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ABSTRACT 

 

 

Groebner bases were introduced by Bruno Buchberger in 1965 and they now 

comprise a major research area in computational algebra and computer science. In 

this report, I describe the Buchberger algorithm, which is used to compute Groebner 

bases, and I then present some of their interesting applications that have been 

developed since their introduction. 
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Chapter 1:  Introduction 

 

1. What is a Groebner Basis? 

 

 

A Groebner basis is a particular kind of generating subset of an ideal I in a polynomial ring R 

that possesses a particular type of useful properties. For example, given a set of polynomials 

A, and its Groebner Basis G, there is a fast algorithm that utilises the polynomials in G to 

determine whether or not another polynomial f  is a combination of those in A. Furthermore, 

the set of polynomials in a Groebner basis has the same collection of roots as the original 

polynomials A.  

 

I will show in Chapter 3 that, while the algorithm to find Groebner bases can be slow, all 

non-zero polynomial ideals do have Groebner bases. For linear functions in any number of 

variables, computing a Groebner basis is equivalent to performing Gaussian elimination.  

 

The theory of Groebner bases was developed by Bruno Buchberger in 1965, who named them 

after his advisor Wolfgang Groebner. 
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Chapter 2:  Key Concepts and Definitions 

 

1. Ideals 

 

In this section, I define ideals, the basic algebraic object that we will be working with 

for the rest of this report. These ideals will be in the polynomial ring ],,[ 1 nxxk  , 

where k is the field that we are working in (either real or complex numbers), and the 

ix  are the variables. 

Definition 2.1.1.  A monomial  in nxx ,,1   is a product of the form 

n

nxxx


21

21  , 

were all exponents n ,,1   are non-negative integers. The total degree of this 

monomial is the sum n 1 . 

 

Definition 2.1.2.  A polynomial  f  in nxx ,,1   with coefficients in k is a finite linear 

combination (with coefficients in k) of monomials. We will write a polynomial in f in 

the form 





 xaf ,  ka  , 

where the sum is over a finite number of n-tuples  n ,,1  . The set of all 

possible polynomials in nxx ,,1   with coefficients in k is denoted ],,[ 1 nxxk  . 
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Definition 2.1.3.  Let k be a field, and let sff ,,1   be polynomials in ],,[ 1 nxxk  . 

Then we set 

0),,(|),,{(),,( 111  ni

n

ns aafkaaffV   for all si 1 }. 

We call ),,( 1 sffV   the affine variety defined by sff ,,1  . 

 

Definition 2.1.4.  A subset I  ],,[ 1 nxxk   is an ideal if it satisfies: 

(i) 0  I. 

(ii) If  f, g  I, then f + g  I. 

(iii) If  f  I and h  ],,[ 1 nxxk  , then h f   I.  

 

A natural example of an ideal (and the one that I will primarily be working with) is 

the ideal generated by a finite number of polynomials. Later, in section 3.4, I will 

show that all ideals in polynomial rings of the form ],,[ 1 nxxk   are generated by a 

finite number of polynomials. 

Definition 2.1.5. Let f1,…,fs be polynomials in ],,[ 1 nxxk  . Then we set 

 .],...[,...,:,...,
1

111









 


s

i

nsiis xxkhhfhff   

It can be checked that sff ,...,1  is an ideal. We will call sff ,...,1  the ideal 

generated by f1,…,fs. 
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2. Orderings on the Monomials in Polynomial Rings  

 

 

In this section, I will define an ordering of terms in polynomials. The purpose behind 

this is to help us devise a multivariate polynomial division algorithm (an extension of 

the division algorithm for one variable), which I will describe explicitly in the next 

chapter. 

When defining such an order, we would naturally want it to possess some or all of the 

properties of ordering that we observe in positive integers (for example, it should 

respect multiplication and well ordering).  

But first, we note that we have a one-to-one correspondence between monomials in 

],,[ 1 nxxk   and n-tuples of non-negative integers (denoted by Z n

0 ), where we can 

reconstruct the monomial n

nxxx
 1

1  from the n-tuple of exponents 

  n ,,1  Z n

0 . Using this correspondence, we can transfer an ordering 

  on Z n

0  to ],,[ 1 nxxk  . 

Keeping this in mind, we define a monomial ordering in the following way. 

Definition 2.2.1.  A monomial ordering on ],,[ 1 nxxk   is any relation  > on Z n

0 , 

or equivalently, any relation on the set of monomials x


, α    Z n

0 , satisfying: 

(i) >  is a total (or linear) ordering on Z n

0 . 
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(ii) If α > β and γ  Z n

0
, then α + γ > β + γ. 

(iii) >  is a well-ordering on Z n

0
. This means that every nonempty subset of 

Z n

0
 has a smallest element under >.  

 

I now present some examples of ordering on n-tuples of integers that we will use later 

in this report. 

Definition 2.2.2 (Lexicographic Order).  Let α = (α1,…,αn), and β = (β1,…,βn)   

Z n

0
. We say α >lex β if, in the vector difference α – β   Z

n , the left-most nonzero 

entry is positive. We will write x
α
 >lex x

β
 if α >lex β.  

 

 For example: 

a. (2, 0, 1) >lex (0, 3, 3) since α – β = (2, -3, -2). 

b. (1, 1, 4) >lex (1, 1, 1) since α – β = (0, 0, 3). 

c. Transferring to ],,[ 1 nxxk  , we see that the variables nxx ,,1   are ordered in 

the usual way by the lex ordering: 

(1, 0,…, 0) >lex (0, 1, 0,…, 0) >lex … >lex (0,…, 0, 1) 

So x1 >lex  x2 >lex …>lex  xn. 

This order is analogous to the ordering of words used in a dictionary, and hence the 

name. 

For our second example, we deal with an order that also takes into account the total 

degree of each monomial. If we have any α   Z n

0 , we say that |α| = 


n

i

i

1

 , which 
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gives us the total degree of the monomial x . Using this, we define the following 

order. 

Definition 2.2.3 (Graded Lex Order). Let α, β   Z n

0
. We say α >grlex β if 

 |α| > |β| , or |α| = |β| and α >lex β.  

 

A similar, but less intuitive, graded order is the graded reverse lexicographic order. 

One advantage of this order over the previous is that it is more efficient for 

computations for certain operations [CLOS, page 57]. 

Definition 2.2.4 (Graded Reverse Lex Order). Let α, β   Z n

0 . We say α >grevlex β if 

 |α| > |β| , or |α| = |β| 

and, in α - β  Z
n

, the right-most non-zero entry is negative.  

 

In order to see how these monomial orders apply to polynomials, we introduce the 

following terminology. 

Definition 2.2.5. Let f  = 


 xa be a nonzero polynomial in ],,[ 1 nxxk   and let  

>  be a monomial order. 

(i) The multidegree of  f  is 

multideg( f ) =  max(α   Z n

0  : aα ≠ 0) 

  (the maximum is taken with respect to the assumed order >). 

(ii) The leading coefficient of  f  is 

LC(f ) = amultideg( f )   k . 

(iii) The leading monomial of  f  is 
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LM( f ) = x
multideg( f )

 

  (with coefficient 1, so its coefficient in f is suppressed). 

(iv) The leading term of  f  is 

LT( f ) = LC( f ) LM( f ) .  

 

To illustrate this, let 3432 7524 xyzxyzyzxf   zyxk ,, . If we let > 

denote the lex order, then we have: 

multideg( f ) = (2, 1, 1), (corresponding to the monomial yzx24 ) 

LC( f ) = -4,  

LM( f ) = yzx2 ,  

LT( f ) = yzx24 . 

If we let > denote the grlex order, then: 

multideg( f ) = (1, 4, 0),   

LC( f ) = 5,  

LM( f ) = 4xy , 

 LT( f ) = 45xy . 

By letting > denote the grevlex order, we get: 

multideg( f ) = (1, 4, 0),   

LC( f ) = 5,  

LM( f ) = 4xy , 

 LT( f ) = 45xy . 
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Chapter 3: Buchberger’s Algorithm 

 

1. A Multivariable Polynomial Division Algorithm  

 

 

In order to compute the Groebner Basis of an ideal, we use a procedure called the 

Buchberger Algorithm. This algorithm utilizes a division algorithm in ],,[ 1 nxxk   

which extends the polynomial long division algorithm for k[x]. In the general case, 

our goal is to divide f  ],,[ 1 nxxk    by sff ,,1     ],,[ 1 nxxk  , which expresses f  

in the form 

f = a1f1 + … + asfs + r, 

where the “quotients” saa ,,1   and remainder r  lie in ],,[ 1 nxxk  . We also want 

this remainder r to be as “small” as possible, and this is where the monomial ordering 

introduced in the previous section will apply. 

 

Theorem 3.1.1. (Division Algorithm in ],,[ 1 nxxk  ). Fix a monomial order > on 

Z n

0 , and let F =  sff ,,1   be an ordered s-tuple of polynomials in ],,[ 1 nxxk  . 

Then every f  ],,[ 1 nxxk   can be written as 

f = a1f1 + … + asfs + r, 
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where ai , ],,[ 1 nxxkr  , and either r = 0 or r is a k-linear combination of 

monomials, none of which is divisible by any of  LT(f1),…,LT(fs). We will call r a 

remainder of  f  on division by F. Furthermore, if ai fi ≠ 0, then we have 

multideg( f ) ≥ multideg(ai fi ).  

Proof. See [CLOS, page 63]. 

 

Example 3.1.2. Consider the case where  f = 232 23 yxyyx  ,  f1 = xy - x  and f2 = y
2
 

+ 3.  We will use the lex order with x > y. We set up our division as follows. 

232

2

23

3

yxyyx

y

xxy 




 

We notice that the leading term of f1 divides the leading term of  f , so we carry out 

this division, making sure to indicate which polynomial was the divisor. So we get: 

a1:  xxyxy 333 2   

a2: 

22

22

2

222

22

2232

232

2

23

33

23

33

23

33

23

3

yxyx

xyx

xyyx

yxyx

xyyx

yxyx

yxyyx

y

xxy


















 

 

Now we notice that neither LT(f1) nor LT(f2) divides LT(3x
2
 - 2xy + y

2
 ). However,  

3x
2
 - 2xy + y

2
 is not the remainder since LT(f1) divides 2xy. Thus, we move 3x

2
 to the 
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remainder and we continue dividing. This is something that never happens in the 

single-variable case. 

Now we continue dividing. If we can divide by LT(f1) or LT(f2), we proceed as usual, 

and if neither divides, we move the leading term of the intermediate dividend to the 

remainder column. This gives us: 

:

:

2

1

a

a

 

1

2333 2  xxyyx

 

3

3

2

22

2

23

33

23

33

23

33

23

3

2

2

2

2

22

22

2

222

22

2232

232

2





























y

y

yx

xxy

yxy

yxyx

xyx

xyyx

yxyx

xyyx

yxyx

yxyyx

y

xxy

 

3

2

3 2







x

x

r

 

 

Thus, the remainder is 323 2  xx , and we obtain: 

323)3()(23 22

21

232  xxyaxxyayxyyx . 
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2. Monomial Ideals and Dickson’s Lemma 

 

 

In this section, I will describe monomial ideals, since these are what we will mostly 

be dealing with for the rest of this report. We then go on to study some of their 

properties. 

Definition 3.2.1.  An ideal  I   ],,[ 1 nxxk    is a monomial ideal  if there is a subset 

A  Z n

0  (possibly infinite)  such that  I  consists of all polynomials which are finite 

sums of the form   A
xh




 , where  ],,[ 1 nxxkh  . In this case, we write 

AxI   | . This is equivalent to saying that I can be generated by monomials. 

For some interesting applications of monomial ideals, in particular, their application 

in computing Hilbert polynomials, I refer the reader to [Sch]. 

 

The next theorem is a very important one as it shows that all monomial ideals of 

],,[ 1 nxxk   are finitely generated.  

Theorem 3.2.2 (Dickson’s Lemma). A monomial ideal AxI   |  ,,[ 1 xk  

]x  can be written in the form )()1( ,, sxxI   , where  α(1),…,α(s)   A. In 

particular, I has a finite generating set of monomials.  
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Proof.  The proof is by induction on n, the number of variables. If n = 1, then I is 

generated by the monomials x , where  A  Z
0

. Let β  be the smallest possible 

element of  A Z
0

. Then x  divides all the other generators, thus xI  . 

We now consider the case when n > 1. We assume that the theorem holds for n – 1. 

We can name the variables yxxx n ,,,, 121   which allows us to write the monomials 

in  k[ yxxx n ,,,, 121  ]  as myx , where α =  11 ,, n   Z 1

0





n   and  m   Z
0

. 

Suppose that I  k[ yxxx n ,,,, 121  ]  is a monomial ideal. Let J be the ideal in 

 11 ,, nxxk    generated by the monomials x   for which Iyx m   for some  m   

0.  Since J  is a monomial ideal in  11 ,, nxxk  , the inductive hypothesis tells us that 

finitely many x ’s generate J . Let’s call them .,, )()1( sxx    

For each i  between 1 and s, the definition of  J  tells us that Iyx imi )(  for some im  

≥ 0.  Let m be the largest of the im . Then, for each k between 0 and m-1, consider the 

ideal kJ   11 ,, nxxk   generated by the monomials x  such that Iyx k  . Again, 

the inductive hypothesis tells us that kJ  has a finite generating set of monomials, say 

)()1(
,, kkk s

k xxJ
  . 

I claim that I  is generated by monomials in the following list: 

from J :  msm yxyx )()1( ,,   , 

from 0J :  
)()1( 000 ,,

s
xx
  , 

from 1J :  yxyx
s )()1( 111 ,,

  ,  
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from  1mJ  : 1)(1)1( 111 ,,   msm yxyx mmm   . 

First we note that every monomial in I  is divisible by one in the list. To see why, let 

pyx I . If  p ≥ m, then pyx  is divisible by one of the monomials in J.  And if  p  

<  m,  then pyx  is divisible by one of the monomials in pJ  by their construction.  

Thus the above monomials generate an ideal having the same monomials as I, which 

forces the ideals to be the same. nxx ,,1   

Finally, we need to show that this finite set of generators can be chosen from a given 

set of generators for the ideal I. Switching back to writing the variables as nxx ,,1  , 

then our monomial ideal is AxI   | . We need to show that I  is generated by 

finitely many of the x ’s where A . We’ve already shown that I = 

)()1( ,, sxx    for some monomials )(ix  in I, and, hence, )(ix  is divisible by some 

)(ix  for some Ai )(  since I  is a monomial ideal. Thus we know that I   

)()1( ,, sxx   . But at the same time, )()1( ,, sxx    I  by the definition of  I. 

Hence,  I = 
)()1( ,, sxx   , which completes the proof.     □ 
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3. Computing the Groebner Basis using the Buchberger Algorithm.  

 

 

In this section we will completely answer the question of whether every ideal has a 

finite generating set. The answer is provided through the Hilbert basis theorem, which 

was first proved by David Hilbert in 1888. Using the result of this theorem, as well as 

the multivariate division algorithm and the properties of monomial ideals that we 

have studied in the previous sections, we will describe the Buchberger algorithm, 

which gives us a Groebner basis for any ideal in a polynomial ring. 

 

First, for any ideal I, we can define its ideal of leading terms as follows. 

Definition 3.3.1.  Let I ],,[ 1 nxxk   be an ideal other than {0}. 

(i) We denote by  LT(I ) the set of leading terms of elements of I. That is, 

|{)( cxILT  there exists f   I  with  LT(f ) = cx
α
}. 

(ii) We denote by )(ILT  the ideal generated by the elements of  LT(I ).  

 

We have already observed how leading terms play an important role in the 

multivariate division algorithm for polynomials. Now a question that naturally arises 
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with this definition of an ideal of leading terms is: Given an ideal I = sff ,...,1 , does 

)(),...,()( 1 sfLTfLTILT  ? 

It is obvious that )()()( ILTILTfLT i   from the definition of )(ILT , and this 

implies that )()(),...,( 1 ILTfLTfLT s  , but as we shall see with the following 

example, the reverse inclusion is not necessarily true. That is, )(ILT  can be strictly 

larger than )(),...,( 1 sfLTfLT . 

 

Example 3.3.2.  Let I = 21 , ff , where 22

1 3yxyf    and  13 23

2  xxf , and 

we use the grlex ordering on monomials in ],[ yxk . Then 2

1

2

2

2 yfxfy  . So  is 

in I, and thus 2y  = LT( 2y ) )(ILT . But 2y  is not divisible by 2

1)( xyfLT  , nor by 

3

2 )( xfLT  , so that 2x )(),( 21 fLTfLT . So in this particular case, we observe 

that )(ILT  is strictly larger than )(),...,( 1 sfLTfLT . 

 

In this next proposition I will show that )(ILT  is a monomial ideal, and hence it 

follows from Dickson’s Lemma (discussed in the previous section) that it is generated 

by finitely many leading terms. 

 

Proposition 3.3.3. Let I ],,[ 1 nxxk   be an ideal. Then  

(i) )(ILT  is a monomial ideal. 

(ii) there are  g1,…,gt  I such that )()(),...,( 1 ILTgLTgLT t   .  
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Proof. (i)  The leading monomials LM(g) of elements }0{ Ig  generate the 

monomial ideal }0{|)(  IggLM . Since LM(g) and LT(g) differ only by a 

nonzero constant, )()( ILTgLM  . Thus )(ILT  is a monomial ideal. 

(ii) Since )(ILT   is generated by monomials LM(g)  for  g   I – {0}, 

Dickson’s Lemma tells us that )(,),()( 1 tgLMgLMILT    for finitely many 

g1,…gt  I . Since LM(gi) differs from LT(gi)  by a nonzero constant, it follows that 

)(,),()( 1 tgLTgLTILT  .        □ 

 

With this result, and the division algorithm, we can now prove that there exists a 

finite generating set for every polynomial ideal, thus answering the question put 

forward at the start of this section. 

Theorem 3.3.4 (Hilbert Basis Theorem).  Every ideal  I   ],,[ 1 nxxk    has a finite 

generating set.  That is, tggI ,,1   for some g1,…gt   I.  

Proof.   If  I = {0}, then  I = 0 .  If  I  contains some nonzero polynomial, then we 

can construct a generating set g1,…gt  for I  as follows.  Proposition 3.3.3 tells us that 

there exist g1,…,gt  I  such that )()(),...,( 1 ILTgLTgLT t  .  I claim that  I = 

tgg ,1 . 

It is clear that tgg ,1   I, since each gi   I.  Conversely, let If   be any 

polynomial. If we apply the division algorithm to divide  f  by  g1,…,gt , then we get 

an expression of the form 

   rgagaf tt  11  
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where every term in r  is divisible by none of  LT(g1),…,LT(gt).  I claim that r = 0, 

since if  r ≠ 0, then  LT(r)  )(ILT  = )(),...,( 1 tgLTgLT . Thus r must be divisible 

by some LT(gi) and hence it cannot be a remainder, which is a contradiction. 

Thus 011  tt gagaf    tgg ,,1  , which shows that I   tgg ,,1  .  □ 

 

Corollary 3.3.5. Every ascending chain of ideals 321 III   in a polynomial 

ring is eventually stationary. That is, there is some positive integer n such that Im = In 

for all m > n. This property of polynomial rings is referred to by the term, 

Noetherian. 

Proof.  Let   be an ascending chain of ideals in a 

polynomial ring R. Consider the set . Since the  are increasing, it is clear 

that I is an ideal of R. So, by the Hilbert Basis Theorem, tggI ,,1   for some 

Igg t ,,1  . Hence there exists iN  such that 
iNi Ig  for ti ,,1 . Let 

i
ti

NN



1
max ; then Ni Ig   for all ti ,,1 , and thus NII  . But II N  . Hence 

NII  . 

 

In addition to answering the question that I posed earlier, we notice that the basis 

involved in the proof of the Hilbert basis theorem has the special (and desirable) 

property that  )(ILT  = )(),...,( 1 tgLTgLT . As we had observed in Example 3.3.2 

earlier, this is not always the case. We now give these special bases a name. 
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Definition 3.3.6. Fix a monomial order. A finite subset  G = {g1,…,gt} of an ideal I is 

said to be a  Groebner basis of I if 

)()(),...,( 1 ILTgLTgLT t  .  

Less formally, we say that a set },,{ 1 tgg     I  is a Groebner basis of  I  if and only 

if the leading term of any element of  I  is divisible by one of the  LT(gi). The proof 

for the Hilbert Basis Theorem shows us that this subset G has the crucial property, 

GI  . 

A consequence of the Hilbert Basis Theorem is that, since every ideal  I   

],,[ 1 nxxk    has a finite generating set of polynomials, it makes sense to speak of an 

affine variety defined by an ideal I   ],,[ 1 nxxk  . 

 

Definition 3.3.7.  Let I   ],,[ 1 nxxk   be an ideal. We will denote by )(IV  the set 

0),,(|),,{()( 11  n

n

n aafkaaIV   for all  f   I }. 

 

I can now prove the claim I had made in the introduction of this report, that the zero 

sets of an ideal and its Groebner basis are the same. 

 

Proposition 3.3.8.  If sffI ,,1  , then )(IV = ),,( 1 sffV  . 

 



 22 

 

Proof.  Since the If i  , if ),,( 1 naaf  = 0 for all If  , then ),,( 1 ni aaf  = 0. 

Hence )(IV ),,( 1 sffV  . Conversely, let ),,(),,( 11 sn ffVaa    and let If  . 

Since sffI ,,1  , we can write 



s

i

ii fhf
1

 for some ],,[ 1 ni xxkh  . Hence 

),,( 1 naaf  = 00),,(),,(),,(
1

11

1

1 


s

i

nisi

s

i

ni aahaafaah  . 

Thus ),,( 1 sffV  )(IV  and, hence, they are equal.     □ 

 

Since GI   = tgg ,,1   for any Groebner basis G of an ideal I, the above 

proposition proves that  )(IV = )(GV . 

 

Our final step before describing the Buchberger algorithm is to define the S-

polynomial and an alternative definition of a Groebner basis. 

 

Definition 3.3.9. Let  f , g  ],,[ 1 nxxk   be nonzero polynomials. 

(i) If  multideg(f ) = α  and  multideg(g) = β, then let γ = (γ1,…,γn), where γi = 

max(αi, βi)  for each i. We call x
γ
 the least common multiple of  LM(f )  

and  LM(g), written x
γ
 = LCM(LM(f ) , LM(g)). 

(ii) The S-polynomial of  f  and  g  is the combination 

g
gLT

x
f

fLT

x
gfS 

)()(
),(



.  

So an S-polynomial S(f, g) in effect produces cancellation of the leading terms of  f  

and  g. 
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Theorem 3.3.10.  Let I be a polynomial ideal.  Then a basis  G = },,{ 1 tgg   for I is 

a Groebner basis for I if and only if for all pairs  i ≠ j, the remainder on division of  

S(gi, gj) by G (listed in some order) is zero. 

 

Proof.     If G is a Groebner basis, then the set of polynomials Ggg t },,{ 1   

generate I. Hence the remainder on division of any polynomial in I by G is zero. And 

since IggS ji ),( , the remainder on division of  S(gi, gj) by G is zero.  

For   , see [CLOS, page 84]. 

 

For the rest of this report, I will use the following notation. 

Definition 3.3.11.  For any s-tuple  sffF ,,1  , I define 
F

f as the remainder of  f 

by F. 

 

We can now explicitly describe the Buchberger algorigthm. 

Theorem 3.3.12. (Buchberger Algorithm). Let I = sff ,...,1  ≠ {0} be a polynomial 

ideal. Then a Groebner basis for I can be constructed in a finite number of steps by 

the following algorithm: 

Input:  F =  sff ,...,1  

Output: a Groebner basis  G = (g1,…,gt) for I, with F   G 

G := F 

REPEAT 
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G  := G 

FOR each pair {p, q}, p ≠ q in G  DO 

S := 
'

),(
G

qpS  

IF S ≠ 0 THEN G := G  {S} 

UNTIL G = G .  

 

Proof.  I first show that IG   at every stage of the algorithm. It is true initially, and 

we only change G by adding the remainder  S = 
'

),(
G

qpS where p, q   G. Thus, since 

),( qpS is in I, and we’re dividing by IG ' , we get  G  {S} I . 

To see that the G we obtain when the algorithm terminates is actually a Groebner 

basis of I we note that the algorithm terminates when G = G , which means that 

G

qpS ),( = 0 for all p, q  G. Hence G is a Groebner basis of IG   by Theorem 6. 

To show that the algorithm terminates, we need to see what happens after each pass 

through the main loop. The set G consists of G  (the old G) together with nonzero 

remainders of S-polynomials of elements of G . So, since GG ' , we have: 

   )()'( GLTGLT        (*) 

Also, if G  ≠ G, then )'(GLT  is strictly smaller than )(GLT . To see this we 

consider the nonzero remainder r of an S-polynomial that has been adjoined to G . 

Since r is a remainder on division by G , LT(r) is not divisible by the leading terms 

of elements of G , and thus LT(r)   )'(GLT . But  LT(r)   )(GLT , which proves 

the claim. 
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By (*) we see that the ideals )'(GLT  from successive iterations of the loop form an 

ascending chain of ideals in ],,[ 1 nxxk  . But since ],,[ 1 nxxk   is Noetherian the 

chain must eventually stabilize, which means that eventually G= G. So the 

algorithm does indeed terminate after a finite number of steps.   □ 

 

Example 3.3.13. Consider ],[ yxk  with grlex order, and let I = 21, ff  

xxyyx  22 ,1 . Note that {f1, f2} is not a Groebner basis for I  since LT(S(f1, f2)) = 

x
2
  )(),( 21 fLTfLT . 

So we have: 

G = (f1, f2) 

S(f1, f2)= x
2
 – y = f3 ≠ 0 

So we add f3 to G. Repeating this process, we get: 

,0),( 21 
G

ffS  but 

.01),( 2

31  yffS
G

 

Hence, we must add  f4 = 12 y  to our generating set. If we let G = {f1,  f2,  f3,  f4} 

then 


G

ffS ),( 21  ,0),( 31 
G

ffS  

and 0),( 4 
G

i ffS  for all 1 ≤ i ≤ 4. 

Thus a Groebner basis for I  is given by  

{f1,  f2,  f3,  f4 }= { 1,,,1 2222  yyxxxyyx  }. 
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4. Minimal and Reduced Groebner Bases 

 

 

The procedure outlined in Theorem 3.1.6 does give us a Groebner basis for a given 

polynomial ideal, but it is generally larger than necessary. However, there are some 

conditions that we can impose on the Groebner basis G so that the Groebner basis 

obtained is the smallest possible. For this, I introduce the concept of minimal and 

reduced Groebner bases. 

 

Lemma 3.4.1.  Let G be a Groebner basis for the polynomial idea I.  Let  p   G  be a 

polynomial such that  LT(p)  }){( pGLT  . Then G – {p} is also a Groebner basis 

for I.  

 

Proof.  We know that )(GLT = )(ILT .  If  LT(p)   }){( pGLT  , then 

}){( pGLT   = )(GLT . By definition it follows that  G - {p} is also a Groebner 

basis for I.           □ 

 

We can now use the above lemma to define a minimal Groebner basis, which sets all 

leading coefficients to 1, and removes some unneeded generators. 

Definition 3.4.2. A minimal Groebner basis for a polynomial ideal I is a Groebner 

basis G for I such that: 

(i) LC(p) = 1  for all p  G, and 
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(ii) For all p  G, LT(p)   }){( pGLT  .  

 

So applying Lemma 1 to the Groebner basis obtained at the end of the previous 

section, we obtain the following minimal Groebner basis for I. 

yxf  2

3

~

, 12

4

~

 yf .   

 

Unfortunately, a minimal Groebner basis is not unique. For example, another minimal 

Groebner basis for the same ideal is the following: 

(1)    ayayxf  22

3

~

, 12

4

~

 yf .  

where  a  k  is any constant. Fortunately, we can obtain a unique minimal Groebner 

basis that is smaller than all other. 

 

Definition 3.4.3.  A  reduced Groebner basis  for a polynomial ideal I is a Groebner 

basis G for I such that: 

(i) LC(p) = 1  for all  p  G. 

(ii) For all  p  G, no monomial of  p lies in }){( pGLT  .  

So for the minimal Groebner basis given in (1), setting a = 0 gives a reduced 

Groebner basis.  

 

Proposition 3.4.4.  Let  I  ≠ {0} be a polynomial ideal.  Then for a given monomial 

ordering, I  has a unique reduced Groebner basis.  
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Proof.   Let G be a minimal Groebner basis for I.  We say that g G  is reduced for G 

if no monomial of g is in }){( gGLT  . Once all elements of G are modified in this 

manner, then G becomes a reduced Groebner basis. 

We first note that if g is reduced for G, then g is also reduced for any other minimal 

Groebner basis of I  that contains g, since the definition of reduced only involves the 

leading terms. 

Now, given gG, let 
}{gG

gg


 , and define }{}){( ggGG  . I claim that G  

is a minimal Groebner basis for I. To see this, we first note that  LT )(g   = LT(g), 

since dividing g  by G – {g} sends LT(g) to the remainder as it is not divisible by any 

element of LT(G – {g}).  This shows that )()( GLTGLT  . Since G is contained 

in I, we see that it is a Groebner basis, and minimal follows after making all the 

replacements. Also note that g  is reduced for G by construction. 

We apply this same process to all elements of G. The Groebner basis may change 

each time, but this does not change the reduced state of each element, since once an 

element is reduced, it stays reduced as we are not changing the leading terms. Thus 

we have a reduced Groebner basis. 

To see that it is unique, suppose that G and G  are reduced Groebner bases for I.  So 

they must also be minimal. This means that that LT(G) = LT )(G  since a monomial 

ideal has a unique minimal generating set of monomials. Thus given gG, there is g   

G  such that LT )(g  = LT(g). If we show that g = g  , then it follows that  G = G . 

Consider g – g  .  This is in I, and since G is a Groebner basis, it follows that 
G

gg   

= 0. But LT )(g   = LT(g), hence these terms cancel in g – g  , while the remaining 
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terms are divisible by none of LT(G) = LT( G ), since G and G  are reduced. This 

shows that 
G

gg   = g – g   = 0. Hence g = g  , and thus G is unique.   □ 

 

As mentioned earlier, for a system of linear equations, computing the Groebner basis 

is equivalent to performing Gaussian elimination. Computing a reduced Groebner 

basis for a linear system, then, provides us with the reduced row echelon form of the 

augmented coefficient matrix of the linear system. 
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Chapter 4:  Applications 

 

 

1. Ideal Membership Problem 

 

Given an ideal I, it is often of interest to determine whether a given polynomial f  lies 

in I or not. By using our knowledge of Groebner bases and the Buchberger algorithm, 

this becomes a simple task. First, I will need to prove that that the remainder of  f  

upon division by the elements of its Groebner basis is unique. 

 

Proposition 4.1.1.  Let G = },,{ 1 tgg  be a Groebner basis for an ideal  I  ,,[ 1 xk   

]nx  and let If  . Then there is a unique ],,[ 1 nxxkr   with the following two 

properties: 

(i) No term of r is divisible by one of the  LT(g1),…, LT(gt). 

(ii) There is a Ig  such that rgf  . 

 

Proof.  See [CLOS, page 81]. 

 

Note that though the remainder r is unique, the quotients need not be so. Listing the 

generators gi in a different order in the division process can result in different values 
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for the quotients. In any case, we can now state the following corollary that describes 

the criterion for when a polynomial lies in an ideal. 

Corollary 4.1.2. Let  G = },,{ 1 tgg  be a Groebner basis for an ideal  I  ,,[ 1 xk   

]nx  and let  f  ],,[ 1 nxxk  . Then If   if and only if  0
G

f .  

 

Proof.  ( )  If  0
G

f   then, by definition, tt gagaf  11 , hence the gi 

generate  f . That is  f tgg ,1 , and thus If  . 

( ) If If  , then  f 0 f  satisfies the two conditions of the previous proposition. 

Hence 011  tt gagaf  , thus 0
G

f .       □ 

 

So if we carry out the division algorithm on the polynomial  f  using the polynomials 

in G, then a zero remainder tells us that  f  I.  A nonzero remainder implies that  f   

I. 

Example 4.1.3.  Let 21, ggI   = xxyyx  22 ,1  C  yx, . Also let f  = 223 yx  

yy 45  . We would like to determine if If  . 

So our first step is to compute a Groebner basis for I. Using the lex order, this gives 

us: 

 21, ffG   =  1, 22  yyx . 

Dividing  f  by G gives: 

2

3

1

2 )4(3 fyyfyf  . 

Since the remainder is 0, we see that If  . 
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2. Elimination 

 

 

Another application of Groebner bases is that, given a system of polynomials (in 

several variables), we can use Groebner bases to systematically eliminate variables 

from this system of equations. The resulting polynomials, having fewer variables, are 

generally much easier to solve algebraically. 

 

For example, consider the following system of equations: 

(1)  

.1

,52

,4

22

222







xz

yx

zyx

 

We define I  to be the ideal 

(2)  1,52,4,, 22222

321 xzyxzyxfffI . 

Computing the Groebner basis for I (using lex order) gives us: 

(3)  

.132

,1

,32

24

3

22

2

3

1







zzg

zyg

zzxg

 

So, by Proposition 3.3.8., the systems (1) and (3) will have the same set of solutions 

since they generate the same ideal. We notice here that g3 is a polynomial in only one 

variable, so we manipulate it to obtain: 

)1)(12( 22

3  zzg . 
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Setting it to zero, we see that the only possible z’s are 1 and 
2

1
 .  We can now 

substitute these values into g2, which we notice is a polynomial in only  y and  z. This 

gives us the possible y’s. Substituting these values into g1 gives us all the solutions, 

which are: 

 )21,23,2(),1,2,1(),,( zyx  

This procedure helped us solve our original system of equations by employing two 

steps.  

1 – We were able to obtain polynomials that had the same roots as that in our original 

equations, but with most of them having fewer variables (this was our Elimination 

step). 

2 – Once we solved the simpler equation, we used the solutions to this to obtain our 

complete set of solutions (Extension step). 

The basic idea behind elimination theory is that we can carry out these steps in 

general. 

 

Definition 4.2.1.  Given  I = sff ,...,1   ],,[ 1 nxxk  , the kth elimination ideal  Ik 

is the ideal of  ],,[ 1 nk xxk   defined by 

Ik = I   ],,[ 1 nk xxk  .  

In this way, Ik  contains all polynomials in I  that have the variables x1,…,xk 

eliminated. This brings us to the Elimination Theorem which states the following. 
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Theorem 4.2.2 (The Elimination Theorem).  Let  I   ],,[ 1 nxxk    be an ideal. 

And let G be a Groebner basis of  I  with respect to lex order where x1 > x2 > . . . > 

xn. Then, for every 0 ≤ k ≤ n, the set 

Gk = G   ],,[ 1 nk xxk   

is a Groebner basis of the kth elimination ideal Ik.  

 

Proof.  Fix  k  between 0 and n and suppose that  G  =  {g1,…, gm}. Without loss of 

generality, we can assume that Gk  =  {g1,…, gr}.  I will first show that Ik  is generated 

by Gk. Since  Gk   Ik , we have kr Igg ,,1   since  Ik  is an ideal.  Now using the 

division algorithm with the lex order, we divide any  f  in  Ik  by g1,…, gm . We note 

that, 

1. Since  G  =  {g1,…, gm}  is  a Groebner basis of  I  and  f   I , the 

remainder of  f  on division by  G  is zero; and 

2. Since we are using the lex order, the leading terms of  mr gg ,,1    must 

involve one of  kxx ,1  and hence, are greater than every monomial in f 

  nk xxk ,,1  . 

Thus, when applying the division algorithm, mr gg ,,1   will not appear and hence 

every  f  in  Ik  can be written as 000 111   mrrr ggghghf  .  This 

tells us that rggf ,,1  , which proves that  Gk  is generated by  Ik .  Note that this 

also shows that for any kIf  , 0
kGG

ff . 
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Now to show that Gk  is a Groebner basis, Theorem 3.3.10 tells us that it is sufficient 

to show that for all rji 1 , the remainder of  ),( ji ggS  on division by Gk  is 

zero. But ),( ji ggS  lies in Ik  since ig  and jg  do, thus the remainder of ),( ji ggS  on 

division by Gk  is zero. Thus Theorem 3.3.10 confirms that Gk  is a Groebner basis. 

This completes the proof of the Elimination Theorem.     □ 

 

This tells us that the polynomial g3  G obtained in our example was not just some 

random way of eliminating x and y from equations f1 through f3 – it is the best 

possible way to do so, since any other polynomial that eliminates x and y is generated 

by g3. 

Using the elimination theorem we can obtain partial solutions ),,( 1 nk aa   for our 

set of functions with variables  kxx ,,1   eliminated. Now to see which of these 

solutions extend to our complete set of functions, we use the extension theorem. 

 

Theorem 4.2.3 (The Extension Theorem).  Let I = sff ,...,1   C ],,[ 1 nxx    and 

let  I1 be the first elimination ideal of  I. For each  1 ≤ i  ≤  s, write fi in the form 

iN

nii xxxgf 12 ),,(   + terms in whch x1 has degree < Ni , 

where Ni  ≥  0  and gi  C ],,[ 2 nxx   is nonzero. (We set gi = 0 when fi = 0.) Suppose 

that we have a partial solution  ),,( 2 naa   in the variety of  I1. If  ),,( 2 naa    is not 

in the variety of  g1,…,gs  G, then there exists 1a   C such that ),,( 1 naa    is in the 

variety of  I.  
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Note that this theorem is only stated for the field k = C. It is false over R since the R 

is not an algebraically closed field. 

Proof.  See [CLOS, page 117]. 

 

For example, we consider the equations 

xy = 1, 

xz = 1. 

We set  I = 1,1  xzxy , and applying the elimination theorem gives us 

I1 = y – z. 

Thus the partial solutions are given by (a, a). Extending these to the complete 

solutions we obtain (1/a, a, a). But we notice that this extension is not valid when a = 

0. So the only partial solution that does not extend is (0, 0), which is the partial 

solution where the leading coefficients y and z of  x vanish. But the Extension 

Theorem tells us that the extension step can fail when the leading coefficients vanish 

simultaneously. 

It should be noted that in projective space, all partial solutions extend. 
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3. Intersection of Ideals 

 

 

In this section I consider the problem where, given two ideals in a polynomial ring, 

we try to determine their intersection. The first question that naturally arises is 

whether this intersection will also be an ideal. This brings us to the first proposition of 

this section. 

 

Proposition 4.3.1.  If  I  and  J  are ideals in ],,[ 1 nxxk  , then JI  is also an ideal.  

 

Proof. Note that JI 0 , since I0  and J0 . If JIf  and JIg  , then 

Igf   and Jgf  . Hence JIgf  . To test whether or not we have 

closure under multiplication, let JIf   and let h be any polynomial in ,[ 1xk  

], nx . Since If  , and I  is an ideal, then Ihf  . Similarly, Jhf  , and 

hence JIhf  .            □ 

So to restate our problem, if we are given two ideals, and a set of generators for each, 

we wish to compute the set of generators for their intersection. To do this we need a 

bit of notation and a lemma. 

If  I  is an ideal in ],,[ 1 nxxk   and ][)( tktf   a polynomial in a single variable t, 

then  f I  denotes the ideal in ],,,[ 1 txxk n  generated by the set of polynomials 
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 Ihhf  : .  Note that the ideal I  in ],,[ 1 nxxk   is not an ideal in ],,,[ 1 txxk n . 

So with this notation we have  

 f I  = Itf )(  Ixhxhtf )(:)()( . 

 

Lemma 4.3.2. 

(i)  If  I is generated as an ideal in ],,[ 1 nxxk   by )(,),(1 xpxp r , then  f I  is 

generated as an ideal in ],,,[ 1 txxk n  by )(,),(1 xpfxpf r  . 

(ii)  If  ),( txg  f I  and a is any element of the field k, then Iaxg ),( .  

 

Proof.  To prove the first assertion, note that any g  f I  can be expressed as a sum 

of terms of the form )(),( xpftxh  , with h ],,,[ 1 txxk n . But since I is generated 

by the ip , we can write )(xp  as 



r

i

ii xpxqxp
1

)()()( . Hence we have  ftxh ),(  





r

i

ii fxpxqtxhxp
1

)()(),()( . 

Now for each i ,  )(),( xqtxh i ],,,[ 1 txxk n . Thus )(),( xpftxh   belongs to an 

ideal in ],,,[ 1 txxk n  generated by )(,),(1 xpfxpf r  . Since g is a sum of such 

terms, g )(,),(1 xpfxpf r  , which proves ( i ). 

( ii ) is proved immediately by substituting a for t in ),( txh  .    □ 

 

Theorem 4.3.3.  Let  I, J  be ideals in ],,[ 1 nxxk  . Then 

  JttIJI )1( ],,[ 1 nxxk  .  
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Proof.  First note that JttI )1(   is an ideal in ],,,[ 1 txxk n . Now suppose that 

f JI  . Since If  , we have tIft  . Similarly, JtftJf )1()1(  . 

Thus  ftftf )1( JttI )1(  . Since JI , ],,[ 1 nxxk  , we get f  

  JttI )1( ],,[ 1 nxxk  . 

To show inclusion in the other direction, let f   JttI )1( ],,[ 1 nxxk  . Then 

),(),()( txhtxgxf  , where tItxg ),(  and Jttxh )1(),(  . Setting t = 0, we 

observe that 00)0,(  Ixg . Thus )0,()( xhxf  , and hence Jxf )(  by our 

previous lemma. Setting t = 1 gives us 0)1,()(  xgxf , hence Ixf )(  by our 

previous lemma. Since f  belongs to both I  and J, we get JIf  , which completes 

the proof.           □ 

 

The above result, along with the Elimination Theorem from the previous chapter, 

provides us with an algorithm for computing the intersection of two ideals. If 

rffI ,,1   and sggJ ,,1   are ideals in ],,[ 1 nxxk  , we consider the ideal: 

 sr gtgttftf )1(,,)1(,,, 11  ],,,[ 1 txxk n  

and compute a Groebner basis with respect to lex order in which t  is greater than ix . 

The elements of this basis which do not contain the variable t will form a basis of 

JI  . 
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Example 4.3.4. Consider the following ideals  

 

],,[2322322222334 zyxkzyzxyxyyzxyxzxyxxI    

and  

],,[22 42224222234 zyxkzyzxyzxyxzxxJ  . 

We consider the ideal JttI )1(   in  zyxtk ,,, . Computing its Groebner basis using 

a computer algebra program (I use Maple® 11) with respect to lex order with t > x > y 

> z, we get: 

}.2

222,

22,

2222{

42224222

2344222422223442424242

2322422232232223354

233224232222343424243

ztyztxyztxytx

ztxtxzyzxyzxyxzxxztyztxzxzy

zxzxyxyxztyztxytxyyztxztxytxxyx

yxyxzxyzxzyxzxyzxyzxzxyzyG









 

Hence, by the Elimination Theorem,  

}

2222{

5

4233224232222343424243

x

yxyxyxzxyzxzyxzxyzxyzxzxyzy





 is a Groebner basis of   JttI )1(  zyxk ,, . Thus  

.

2222

54

233224232222343424243





xyx

yxyxzxyzxzyxzxyzxyzxzxyzyJI
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4. The 3-Color Problem 

 

 

Here I will discuss how we can apply Groebner bases to solve the well-known 3-color 

problem in graph-theory: determining whether a graph can be 3-colored. More 

precisely, given a graph with n vertices, we want to color the vertices in such a way 

that only 3 colors are used, and no adjacent vertices have the same color. If the graph 

can be colored in this manner, then it is called 3-colorable. This is similar to the 3-

color problem for a map, where the vertices represent the contiguous regions to be 

colored, and connected vertices represent adjacent regions. I discuss the 3-color 

problem in particular, even though the approach I describe works for any coloring. 

The equivalent 2-color problem is exceedingly simple, since the presence of any odd-

cycle ensures that it is not 2-colorable. The 3-color problem appears adequately 

complicated to warrant deeper analysis. 

The following is an example of a graph that is 3-colorable. Labelling the colors as 1, 

2 and 3, one possible coloring combination that manifests 3-colorability is displayed 

below: 
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FIGURE 4.4.1. 

 

An example of a graph that is not 3-colorable is the following: 

 

FIGURE 4.4.2. 

 

 

In order to set this problem up mathematically, first we let ω = 3

2 i

e



 be a cube root of 

unity (i.e. ω
3
 = 1).  We can now represent the three colors by 1, ω and ω

2
. We let 
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x1,…,xn  be variables representing the distinct vertices of our graph Ĝ. Each vertex is 

to be assigned one of the three colors 1, ω or ω
2
. This gives us the following n 

equations: 

,01
3

ix   .1 ni     (*) 

The 3-colorability condition adds the condition that if two vertices xi and xj are 

connected by an edge, they need to be colored differently. Now since 
33

ji xx  , we 

have: 

0))((

0

22

33





jjiiji

ji

xxxxxx

xx

 

But since ji xx  , we have: 

0
22
 jjii xxxx .   (**) 

Now we define I  to be the ideal of  C ],,[ 1 nxx    generated by the polynomials in 

(*), and for each pair of vertices xi, xj  connected by an edge by the polynomials in 

(**). We now consider the variety V(I ) contained in C
n
, and the following theorem 

follows immediately: 

 

Theorem 4.4.1.  The graph Ĝ is 3-colorable if and only if V(I ) ≠ Ø.  

 

Proof:  Obvious. 
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Now to determine whether V(I ) ≠ Ø, we can use Groebner bases. We compute a 

reduced Groebner basis G for I, and if G1  then V(I ) = Ø and the graph is not 3-

colorable. Otherwise, it is so.  

 

Example 1. Consider the graph Ĝ below: 

 

FIGURE 4.4.3. 

The polynomials corresponding to Ĝ are: 

1
3
ix , for i = 1,…,7 

And 

22

jjii xxxx  , for the pairs (i, j) )4,3(),6,2(),3,2(),5,1(),4,1(),2,1{( , 

)}.7,6(),7,5(),6,5(),7,4(),5,4(),7,3(),6,3(  
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We now compute a Groebner basis G using the lex-ordering for the ideal I 

corresponding to the above polynomials, and obtain }1{G . Hence, Ĝ is not 3-

colorable. 

If, on the other hand, we remove the edge connecting 6x  to 7x , our graph takes the 

following form. 

 

FIGURE 4.4.4. 

 

The only difference to I  is that it no longer contains the polynomial 2

776

2

6 xxxx  . 

Computing the reduced Groebner basis, we obtain: 

},,,,,,1{ 7172553475

2

775

2

567

3

7 xxxxxxxxxxxxxxxxxG  . 

Since G1 , we have that V(I ) ≠ Ø, and hence Ĝ is 3-colorable. Referring to the 

three colors as c1, c2 and c3, one possible coloring combination is the following: 

x1 → c1;  x2 → c2;  x3 → c3;  x4 → c2;  x5 → c3;  x6 → c1;  x7 → c1. 
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5. Integer Programming 

 

 

Integer programming is the problem of solving linear equations where the solution 

must be in non-negative integers and should minimize a given “cost function”. These 

kinds of problems arise often in scientific and engineering applications, and there are 

several books on this subject that can be referred to for further reading; for example, 

see [Schri].  

Our strategy here is to convert the integer programming problem into a problem about 

polynomials, and then solve this polynomial problem using Groebner bases, and use 

this to obtain the solution to our original integer programming problem. 

So our objective is to find a solution ),...,,( 21 mzzz in  N
m
  of the system 

(*)   

....

...

...

2211

22222121

11222111

nmnmnn

mm

mm

bzazaza

bzazaza

bzazaza








 

which minimizes the “cost” function 

(**)     



m

j

jjm zczzzc
1

21 ,,,  . 

Initially I will solve the system (*) without taking into account the cost function. To 

do this, I introduce a variable for each linear equation in the system above, say 

x1,…,xn, and a variable for each unknown zj, say y1,…,ym. We can now represent the 

system as: 
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imimi b

i

zaza

i xx 
11    for  i = 1,…,n. 

Then (*) can be written as a single equation of monomials 

nmnmnmm b

n

bzaza

n

zaza
xxxx   1111111

11 
 . 

Which can be rearranged to obtain: 

(***)       n
m

nmmn b

n

bza

n

aza

n

a
xxxxxx  11

1
111

111  . 

The left hand side monomial in the above equation can be considered as the image of 

the monomial mz

m

z
yy 1

1
 under the polynomial map 

.

],,[],,[

1

1

11

njj a

n

a

j

nm

xxy

xxkyyk



 

 

Then it is clear that if we assume that all the aij’s and bi’s are non-negative, there 

exists a solution ),...,,( 21 mzzz  N
m
 of system (*) iff the monomial nb

n

b
xx 1

1  is the 

image under φ of a monomial in ],,[ 1 myyk  . Moreover if nb

n

b
xx 1

1  =  mz

m

z
yy 1

1 , 

then  mzz ,1  N
m

  is a solution of (*). 

We now consider the following Lemma: 

 

Lemma 4.5.1.  We use the notation above and assume that all aij’s and bi’s are non-

negative. If nb

n

b
xx 1

1  is in the image of φ, then it is the image of a monomial 

 mz

m

z
yy 1

1   ],,[ 1 myyk  .  

 

Proof.  See [AL, page 107]. 
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We can now use the following procedure for determining whether (*) has a solution, 

and for finding a solution: 

(i) Compute a Groebner basis G  for K = mjxxy njj a

n

a

j ,,1|1

1    with 

respect to an elimination order with the x variables larger than the y 

variables; 

(ii) Find the remainder h  of the division of the monomial nb

n

b
xx 1

1
 by G; 

(iii) If  h  ],,[ 1 myyk  , then (*) does not have non-negative integer solutions. 

If  h = mz

m

z
yy 1

1 , then mz

m

z
yy 1

1  is a solution of (*). 

 

For example, consider the system: 

(#)   

.1234

1023

321

321





zzz

zzz

 

Using the procedure described above, we have two x variables, x1, x2, one for each 

equation, and three y variables, y1, y2, y3, one for each unknown. The corresponding 

polynomial map is given by 

],[],,[ 21321 xxkyyyk   

1y    4

2

3

1 xx  

2y    3

2

2

1 xx  

3y    21xx . 
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So K = ],,,,[,, 21321213

3

2

2

12

4

2

3

11 xxyyykxxyxxyxxy  . The Groebner basis for 

K with respect to the lex order with x1 > x2 > y1 > y2 > y3 is  G =  4321 ,,, ffff , 

where: 

3211 yyyf   

2

2

322 yyxf   

3

3213 yyxf   

3214 yxxf  . 

Then dividing 12

2

10

1 xx   by  f2 , f3 and f4 gives us: 

  6

3

2

2

,,12

2

10

1
432 yyxx

fff
  . 

So  h = 6

3

2

2 yy  = 6

3

2

2

0

1 yyy .  Using the exponents of  h  we get that (0, 2, 6) is a solution 

of (#).  

 

Now we consider the more general case, where the aij’s and bi’s in (*) are any 

integers, not necessarily non-negative. We now end up with negative exponents on 

the x variables, which cannot be obtained from the polynomial ring ],,[ 1 nxxk  . So 

we introduce a new indeterminate w and we work in the localized ring 

Iwxxk n ],,,[ 1  , where 121  wxxxI n . We may choose non-negative integers 

ija   and  αj,  for each j = 1,…,m  and i  = 1,…,n  such that for each j = 1,…,m  we 

have 

     1,,1,,, 11   jnjjnjj aaaa  . 

Then in the affine ring Iwxxk n ],,,[ 1   we define the coset Ixx njj a

n

a
1

1   as: 
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IwxxIxx jnjjnjj a

n

aa

n

a


 
 11

11 . 

Similarly,      1,,1,, 11   nn bbbb , and we define 

IwxxIxx nn b

n

bb

n

b


  11

11 . 

We therefore get the following equation that corresponds to (***) 

    IwxxIwxxwxx n
m

mnmmn b

n

bza

n

aza

n

a


   11
1

1111

111 . 

As before, we notice that the left hand side of this equation can be viewed as a 

monomial mz

m

z
yy 1

1
 under the algebra homomorphism 

.

],,,[],,[

1

1

11

Iwxxy

Iwxxkyyk

ja

n

a

j

nm

njj 



 






 

So, as before,  mzz ,1  N
m
 is a solution of (*) if and only if Iwxx nb

n

b


 1

1  is the 

image under   of a monomial in ],,[ 1 myyk  . Furthermore,  mzz ,1  is a solution 

of (*) if  Iwxx nb

n

b


 1

1 =  mz

m

z
yy 1

1 . 

 

Lemma 4.5.2.  We use the notation above. If Iwxx nb

n

b


 1

1  is in the image of φ, 

then it is the image of a monomial mz

m

z
yy 1

1 ],,[ 1 myyk  .  

 

Proof.  See [AL, page 109]. 

 

For example, consider the system: 

(##)   

3223

432

4321

4321





zzzz

zzzz
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We have two x variables, x1, x2, one for each equation, and four y variables, y1, y2, y3, 

y4, one for each unknown. We consider the ideal 121  wxxI  of  wxxk ,, 21  and 

the algebra homomorphism 

Iwxxkyyyyk ],,[],,,[ 214321   

1y    Iwx 35

1  

2y    Ixx 2

2

1

1  

3y    Iwx 31

2  

4y    Iwx 2

1  

Thus 1,,,, 21

2

14

3

23

2

212

35

11  wxxwxywxyxxywxyK . The Groebner basis 

for K with respect to the lex order with x1 > x2 > w > y1 > y2 > y3 > y4  is  G = 

 54321 ,,,, fffff , where: 

14

4

3

3

5

21  yyyf  

5

4

2

3

3

212 yyyyf   

4323 yyywf   

43

2

224 yyyxf   

.2

43

2

215 yyyxf   

Now since IwxIxx  37

1

3

2

4

1 , we reduce the monomial 37

1 wx  by G to get: 

37

1 wx   
},{ 53 ff  17

4

10

3

17

2 yyy  

 1f   13

4

7

3

12

2 yyy  

 1f   9

4

4

3

7

2 yyy  
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 1f   5

43

2

2 yyy . 

And h = 5

43

2

2 yyy  is reduced with respect to G. We could also have reduced 17

4

10

3

17

2 yyy  

in the following manner: 

17

4

10

3

17

2 yyy  2f  12

4

8

3

14

21 yyyy  

     2f  7

4

6

3

11

2

2

1 yyyy  

     2f  2

4

4

3

8

2

3

1 yyyy . 

The exponents of the different monomials obtained in this reduction give us the 

following solutions of (##) 

(0, 17, 10, 17),  (0, 12, 7, 13),  (0, 7, 4, 9),  (0, 2, 1, 5),  (1, 14, 8, 12),  (2, 11, 6, 7), 

and (3, 8, 4, 2).  

 

We now return to the original problem. We want to find solutions of (*) that 

minimize the cost function (**).  As previously, the only requirement on the term 

order for (*) is that we have an elimination order between the x, w, and the y variables 

with the x and w variables larger. The strategy for minimizing the cost function is to 

use the jc ’s to define such a term order. 

 

Definition 4.5.3.  A term order c on the y variables is said to be compatible with the 

cost function c and the map   if  

.

)',,'(),,(

)()(
''

11

11

''

11

11

11

mm

mm

z

m

z

c

z

m

z

mm

z

m

zz

m

z

yyyy

zzczzc

and

yyyy
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The following proposition now shows that compatible term orders on the y variables 

give rise to solutions of (*) with minimum cost. 

 

Proposition 4.5.4.  We use the notation set above. Let G be a Groebner basis for K 

with respect to an elimination order with the x and w variables larger than the y 

variables, and an order c  on the y variables which is compatible with the cost 

function c and the map  . If mn z

m

zGb

n

b
yywxx  11

11 
  , where mz

m

z
yy 1

1  is 

reduced with respect to G, then  mzz ,,1   is a solution of  (*) which minimizes the 

cost function c.  

Proof.  See [AL, page 111]. 

 

Since our process of obtaining the minimal solution relies on the term order being 

used, a different minimal solution may be obtained if we use a different order, as long 

as we have an elimination order with the x and w variables larger than the y variables, 

and the order on the y variables is compatible with c and  .  

In general the term order c is not easy to obtain (For details, I refer you to the 

original paper [CoTr]). But when the cost function contains only positive constants, 

then the case is simple. In this case we can use the following term order: first order 

monomials using the cost function, and break any ties with any other order. 

For example, consider the system (##) with the following cost function: 

43214321 10010),,,( zzzzzzzzc  . 
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We will use the lex order on w and x so that wxx  21 . Next the monomials in y 

are first ordered using the cost function, and any ties that emerge are broken using lex 

ordering with 4321 yyyy  . This means that: 

43214321

43214321

zzzzzzzz
yyyyyyyy


  

if and only if 

43214321 1001010010 zzzzzzzz   

or 

43214321 1001010010 zzzzzzzz   and 

43214321

43214321

zzzz

lex

zzzz
yyyyyyyy


 . 

We then use an elimination order with the x and w variables larger than the y 

variables, and compute the reduced Groebner basis for K. This gives us: 

}1,,,,{ 2

3

3̀

2

4

1

2

3

4

212

3

3

6

2

2

113

2

214

2

3

3

21  yyyyyyxyyyxyyyyyyywG . 

Reducing 37

1 wx  with respect to G gives us: 

6

3

12

2

5

1

37

1 yyywx G  

which gives the solution (5, 12, 6, 0). And this is the solution of minimum cost. 

 

Groebner bases are not the sole approach to solving integer programming problems.  

It was proved by H. W. Lenstra, Jr. in 1983 that, for a fixed number of variables, such 

a problem can be solved in polynomial time [AWW]. I was unable to find any 

concrete data comparing the speed of the approach for solving integer programming 

problems using Groebner bases to other approaches. 
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