauer group of a field to the

Brauer group of a general commutative ring. In order to do this, we need a few more

definitions.

First, to extend the concept of finite dimensional central simple k-algebras, we

make the following definitions.

Definition 2.3.1. An R-module M is projective if it is the direct summand of a free

module.

Definition 2.3.2. An R-module M is faithful if its annihilator, {r ∈ R | rm =

0 for all m ∈M}, is zero.

Definition 2.3.3. Given an R-algebra A, the enveloping algebra of A is defined to

be Ae := A⊗R A◦.
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Definition 2.3.4. An R-algebra A is called an Azumaya algebra if A is finitely gen-

erated, projective and faithful as an R-module, and if Ae ' EndR(A).

Note that a finite-dimensional k-algebra is an Azumaya k-algebra if and only if it

is a finite-dimensional central simple k-algebra and we can see that Definition 2.3.4

is a generalization of algebras over commutative rings which agrees with our earlier

definitions. Now that Azumaya algebras are in place, we add another definition to

prepare for an equivalence relation in the Brauer group of a commutative ring.

Definition 2.3.5. Given Azumaya algebras A and B, A is equivalent to B, de-

noted A ∼ B if there exist faithfully projective R-modules P and Q such that A ⊗R

EndR(P ) ' B ⊗R EndR(Q).

Definition/Theorem 2.3.6. The Brauer group of a commutative ring R, denoted

Br(R), is the group of equivalence classes of Azumaya R-algebras where the tensor

product over R is the group operation, the equivalence class of R, denoted [R] is the

identity element, and the equivalence relation comes from Definition 2.3.5. Further-

more, for the equivalence class of [A] of an Azumaya R-algebra A, the inverse is

[A◦].

A proof of the claim that the set forms a group can be found in [4] p.186-192. As

dicussed for the case of fields in Theorem 2.2.2, we could show that Br(·) : Br(A) −→

Br(B) is also functorial for the case of commutative rings (See [4] p.192).

Finally, take a Q-variety V defined by a set of polynomials {fj} and the coordinate

ring R := Q[x1, x2, . . . , xn]/(gj), where (gj) is the ideal generated by the generators of

Rad({fj}). Note that Hilbert’s Basis Theorem ensures the existence of a finite set of

generators for Rad({fj}) and the solutions to f1 = f2 = · · · = fr = 0 with fi ∈ {fj}
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are the same as those of g1 = g2 = · · · = gs = 0 with gi ∈ (gj). We can now define

the Brauer group of a variety.

Definition 2.3.7. The Brauer group of a variety, is defined as Br(V ) := Br(R)

where R is as defined immediately above.
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Chapter 3

The Brauer-Manin Obstruction

Using the material defined and constructed in the previous two chapters, we are

now ready to describe the Brauer-Manin obstruction as it relates to a failure of the

Hasse principle. We will start by giving the context within which we study the Hasse

principle and then describe a sufficient condition for this principle not to hold.

If (x) is a rational point of V (Q), then the inclusion Q ↪→ Qp forces the existence

of points (xp) of V (Qp) for all primes p. The contrapositive of this last statement

can be somewhat useful for instances where some V (Qp) = ∅. Since it is possible to

decide if V (Qp) = ∅ for all primes p in finitely many steps (see discussion in Section

1.3), we arrive at a finite process showing that in this case, V (Q) = ∅.

The converse of the initial statement is much more interesting and does not nec-

essarily hold in general. If V (Qp) being non-empty for all p implies V (Q) 6= ∅,

then using local information (about each Qp) we deduce global information (about

Q) and we say the Hasse principle holds. Hasse and Minkowski are responsible for

a proof that this principle holds for quadratic forms (see [17] p.41) but as men-

tioned previously, many counter-examples have been known for quite some time

(see [12] p.401). A first type is more trivial and can be seen from the polynomial

f(x) = (x2 − 3)(x2 + 3)(x2 + 1)(x2 + 23), found on page 169 of [15]. For all primes

p greater than 3, at least one of 3, −3, or −1 is a square modulo p and by Hensel’s
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lemma, is a p-adic square. Also, −23 is a 2-adic and a 3-adic square and
√

3 ∈ R

hence f(x) has non-trivial solutions in every p-adic field and clearly no non-trivial

rational solutions and therefore, the Hasse principle fails for this example. Such ex-

amples result from a union of finitely many varieties Vi with special properties. First,

for each prime p, there exists at least one i such that Vi(Qp) 6= ∅ and therefore, there

is a local non-trivial solution for each p-adic field. Secondly, for each i, there exists

some p such that Vi(Qp) = ∅ hence Vi(Q) has no non-trivial solutions. Then ∪Vi has

a non-trivial p-adic point for all primes p and since none of the Vi have non-trivial

rational points, neither does ∪Vi.

As we will see later in this chapter, not all obstructions are trivial, but the simple

existence of such counterexamples partly motivates their classification. We will start

this chapter by setting up the remainder of the necessary material to complete our

discussion of the Brauer-Manin obstruction and then, we will finally see its descrip-

tion.

3.1 The Ring of Adèles

As the p-adic numbers were in some sense an abstraction of the rational numbers, a

further abstraction gives us adèles.

Definition 3.1.1. The ring of adèles AQ is
∏′

p(Qp) where the restricted product

indicates that all but finitely many ap in (a∞, a2, a3, . . . , ai, . . .) are p-adic integers.

Definition 3.1.2. The adèlic space of a variety, denoted V (AQ) consists of all adèles

for which each ap in (a∞, a2, a3, . . . , ai, . . .) is also in V (Qp).

The inclusion of Q ↪→ Qp now provides the inclusion Q ↪→ AQ, by sending x ∈ Q

to the adèle all of whose ap = x. The result is in fact an adèle since for a given

rational x, only finitely many ap are not in Zp. This then implies that non-trivial
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rational points give rise to non-zero adelic points and V (Q) ↪→ V (AQ). By previous

discussions, (see Section 1.3) deciding the vacuity of V (AQ) is a finite problem but the

existence of trivial obstructions responsible for failures of the Hasse principle suggests

that we might want to seek a refinement of this inclusion by finding a set X such that

V (Q) ⊆ X ⊆ V (AQ) to explain the failure. If we verify that V (AQ) 6= ∅ but X = ∅,

then V (Q) = ∅, and we have found an obstruction which causes the Hasse principle

to fail.

3.2 The Brauer-Manin obstruction

The case where, as will be seen in this section, we can find X = V (AQ)Br = ∅

describes a Brauer-Manin obstruction. To complete its description, we need a few

final details.

For every (xp) ∈ V (Qp), we get a ring homomorphism from

R := Q[x1, x2, . . . , xn]/(gj) −→ Qp

as in the end of Chapter 2. We can think of this map as evaluation of the polynomials

in R at (xp). This, provides a map Br(V ) −→ Br(Qp) (see the discussion of the ring

analogue to Theorem 2.2.2 in Section 2.3). We then have a map V (Qp)×Br(V ) −→

Br(Qp), hence for a choice of A ∈ Br(V ), we get a map ΦA : V (Qp) −→ Br(Qp) and

further, a map V (AQ) −→
∏

pBr(Qp). The image of this last map, is contained in⊕
pBr(Qp) (for complete details on this, see [15], p.175). We also state for future

use that for a choice of A ∈ Br(V ), we similarly get a map ΦA : V (Q) −→ Br(Q).

We also need to use a description of Br(Qp).

Theorem 3.2.1. There exists an isomorphism invp : Br(Qp) −→ Q/Z.
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(For details see [17] section XIII.3)

The following result comes from class field theory.

Theorem 3.2.2 (Fundamental Theorem of Global Class Field Theory). The following

is a short exact sequence.

0 // Br(Q) //
⊕

pBr(Qp)
∑

p invp
// Q/Z // 0

For a proof of Theorem 3.2.2, see p.235 of [14].

Definition 3.2.3. Let A be an Azumaya R-algebra. We define

V (AQ)A = {(xp) ∈ V (AQ) |
∑
p

invp ΦA(xp) = 0}.

We also define V (AQ)Br =
⋂
A∈Br(V ) V (AQ)A

We can now clearly see that by definition, V (AQ)Br ⊆ V (AQ). We next make use

of the following theorem.

Theorem 3.2.4. V (Q) ⊆ V (AQ)Br.

Proof. First, we examine the following diagram.

V (Q) � � i //

ΦA

��

V (AQ)

ΦA

��

0 // Br(Q)
j //
⊕

pBr(Qp)
∑

p invp
// Q/Z // 0

For any A ∈ Br(V ) the above diagram commutes and therefore ΦA ◦ i = j ◦ ΦA.

Since the bottom row is exact by Theorem 3.2.2, (
∑

p invp) ◦ j = 0 hence (
∑

p invp) ◦
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j ◦ ΦA = (
∑

p invp) ◦ ΦA ◦ i = 0. As a result, for every x ∈ V (Q) and for every

A ∈ Br(V ), we find that (
∑

p invp) ◦ ΦA ◦ i(x) = 0, therefore V (Q) ⊆ V (AQ)Br.
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Chapter 4

Examples

In this section, we will describe two examples of varieties for which the Hasse principle

fails. In the first, (an original example inspired by one found on page 169 of [2]) we

make use of more basic arguments. In the second example, we use more powerful

machinery to show that the failure of the Hasse principle is due to a Brauer-Manin

obstruction.

4.1 Example 1

Theorem 4.1.1. The variety V, a smooth del Pezzo surface of degree 4 defined by

uv = x2 − 17y2, (4.1)

(u+ 2v)(u+ 15v) = x2 − 17z2 (4.2)

has non-trivial points in every p-adic field without having non-trivial rational points.

Proof. We start by noting that using software such as Macaulay 2, we can show that

V is indeed smooth. Since V is smooth, we know that it is irreducible and hence

not a trivial example as seen in the introduction of Chapter 3. We will continue by

showing that V has non-trivial points in every p-adic field. First, we notice that in
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Q2, integers congruent to 1 (mod 8) are squares. This follows from the fact that for

any k ∈ Z, r = 0 is a solution to r2 + r − 2k ≡ 0 (mod 2) while 2r + 1 6≡ 0 (mod 2).

Hensel’s lemma then forces the existence of a 2-adic solution to r2 + r−2k = 0 which

is also a solution to

0 = 4r2 + 4r − 8k

= (2r + 1)2 − (8k + 1).

Letting k = 2, we therefore find that 17 is a 2-adic square and (17, 0, 17,
√

17, 0) is a

point of V in Q2.

Now, notice that the following three points (u, v, x, y, z) satisfy equation 4.1 and

equation 4.2 :

A = (17, 0, 0, 0,
√
−17), B = (17, 0, 17,

√
17, 0), C = (−8, 1, 5

√
−1,
√
−1, 1).

By quadratic reciprocity, for all primes p, at least one of −1, 17, or −17 is a square

in Z/pZ. For p 6= 2 and for q = 1, −17 or 17, this implies that there exists an r ∈ Z

such that r2 − q ≡ 0 (mod p) and since 2r 6≡ 0 (mod p), Hensel’s lemma guarantees

that one of −1, 17, or −17 is a p-adic square. In turn, this implies that one of A,

B, or C is a point of V in Qp. Since
√

17 ∈ R, we find that B ∈ V (R) and we have

shown that V has non-trivial points in every p-adic field.

Next, we show that V has no non-trivial rational points. We start by assuming

(u, v, x, y, z) to be a rational point of V . We know that u and v cannot be zero since

then, x2−17y2 would be zero but
√

17 is irrational and the only possible point would

be (0, 0, 0, 0, 0). Note also that we can scale any solution by a rational factor, therefore

we assume that u and v are coprime integers. Next, we notice that 17 does not divide
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uv since if it did, it would divide x2−17y2 and also x2, x2−17z2 and (u+2v)(u+15v)

which is a contradiction with u and v being coprime integers. Reversing the argument

from equation 4.2 to equation 4.1, we find that 17 does not divide (u+ 2v)(u+ 15v).

Furthermore, uv is not exactly divisible by an odd power of a prime

p ≡ 3, 5, 6, 7, 10, 11, 12, 14 (mod 17),

which are the quadratic nonresidues modulo 17. Assuming it was, and 2n+ 1, n ∈ N

was the largest power of a quadratic nonresidue modulo 17 dividing uv, then

x2 − 17y2 ≡ 0 (mod p2n+1). (4.3)

Since p is not a square modulo 17 and 17 ≡ 1 (mod 4), by quadratic reciprocity

17 is also not a square modulo p, hence not a square (mod p2n+1). The only possible

solution to equation 4.3 is hence x ≡ y ≡ 0 (mod p2n+1). This would mean that

x2 − 17y2 ≡ uv ≡ 0 (mod p2(2n+1)) which contradicts the assumption that 2n + 1 is

maximal. This means that u and v are products of quadratic residues and of even

powers of quadratics nonresidues which necessarily implies that u and v are squares

modulo 17, as well as being coprime. Again, reversing the argument from equation

4.2 to equation 4.1 we find that (u + 2v) and (u + 15v) are also squares modulo 17

but this is also a contradiction since for all squares u and v modulo 17, an exhaustive

check of all cases shows that (u+ 2v) and (u+ 15v) cannot be simultaneously squares

modulo 17. This shows that V has no non-trivial rational points and completes the

proof of the theorem.
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4.2 Example 2

The next example is due to Peyre and appears on page 171 of [15] but before we

describe it, we need a few more results.

Definition 4.2.1. The Hilbert symbol (a, b)p for a, b ∈ Q∗p is 1 if z2 − ax2 − by2 = 0

has a non-trivial solution in Q3
p, and is −1 otherwise.

To compute the Hilbert symbol, the following definition will be useful.

Definition 4.2.2. Let n be an odd integer. Then

e(n) =

 0 if n ≡ 1 (mod 4)

1 if n ≡ 3 (mod 4)

The next proposition contains properties of the Hilbert symbol.

Proposition 4.2.3.

(a,−1)p = (−1)ordp(a)e(p) where p is a prime, p 6= 2

(a,−1)2 = (−1)e(u) where u is such that a = 2ord2 a · u, 2 - u

(a,−1)∞ =
a

|a|∞
(a, c2)p = 1

(a, bc)p = (a, b)p(a, c)p

A proof of the proposition can be found on pages 11−14 of [11]. With this result

in mind, we are ready to describe the next example.
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Theorem 4.2.4. Let V be the smooth variety corresponding to y2 +z2 = (3−x2)(x2−

2). Then the Hasse principle fails for V and there is a Brauer-Manin obstruction for

V so V (AQ) 6= ∅ and V (AQ)Br = ∅.

Seeking a proof for Theorem 4.2.4, we need the following lemmas.

Lemma 4.2.5. For all primes p, there exists x 6= ±
√

2,±
√

3,∈ Qp such that, ((3−

x2)(x2 − 2),−1)p = 1.

Proof. The proof of Lemma 4.2.5 will follow in 4 cases.

Case 1 : p ≡ 1 (mod 4)

First, notice that for all p ≡ 1 (mod 4), ((3− x2)(x2 − 2),−1)p = 1 since e(p) = 0.

Case 2 : p ≡ 3 (mod 4)

For all p ≡ 3 (mod 4), any x with ordp x < 0 will be sufficient since then x =

a
pk , (p - a), and then ordp(3 − x2) = −2k = ordp(x

2 − 2) hence ((3 − x2),−1)p =

(−1)ordp(3−x2) = (−1)ordp(x2−2) = ((x2−2),−1)p and ((3−x2),−1)p · ((x2−2),−1)p =

((3− x2)(x2 − 2),−1)p = 1.

Case 3 : p = 2

For p = 2, setting x = 0 gives (3,−1)2 = (−1)e(3) = −1 = (−1)e(−1) = (−2,−1)2

hence ((3− x2)(x2 − 2),−1)p = ((3− 02),−1)2 · ((02 − 2),−1)2 = 1.

Case 4 : p =∞

For p = ∞, we get 3−x2

|3−x2|∞ = x2−2
|x2−2|∞ as long as (3 − x2)(x2 − 2) > 0, or for x ∈

{(−
√

3,−
√

2)∪(
√

2,
√

3)}. We thus find that there exists x ∈ Q∞ with ((3−x2)(x2−

2),−1)∞ = 1 and have therefore shown that there exists x ∈ Qp such that ((3 −

x2)(x2 − 2),−1)p = 1 for all primes p.

Lemma 4.2.6. For every solution (x, y, z) to y2 + z2 = (3− x2)(x2 − 2) and for all

primes p 6= 2, (3− x2,−1)p = 1 while (3− x2,−1)2 = −1.
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Proof. The proof of Lemma 4.2.6 will similarly proceed in 4 cases.

Case 1 : p ≡ 1 (mod 4)

For all p ≡ 1 (mod 4), (3− x2,−1)p = 1 by the same argument as in Lemma 4.2.5.

Case 2 : p ≡ 3 (mod 4)

First, notice that for every p-adic solution to y2 + z2 = (3 − x2)(x2 − 2), we have

((3− x2)(x2 − 2),−1)p = 1, hence we get (3− x2,−1)p = (x2 − 2,−1)p for all p. For

all p ≡ 3 (mod 4), all x for which (3−x2,−1)p = (x2−2,−1)p force (3−x2,−1)p = 1

since as before, if ordp x < 0, the relation is automatic but even if ordp x ≥ 0, the

fact that (3 − x2) + (x2 − 2) = 1 implies that min(ordp(3 − x2), ordp(x
2 − 2)) ≤

ordp(3− x2 + x2− 2) = ordp(1) = 0. We can then say that either ordp(3− x2) ≤ 0 or

ordp(x
2 − 2) ≤ 0. But ordp(3− x2) ≥ min(ordp(3), ordp(x

2)) = 0 and ordp(x
2 − 2) ≥

min(ordp(x
2), ordp(−2)) = 0, therefore min(ordp(3 − x2), ordp(x

2 − 2)) = 0 and we

must have either ordp(3 − x2) = 0 or ordp(x
2 − 2) = 0, but since (3 − x2,−1)p =

(x2 − 2,−1)p we must have (3− x2,−1)p = 1.

Case 3 : p = 2

If p = 2, then (3− x2,−1)2 = −1. To see why, we remember that (3− x2,−1)p must

equal (x2−2,−1)p and we notice that ord2(x) 6= 0 since if it was, we would get x ∈ Z2,

x ≡ 1, 3, 5, 7 (mod 8) and x2 ≡ 1 (mod 8). Then 3 − x2 ≡ 2 (mod 8) and 3−x2

2
≡ 1

(mod 4) hence 1 = (3−x2

2
,−1)2 = (1

2
,−1)2 ·(3−x2,−1)2 = (−1)e(1)(3−x2,−1)2 = (3−

x2,−1)2. Similarly, since x2 − 2 ≡ 7 (mod 8) ≡ 3 (mod 4), then (3− x2,−1)2 = −1.

This is a contradiction since (3 − x2,−1)p = (x2 − 2,−1)p therefore ord2(x) 6= 0. If

ord2(x) > 0, then 3 − x2 ≡ 3 (mod 4) and (3 − x2,−1)2 = −1 while if ord2(x) < 0,

then 3
x2 − x2

x2 ≡ 3 (mod 4) and −1 = ( 3
x2 − 1,−1)2 = (x2( 3

x2 − 1),−1)2 = (3−x2,−1)2

and (3 − x2,−1)2 = −1 and therefore (3 − x2,−1)2 = −1 for every solution (x, y, z)

to y2 + z2 = (3− x2)(x2 − 2).

Case 4 : p =∞
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Finally, if (3− x2,−1)∞ = (x2 − 2,−1)∞, then 3−x2

|3−x2|∞ = x2−2
|x2−2|∞ and x ∈ (−

√
3,
√

3)

which gives us (3− x2,−1)∞ = 1.

This shows that for all x such that (x, y, z) is a solution to y2 + z2 = (3−x2)(x2− 2),

and for all primes p 6= 2 we have (3 − x2,−1)p = 1 while (3 − x2,−1)2 = −1 and

concludes the proof of Lemma 4.2.6

The next definition describes a generalization of the real quaternions.

Definition 4.2.7. Let

(α, β
R

)
:=

R < i, j, k >

(i2 − α, j2 − β, ij + ji, ij − k)
.

This algebra is referred to as a quaternion R-algebra and forms an Azumaya R-

algebra with dimension 4 over R. We can find a proof of this claim on page 49 of

[16]. A particular example which will be revisited soon is
(
α,β
Qp

)
which, by previous

comments, is a central simple Qp-algebra. The next two lemmas will provide the final

details to complete the proof of Theorem 4.2.4.

Lemma 4.2.8. (α, β)p = 1 if and only if
(
α,β
Qp

)
is not a division algebra.

Proof. To begin, (α, β)p = 1 if and only if αx2+βy2−z2 = 0 has a non-trivial solution

in Q3
p but there exists such a solution to αx2 + βy2 − z2 = 0 if and only if αx2 +

βy2 − z2 − αβw2 = 0 has a non-trivial solution in Q4
p. The last forward implication

is clear but its converse eminates from the fact that if αx2 + βy2 − z2 − αβw2 = 0

has a non-trivial solution in Q4
p, then α = z2−βy2

x2−βw2 =
(
xz−βyw
x2−βx2

)2

− β
(
wz−yx
x2−βx2

)2

and

therefore αx2 + βy2 − z2 = 0 has a non-trivial solution in Q3
p. We finally want

to show that αx2 + βy2 − z2 − αβw2 = 0 has a non-trivial solution in Q4
p if and

only if
(
α,β
Qp

)
is not a division algebra. With this intent, we will show that for any
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0 6= a ∈
(
α,β
Qp

)
, a is invertible if and only if aa 6= 0 where if a = z − ix − jy − kw,

then a = z + ix + jy + kw. If a−1 exists, then a 6= 0 and a−1aa = a 6= 0 therefore

aa 6= 0. Since aa = z2−αx2−βy2 +αβw2, we know that αx2 +βy2− z2−αβw2 6= 0.

Conversely, for any 0 6= a ∈
(
α,β
Qp

)
with aa 6= 0, aa ∈ Qp. Therefore (aa)−1 exists, but(

(aa)−1a
)
a = (aa)−1aa = 1 and a

(
(aa)−1a

)
= a

(
(aa)−1a

)
= a(a−1a−1)a = 1 hence

a−1 = (aa)−1a exists and finally,(α, β)p = 1 if and only if
(
α,β
Qp

)
is not a division

algebra.

The next lemma describes possible elements in Br(Qp).

Lemma 4.2.9.
(
α,β
Qp

)
⊗Qp

(
α,β
Qp

)
∼= M4(Qp).

Proof. Using Theorem 2.1.8, Definition/Theorem 2.2.1 and the fact that quaternion

algebras are isomorphic to their opposite algebra,
(
α,β
Qp

)
and

(
α,β
Qp

)◦
are inverses in

Br(Qp) and therefore
(
α,β
Qp

)
⊗Qp

(
α,β
Qp

)
∼= M4(Qp).

We are now ready to prove Theorem 4.2.4.

Proof of Theorem 4.2.4. To prove that the Hasse principle fails, we need to show that

V has non-zero adelic points, while having no rational points. To begin, note that

Lemma 4.2.5 shows that there exists x 6= ±
√

2,±
√

3 ∈ Qp such that, ((3− x2)(x2 −

2),−1)p = 1 for all p. For such values of x, we see that Z2+Y 2 = (3−x2)(x2−2)X2 has

a non-trivial solution over Q3
p for all p, which is equivalent to z2 +y2 = (3−x2)(x2−2)

having a solution over Q2
p. Therefore ((3−x2)(x2−2),−1)p = 1 for all p is ultimately

equivalent to V having an non-trivial adelic point and V (AQ) 6= ∅.

By Lemmas 4.2.6 and 4.2.8, we conclude that every adelic point (xp) ∈ V (AQ) maps,
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(via ΦA in Figure 3.2 with A =
(

3−x2,−1
R

)
) to

(M2(Q∞), D,M2(Q3),M2(Q5), . . .) ∈
⊕

Br(Qp)

where D is a division algebra since
(

3−x2,−1
Qp

)
is only a division algebra for p = 2. By

Lemma 4.2.9 and with
∑

p invp from Theorem 3.2.2, we see that

(M2(Q∞), D,M2(Q3),M2(Q5), . . .) ∈
⊕

Br(Qp)

maps to (0 + 1
2

+ 0 + 0 + ...) ∈ Q/Z which is nonzero. We therefore find that

V (AQ)A = ∅ and so ∩A∈Br(V )V (AQ)A = ∅. By Theorem 3.2.4, V (Q) ⊆ V (AQ)Br and

therefore there can be no rational solutions and this failure of the Hasse principle is

fully explained by the Brauer-Manin obstruction.
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