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ABSTRACT

Groebner bases were introduced by Bruno Buchberger in 1965 and they now
comprise a major research area in computational algebra and computer science. In
this report, | describe the Buchberger algorithm, which is used to compute Groebner
bases, and | then present some of their interesting applications that have been

developed since their introduction.
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Chapter 1: Introduction

1. What is a Groebner Basis?

A Groebner basis is a particular kind of generating subset of an ideal | in a polynomial ring R
that possesses a particular type of useful properties. For example, given a set of polynomials
A, and its Groebner Basis G, there is a fast algorithm that utilises the polynomials in G to
determine whether or not another polynomial f is a combination of those in A. Furthermore,
the set of polynomials in a Groebner basis has the same collection of roots as the original

polynomials A.

I will show in Chapter 3 that, while the algorithm to find Groebner bases can be slow, all
non-zero polynomial ideals do have Groebner bases. For linear functions in any number of

variables, computing a Groebner basis is equivalent to performing Gaussian elimination.

The theory of Groebner bases was developed by Bruno Buchberger in 1965, who named them

after his advisor Wolfgang Groebner.



Chapter 2: Key Concepts and Definitions

1. Ideals

In this section, | define ideals, the basic algebraic object that we will be working with

for the rest of this report. These ideals will be in the polynomial ring Kk[x,,---,X,],
where K is the field that we are working in (either real or complex numbers), and the
X; are the variables.

Definition 2.1.1. A monomial in x,,---, X, is a product of the form

o a o,

Xl 'X2 2 ...Xn ,
were all exponents «,,---, &, are non-negative integers. The total degree of this

monomial is the sum a, +---+ ,,.

Definition 2.1.2. A polynomial f in x,---, X, with coefficients in k is a finite linear

combination (with coefficients in k) of monomials. We will write a polynomial in f in

the form

a

f=>a,x“, a, ek,

where the sum is over a finite number of n-tuples & = (a,,---,«, ). The set of all

possible polynomials in x,,---, x, with coefficients in k is denoted K[x,,---,X,].



Definition 2.1.3. Letk be afield, and let f,,---, f, be polynomials in k[x,---,x,].
Then we set
V(f,- f)={(@&,-a,)ek"| f(a,-,a,)=0forall 1<i<s}.
We call V(f,,---, f,) the affine variety defined by f,,---, f,.
Definition 2.1.4. Asubset I — K[x,,---,x,] is an ideal if it satisfies:
(i) Oel.
(i) Iffgel thenf+gel

(i) If felandh e K[x,--x] thenhfe I

A natural example of an ideal (and the one that | will primarily be working with) is
the ideal generated by a finite number of polynomials. Later, in section 3.4, 1 will
show that all ideals in polynomial rings of the form Kk[x,,---,x,] are generated by a
finite number of polynomials.

Definition 2.1.5. Let fy, ...,fs be polynomials in K[x,,---,X,]. Then we set

(frroe £) :{Zs:hi fih,.h, € k[xl,...xn]}.

It can be checked that (f,,...,f,) is an ideal. We will call (f,,..., f;) the ideal

generated by fy, ... fs.



2. Orderings on the Monomials in Polynomial Rings

In this section, | will define an ordering of terms in polynomials. The purpose behind
this is to help us devise a multivariate polynomial division algorithm (an extension of
the division algorithm for one variable), which | will describe explicitly in the next
chapter.

When defining such an order, we would naturally want it to possess some or all of the
properties of ordering that we observe in positive integers (for example, it should
respect multiplication and well ordering).

But first, we note that we have a one-to-one correspondence between monomials in
k[x,,---,x,] and n-tuples of non-negative integers (denoted by Z?;), where we can

a ] n

n

reconstruct the monomial Xx* =x"---X from the n-tuple of exponents

a=(a,,---,a,)eZ",. Using this correspondence, we can transfer an ordering
a>ponZl; to K[x,---,x,].

Keeping this in mind, we define a monomial ordering in the following way.

n

Definition 2.2.1. A monomial ordering on K[x,,---,X,] is any relation >on Z],,
or equivalently, any relation on the set of monomials x*, a € Z1,, satisfying:

() > is atotal (or linear) orderingon ZJ, .



(i) Ifa>pandye Z,, thena+y>p+y.
(iii) > isawell-ordering on ZZ, . This means that every nonempty subset of

Z!, has a smallest element under >.

I now present some examples of ordering on n-tuples of integers that we will use later
in this report.
Definition 2.2.2 (Lexicographic Order). Let o = (aa,...,on), and f = (f1,....pn) €

Zl,. We say o > f if, in the vector difference a — f € Z", the left-most nonzero

entry is positive. We will write X* >jex X* if a >1ex 8.

For example:
a. (2,0,1) > (0, 3, 3)since a —B=(2, -3, -2).
b. (1,1,4) > (1,1, 1)since a.— B = (0, 0, 3).

c. Transferring to K[x,,---, X,], we see that the variables x,,---, x, are ordered in

the usual way by the lex ordering:
(1,0,...,0) >1ex (0, 1, 0,..., 0) 5lex ... >1ex (0,..., 0, 1)
S0 X1 >lex X2 Zlex -+ lex Xn-
This order is analogous to the ordering of words used in a dictionary, and hence the
name.

For our second example, we deal with an order that also takes into account the total

n

degree of each monomial. If we have any a € Z7;, we say that |a| = Zai , Which
i=1



gives us the total degree of the monomial x*. Using this, we define the following

order.
Definition 2.2.3 (Graded Lex Order). Leta, f € Z1,. We say a >gnex f if

la > 18], or ol =6l and a > S.

A similar, but less intuitive, graded order is the graded reverse lexicographic order.
One advantage of this order over the previous is that it is more efficient for

computations for certain operations [CLOS, page 57].
Definition 2.2.4 (Graded Reverse Lex Order). Leta, f € Z1,. We say a >greviex f if’
lod > 18], or ol =Bl

and, ino - B € Z", the right-most non-zero entry is negative.

In order to see how these monomial orders apply to polynomials, we introduce the

following terminology.
Definition 2.2.5. Letf = zaaax“ be a nonzero polynomial in K[x,,---,x,] and let
> be a monomial order.

Q) The multidegree of f is

multideg( f) = max(a € ZZ, : a,#0)
(the maximum is taken with respect to the assumed order >).
(i) The leading coefficient of f is
LC(f) = amuttideg(t) € K .

(i) The leading monomial of f is



LM( f) — Xmultideg(f)
(with coefficient 1, so its coefficient in f is suppressed).
(iv)  The leading term of f is

LT(f)=LC(f)-LM(f).

To illustrate this, let f =—4x?yz +2z° +5xy* + 7xyz* e k[x,y, z]. If we let >
denote the lex order, then we have:

multideg( f) = (2, 1, 1), (corresponding to the monomial —4x?yz)

LC(f) =-4,
LM(f) = x%yz,
LT(f)=—4xyz.

If we let > denote the grlex order, then:
multideg( f) = (1, 4, 0),

LC(f) =5,

LM(f) = xy*,

LT(f) = 5xy*.

By letting > denote the grevlex order, we get:
multideg( f) = (1, 4, 0),

LC(f) =5,

LM(f) = xy*,

LT(f) = 5xy*.

10



Chapter 3: Buchbergers Algorithm

1. A Multivariable Polynomial Division Algorithm

In order to compute the Groebner Basis of an ideal, we use a procedure called the
Buchberger Algorithm. This algorithm utilizes a division algorithm in Kk[x,,---, X, ]
which extends the polynomial long division algorithm for k[x]. In the general case,
our goal is to divide f € K[x,,---,x,] by f,,---, f, € K[x,,---,X,], which expresses f
in the form

f=aifi + ... tadfs +r,
where the “quotients” a,,---,a, and remainder r lie in K[x,,---,x,]. We also want

this remainder r to be as “small” as possible, and this is where the monomial ordering

introduced in the previous section will apply.

Theorem 3.1.1. (Division Algorithm in K[x,,---,X,]). Fix a monomial order > on
Z,,and let F = (fl,---, fs) be an ordered s-tuple of polynomials in K[x,---,Xx,].
Then every f € K[x;,---,X,] can be written as

f=afi + ... +afs+r,

11



where aj, r ek[x,,---,x,], and either r = 0 or r is a k-linear combination of

monomials, none of which is divisible by any of LT(f1),...,LT(fs). We will call r a
remainder of f on division by F. Furthermore, if aif; # 0, then we have
multideg( f ) > multideg(a; f;).

Proof. See [CLOS, page 63].

Example 3.1.2. Consider the case where f=3x2y® —2xy+y?, fi=xy-x and f, = y?

+ 3. We will use the lex order with x >y. We set up our division as follows.

Xy — x|3x2y® — 2xy + y?
y?+3

We notice that the leading term of f; divides the leading term of f, so we carry out
this division, making sure to indicate which polynomial was the divisor. So we get:
a;:  3xy? +3xy+3x

do.

Xy — X | 3x%y® — 2xy + y?
y? +3/3x2y% —3x?y?

3x2y? —2xy

3x°y? —3x%y
3x%y —2xy
3x?y —3x?

3x* —2xy + y?

Now we notice that neither LT(f;) nor LT(f,) divides LT(3x* - 2xy + y* ). However,

3x? - 2xy + y? is not the remainder since LT(f,) divides 2xy. Thus, we move 3x to the

12



remainder and we continue dividing. This is something that never happens in the

single-variable case.

Now we continue dividing. If we can divide by LT(f;) or LT(f,), we proceed as usual,
and if neither divides, we move the leading term of the intermediate dividend to the

remainder column. This gives us:

a, . 3X’y+3xy+3x-2

a,: 1

Xy — x| 3x%y® —2xy + y?
y? +3/3x2y% —3x2y?

3x%y? —2xy
3x%y* —3x’y
3x%y - 2xy
3x%y —3x°
3X2 _2Xy+ y2 ——)3)(2
—2xy +y*
—2Xy + 2X
2
—-2X+Yy o
y2
y>+3
=3 —>-3

Thus, the remainder is 3x? —2x — 3, and we obtain:

3x?y* —2xy +y® =a,(xy — X) +a,(y* +3) +3x* —2x - 3.

13



2. Monomial Ideals and Dickson’s Lemma

In this section, | will describe monomial ideals, since these are what we will mostly
be dealing with for the rest of this report. We then go on to study some of their

properties.
Definition 3.2.1. Anideal | < K[x,,---,X,] isamonomial ideal if there is a subset

Ac Z!, (possibly infinite) such that | consists of all polynomials which are finite

h,x“, where h, ek[x,,---,x,]. In this case, we write

achA &

sums of the form
| = <x“ | e A>. This is equivalent to saying that | can be generated by monomials.

For some interesting applications of monomial ideals, in particular, their application

in computing Hilbert polynomials, | refer the reader to [Sch].

The next theorem is a very important one as it shows that all monomial ideals of

k[x,,---,x,] are finitely generated.

Theorem 3.2.2 (Dickson’s Lemma). A monomial ideal | =<x“ | e A> < KXy,

x,] can be written in the form | :<x“(1),---,x“(s)>, where a(l),...,a(s) € A. In

particular, | has a finite generating set of monomials.

14



Proof. The proof is by induction on n, the number of variables. If n =1, then | is
generated by the monomials x“, where o € Ac Z_,. Let § be the smallest possible
element of AcZ,.Then x” divides all the other generators, thus | =(x”).

We now consider the case when n > 1. We assume that the theorem holds for n — 1.

We can name the variables x,,X,,---,X, ;,y Which allows us to write the monomials
in KX, X, X5, y] as x“y™, where a = (e, ;)€ Z%! and me Z_,.
Suppose that | < K[X,,X,,---,X,,,¥] IS @ monomial ideal. Let J be the ideal in
k[x,,---,x,_,] generated by the monomials x* for which x“y™ | for some m >
0. Since J is a monomial ideal in k[x,,---,x, ], the inductive hypothesis tells us that
finitely many x* s generate J . Let’s call them x“® ..., x*®,

For each i between 1 and s, the definition of J tells us that x“®y™ <1 for some m,
> 0. Let m be the largest of the m,. Then, for each k between 0 and m-1, consider the
ideal J, < k[x,,---, %] generated by the monomials x” such that x”y* < I . Again,
the inductive hypothesis tells us that J, has a finite generating set of monomials, say
J, =<x“k(1),---,x“k(sk>>.

| claim that | is generated by monomials in the following list:

a(l)ym’_._’ Xa(s)ym,

fromJ: X
from J,: x@® ... x%®)

from J,;: x*Qy,....x2®y,

15



m-1

from J_ @ x@ @yt gy
First we note that every monomial in | is divisible by one in the list. To see why, let
x*yPel.If p>m,then x“y® is divisible by one of the monomials in J. And if p
< m, then x“y?® is divisible by one of the monomials in J by their construction.

Thus the above monomials generate an ideal having the same monomials as I, which

forces the ideals to be the same. x,,---, x

n

Finally, we need to show that this finite set of generators can be chosen from a given

set of generators for the ideal 1. Switching back to writing the variables as x,,---, X, ,

then our monomial ideal is 1 =(x“ | € A). We need to show that | is generated by

finitely many of the x“’s where aeA. We’ve already shown that | =

<xﬁ(1),---,x/"s)> for some monomials x”® in I, and, hence, x*® is divisible by some
x“® for some «a(i) e A since |1 is a monomial ideal. Thus we know that | <

<x“(1),---,x°"s)>. But at the same time, <x“(1),---,x“‘s)> — | by the definition of I.

Hence, | = <x“(1),---, x“‘s)> , which completes the proof. O

16



3. Computing the Groebner Basis using the Buchberger Algorithm.

In this section we will completely answer the question of whether every ideal has a
finite generating set. The answer is provided through the Hilbert basis theorem, which
was first proved by David Hilbert in 1888. Using the result of this theorem, as well as
the multivariate division algorithm and the properties of monomial ideals that we
have studied in the previous sections, we will describe the Buchberger algorithm,

which gives us a Groebner basis for any ideal in a polynomial ring.

First, for any ideal I, we can define its ideal of leading terms as follows.

Definition 3.3.1. Let | ck[x,,---,X,] be an ideal other than {0}.
() We denote by LT(I) the set of leading terms of elements of I. That is,
LT (1) ={cx” |there exists f € | with LT(f)=cx"}.

(i)  Wedenote by (LT(l)) the ideal generated by the elements of LT(l).

We have already observed how leading terms play an important role in the

multivariate division algorithm for polynomials. Now a question that naturally arises

17



with this definition of an ideal of leading terms is: Given an ideal | = <fl,..., f5>, does
(LT(1)) =(LT(f),.. LT(f))?

It is obvious that LT(f;) e LT(l) = (LT(l)) from the definition of (LT(l)), and this
implies that (LT(f,),...LT(f))<=(LT(I)), but as we shall see with the following
example, the reverse inclusion is not necessarily true. That is, <LT(I)> can be strictly

larger than (LT (f,),...,LT(f)).

Example 3.3.2. Let | = (f,f,), where f, =xy?+3y? and f,=x%+3x*+1, and
we use the grlex ordering on monomials in k[x,y]. Then y*-f, —x*- f, =y?. So is
inl,and thus y* =LT(y?)eLT(l). But y? is not divisible by LT(f,)=xy?, nor by
LT(f,)=x°, so that x* ¢ (LT(f,),LT(f,)). So in this particular case, we observe

that (LT (1)) is strictly larger than (LT(f,),...,LT(f)).

In this next proposition | will show that <LT(I)> is a monomial ideal, and hence it

follows from Dickson’s Lemma (discussed in the previous section) that it is generated

by finitely many leading terms.

Proposition 3.3.3. Let | — k[x,,---,x,] be an ideal. Then
(i) (LT(1)) is a monomial ideal.

(ii) there are @s,...,g¢ € I such that (LT(g,)....LT(g,)) =(LT(l)) .

18



Proof. (i) The leading monomials LM(g) of elements g e | —{0} generate the

monomial ideal (LM(g)|gel—{0}). Since LM(g) and LT(g) differ only by a
nonzero constant, (LM (g)) =(LT(l)). Thus (LT(l)) is a monomial ideal.

(i) Since (LT(l)) is generated by monomials LM(g) for g e I — {0},
Dickson’s Lemma tells us that (LT(I))=(LM(g,),---,LM(g,)) for finitely many

01,...gt € | . Since LM(g;) differs from LT(g;) by a nonzero constant, it follows that

(LT(1)) =(LT(@), -+ LT(9,))- m

With this result, and the division algorithm, we can now prove that there exists a
finite generating set for every polynomial ideal, thus answering the question put
forward at the start of this section.

Theorem 3.3.4 (Hilbert Basis Theorem). Everyideal | < k[x,,---,X,] has a finite
generating set. Thatis, | =(g,,---,g,) for some gy,...g: € .

Proof. If I = {0}, then I = <0> If 1 contains some nonzero polynomial, then we

can construct a generating set gs,...g: for | as follows. Proposition 3.3.3 tells us that

there exist g,...,0t € | such that (LT(g,),...LT(g,))=(LT(l)). I claim that | =
(9:,+9)-
It is clear that <gl,-~~gt> < |, since each gi € I. Conversely, let f el be any

polynomial. If we apply the division algorithm to divide f by gs,...,gt, then we get
an expression of the form

f=ag ++ag +r

19



where every term in r is divisible by none of LT(g1),...,LT(g:). | claim that r = 0,
since if »#0, then LT(r) e (LT(I)) = (LT(g,).... LT(g,)). Thus r must be divisible
by some LT(gi) and hence it cannot be a remainder, which is a contradiction.

Thus f =a,9,+--+a9,+0 € (g;,---,9,), which shows that | = (g,,---,9,). ©

Corollary 3.3.5. Every ascending chain of ideals I, 1, —I,--- in a polynomial

ring is eventually stationary. That is, there is some positive integer n such that I, = I,
for all m > n. This property of polynomial rings is referred to by the term,
Noetherian.

Proof. Let Icl,clyc--cl c-- be an ascending chain of ideals in a

polynomial ring R. Consider the set I = U;=,1I,,. Since the I,, are increasing, it is clear

that 1 is an ideal of R. So, by the Hilbert Basis Theorem, | :<gl,~~,gt> for some

;.- 9, €l. Hence there exists N; such that g; el for i=1---t. Let

N :TaxNi; then g, el forall i=1,--,t, and thus I I, . But I, . Hence
<i<t

I=1,.

In addition to answering the question that | posed earlier, we notice that the basis

involved in the proof of the Hilbert basis theorem has the special (and desirable)

property that (LT (1)) = (LT(g,)..... LT(g,)). As we had observed in Example 3.3.2

earlier, this is not always the case. We now give these special bases a name.

20



Definition 3.3.6. Fix a monomial order. A finite subset G = {gs,...,gi} of an ideal I is

said to be a Groebner basis of | if
(LT(9), LT(g)) =(LT(1)).
Less formally, we say that a set {g,,---,9,} < | is a Groebner basis of | if and only

if the leading term of any element of | is divisible by one of the LT(g;). The proof

for the Hilbert Basis Theorem shows us that this subset G has the crucial property,

I =(G).
A consequence of the Hilbert Basis Theorem is that, since every ideal | —

k[x;,---,x,] has a finite generating set of polynomials, it makes sense to speak of an

affine variety defined by an ideal I < K[x;,---,x,].

Definition 3.3.7. Letl < K[x,,---,X,] be an ideal. We will denote by V () the set

vV(I)={(,,,a,)ek"| f(a,--,a,)=0forall fel}.

I can now prove the claim | had made in the introduction of this report, that the zero

sets of an ideal and its Groebner basis are the same.

Proposition 3.3.8. If I =(f,,---, f,), then V(1) =V (f,---, f,).

21



Proof. Sincethe f, el ,if f(a,---,a,)=0forall f el,then f.(a,---,a,)=0.

Hence V(I) c V(f,,---, f,). Conversely, let (a,,---,a,) eV (f,,---, f,) and let f 1.

Since | =(f,,---, f,), wecanwrite f => hf; for some h ek[x,--,x,]. Hence
i=1

(a8 =3 (@2, (8,8, = 3 (8, ,a,)-0=0.

Thus V(f,,---, f.) <V (l) and, hence, they are equal. i

Since |1 =(G) = (g,,---,g,) for any Groebner basis G of an ideal I, the above

proposition proves that V (1)=V(G).

Our final step before describing the Buchberger algorithm is to define the S-

polynomial and an alternative definition of a Groebner basis.

Definition 3.3.9. Let f, g € K[x;,---,X,] be nonzero polynomials.
Q) If multideg(f) = o« and multideg(qQ) = p, then let y = (y1,...,yn), where yi =
max(«;, Bi) for each i. We call x” the least common multiple of LM(f)
and LM(g), written X’ = LCM(LM(f ) , LM(q)).

(i)  The S-polynomial of f and g is the combination

X7 X7
LT(f) LT(9)

S(f.9)=

So an S-polynomial S(f, g) in effect produces cancellation of the leading terms of f

and g.

22



Theorem 3.3.10. Let I be a polynomial ideal. Then a basis G = {g,,---,9,} for lis

a Groebner basis for I if and only if for all pairs i # j, the remainder on division of

S(gi, 9;) by G (listed in some order) is zero.

Proof. (=) If G is a Groebner basis, then the set of polynomials {g,,---,9,}G
generate |. Hence the remainder on division of any polynomial in | by G is zero. And

since S(g;,9;) € I, the remainder on division of S(g;, g;) by G is zero.

For (<), see [CLOS, page 84].

For the rest of this report, |1 will use the following notation.

Definition 3.3.11. For any s-tuple F =(f,,---, f.), | define T as the remainder of f

by F.

We can now explicitly describe the Buchberger algorigthm.
Theorem 3.3.12. (Buchberger Algorithm). Let | = <fl,..., f5> # {0} be a polynomial
ideal. Then a Groebner basis for | can be constructed in a finite number of steps by
the following algorithm:

Input: F= (f,,..., f,)

Output: a Groebner basis G = (gy,...,g) for I, withF < G

G:=F

REPEAT

23



G =G

FOR each pair {p, g}, p#qin G' DO

N
S:=8(p,q)
IFS#0THEN G := G U{S}

UNTILG=G'.

Proof. | first show that G — | at every stage of the algorithm. It is true initially, and
we only change G by adding the remainder S = melwhere p, q € G. Thus, since
S(p,q)isin I, and we’re dividing by G'c | ,we get G U{S} c I.

To see that the G we obtain when the algorithm terminates is actually a Groebner
basis of | we note that the algorithm terminates when G = G’, which means that
mG =0 for all p, q € G. Hence G is a Groebner basis of <G> =1 by Theorem 6.

To show that the algorithm terminates, we need to see what happens after each pass
through the main loop. The set G consists of G’ (the old G) together with nonzero

remainders of S-polynomials of elements of G'. So, since G'c G, we have:
(LT(G")) = (LT(G)) *)
Also, if G’ # G, then (LT(G'")) is strictly smaller than (LT(G)). To see this we

consider the nonzero remainder r of an S-polynomial that has been adjoined to G’.

Since r is a remainder on division by G’, LT(r) is not divisible by the leading terms

of elements of G, and thus LT(r) ¢ (LT(G")). But LT(r) € (LT(G)), which proves

the claim.

24



By (*) we see that the ideals <LT (G')) from successive iterations of the loop form an

ascending chain of ideals in k[x,,---,x,]. But since K[x,,---,x,] is Noetherian the

chain must eventually stabilize, which means that eventually G'= G. So the

algorithm does indeed terminate after a finite number of steps. o

Example 3.3.13. Consider K[x,y] with grlex order, and let I = (f,f,)=
(x*y—=1,xy* —x). Note that {fy, f,} is not a Groebner basis for I since LT(S(fy, f,)) =
x> ¢ (LT(f,),LT(f,)).
So we have:

G = (f, )

S(fy, f)= x> —y =f3#0

So we add f3 to G. Repeating this process, we get:

S(f,,f,)° =0, but

S(f,, f,) =y2—-1=0.
Hence, we must add f; = y* —1 to our generating set. If we let G = {fy, f,, f3, i}

then

G G
S(f,,f,) = S(f, f,) =0,

and S(f.,, f,) =0 forall 1 <i<4.
Thus a Groebner basis for | is given by

{f1, fo, f3, fa }= {Xzy—lxy2 — X, X% — Y, y2 -1}
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4. Minimal and Reduced Groebner Bases

The procedure outlined in Theorem 3.1.6 does give us a Groebner basis for a given
polynomial ideal, but it is generally larger than necessary. However, there are some
conditions that we can impose on the Groebner basis G so that the Groebner basis
obtained is the smallest possible. For this, | introduce the concept of minimal and

reduced Groebner bases.

Lemma 3.4.1. Let G be a Groebner basis for the polynomial ideal. Let p € G be a
polynomial such that LT(p) e <LT G —{p})) . Then G — {p} is also a Groebner basis

for I.

Proof. We know that (LT(G))=(LT(l)). If LT(p) e (LT(G—{p})), then

(LT(G—{p})) = (LT(G)). By definition it follows that G - {p} is also a Groebner

basis for I. O

We can now use the above lemma to define a minimal Groebner basis, which sets all
leading coefficients to 1, and removes some unneeded generators.

Definition 3.4.2. A minimal Groebner basis for a polynomial ideal I is a Groebner
basis G for I such that:

(1) LC(p) =1 forallp € G, and
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(i) Forallp e G LT(p) ¢ (LT(G—{p})).

So applying Lemma 1 to the Groebner basis obtained at the end of the previous

section, we obtain the following minimal Groebner basis for I.

fo=xt-y, f,=y?*-1.

Unfortunately, a minimal Groebner basis is not unique. For example, another minimal

Groebner basis for the same ideal is the following:

(1) f,=x"+ay’-y-a, 1:4:y2—1.
where a € k is any constant. Fortunately, we can obtain a unique minimal Groebner

basis that is smaller than all other.

Definition 3.4.3. A reduced Groebner basis for a polynomial ideal I is a Groebner
basis G for I such that:

Q) LC(p) =1 forall p € G.
(i) ~ Forall p e G, nomonomial of p liesin (LT(G—{p})).

So for the minimal Groebner basis given in (1), setting a = 0 gives a reduced

Groebner basis.

Proposition 3.4.4. Let I # {0} be a polynomial ideal. Then for a given monomial

ordering, I has a unique reduced Groebner basis.
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Proof. Let G be a minimal Groebner basis for I. We say that g € G is reduced for G
if no monomial of g is in (LT (G —{g})). Once all elements of G are modified in this
manner, then G becomes a reduced Groebner basis.

We first note that if g is reduced for G, then g is also reduced for any other minimal
Groebner basis of | that contains g, since the definition of reduced only involves the
leading terms.

Now, given geG, let g'=g- , and define G’ = (G —{g})U{g’}. | claim that G’
is a minimal Groebner basis for I. To see this, we first note that LT(g") = LT(g),
since dividing g by G — {g} sends LT(g) to the remainder as it is not divisible by any
element of LT(G — {g}). This shows that (LT(G')) =(LT(G)). Since G'is contained
in I, we see that it is a Groebner basis, and minimal follows after making all the
replacements. Also note that g'is reduced for G’ by construction.

We apply this same process to all elements of G. The Groebner basis may change
each time, but this does not change the reduced state of each element, since once an
element is reduced, it stays reduced as we are not changing the leading terms. Thus
we have a reduced Groebner basis.

To see that it is unique, suppose that G and G’ are reduced Groebner bases for I. So
they must also be minimal. This means that that LT(G) = LT(G') since a monomial

ideal has a unique minimal generating set of monomials. Thus given ge G, there is g’

e G’ such that LT(g")=LT(g). If we show that g = g’, then it follows that G = G’.

Consider g —g’. Thisisin I, and since G is a Groebner basis, it follows that g — g’G

= 0. But LT(g") = LT(g), hence these terms cancel in g —g’, while the remaining
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terms are divisible by none of LT(G) = LT(G"), since G and G’ are reduced. This

shows that g — g’G =g-g' =0.Henceg=g’, and thus G is unique. O

As mentioned earlier, for a system of linear equations, computing the Groebner basis
is equivalent to performing Gaussian elimination. Computing a reduced Groebner
basis for a linear system, then, provides us with the reduced row echelon form of the

augmented coefficient matrix of the linear system.

29



Chapter 4: Applications

1. ldeal Membership Problem

Given an ideal 1, it is often of interest to determine whether a given polynomial f lies
in | or not. By using our knowledge of Groebner bases and the Buchberger algorithm,
this becomes a simple task. First, | will need to prove that that the remainder of f

upon division by the elements of its Groebner basis is unique.

Proposition 4.1.1. Let G ={g,,---,9,}be a Groebner basis for an ideal | < K[x,,---,

X,] and let f 1. Then there is a unique r ek[x;,---,X,] with the following two

properties:
Q) No term of r is divisible by one of the LT(gy),..., LT(gy).

(i)  Thereisa gel suchthat f =g+r.

Proof. See [CLOS, page 81].

Note that though the remainder r is unique, the quotients need not be so. Listing the

generators g; in a different order in the division process can result in different values

30



for the quotients. In any case, we can now state the following corollary that describes
the criterion for when a polynomial lies in an ideal.

Corollary 4.1.2. Let G ={g,,---,09,}be a Groebner basis for an ideal | < Kk[x,,---,

x.]and let f e K[x,---,x.]. Then f el ifand onlyif f_ =0.

Proof. (<) If f =0 then, by definition, f =a,g, +---+a.g,, hence the g;
generate f.Thatis f e(g,,---g,), and thus f e 1.

(=) If fel,then f=f +0 satisfies the two conditions of the previous proposition.

Hence f =a,g, +-+ag, +0, thus f =0, O

So if we carry out the division algorithm on the polynomial f using the polynomials
in G, then a zero remainder tells us that f € I. A nonzero remainder implies that f ¢

l.
Example 4.1.3. Let 1 =(g,,g,) = <x2y—1,xy2 —X>e C[x,y]. Also let f = 3x?y?

+y® —4y. We would like to determine if f 1.

So our first step is to compute a Groebner basis for 1. Using the lex order, this gives

us:
G=(f,f,)=(x*-y,y>-1).
Dividing f by G gives:
f=3y>- f, +(y*+4y)-f,.

Since the remainder is 0, we see that f 1.
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2. Elimination

Another application of Groebner bases is that, given a system of polynomials (in
several variables), we can use Groebner bases to systematically eliminate variables
from this system of equations. The resulting polynomials, having fewer variables, are

generally much easier to solve algebraically.

For example, consider the following system of equations:

x> +y*+2° =4,
(1) x® +2y% =5,
Xz =1.

We define | to be the ideal
(2) | =<f,f,, f,>=<x®+y?+2°-4,x*> +2y* -5,xz-1>.
Computing the Groebner basis for | (using lex order) gives us:

g, = x+22° -3z,

(3) 9, =y2_22 _11
g, =22"-3z

So, by Proposition 3.3.8., the systems (1) and (3) will have the same set of solutions
since they generate the same ideal. We notice here that g3 is a polynomial in only one

variable, so we manipulate it to obtain:

g, = (22° -1)(z* -1).
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L . 1
Setting it to zero, we see that the only possible z’s are +1and iﬁ' We can now

substitute these values into g, which we notice is a polynomial in only y and z. This
gives us the possible y’s. Substituting these values into g; gives us all the solutions,

which are:
(%, y,2) = P L 42.0) £(V2,4/32,1/2)}

This procedure helped us solve our original system of equations by employing two
steps.

1 — We were able to obtain polynomials that had the same roots as that in our original
equations, but with most of them having fewer variables (this was our Elimination
step).

2 — Once we solved the simpler equation, we used the solutions to this to obtain our
complete set of solutions (Extension step).

The basic idea behind elimination theory is that we can carry out these steps in

general.

Definition 4.2.1. Given 1= (f,,..., f,) = K[x,,---,x,], the kth elimination ideal I
is the ideal of K[x,.,,---,X,] defined by
k=1 K[Xg X, ]

In this way, lx contains all polynomials in | that have the variables Xi,...,Xk

eliminated. This brings us to the Elimination Theorem which states the following.
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Theorem 4.2.2 (The Elimination Theorem). Let | < Kk[x;,---,x,] be an ideal.
And let G be a Groebner basis of | with respect to lex order where x; > x; > ... >
Xn. Then, for every 0 <k <n, the set

Gk=G N K[X 15+ %,]

is a Groebner basis of the kth elimination ideal Iy.

Proof. Fix k between 0 and n and suppose that G = {gi,..., gm}. Without loss of
generality, we can assume that Gx = {0a,..., gr}. | will first show that Iy is generated
by Gi. Since Gy < I, we have (g,,---,g,) < I, since Iy is an ideal. Now using the
division algorithm with the lex order, we divide any f in Ix by 0,..., gm . We note
that,
1. Since G = {01,..., On} is a Groebner basis of I and f e I, the
remainder of f on division by G is zero; and

2. Since we are using the lex order, the leading terms of g,,,,---,g,, must

m
involve one of Xx;,---X, and hence, are greater than every monomial in f
€ KXo %, ]

Thus, when applying the division algorithm, g,.,,---,9,, will not appear and hence

every f in I, can be writtenas f =hg, +---+h,g, +0-9g,,,+---+0-9g,, +0. This

tells us that f e(gl,m,g,),which proves that Gy is generated by Ix. Note that this

—G =G

also shows that forany fel,, f =f  =0.
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Now to show that Gy is a Groebner basis, Theorem 3.3.10 tells us that it is sufficient

to show that for all 1<i< j<r, the remainder of S(g;,g;) on division by Gy is
zero. But S(g;,9;) liesin I since g; and g; do, thus the remainder of S(g;,g;) on

division by Gy is zero. Thus Theorem 3.3.10 confirms that Gy is a Groebner basis.

This completes the proof of the Elimination Theorem. o

This tells us that the polynomial gs € G obtained in our example was not just some
random way of eliminating x and y from equations f; through f; — it is the best

possible way to do so, since any other polynomial that eliminates x and y is generated

by 0s.

Using the elimination theorem we can obtain partial solutions (a,,,,---,a,) for our
set of functions with variables (x,,---,x, ) eliminated. Now to see which of these

solutions extend to our complete set of functions, we use the extension theorem.

Theorem 4.2.3 (The Extension Theorem). Let | = (f,,..., f,) = C[x,-,x,] and

let 11 be the first elimination ideal of I. For each 1<i < s, write f; in the form
f.=0, (X, X )X " + terms in whch x; has degree < N;,

where Ni > 0 and gi € C[X,,---,X,] is nonzero. (We set g; = 0 when f; = 0.) Suppose

that we have a partial solution (a,,---,a,) inthe variety of I;. If (a,,---,a,) isnot

in the variety of gi,...,gs € G, then there exists a, € C such that (a,,---,a,) isin the

variety of 1.
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Note that this theorem is only stated for the field k = C. It is false over R since the R
is not an algebraically closed field.

Proof. See [CLOS, page 117].

For example, we consider the equations

Xy =1,

xz = 1.
We set | = (xy —1 xz —1), and applying the elimination theorem gives us

li=y-z

Thus the partial solutions are given by (a, a). Extending these to the complete
solutions we obtain (1/a, a, a). But we notice that this extension is not valid when a =
0. So the only partial solution that does not extend is (0, 0), which is the partial
solution where the leading coefficients y and z of x vanish. But the Extension
Theorem tells us that the extension step can fail when the leading coefficients vanish
simultaneously.

It should be noted that in projective space, all partial solutions extend.
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3. Intersection of Ideals

In this section I consider the problem where, given two ideals in a polynomial ring,
we try to determine their intersection. The first question that naturally arises is
whether this intersection will also be an ideal. This brings us to the first proposition of

this section.

Proposition 4.3.1. If 1 and J are ideals in k[x,,---,X,], then 1 nJ is also an ideal.

Proof. Note that 0l nJ,since Oel and OeJ.If felnJand gelnJ,then
f+gel and f+geJ. Hence f+gelnJ. To test whether or not we have
closure under multiplication, let f el nJ and let h be any polynomial in K[x,,

X,]. Since fel,and | is an ideal, then f-hel. Similarly, f-heJ, and
hence f -helnJ. m

So to restate our problem, if we are given two ideals, and a set of generators for each,
we wish to compute the set of generators for their intersection. To do this we need a
bit of notation and a lemma.

If 1 isan ideal in k[x,,---,x,] and f(t) ek[t] a polynomial in a single variable t,

then f I denotes the ideal in K[x,,---,x,,t] generated by the set of polynomials

n?
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{f -h:hel}. Note that the ideal | in K[x,,---,x,] is not an ideal in K[x,,---,X,,t].
So with this notation we have

f1 = f(t)l = (FOh):h(X)el).

Lemma 4.3.2.

(i) If 1is generated as an ideal in K[x,,---,x,] by p;(X),---, p,(X), then f 1 is
generated as an ideal in K[x;,---,x,,t] by f-p,(X),---, f-p,(X).

(i) If g(x,t) e f1 and ais any element of the field k, then g(x,a) el .

Proof. To prove the first assertion, note that any g € f1 can be expressed as a sum

of terms of the form h(x,t)- f - p(x), with h e kK[x,,---,X,,t]. But since I is generated

by the p,, we can write p(x) as p(x) =Zqi(x)pi(x). Hence we have h(x,t)- f -
i=1

() = Y h(x 0, ()P,

Now for each i, h(x,t)-q;(x) e k[x,,---,X,,t]. Thus h(x,t)- f-p(x) belongs to an

n?

ideal in K[x,,---,X,,t] generated by f - p,(x),---, f-p,(x). Since g is a sum of such

n?

terms, g e (f - p,(x), -, f - p, (X)), which proves (i).

(‘i) is proved immediately by substituting a for tin h(x,t) . o

Theorem 4.3.3. Let I, J beidealsin K[x;,---,X,]. Then

NI =t +@-t)I) KX, X, ].
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Proof. First note that tl +(1—t)J is an ideal in K[x,,---,X,,t]. Now suppose that

felnJ.Since fel,wehave t-f etl. Similarly, feJ=(0-t)-f e(1-1)J.
Thus f=t-f+@-t)-fetl+@-t)J. Since 1,J < Kk[x,,---,X,], we get fe
(th + (@—1)I) KX, %, ].

To show inclusion in the other direction, let f e (tl +(1—t)J)~ K[x,,---,x,]. Then
f(x) = g(x,t) +h(x,t), where g(x,t)etl and h(x,t) e (@1—-t)J. Setting t = 0, we
observe that g(x,0)e0l =0. Thus f(x)=h(x,0), and hence f(x)eJ by our
previous lemma. Setting t = 1 gives us f(x)=g(x,)+0, hence f(x)el by our

previous lemma. Since f belongs to both I and J, we get f € | nJ, which completes

the proof. o

The above result, along with the Elimination Theorem from the previous chapter,

provides us with an algorithm for computing the intersection of two ideals. If

| =(f,, f)and J=(g,,---,g,) are ideals in k[x,,-,x,], we consider the ideal:
(tf, -t (=), L=1)g5) < KDX, -, X, ]

and compute a Groebner basis with respect to lex order in which t is greater than x;.

The elements of this basis which do not contain the variable t will form a basis of

InJ.
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Example 4.3.4. Consider the following ideals

| = <x“ + X3y +x%2% = x*y? + x2yz? —xy® —xy®z® — y322> ek[x,y,z]

and

J= <x4 +2x%2% = x?y? + x%z2" —2xy?z* - y224> ek[x,v,z].
We consider the ideal tl + (1—t)J in k[t,x, Y, z]. Computing its Groebner basis using
a computer algebra program (I use Maple® 11) with respect to lex order witht > x>y
> 7, We get:

G={-Vy’2"—xy?z* + x2yz* + x’z* —2xy®z% —2x%y®z% + 2x%yz? + 2x* 2% — x?y® - x%y?
XY+ X0, Cy Pz X Pyz? —txy iy 2z? —ty®z® —xPy? + xt —2xy?z? +2x%z2% -
yizt X%zt -zt +ty %zt —xt = 2x%2% + X2y - X%zt 2xy %% + Pzt +txt 2tz
—tx’y® +tx?z* —2txy 2z —ty®z*}.

Hence, by the Elimination Theorem,

{-y3z* —xy?z* + x°yz* +x%2* = 2xy®z% —2xPy?z® + 2x%yz® + 2x* 2% - x*y? = x*y? + X'y
+x°}

is a Groebner basis of (tl +(1—t)J) k[x,y,z]. Thus

I NJ =<-y°z* —xy®z* + x®yz* + x°2* = 2xy°z% = 2x*y?z2* + 2x°yz? + 2x* 2% — x*y® - x°y®
+XY+X° >,
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4. The 3-Color Problem

Here 1 will discuss how we can apply Groebner bases to solve the well-known 3-color
problem in graph-theory: determining whether a graph can be 3-colored. More
precisely, given a graph with n vertices, we want to color the vertices in such a way
that only 3 colors are used, and no adjacent vertices have the same color. If the graph
can be colored in this manner, then it is called 3-colorable. This is similar to the 3-
color problem for a map, where the vertices represent the contiguous regions to be
colored, and connected vertices represent adjacent regions. | discuss the 3-color
problem in particular, even though the approach I describe works for any coloring.
The equivalent 2-color problem is exceedingly simple, since the presence of any odd-
cycle ensures that it is not 2-colorable. The 3-color problem appears adequately
complicated to warrant deeper analysis.

The following is an example of a graph that is 3-colorable. Labelling the colors as 1,
2 and 3, one possible coloring combination that manifests 3-colorability is displayed

below:
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FIGURE 4.4.1.

An example of a graph that is not 3-colorable is the following:

FIGURE 4.4.2.

27

In order to set this problem up mathematically, first we let ® = e 3 be a cube root of

unity (i.e. ®* = 1). We can now represent the three colors by 1, ® and ©?. We let
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X1,...,Xn be variables representing the distinct vertices of our graph G. Each vertex is
to be assigned one of the three colors 1, @ or @’ This gives us the following n

equations:

x’-1=0, 1<i<n. *)
The 3-colorability condition adds the condition that if two vertices x; and x; are
connected by an edge, they need to be colored differently. Now since xi3 =X j?’, we
have:

X —x;"=0

= (X —X;)(% + XX, +X,%)=0
But since x; # X;, we have:
X+ XX +x,°=0. (**)
Now we define | to be the ideal of C[x,,---,x,] generated by the polynomials in

(*), and for each pair of vertices X;, X; connected by an edge by the polynomials in
(**). We now consider the variety V(I ) contained in C", and the following theorem
follows immediately:

Theorem 4.4.1. The graph G is 3-colorable if and only if V(1 ) # @.

Proof: Obvious.
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Now to determine whether V(I ) # &, we can use Groebner bases. We compute a
reduced Groebner basis G for I, and if 1e G then V(I ) = @ and the graph is not 3-

colorable. Otherwise, it is so.

Example 1. Consider the graph G below:

xl x2

x5 x6

x7

x4 x3

FIGURE 4.4.3.

The polynomials corresponding to G are:
x. —1,fori=1,...7
And
X"+ XX, +x,°, for the pairs (i, j) e{(12),(L4),(L5),(2,3),(2,6),(34),

(3,6),(3,7),(4.5),(4,7),(56),(57),(6,7)}.
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We now compute a Groebner basis G using the lex-ordering for the ideal I
corresponding to the above polynomials, and obtain G ={I}. Hence, G is not 3-
colorable.

If, on the other hand, we remove the edge connecting X, to x,, our graph takes the

following form.

xl x2

x5 x6

x7

xd x3

FIGURE 4.4.4.

The only difference to | is that it no longer contains the polynomial xZ + X,X, + XZ.
Computing the reduced Groebner basis, we obtain:

G =X =L =X, + Xg, XZ + XX, + X2, Xg + X, + Xy, X — Xg, Xg + Xy + X, X, — X, }
Since 1¢ G, we have that V(I ) # @, and hence G is 3-colorable. Referring to the

three colors as ¢, ¢, and c3, one possible coloring combination is the following:

X1 — Cg; X2 — C2; X3 — C3; X4 — C2; X5 — C3; Xg — C1; X7 — Cy,
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5. Integer Programming

Integer programming is the problem of solving linear equations where the solution
must be in non-negative integers and should minimize a given “cost function”. These
kinds of problems arise often in scientific and engineering applications, and there are
several books on this subject that can be referred to for further reading; for example,
see [Schri].

Our strategy here is to convert the integer programming problem into a problem about
polynomials, and then solve this polynomial problem using Groebner bases, and use
this to obtain the solution to our original integer programming problem.

So our objective is to find a solution (z,,2,,...,z,,) in N™ of the system

a,,Z, +8,,Z, +...+8,,2, =b,

Im©m

2m©m

*) a,Z, +8,,Z, +..+a,,Z, =D,
ayZ, +a,z, +..+a,,2,=b

n*

which minimizes the “cost” function

m
(**) c(z,,2,,0,2,) =D ¢;2;.
=1

Initially 1 will solve the system (*) without taking into account the cost function. To
do this, I introduce a variable for each linear equation in the system above, say
X1,...,Xn, and a variable for each unknown z;, say yi,...,ym. We can now represent the

system as:
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Qi+t qmZ; X_bi

X; =x" for i=1,...n.

Then (*) can be written as a single equation of monomials

a2+ mZ a1+ Ay b,
Xllll lmm_,,Xnnll nmem :Xfl,',xnn.

Which can be rearranged to obtain:
(***) (Xf“ . X:nl )Zl .. .(Xlalm eee Xr‘?"m )Zm = lel . )(t’n .
The left hand side monomial in the above equation can be considered as the image of

z

the monomial y;*---y; under the polynomial map

k[yli'”!ym]—(/,_)k[xl"“’Xn]

Qj .

ani
Y XX

Then it is clear that if we assume that all the a;;’s and b;’s are non-negative, there

b
n

exists a solution (z,,2,,...,z,) € N™ of system (*) iff the monomial x---x™ is the
image under ¢ of a monomial in K[y,,---,y,,]. Moreover if x---x’ = (p( s ---y;m),

then (z,,---z,,)e N™ is a solution of (*).

We now consider the following Lemma:

Lemma 4.5.1. We use the notation above and assume that all ajj’s and b;’s are non-

negative. If x---x™ is in the image of ¢, then it is the image of a monomial

(y2-y2) e KIyy, -, Yl

Proof. See [AL, page 107].
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We can now use the following procedure for determining whether (*) has a solution,

and for finding a solution:
(i)  Compute a Groebner basis G for K = <yj — XX :1,---,m> with
respect to an elimination order with the x variables larger than the y
variables;

(ii)  Find the remainder h of the division of the monomial x> ---x by G;

@)  If h ¢ k[y,,---,y,], then (*) does not have non-negative integer solutions.

Im

If h=yZ...yx, then y=-.-yZ isasolution of (*).
For example, consider the system:

3z, +22,+12, =10

(#)

4z, +3z, + 2, =12.
Using the procedure described above, we have two x variables, X3, X2, one for each

equation, and three y variables, yi, Y2, y3, one for each unknown. The corresponding

polynomial map is given by

k[y11 yzi y3]—$)k[X1, Xz]

3,4

Y1 = XX,
2,3

Y, = XX,
Y3 = XX,

48



S0 K = (y, = XX}, ¥, =X/ X3,Y5=%,%, ) < K[Y1, Y5, Y3, %, %,]. The Groebner basis for

K with respect to the lex order with x; > x > y1 >y, > ys is G = {f,f,, f,, f,},

where:
fi=Y1-Y.¥s
f,=%Y: ~ ¥,
fa=XY, — Y3
f,=XX —Y,.

Then dividing x;°x;* by f,, fzand f, gives us:
10,12 2,,6

£, 65,1
XX, {2—34}>y2y3-

0,,2,,6

So h=ylyS = y’yZyS. Using the exponents of h we get that (0, 2, 6) is a solution

of (#).

Now we consider the more general case, where the aj’s and bi’s in (¥) are any
integers, not necessarily non-negative. We now end up with negative exponents on
the x variables, which cannot be obtained from the polynomial ring K[x,,---,x,]. So
we introduce a new indeterminate w and we work in the localized ring

K[X,, - X,,Wl/I , where 1 =(x,X,---x,w—1). We may choose non-negative integers

a!

; and a;, foreachj=1,...m andi =1,...,n such that for eachj=1,....m we

have
(aljv"'anj):(

ai'j,...,a;j)Jraj(_l,...,_l).

Then in the affine ring K[x,,---, X,,w]/1 we define the coset x,* ---x." +1 as:
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1

XX ] = XX W 4]

Similarly, (b,,---,b,)=(b/---b} )+ A(-1,---,~1), and we define
XooxP 4l =xtoxPwf 41,

We therefore get the following equation that corresponds to (***)

(e o J (i o xBowe F )= xS ]

As before, we notice that the left hand side of this equation can be viewed as a

4

monomial y,*---y under the algebra homomorphism

k[yl,---,ym]—¢’—>k[xl,---,xn,w]/l

Vi X Xw
So, as before, (z,,---z,,) € N™ is a solution of (*) if and only if x*---x™w” +1 is the
image under ¢ of a monomial in k[y,,---,y,,]. Furthermore, (zl,-‘-zm) is a solution

of (*) if x2---x>w’ +1= (p(yfl---yrf;“).

Lemma 4.5.2. We use the notation above. If x---x>W” + 1 is in the image of ¢,

then it is the image of a monomial y;*---y.™ e K[y,, -+, ¥,,]-

Proof. See [AL, page 109].

For example, consider the system:

22, +1,-32,+2, =4
(##)
-3z, +22,-22,-7,=-3
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We have two x variables, xi, X2, one for each equation, and four y variables, yi, Y2, Y3,

ya, one for each unknown. We consider the ideal 1 =(x,x,w-1) of k[x,,x,,w] and
the algebra homomorphism
KLY, Yz Yar Yal—2KX,, X, W]/

Y, = X W+

Y, B xS+l

Yo B xawd+l

y, = xXw+l
Thus K =(y, =x;W’, ¥, =X, X, Y5 = X,W’, ¥, =X W, X;X,w—1) . The Groebner basis
for K with respect to the lex order with x; > X >w >y; >y, >y3 >y, is G =

{f,, f,, fs, f,, fs}, where:

5,,3,,4

fi=y,y;y, -1
f, =y, —yayiy;
fa=w-y,y,Y,
fo =% —Y3YsY,
fo =% — Y5 YsYi.

Now since x;'x;> + 1 = x/w® + 1, we reduce the monomial x,w® by G to get:

)(17W3 e yg yéo yA117
f 12,,7.,,13

—> \ERED

f 7.,4.,9

—> YoYsYa
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—h Y33 Ya-

And h = y2y.y? is reduced with respect to G. We could also have reduced y;'y;°y;’

in the following manner:

17,,10,,17 2 14,,8,,12

Y5 Ya ¥ —2> AR

—Ls ViV YaYa
—L YoY5Ys Vi

The exponents of the different monomials obtained in this reduction give us the
following solutions of (##)
(0,17, 10, 17), (0, 12,7, 13), (0,7, 4,9), (0,2, 1,5), (1, 14,8, 12), (2, 11,6, 7),

and (3, 8, 4, 2).

We now return to the original problem. We want to find solutions of (*) that
minimize the cost function (**). As previously, the only requirement on the term
order for (*) is that we have an elimination order between the x, w, and the y variables
with the x and w variables larger. The strategy for minimizing the cost function is to

use the c j ’s to define such a term order.

Definition 4.5.3. A term order <_on the y variables is said to be compatible with the

cost function ¢ and the map ¢ if
o0y Y ™) =0V Yy )

and =YV Ye " < Wi
(2,7 2,) <2y, 7))
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The following proposition now shows that compatible term orders on the y variables

give rise to solutions of (*) with minimum cost.

Proposition 4.5.4. We use the notation set above. Let G be a Groebner basis for K
with respect to an elimination order with the x and w variables larger than the y
variables, and an order <. on the y variables which is compatible with the cost

bl,...xnb'qwﬂi) ylzl...ymzm, where ylzl...y

Z
m

function ¢ and the map ¢. If X, " is

reduced with respect to G, then (z,,---,z,,) is a solution of (*) which minimizes the

cost function c.

Proof. See [AL, page 111].

Since our process of obtaining the minimal solution relies on the term order being
used, a different minimal solution may be obtained if we use a different order, as long
as we have an elimination order with the x and w variables larger than the y variables,

and the order on the y variables is compatible with c and ¢ .
In general the term order<_is not easy to obtain (For details, I refer you to the

original paper [CoTr]). But when the cost function contains only positive constants,
then the case is simple. In this case we can use the following term order: first order
monomials using the cost function, and break any ties with any other order.

For example, consider the system (##) with the following cost function:

c(z,,2,,25,2,) =102, + 2, + 2, +100z,.
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We will use the lex order on w and x so that x; > x, >w. Next the monomials iny
are first ordered using the cost function, and any ties that emerge are broken using lex

ordering with y, >y, >y, > y,. This means that:

A8 250 AN PR A S A
if and only if
10z, +z, +z, +100z, <10z, + z, + z; +100z;
or

10z, +z, +z, +100z, =10z, + z; + z; +100z; and

/N0 75 25 PRSI A RS A A
We then use an elimination order with the x and w variables larger than the y

variables, and compute the reduced Groebner basis for K. This gives us:

3 2,,6,,3

G={W—Y,Y5V5 Y~ YiVo Y. X — ViV ¥s. Xo — V1Yo V2. Vo Yo V5 — 1

Reducing x,w® with respect to G gives us:

Tyas3 G 5,,12,,6
W ——> Y1¥> Y3

which gives the solution (5, 12, 6, 0). And this is the solution of minimum cost.

Groebner bases are not the sole approach to solving integer programming problems.
It was proved by H. W. Lenstra, Jr. in 1983 that, for a fixed number of variables, such
a problem can be solved in polynomial time [AWW]. | was unable to find any
concrete data comparing the speed of the approach for solving integer programming

problems using Groebner bases to other approaches.
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