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Abstract
In 1980, John McKay described McKay graphs and alluded to interesting results that
could be obtained through the study of representations of finite groups [McKa]. In
this thesis, I characterize McKay graphs of degree 1 and present the research done by
various people which allows us to understand McKay graphs of degree 2. I also discuss
that if you view a McKay graph as an adjacency matrix, many interesting results can
be witnessed. We also use the work performed by [YaYu] to help us catalogue the
McKay graphs of degree 3.
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Introduction
The aim of this work is to study representations of finite groups in order to gain an
understanding of McKay graphs. The thesis begins by giving background information
that is crucial for the understanding of the research performed. Relevant information
is then provided on representations of finite groups, CG-modules, and characters of
finite groups.
McKay graphs are then defined and numerous examples are given from various groups.
Through the use of these examples, McKay graphs of degree 1 are discussed in detail
and we obtain a classification of these. After researching various papers, we gain an
understanding of McKay graphs of degree 2. From McKay [McKa], it is realized that
McKay graphs of a group G ⊂ SL(G,C) are one of the extended Dynkin diagrams

Ãn, D̃n, Ẽ6, Ẽ7, or Ẽ8. We then give a generalization of McKay’s work by Auslander
and Reiten [AuRe] to get a description of McKay graphs of a group G ⊂ GL(G,C).
It is shown that we can interpret a McKay graph as an adjacency matrix and immedi-
ate benefits of this are observed. We show that more complicated McKay graphs can
be expressed by using operations on simpler McKay graphs. We also discover that
if we compute the eigenvalues and eigenvectors of the adjacency matrix of a McKay
graph, one of the eigenvectors corresponds to the dimensions of the irreducible rep-
resentations and the eigenvalue corresponds to the degree of the McKay graph.
We then look at a classification of the finite subgroups of SL(3,C) given by Yau and
Yu [YaYu]. All these subgroups are given in this thesis and the McKay graphs for
these subgroups are described.
It is then proven that if a McKay graph is of a faithful representation, it is strongly
connected.
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Chapter 1

Representations and Characters of Finite Groups

This chapter provides background information that is essential for the understanding

of McKay graphs and the research that was performed. It is assumed that the reader is

familiar with linear algebra and group theory; however, when such concepts arise, the

definitions are often stated for the sake of clarity. I begin by defining a representation

of a finite group and giving some examples and important results. CG-modules are

then described and it is shown that there is a close relationship between CG-modules

and representations. Some details about CG-modules are presented such as irre-

ducibility, Maschke’s theorem, and Schur’s lemma. I then discuss conjugacy classes

as they play an important role in the development of later material. Characters are

then analyzed and it is shown that characters are closely linked to representations

and CG-modules. The strength of characters is that they often help describe things

about representations and CG-modules and their arithmetic is significantly easier.

Examples of characters and operations on characters are examined, such as the inner

product of characters. We then finish off the chapter by describing character tables

and detailing how they present information about the characters in a clear way by

taking away redundancy.

The material covered in this chapter was paraphrased from James and Liebeck [JaLi].

If the reader needs further examples or more details, they are encouraged to use this

text.
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1.1 Representations of Finite Groups

Definition 1.1.1:

Let V be a vector space over C. A representation of a group G is a homomorphism

ρ: G → GL(V,C). We say that deg(ρ) = dim(V) [JaLi].

GL(V,C) is the general linear group and if dim(V) = n, then GL(V,C) is the set of

n×n invertible matrices with ordinary matrix multiplication. Throughout this paper,

we will sometimes write ρ: G → GL(n,C) where n = dim(V).

ρ is a homomorphism so we have the following:

1. ρ(xy) = ρ(x)ρ(y) for all x, y ∈ G.

2. ρ(1) = In where 1 is the identity element of G.

3. ρ(g−1) = (ρ(g))−1 where g ∈ G.

Let’s look at a few examples of representations.

Example 1.1.2:

Let the trivial representation ρ: G → GL(1,C) be defined by ρ(g) = 1, for all g ∈

G.

Example 1.1.3:

If G = Sn, the symmetric group on n variables, then let ρ: G → GL(1,C) be defined

by
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ρ(g) =

 1 if even permutation

−1 if odd permutation

This is called the alternating representation.

Example 1.1.4:

We can also find matrix representations.

Consider G = D8 = 〈a, b|a4 = b2 = 1, b−1ab = a−1〉.

Let

A =

 0 1

−1 0

 , B =

 1 0

0 −1


now,

ρ: G → GL(2,C) is given by ρ : aibj → AiBj, (0 ≤ i ≤ 3, 0 ≤ j ≤ 1).

Notice that deg(ρ) = 2.

Definition 1.1.5:

Let ρ: G → GL(n,C) and σ: G → GL(m,C). We say that ρ is equivalent to σ if n =

m and there exists an invertible n×n matrix T such that σ(g) = T−1(ρ(g))T [JaLi].

The kernel of a representation consists of the group elements g which ρ(g) sends to

the identity matrix. We can thus say that ker(ρ) = {g ∈ G |ρ(g) = In}.

Definition 1.1.6:

A representation is said to be faithful if ker(ρ) = {1}. That is the identity element
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of the group is the only element for which ρ(g) = In [JaLi].

The trivial representation of Example 1.1.2 illustrates an unfaithful representation.

By definition, it sends every group element to the identity. The matrix representation

of Example 1.1.4 shows a faithful representation.
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1.2 CG-modules

Definition 1.2.1:

Let V be a vector space over C and let G be a group. Then V is a CG-module

if a multiplication vg where v ∈ V, g ∈ G is defined, which satisfies the following

conditions:

1. vg ∈ V

2. v(gh) = (vg)h

3. v ∗ 1 = v

4. (λv)g = λ(vg)

5. (u+ v)g = ug + vg

where u, v ∈ V; λ ∈ C; g, h ∈ G [JaLi].

Definition 1.2.2:

Let V be a CG-module and let ℘ be a basis of V. For each g ∈ G, let [g]℘ denote the

matrix of the endomorphism v → vg of V, relative to the basis ℘ [JaLi].

Theorem 1.2.3:

1. ρ: G → GL(n,C) is a representation of G over C and V = Cn. The vector space

V becomes a CG-module if we define vg = v(ρ(g)) where v ∈ V, g ∈ G.

2. There is a basis ℘ of V such that ρ(g) = [g]℘ for all g ∈ G.
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So, g → [g]℘ is a representation of G over C [JaLi].

Example 1.2.4:

Recall Example 1.1.4 :

ρ(a) =

 0 1

−1 0

 , ρ(b) =

 1 0

0 −1

, V = C2

Let v1 and v2 be the standard basis vectors for C2.

So, v1a = v2, v2a = −v1, v1b = v1, v2b = −v2

Since v1 and v2 form a basis ℘ over C, g → [g]℘ is the representation ρ.

Example 1.2.5:

The trivial CG-module is a 1-dimensional vector space V over C where vg = v, for

all v ∈ V, g ∈ G.

A CG-module V is faithful if the identity element of G is the only element of g for

which vg = v, for all v ∈ V.

Theorem 1.2.6:

If V is a CG-module with bases ℘, ℘′ and ρ(g) = [g]℘ and σ(g) = [g]℘′, then ρ is

equivalent to σ [JaLi].
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Definition 1.2.7:

A subset W of a vector space V is a CG-submodule of V if W is a subspace of V and

wg ∈ W, for all w ∈ W, g ∈ G [JaLi].

Definition 1.2.8:

A CG-module V is called irreducible if it is non-zero and it has no CG-submodules

apart from {0} and V. If V has a CG-submodule that is not {0} or V, then V is called

reducible [JaLi].

We can say that ρ: G → GL(n,C) is irreducible if the CG-module, vg = v(ρ(g)), is

irreducible. If the CG-module is reducible, then ρ is called reducible.

Example 1.2.9:

If deg(ρ) = 1, then ρ is irreducible since the only subrepresentations are {0} and V.

So, we have seen two representations that have deg(ρ) = 1, namely the trivial and

alternating representations (Examples 1.1.2, 1.1.3 ). It follows that these representa-

tions are irreducible.

Example 1.2.10:

Let G be a finite group. The vector space CG, with natural multiplication vg where

v ∈ CG, g ∈ G, is called the regular CG-module. Notice how the group acts on the
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vector space CG. The representation ρ : g → [g]℘ obtained by taking ℘ to be the

natural basis of CG is called the regular representation of G over C. The regular

representation of G is reducible.

Maschke’s Theorem 1.2.11:

Let G be a finite group and let V be a CG-module. If U is a CG-submodule of V,

there is a CG-submodule W such that V = U ⊕ W [JaLi].

The consequence of Maschke’s theorem that is of particular interest for our cause is

that every non-zero CG-module is completely reducible; that is, V = U0⊕U1⊕. . .⊕Ur

where each Ui is an irreducible CG-module of V.

Definition 1.2.12:

HomCG(V,W ) is the set of all CG-homomorphisms from V to W [JaLi].

Schur’s Lemma 1.2.13:

Let V and W be irreducible CG-modules.

1. If φ: V → W is a CG-homomorphism, then either φ is a CG-isomorphism or

φ(v) = 0 for all v ∈ V.

2. If φ: V → V is a CG-isomorphism, then φ is a scalar multiple of the identity

1V [JaLi].
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We then have an immediate consequence of Schur’s lemma. If V,W are irreducible

CG-modules, then

dim(HomCG(V,W )) =

 1 if V ∼= W

0 if V � W

9



1.3 Conjugacy Classes

Definition 1.3.1:

Let x, y ∈ G. If y = g−1xg for some g ∈ G, then we say that x is conjugate to y in G

[JaLi].

We can denote the set of all elements conjugate to x in G by xG = {g−1xg | g ∈ G}.

This set is called a conjugacy class.

If we take two group elements then either the conjugacy classes of both elements are

equal or they share no elements in common. This means that every group is a union

of conjugacy classes where distinct conjugacy classes are disjoint.

That is, G = xG1 ∪ . . .∪xGr , where xG1 , . . . , x
G
r are the conjugacy classes and x1, . . . , xr

are called class representatives.

Example 1.3.2:

D8 = {1, a, a2, a3, b, ab, a2b, a3b}.

The conjugacy classes for D8 are: 1G = {1}, aG = {a, a3}, (a2)G = {a2}, bG = {b, a2b},

and abG = {ab, a3b}.

In this example 1, a, a2, b, and ab are the class representatives for the conjugacy

classes.
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1.4 Characters

The trace of an n× n matrix A is given by tr(A) =
n∑
i=1

aii.

Definition 1.4.1:

Suppose V is a CG-module with basis ℘. The character χ: G → C is given by

χ(g) = tr[g]℘ for all g ∈ G [JaLi].

But the character of V does not depend on the basis because [g]℘′ = T−1[g]℘T . From

this we can see that tr[g]℘′ = tr[g]℘ for all g ∈ G. This tells us that the trace of a

matrix is the same regardless of our choice of basis. Using this result, we can define

the character of a representation to be χ(g) = tr(ρ(g)).

We say that χ is an irreducible character if it is from an irreducible CG-module.

We can also note at this point that conjugate elements of the group have the same

character. That is if x is conjugate to y if y = g−1xg for some g ∈ G, then χ(x) =

χ(y).

We can now look at a few results about characters:

1. χ(1) = deg(ρ) = dim(V).

2. χ(g−1) = χ(g).

3. χ(g) is a real number if g is conjugate to g−1.
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4. If g, h are conjugate elements of the group G, then χ(g) = χ(h) for all characters

χ of G.

5. If χ is a character, then χ is also a character.

6. If χ is an irreducible character, then χ is also an irreducible character [JaLi].

Theorem 1.4.2:

Let ρ: G → GL(n,C) be a representation of G and let χ be the character of ρ. Then

we have the following statements:

1. For g ∈ G

|χ(g)| = χ(1) if and only if ρ(g) = λIn for some λ ∈ C.

2. ker(ρ) = {g ∈ G |χ(g) = χ(1)} [JaLi].

Proposition 1.4.3:

Let ρ and ψ be representations of G. Then χρ⊗ψ = χρχψ and χρ⊕ψ = χρ + χψ [JaLi].

The proposition above tells us that if we are trying to multiply or add representa-

tions, we must use the tensor product or direct sum since we are either multiplying

or adding vector spaces. If we are trying to multiply or add characters though, we

can use regular multiplication or addition to accomplish this feat. We can now define
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another operation on characters, the inner product or pairing of characters.

Definition 1.4.4:

Let χ and ψ be characters of G. The inner product of χ and ψ is given by

〈χ, ψ〉 = 1
|G|

∑
g∈G

χ(g)ψ(g)

The inner product also satisfies some conditions:

1. 〈χ, ψ〉 = 〈ψ, χ〉

2. 〈λ1χ+ λ2ψ, φ〉 = λ1〈χ, φ〉 + λ2〈ψ, φ〉

3. 〈χ, χ〉 > 0 iff χ 6= 0.

The following theorem illustrates how any character can be composed by adding other

irreducible characters together.

Theorem 1.4.5:

Let χ1, . . . , χr be the irreducible characters of G. If ψ is any character of G, then

ψ = d1χ1 + . . .+ drχr where the integers di = 〈ψ, χi〉 for 1 ≤ i ≤ r [JaLi].
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Theorem 1.4.6:

Let V be a CG-module with character χ. Then V is irreducible if and only if 〈χ, χ〉

= 1 [JaLi].

Theorem 1.4.7:

Suppose that V and W are CG-modules with characters χ and ψ respectively. Then

V ∼= W if and only if χ = ψ [JaLi].

Theorem 1.4.8:

Let V and W be CG-modules with characters χ and ψ respectively. Then dim(HomCG(V,W )) =

〈χ, ψ〉 [JaLi].

We are now in a position to comment on the number of irreducible characters of a

group G. The number of irreducible characters of G is equal to the number of conju-

gacy classes of G.

Definition 1.4.9:

Suppose χ1, . . . , χr are all the irreducible characters of G. The regular character

χreg = d1χ1 + . . . + drχr where χi is the irreducible CG-module Vi and di = χi(1).

Notice that χreg(1) = |G| and that χreg is a reducible character [JaLi].
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1.5 Character Tables

Character tables allow us to gather all of the information about characters of a group

in a clear, concise format that eliminates a lot of redundancy by utilizing the conju-

gacy classes. The columns of the table correspond to the r conjugacy classes of G. The

rows describe the characters of the distinct irreducible representations χ1, . . . , χr of

G. It is known that the number of irreducible characters of G is equal to the number

of conjugacy classes of G, so we can be guaranteed that the table is a r × r square

table. By convention, the first representation listed in the character table is the triv-

ial representation and the first column always corresponds to the conjugacy class 1G.

We also say that the first column of the character table contains the degrees of the

irreducible representations.

Definition 1.5.1:

Let χ1, . . . , χr be the irreducible characters of G and let g1, . . . , gr be the class repre-

sentatives of the conjugacy classes of G. The r × r matrix whose ijth entry is χi(gj)

is called the character table of G [JaLi].

Example 1.5.2:

The complete character table for D8 is given below:

15



g 1 a2 a b ab

χ1 1 1 1 1 1

χ2 1 1 1 -1 -1

χ3 1 1 -1 1 -1

χ4 1 1 -1 -1 1

χ5 2 -2 0 0 0
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Chapter 2

McKay Graphs

This chapter describes what is already known about McKay graphs and the research

that I did while working towards a Master’s degree. In the first section, McKay

graphs are defined. Numerous McKay graphs are then presented from a variety of

groups. In the second section, the McKay graphs of degree 1 are characterized. The

third section discusses results from three papers by McKay [McKa], Auslander and

Reiten [AuRe], and Reiten and Van den Bergh [ReVB]. These three papers allow us

to understand McKay graphs of degree 2. In the following section, we consider the

encoding of a McKay graph in its adjacency matrix, and use this to notice and prove

some interesting properties about these graphs. The next section comments on the

classification of finite subgroups of SL(3,C) that was studied in Yau and Yu [YaYu].

Their findings are presented in this thesis and are used to help catalogue the McKay

graphs of degree 3. The chapter then concludes by discussing some conditions that

affect the shape of a McKay graph.
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2.1 McKay Graphs

We begin this chapter by defining a McKay graph.

Definition 2.1.1:

Suppose ρ1, . . . , ρr is the set of non-isomorphic irreducible representations of G. For

any representation τ of G over an algebraically closed field k, we denote by multi(τ)

the dimension of HomCG(ρi, τ) as a C-vector space. The McKay graph McK(G,τ) is

defined to be an oriented graph whose vertices are ρi, (1 ≤ i ≤ r), and there are µ

arrows from ρi to ρj when µ = multj(τ ⊗ ρi) [Yosh].

Recall that HomCG(ρi, τ) is the set of homomorphisms from the representation ρi to

the representation τ . Since we’re considering the set of non-isomorphic irreducible

representations, the McKay graph describes the multiplicity between these represen-

tations by connecting the corresponding vertices with edges.

The degree of a McKay graph McK(G,τ) is, by definition, deg(τ). Note that this def-

inition of degree is not the same as the usual notion of degree of a vertex of a graph.

It is also seen that a representation τ is chosen when describing McK(G,τ) and for

the remainder of the thesis we will call this representation our favorite representation.

When drawing McKay graphs I will use the following conventions:

• Arrowheads will not be drawn if 〈χτχρi
, χρj

〉 = 〈χτχρj
, χρi

〉. A line connecting

18



the two vertices will be drawn.

• The degree of the representation will be marked inside the vertex [Noor].

Example 2.1.2:

Consider the character table for D6, the dihedral group with 6 elements.

g 1 a b

χ1 1 1 1

χ2 1 1 -1

χ3 2 -1 0

If our favorite representation is χ1, then McK(D6, χ1) is:

1 1 2

Notice that the degree of McK(D6, χ1) is one.

19



If our favorite representation is χ2, then McK(D6, χ2) is:

1

1 2

This McKay graph is also of degree one.

And finally, if our favorite representation is χ3, then McK(D6, χ3) is:

1 1

2

This McKay graph is of degree two.

Example 2.1.3:

Consider the character table for S4, the symmetric group on 4 variables.

20



g 1 (12) (123) (12)(34) (1234)

χ1 1 1 1 1 1

χ2 1 -1 1 1 -1

χ3 2 0 -1 2 0

χ4 3 1 0 -1 -1

χ5 3 -1 0 -1 1

McK(S4, χ1):

1 3 2 3 1

McK(S4, χ2):

1 3

231

21



McK(S4, χ3):

1

32

31

McK(S4, χ4) and McK(S4, χ5) are:

1

3

2

3

1

Example 2.1.4:

Consider the character table for A4, the alternating group on 4 variables.
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g 1 (12)(34) (123) (132)

χ1 1 1 1 1

χ2 1 1 ω ω2

χ3 1 1 ω2 ω

χ4 3 -1 0 0

ω = e2πi/3

McK(A4, χ1):

1 1 1 3

McK(A4, χ2) and McK(A4, χ3) are:

1

1

1

3

23



McK(A4, χ4):

1 1 1

3

Example 2.1.5:

Consider the character table of C3, the cyclic group of order 3.

g 1 a a2

χ1 1 1 1

χ2 1 ω ω2

χ3 1 ω2 ω

ω = e2πi/3

McK(C3, χ1):

1 1 1

24



McK(C3, χ2) and McK(C3, χ3) are:

1

1

1

25



2.2 McKay Graphs of Degree 1

After seeing numerous examples of McKay graphs, we are now in a position to com-

ment on the McKay graphs of degree 1.

A recurring McKay graph that has appeared in all four groups has been the trivial

McKay graph. The trivial McKay graph corresponds to the graphs that just have ver-

tices with self-loops. Since the number of vertices in a McKay graph is equal to the

number of irreducible representations of G, the trivial McK(G,τ) is produced when

our favorite representation τ is the trivial representation.

Claim 2.2.1:

For any group G, there is an irreducible representation τ such that McK(G,τ) is the

trivial graph.

Proof:

For every group a character table can be produced. The trivial representation is al-

ways an irreducible representation for a group. If we choose the trivial representation

ρ1 as our favorite representation the result follows since multj(ρ1⊗ ρi) = multj(ρi) =

1 (if i = j) or 0 (if i 6= j). 2

The trivial representation is not necessarily the only representation of degree 1. At

this point, it is worthwhile mentioning that representations of degree one are called

linear representations.
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Theorem 2.2.2:

If τ is a linear representation, then McK(G,τ) is a disjoint union of directed cycles

where all the vertices in a cycle correspond to representations of the same degree.

Before we can prove this theorem, we need to introduce the following proposition.

Proposition 2.2.3:

Let χ be a character and λ be a linear character. Then the product χλ is a character

of G. Furthermore, if χ is irreducible, then so is χλ [JaLi].

Proof of Proposition 2.2.3:

Let ρ: G → GL(n,C) be a representation with character χ. Define ρλ: G → GL(n,C)

by ρλ(g) = λ(g)ρ(g) where g ∈ G.

We can see that ρλ(g) is the matrix ρ(g) multiplied by the complex number λ(g).

Since ρ and λ are homomorphisms, it follows that ρλ is a homomorphism. The matrix

λ(g)ρ(g) has a trace λ(g)tr(ρ(g)), which is λ(g)χ(g). We can now say that ρλ is a

representation of G with character χλ.

We know that for all g ∈ G, the complex number λ(g) is a root of unity, so λ(g)λ(g)

= 1.
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〈χλ, χλ〉 = 1
|G|

∑
g∈G

χ(g)λ(g)χ(g)λ(g) = 1
|G|

∑
g∈G

χ(g)χ(g) = 〈χ, χ〉

By Theorem 1.4.6, ρ is irreducible iff 〈χ, χ〉 = 1. It follows that χλ is irreducible if χ

is irreducible. 2

Proof of Theorem 2.2.2:

Let G be a group, τ be our favorite representation, and ρ1, . . . , ρr be the irreducible

representations of G. In order to prove this statement, we first have to show that the

number of arrows entering and exiting any vertex is one.

Suppose τ is any linear representation. Then multi(τ ⊗ ρj) = multi(ρ̂j), where τ ⊗ ρj

= ρ̂j. Since τ is a linear representation and ρj is an irreducible representation of G,

Proposition 2.2.3 tells us that ρ̂j is also an irreducible representation of G. It is clear

that dim(ρ̂j) = dim(ρj). If ρj is an irreducible representation of dimension n, then

ρj⊗ τ is another irreducible representation of dimension n. So there is an arrow from

ρj to ρ̂j. But only one arrow exits every representation ρi because there are only a

finite number of irreducible representations for G.
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We want to show that there is only one arrow entering every ρi. Well, multj(τ⊗ρi) =

multj(ρ̃i), where τ ⊗ρi = ρ̃i. Proposition 2.2.3 says that ρ̃i is an irreducible represen-

tation of G. Taking the tensor product of the conjugate of ρi, for all ρi ∈ {ρ1, . . . , ρr},

reverses the direction of the arrows of the McKay graph. Using this McKay graph,

we can say that every representation ρi has only one arrow exiting it. By performing

the tensor product by the conjugate again, we retrieve the original McKay. Since

each representation ρi had one arrow exiting it in the ”reversed” McKay graph, each

representation ρi will have only one arrow entering it in the original McKay graph.

We know that the number of arrows entering and exiting any vertex is one. We also

know that if dim(ρi) = dim(ρj), then the two vertices ρi and ρj are connected by

an edge. This happens because τ is a linear representation and it was shown that

the tensor product calculation, τ ⊗ ρy, obtained a representation that had the same

dimension as ρy. So by [West, 1.4.5], we have that the McKay graphs are composed

of directed cycles of the same dimension. 2
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2.3 McKay Graphs of Degree 2

Now that we’ve commented on the McKay graphs of degree one, we can discuss what

is already known about McKay graphs of degree two.

In 1980, John McKay wrote a paper [McKa] in which he speculated that through

the study of representation theory, the understanding of finite groups would greatly

improve. McKay thought that this would help with the problem of classifying finite

groups and lead to new proofs that would be shorter than their counterparts of the

day. McKay observed that if a finite group G ⊂ SL(2,C), then the resulting McKay

graph is one of the extended Dynkin diagrams Ãn, D̃n, Ẽ6, Ẽ7, or Ẽ8. The reader

should note that the special linear group, SL(n,C), is a subgroup of GL(n,C) consist-

ing of matrices with determinant 1.

Each extended Dynkin diagram has n+1 vertices. The following are the extended

Dynkin diagrams listed above [Yosh]:

Ãn (cyclic):
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D̃n (binary dihedral):

 

 

 

  

 

 

Ẽ6 (binary tetrahedral):
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Ẽ7 (binary octahedral):

   

  

 

  

Ẽ8 (binary icosahedral):

   

  

 

   

In 1986, Auslander and Reiten [AuRe] extended McKay’s observations to arbitrary

two dimensional representations. Let k be an algebraically closed field, G a finite

group, and ψ: G → GL(m,k) be our favorite representation. We know that McK(G,

ψ) has vertices ρ1, . . . , ρr which correspond to the irreducible representations of G.

These irreducible representations of G have χ1, . . . , χr as characters. The separated

McKay graph, McK(G,ψ), has vertices ρ1, . . . , ρr, ρ
′
1, . . . , ρ

′
r and for each arrow from

ρi to ρj in McK(G, ψ), there is an arrow from ρi to ρ′j in McK(G,ψ).

Definition 2.3.1:

The underlying graph of a directed graph D is the graph obtained by ignoring the

orientation of D [West].
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Auslander and Reiten obtained the main result of their paper by studying sepa-

rated McKay graphs and their underlying graphs. Their main result is presented

below:

Theorem 2.3.2:

Given ψ: G → GL(m,k) a representations of G and k an algebraically closed field

then,

• if m = 2, the underlying graph of the separated McKay graph McK(G,ψ) is a

finite union of copies of the extended Dynkin diagrams Ãn, D̃n, Ẽ6, Ẽ7, and Ẽ8.

• if m > 2, McK(G,ψ) is a disjoint union of graphs which are not Dynkin or

extended Dynkin diagrams.

In order to gain a better understanding about McKay graphs of degree 2, one could

examine [Coxe]. In this book, Coxeter classifies the finite subgroups of GL(2,C) and

paves the way for the classification of McK(G,C), where G ⊂ GL(2,C).

Another paper which discusses McKay graphs of degree 2 is [ReVB]. The material in

their paper is briefly summarized in this thesis. The reader should refer to [ReVB]

for a more indepth analysis.

Reiten and Van den Bergh wrote a paper where they classified algebras of tame orders

of dimension 2. In this paper, it was proved that if an algebra is a tame order of finite

representation type, then the AR quiver of the algebra must be of the form Z∆/G.

In this form, ∆ is the extended Dynkin diagram D̃n, Ẽ6, Ẽ7, Ẽ8, or A∞∞ and G is an

automorphism group of the translation quiver. It is also said that these translation

33



quivers are equivariant AR quivers. It is described in [Yosh] that if G ⊂ GL(2,C),

then these equivariant translation quivers are the McKay graphs of degree 2.
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2.4 McKay Graphs as Adjacency Matrices

Up to this point we’ve seen many McKay graphs and observed properties related to

the degree of the McKay graph. Now we can examine what happens to the McKay

graphs when certain operations are performed.

Definition 2.4.1:

Let G be a group, ψ be our favorite representation, and ρ1 . . . , ρr be the irreducible

representations with characters χ1, . . . , χr. The r × r adjacency matrix of a directed

graph is a matrix with rows and columns labeled by graph vertices. The ijth entry of

the matrix will contain the number of edges from ρi to ρj and this is computed using

aij = 〈ψχi, χj〉 [West].

Throughout this thesis, we will denote the adjacency matrix of McK(G,χ) by Adj(G,χ).

It should be noted that every directed graph can be represented as an adjacency ma-

trix. From the above definition, we see that entries in the adjacency matrix are the

multiplicities between the representations of the McKay graph.

Example 2.4.2:

Let ρ1, . . . , ρr be all the irreducible representations of a group G. We have already

seen that a trivial McKay graph exists for each group G. Thus, the McKay graph

consists of r vertices, each vertex having only a self-loop. We then produce a r × r

adjacency matrix with ones down the diagonal.
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Another interesting observation about adjacency matrices is that if there are no self-

loops are in the graph, then the adjacency matrix will contain zeros on the diagonal.

Example 2.4.3:

Recall McK(D6, χ1):

1 1 2

so,

Adj(D6, χ1) =


1 0 0

0 1 0

0 0 1


Notice that the trivial McKay graph corresponds to the identity matrix.
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Example 2.4.4:

Recall McK(D6, χ2):

1

1 2

so,

Adj(D6, χ2) =


0 1 0

1 0 0

0 0 1



Example 2.4.5:

Recall McK(D6, χ3):

1 1

2
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so,

Adj(D6, χ3) =


0 0 1

0 0 1

1 1 1



Example 2.4.6:

Recall McK(A4, χ4):

1 1 1

3

so,

Adj(A4, χ4) =


0 0 0 1

0 0 0 1

0 0 0 1

1 1 1 2



38



Example 2.4.7:

Recall McK(C3, χ2):

1

1

1

so,

Adj(C3, χ2) =


0 1 0

0 0 1

1 0 0


Notice that there are no self-loops in McK(C3, χ2) and there are zeros on the diagonal

of Adj(C3, χ2).

Theorem 2.4.8:

Let G be a group, ψ and φ be characters (not necessarily irreducible) of G, and

χ1, . . . , χr be the irreducible characters of G. Given two McKay graphs, McK(G,ψ)

and McK(G,φ), then McK(G,ψ + φ) has adjacency matrix Adj(G,ψ) + Adj(G,φ).
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Proof:

We know that every McKay graph can be represented as an adjacency matrix. So for

McK(G,ψ) and McK(G,φ) we have Adj(G,ψ) and Adj(G,φ) respectively.

We know that the addition of matrices is done by adding the components of each

matrix. If we wanted to calculate the ijth component of Adj(G,ψ), it would be done

by 〈ψχi, χj〉. Similarily, the ijth component of Adj(G,φ) would be found by 〈φχi, χj〉.

So, 〈ψχi, χj〉 + 〈φχi, χj〉 = 〈ψχi + φχi, χj〉 = 〈(ψ+ φ)χi, χj〉 computes the ijth entry

of Adj(G,ψ + φ).

Our result follows since we know that Adj(G,ψ + φ) is the adjacency matrix for

McK(G,ψ + φ). 2

Example 2.4.9:

Recall McK(D6, χ3) and McK(D6, χ2):

1 1

2

and

1

1 2

We saw in Examples 2.4.4 and 2.4.5 that these McKay graphs have the following

adjacency matrices.
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Adj(D6, χ3) =


0 0 1

0 0 1

1 1 1

 , Adj(D6, χ2) =


0 1 0

1 0 0

0 0 1



thus, Adj(D6, χ3) + Adj(D6, χ2) =


0 0 1

0 0 1

1 1 1

 +


0 1 0

1 0 0

0 0 1

 =


0 1 1

1 0 1

1 1 2



so, McK(D6, χ3 + χ2) is

1

1

2

Theorem 2.4.10:

Let G be a group, ψ and φ be characters (not necessarily irreducible) of G, and

χ1, . . . , χr be the irreducible characters of G. Given two McKay graphs, McK(G,ψ)

and McK(G,φ), then McK(G,ψφ) has adjacency matrix Adj(G,ψ)×Adj(G,φ).

In order to prove the theorem, we need the following lemma.
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Lemma 2.4.11:

Let G be a group, ψ and φ be two characters of G, and χ1 . . . χr be the irreducible

characters of G. Then 〈ψ, φ〉 =
r∑

k=1

〈ψ, χk〉〈χk, φ〉.

Proof of Theorem 2.4.10:

Let Adj(G,ψ) and Adj(G,φ) be the adjacency matrices for McK(G,ψ) and McK(G,φ)

respectively.

We know that computing the ijth entry of Adj(G,ψ)×Adj(G,φ) is done by performing

a dot product on the ith row of Adj(G,ψ) and the jth column of Adj(G,φ).

By using Lemma 2.4.11,
r∑

k=1

〈ψχi, χk〉〈φχk, χj〉 =
r∑

k=1

〈ψχi, χk〉〈χk, φχj〉 = 〈ψχi, φχj〉

= 〈φψχi, χj〉 = 〈ψφχi, χj〉 computes the ijth entry of Adj(G,ψφ).

Our result follows since we know that Adj(G,ψφ) is the adjacency matrix for McK(G,ψφ).

2.

Example 2.4.12:

Recall McK(D6, χ3):

1 1

2

and Adj(D6, χ3) =


0 0 1

0 0 1

1 1 1
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Adj(D6, χ3)× Adj(D6, χ3) =


0 0 1

0 0 1

1 1 1

×


0 0 1

0 0 1

1 1 1

 =


1 1 1

1 1 1

1 1 3



so, McK(D6, χ3χ3) is:

1

1

2

These last two results tell us how we can contruct new McKay graphs from existing

McKay graphs. It also gives us a way to deconstruct more complicated McKay graphs

into operations involving simpler McKay graphs.

Theorem 2.4.13:

Let G be a group, ψ be an irreducible representation with character τ and let ρ1, . . . , ρr

be the irreducible representations of G with characters χ1, . . . , χr. Let Adj(G,τ) be the

r× r adjacency matrix of McK(G,τ). If we compute the eigenvalues and eigenvectors

of the adjacency matrix, we will find that one of the eigenvectors consists of the

dimensions of the irreducible representations and the corresponding eigenvalue is τ(1)
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[McKa].

Proof:

We want to show that


a11 · · · a1r

...
. . .

...

ar1 · · · arr




χ1(1)

...

χr(1)

 = τ(1)


χ1(1)

...

χr(1)



Let’s take a look at the LHS of the equation,


a11 · · · a1r

...
. . .

...

ar1 · · · arr




χ1(1)

...

χr(1)

 =



r∑
j=1

a1jχj(1)

...
r∑
j=1

arjχj(1)



We know that aij = 〈τχi, χj〉 = multj(τχi). We also know that χj(1) = dim(Vj).
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So,

=



r∑
j=1

multj(τχ1)dim(ρj)

...
r∑
j=1

multj(τχr)dim(ρj)



Let’s take a look at the RHS of the equation,

τ(1)


χ1(1)

...

χr(1)

 = dim(ψ)


dim(ρ1)

...

dim(ρr)

 =


dim(ψ ⊗ ρ1)

...

dim(ψ ⊗ ρr)



=


dim(ρ

mult1(ψ⊗ρ1)
1 ⊕ · · · ⊕ ρ

multr(ψ⊗ρ1)
r )

...

dim(ρ
mult1(ψ⊗ρr)
1 ⊕ · · · ⊕ ρ

multr(ψ⊗ρr)
r )



=



r∑
j=1

multj(τχ1)dim(ρj)

...
r∑
j=1

multj(τχr)dim(ρj)
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∴ LHS = RHS

2

Definition 2.4.14:

Let v be a vertex of a directed graph. The indegree of v is the number of edges

entering v [West].

A consequence Theorem 2.4.13 is stated in the corollary below.

Corollary 2.4.15:

Let G be a group, ψ be an irreducible representation with character τ and let ρ1, . . . , ρr

be the irreducible representations of G with characters χ1, . . . , χr. We have that the

indegree of vertex ρj is equal to the product of the degree of character ρj and the de-

gree of McK(G, ψ). This can also be described as
r∑
i=1

multj(τχi) = deg(ρj)×deg(ψ).
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Example 2.4.16:

Consider McK(S4, χ4):

1

3

2

3

1

The first thing to observe is that the degree of this McKay graph is 3. Each vertex rep-

resenting a 1-dimensional irreducible representation is connected to a 3-dimensional

vertex, so they have an indegree of 3.

The 2-dimensional vertex has both 3-dimensional vertices connected to it, so there is

an indegree of 6 at this vertex and 6 is a multiple of 3.

Both 3-dimensional vertices have the same connections. There is a self-loop, an edge

from the other 3-dimensional vertex, an edge from a 2-dimensional vertex, and an

edge from a 1-dimensional vertex. There is an indegree of 9 at this vertex and 9 is a

multiple of 3.

Theorem 2.4.17:

Let G be a group, ψ be an irreducible representation with character τ and let ρ1, . . . , ρr

be the irreducible representations of G with characters χ1, . . . , χr. Let Adj(G,τ) be the

r× r adjacency matrix of McK(G,τ). If we compute the eigenvalues and eigenvectors
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of the adjacency matrix, we will find that the columns of the character table of G are

eigenvectors and the corresponding eigenvalues are τ(g).

Proof:

We want to show that


a11 · · · a1r

...
. . .

...

ar1 · · · arr




χ1(g)

...

χr(g)

 = τ(g)


χ1(g)

...

χr(g)



Let’s take a look at the LHS of the equation,


a11 · · · a1r

...
. . .

...

ar1 · · · arr




χ1(g)

...

χr(g)

 =



r∑
j=1

a1jχj(g)

...
r∑
j=1

arjχj(g)



We know that aij = 〈τχi, χj〉.
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So,

=



r∑
j=1

〈τχ1, χj〉χj(g)

...
r∑
j=1

〈τχr, χj〉χj(g)



But we if we have any character τ and irreducible characters χ1, . . . , χr, it can be

expressed as τ =
r∑
i=1

〈τ, χi〉χi (Theorem 1.4.5 ).

So,

=


τ(g)χ1(g)

...

τ(g)χr(g)



Let’s take a look at the RHS of the equation,

τ(g)


χ1(g)

...

χr(g)

 =


τ(g)χ1(g)

...

τ(g)χr(g)
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∴ LHS = RHS

2

I also worked on trying to develop an algorithm that would calculate the columns of

the character table if we are given the McKay graph. I was only able to describe an

algorithm that partially achieved this result. The following two examples describe

the procedure and outline its shortcomings.

Example 2.4.18:

Recall Adj(D6, χ3):


0 0 1

0 0 1

1 1 1



The eigenvalues of this matrix are λ1 = -1, λ2 = 0, λ3 = 2 and the eigenvectors

are vλ1 = [-1, -1, 1]T , vλ2 = [-1, 1, 0]T , and vλ3 = [1/2, 1/2, 1]T . Up to scaling and

reordering, these eigenvectors correspond to the columns of the character table of D6.

g 1 a b

χ1 1 1 1

χ2 1 1 -1

χ3 2 -1 0
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By observing the character table for D6 above, we can see that if we scale vλ1 by -1

and vλ3 by 2 and then put the eigenvectors in a matrix, we obtain the irreducible

characters of D6.

Through experimentation, it was noticed that the irreducible characters of a group

could be retrieved from a McKay graph if the eigenvalues were distinct. The next

example demonstrates the algorithm’s inability to cope with repeated eigenvalues.

Example 2.4.19:

Recall Adj(A4, χ4);


0 0 0 1

0 0 0 1

0 0 0 1

1 1 1 2



The eigenvalues of this matrix are λ1 = -1, λ2 = λ3 = 0, and λ4 = 3 and the eigen-

vectors are vλ1 = [-1, -1, -1, 1]T , vλ2 = vλ3 = [-1, 0, 1, 0]T , and vλ4 = [1/3, 1/3, 1/3,

1]T . Up to scaling and reordering, the eigenvectors only reveal certain columns of the

character table of A4.
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g 1 (12)(34) (123) (132)

χ1 1 1 1 1

χ2 1 1 ω ω2

χ3 1 1 ω2 ω

χ4 3 -1 0 0

ω = e2πi/3

By observing the character table for A4 above, it can be seen that if we scale vλ1 by

-1 and vλ4 by 3, we obtain (up to reordering) the column vectors of the character

table corresponding to the conjugacy classes 1 and (12)(34). However, no scaling can

be done to gain the column vectors associated with the conjugacy classes (123) and

(132). The repeated eigenvectors do not help in calculating the column vectors of the

character table.
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2.5 McKay Graphs of Degree 3

Yau and Yu [YaYu] wrote a paper that classified the finite subgroups of SL(3,C). They

obtained twelve types of finite subgroups of SL(3,C) which are listed below (A)-(L).

It should be noted that the naming conventions presented here for the types of finite

subgroups of SL(3,C) and the matrices that generate these subgroups are consistent

with their paper.

(A) Diagonal abelian groups. Each element is of the form


α 0 0

0 β 0

0 0 γ

 , αβγ = 1.

(B) Groups isomorphic to transitive linear groups of GL(2,C). The elements of this

group have the form


α 0 0

0 a b

0 c d

 , α(ad - bc) = 1.

(C) Groups generated by (A) and T given by

T =


α 0 0

0 a b

0 c d

 , for P−1QP = T,
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where Q =


0 a 0

0 0 b

c 0 0

 , P = 1
3√
bc2


1 0 0

0 bc 0

0 0 c



(D) Groups generated by (A), T of (C) and

R =


a 0 0

0 0 b

0 c 0

 , abc = -1.

(E) Group of order 108 generated by T of (C), S, and V given by

Sn =


ω 0 0

0 ω 0

0 0 ω

 , n = 1, 2, 3 and ω = e2πi/3

, and V = 1√
−3


1 1 1

1 ω ω2

1 ω2 ω
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(F) Group of order 216 generated by S, V of (E), T of (C), and UVU−1 given by

UVU−1 = 1√
−3


1 1 ω2

1 ω ω

ω 1 ω

 , ω = e2πi/3.

(G) Group of order 648 generated by S, V of (E), T of (C), and U given by

U =


δ 0 0

0 δ 0

0 0 δω

 , ω = e2πi/3 and δ3 = ω2.

(H) Group of order 60 is isomorphic to to the alternating group A5. It is generated

by

(12345) =


1 0 0

0 ε4 0

0 0 ε

 , (14)(23) =


−1 0 0

0 0 −1

0 −1 0

 ,

(12)(34) = 1√
5


1 1 1

2 s t

2 t s

 ,

where ε = e2πi/5, s = ε2 + ε3 = 1
2
(-1 -

√
5), t = ε + ε4 = 1

2
(-1 +

√
5).
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(I) Group of order 168 is isomorphic to the permutation group generated by (1234567),

(142)(356), and (12)(35). It is generated by

(1234567) =


β 0 0

0 β2 0

0 0 β4

 , (142)(356) =


0 1 0

0 0 1

0 1 0

 ,

(12)(35) = 1√
−7


β3 - β4 β5 - β2 β6 - β

β5 - β2 β6 - β β3 - β4

β6 - β β3 - β4 β5 - β2

 ,

where β = e2πi/7.

(J) Group of order 180 generated by S of (E), and the group (H).

(K) Group of order 504 generated by S of (E), and the group (I).

(L) Group of order 1080 generated by the group (H) and W given by

W = 1√
5


1 λ1 λ1

2λ2 m n

2λ2 n m

 ,

where λ1 = 1
4
(-1 +

√
−15), λ2 = 1

4
(-1 -

√
−15),

56



ε = e2πi/5, m = ε2 + ε3 = 1
2
(-1 -

√
5), n = ε + ε4 = 1

2
(-1 +

√
5).

The reader should also be aware that there is a mistake with subgroup (I) in the paper

published by Yau and Yu [YaYu]. Using the matrices given in the paper, one gets a

subgroup of order 336. The problem arises because the matrix for the cycle (12)(35)

is incorrect. I modified the matrix for this cycle, and through some calculations found

that the matrices presented in this thesis generate a subgroup of order 168 as desired.

Using the mathematical computer package GAP, I was able to compute the McKay

graphs for the subgroups (E)-(L).

The McKay graph for (E) :

1
3

1
3

1

3

1
3

3

4

4

3

3

3
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The McKay graph for (F) :

1
3

1

3

1
3

1
3

2 6

3

6

8

3

3

3

58



The McKay graph for (G) :

1

3

1

3

1

3

2

6

2

6

2

6

3

9

3

8

6

3

8

3

6

8

6

9

The McKay graph for (H) :

13

34

5
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The McKay graph for (I) :

1
3

3

8
6

7

The McKay graph for (J) :

1

3

1 3 1
3

3

4

5

3

4
5

3

4

5
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The McKay graph for (K) :

1

3

1

3

1

3

3

6

3

8

3

6

8

6

8

7

7

7
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The McKay graph for (L) :

1

3

3

9

3

8

6

3

9

5

15

5

10

6

15

8

9

I was unable to produce McKay graphs for the subgroups (A)-(D) by using GAP. The

reason for this lies in the fact that these subgroups have free variables as entries of the

matrices which allow an infinite number of McKay graphs to be generated. However,

an adjacency matrix of a McKay graph of a reducible representation can be expressed

as a sum of adjacency matrices from McKay graphs of irreducible representations.

This allows us to comment on some of the subgroups of SL(3,C) without using direct

computations.

The adjacency matrices of the McKay graph for the subgroups (A) and (B) can be

expressed as the sum of an adjacency matrix of the McKay graph of G ⊂ GL(2,C)

and an adjacency matrix of the McKay graph of G ⊂ GL(1,C). Finite subgroups of
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GL(2,C) are understood from Auslander and Reiten [AuRe] and finite subgroups of

GL(1,C) are understood from arguments presented in this thesis. We can say one

more thing about the finite subgroups of GL(1,C): they are found by 1
det(H)

where H

is our finite subgroup of GL(2,C).

The McKay graphs for the subgroups (C) and (D) are beyond that scope of this

thesis and were not pursued.
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2.6 Connected McKay Graphs

In the first chapter it is mentioned that a faithful representation is a representation ρ

such that ker(ρ) = {1} (Definition 1.1.6 ). This plays an important role in discussing

whether a McKay graph is connected.

Definition 2.6.1:

A directed graph is called strongly connected if for every pair of vertices u and v,

there are paths from u to v and from v to u [West].

Theorem 2.6.2:

If ψ is a faithful representation then the McKay graph is strongly connected [McKa].

Before we can prove Theorem 2.6.2, we need to introduce Burnside’s theorem which

can be found in many papers and texts, such as [Farn].

Burnside’s Theorem 2.6.3:

Let G be a finite group, ψ a faithful representation, then each irreducible representa-

tion is a direct summand of some tensor power ψ⊗c.
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Proof of Theorem 2.6.2:

Let ψ be our favorite representation and ρ1, . . . , ρr be the irreducible representations

of G. Suppose ρ1 is the trivial representation. First, we show that there is a path

from ρi to ρ1 for any ρi ∈ {ρ1, ..., ρr}.

We know that ψ⊗2 can be expressed as a direct sum of irreducible representations of

ψ ⊗ ψ.

Now, ψ ⊗ ψ = ρa ⊕ ρb ⊕ ... ⊕ ρz where ρa, ρb, ..., ρz ∈ {ρ1, ..., ρr} are irreducible rep-

resentations. So ρi has paths from ρi to ρa, ... , ρi to ρz.

Consider multi(ψ
⊗2) = multi(ψ ⊗ ψ) = multi(ρa ⊕ ρb ⊕ ...⊕ ρz). This computes the

paths to all vertices of length one away from ρi.

Now consider multi(ψ
⊗3) = multi(ψ ⊗ ψ ⊗ ψ) = multi({ρa ⊕ ρb ⊕ ... ⊕ ρz} ⊗ ψ) =

multi((ρa ⊗ ψ)⊕ ...⊕ (ρz ⊗ ψ)).

This computes the paths to all of the vertices of length two away from ρi.

We can continue this argument to some multi(ψ
⊗c). By Burnside’s theorem, all ir-

reducible representations are in a direct summand of some tensor power ψ⊗c. So we

have created a path from ρi to ρ1

We need to show that we can create a path from ρi to ρj. From the above discussion,
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we can certainly create a path from ρi to ρ1, where ρ1 is the trivial representation.

So, we just have to show that a path from ρ1 to ρj can be produced to complete the

argument.

We know that mult1(ψ
⊗d) will create paths of length d away from ρ1. Burnside’s

theorem says that all irreducible representations are in the direct summand of some

tensor power ψ⊗d. But of particular interest, we can get a path from ρ1 to ρj. The

result follows. 2

Example 2.6.4:

Consider McK(D6, χ3). ker(χ3) = {1}. We have seen from Example 2.1.2 that this

McKay graph is connected.

If ker(ρ) contains more group elements than just the identity element, then the McKay

graph is not connected.

Example 2.6.5:

Consider McK(D6, χ1). By definition, ker(χ1) = D6. We have seen from Example

2.1.2 that this M cKay graph is a disjoint union of cycles.

Also we see that each class representative from the character table is in ker(χ1) and

we have 3 disjoint cycles in the graph.

We conjecture that there is a relation between the number of class representatives in

ker(χ) and the number of disjoint cycles in a M cKay graph.

66



Example 2.6.6:

Consider McK(D6, χ2). ker(χ2) = 〈a〉. We have two class representatives in ker(χ2),

namely 1, a. We have seen McK(D6, χ2) in Example 2.1.2 and it did indeed have two

disjoint cycles.

Conjecture 2.6.7:

Let ψ be our favorite representation of a group G. The number of class representatives

in ker(ψ) equals to the number of disjoint components in McK(G,ψ).

Definition 2.6.8:

The dual of a representation ρ is given by ρ∗ = ρ. A representation is said to be

self-dual if ρ∗ = ρ [Noor].

Proposition 2.6.9:

Let G be a group, ψ be our favorite representation with λ as its character, and ρ1 . . . ρr

be the irreducible representations of G with characters χ1 . . . χr. There are no arrows

in the McKay graph ( 〈λχi, χj〉 = 〈λχj, χi〉 ) if our favorite representation ψ is self-

dual [McKa].
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Proof:

By definition we know that mij = 〈λχi, χj〉 and mji = 〈λχj, χi〉. To prove this claim,

it amounts to showing that mij = mji when ψ is self-dual. We can show this in two

steps:

1. If ψ is self-dual, then mij = mi∗j∗ .

2. In general, mi∗j∗ = mji

We can investigate the first condition.

mi∗j∗ = 〈λχi, χj〉 = 〈λχi, χj〉 = 〈λχi, χj〉 = 〈λχi, χj〉 =mij. This is true since ψ is

self-dual.

We can now show the second condition.

mi∗j∗ = 〈λχi, χj〉 = 1
|G|

∑
g∈G

λ(g)χi(g)χj(g) = 1
|G|

∑
g∈G

λ(g)χj(g)χi(g) = 〈λχj, χi〉 = mji.

We have shown both of the conditions, so by combining them we have mij = mi∗j∗

= mji when ψ is self-dual. 2
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