
Del Pezzo Orders with Canonical

Singularities

by

Amir Nasr

Master of Science, Isfahan University, Iran, 2012
Bachelor of science, Isfahan University, Iran, 2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

In the Graduate Academic Unit of Mathematics & Statistics

Supervisor(s): Eddy Campbell, Ph.D., Mathematics & Statistics,
Colin Ingalls, Ph.D., Mathematics & Statistics

Examining Board: Branimir Caćić, Ph.D., Mathematics & Statistics,
Barry Monson, Ph.D., Mathematics & Statistics,

External Examiner: name, degree, department/field, institution

This thesis is accepted

Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

August 2018

c©Amir Nasr, 2018



Abstract

In this thesis we work on del Pezzo orders with no worse than canonical sin-

gularities. The notion of del Pezzo order is a non-commutative generalization

of del Pezzo surfaces.

We recall definitions and some facts about orders. We see that orders are

a type of non-commutative surfaces. Then we proceed to classify them fol-

lowing the same procedure of classifying del Pezzo (commutative) surfaces.

The types of singularities that we work with are terminal and canonical sin-

gularities. Once the order has only terminal singularities the classification is

very fluent. But when it comes to canonical singularities it needs more work.

However, having the classification of terminal orders helps us classify canoni-

cal orders. That is because we first resolve canonical singularities to terminal

singularities and then we contract them to minimal terminal models.

Let X be a terminal del Pezzo order. Running the minimal model program,

we get a minimal terminal del Pezzo order over P1 × P1 or P2. Then having
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the minimal terminal del Pezzo orders classified, we give the classification of

terminal del Pezzo orders by blowing up the minimal models which remain

del Pezzo.

If we have a canonical del Pezzo order, there is more work to classify it. Let

X be an order with canonical singularities. We see that there is a unique

minimal resolution Y → X where X is a terminal almost del Pezzo order.

Now, similarly by running minimal model program, we get a minimal termi-

nal almost del Pezzo order over P1 × P1, P2, F1, or F2. Thus we first classify

minimal terminal almost del Pezzo orders and then we find all their blowups

which remain almost del Pezzo. The resolution Y → X contracts KY-zero

curves. So the blowups of the minimal models must present such curves in

order to get contracted to canonical del Pezzo orders that are not terminal.

At the end we give a classification of degree 4 ramification divisors of canon-

ical del Pezzo orders over P2.
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Chapter 1

Introduction

Working in Algebraic geometry is largely about classifications and in partic-

ular classification of varieties (or schemes). However in higher dimensions

classifications are less approachable. So it makes sense to work on lower di-

mensions; in classical algebraic geometry most results are in dimensions one

and two, and then generalized to higher dimensions.

Del Pezzo surface is a terminology that was introduced by Pasquale del Pezzo

in 1887, [1]. These are the surfaces with ample anti-canonical bundles. More

detai was worked out later by others, e.g. M. Demazure and H. C. Pinkham.

Later on in 1981, F. Hidaka and K. Watanabe classified such surfaces. They

showed that if a del Pezzo surface Z is normal Gorenstein with no more than

canonical singularities, then Z is either P1 × P1, or the contraction of the
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Hirzebruch surface F2 by its minimal section (i.e. Z is the quadric cone),

or Z is the contraction of Z̃ by all of its (−2)-curves, where Z̃ → P2 is a

sequence of blowups at strictly less than 9 points in almost general position.

The surfaces P2, P1 × P1, and F2 are so called the minimal models for such

del Pezzo surfaces and it is constructed by minimal model program (MMP)

introduced by Castelnuovo.

In modern algebraic geometry non-commutative algebraic varieties are con-

sidered. One open problem concerning non-commutative varieties is the clas-

sification of non-commutative surfaces. Since it is a difficult problem, people

work on it partially; meaning that subclasses of such surfaces are classified

instead. A nice subclass of non-commutative surfaces are the ones which are

finite over their centres. This ensures that the centre is itself a surface but it

is actually commutative. So classification of these non-commutative surfaces

relates to and depends on certain commutative surfaces (the centres). Such

a non-commutative surface is called an order or more precisely an order over

its centre.

In the present work we are interested in classifying del Pezzo orders with no

worse than canonical singularities. It is naturally expected that the notions

del Pezzo and singularity must be generalizations of del Pezzo (commutative)

surfaces and theirs singularities. In 2003 Chan and Kulkarni showed that if

an order over a nice enough centre is del Pezzo, then the centre is a del

Pezzo surface, [6]. Using this nice fact, they classified del Pezzo orders over

3



normal Gorenstein projective surfaces. Right after that Chan and Ingalls

generalized the terminology of minimal model program to orders, [5]. Having

an order with terminal singularities, they showed that it can be contracted

to a minimal model, where the centre of the minimal model is either a ruled

surface, the projective plane, or has a nef canonical sheaf. This helps us give

a complimentary result and method to the classification given by Chan and

Kulkarni.

In Chapter 2 we will recall the definition of del Pezzo surfaces and then

we will see the classification of such surfaces while their singularities are at

worst canonical. In Chapter 3 we will see the definition and some facts about

orders. This gives a brief background of orders, discriminant of orders and

their ramifications. In Chapter 4 we intend to classify del Pezzo orders with

only terminal singularities. We will see that the minimal model of a del Pezzo

order with terminal singularities is an order over either P1×P1 or P2. Thus we

first classify the minimal models of such orders and then proceed to classify

them by blowing up the minimal models while preserving the ampleness of

the anti-canonical sheaf. This will complete the classification of del Pezzo

orders with terminal singularities stated in Theorems 4.3.5, 4.3.6, 4.3.7, 4.4.3,

and 4.4.5.

Definition 1.0.1. Let Σ = {p1, · · · , pn} be a set of distinct points of P2. We

say Σ is in general position if

1. No three points lie on a line;

4



2. No six points lie on a conic.

Definition 1.0.2. Let Σ be a set of points in P1×P1. The points of Σ are in

general position if any curve of the form aC0 + bF contains less than 2(a+ b)

of the points.

Theorem 1.0.3. Let X be a terminal order on a projective surface S with

the discriminant D = ∪Di and the ramification degrees ei. Then one of the

following occurs

1. S = P2, 3 ≤ degD ≤ 5. Furtherthe ramification degrees ei are all equal

e. More precisely e = 2 when degD = 5 and e = 2 or e = 3 when

degD = 4

2. There is a blowup f : S → P2 at a set of points Σ = {p1, · · · , pn} ⊂ S,

where

• deg f∗D = 3, n < 9, and Σ ⊂ f∗D is in general position; or

• deg f∗D = 3, n = 1, p1 /∈ f∗D, and ei = 2; or

• deg f∗D = 4, n = 1, p1 ∈ f∗D, and ei = 2.

3. S = P1 × P1 and if D = aC0 + bF for perpendicular fibres C0 and F is

the ramification divisor, then 2 ≤ a, b ≤ 3 and ramification degrees are

equall and, unless D ∼ 2C0 + 2F , they are all 2.

4. There is a blowup f : S → P1×P1 at a set of points Σ = {p1, · · · , pn} ⊂
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S, where f∗D has bi-degree (2, 2), n < 8, and Σ ⊂ f∗D is in general

position.

The aim of this work is to classify del Pezzo orders with canonical singular-

ities. To do so, in Chapter 5 we need to find their resolution to terminal

orders. This is based on the work of Chan, Ingalls, and Hacking, [4]. We will

see that the resolution of a canonical del Pezzo order (which is a terminal

order) is not necessarily del Pezzo, and further, their minimal models are

more various. Theorems 5.2.3 and 5.2.8 give us the following result.

Theorem 1.0.4. Let X be a canonical del Pezzo order on Z. Also let f :

Y → X be a minimal resolution of X to an almost del Pezzo terminal order

Y and let g : Y → W be a contraction of Y to a minimal terminal almost del

Pezzo W. Then W has centre Z = P2 or Z = Fn for n = 0, 1, or 2.

With the same procedure as terminal del Pezzo orders, we classify minimal

terminal almost del Pezzo orders, and then in Chapter 6 we find all the

blowups when being del Pezzo is preserved. This comes in Theorems 6.1.2,

6.2.2, 6.2.6, and 6.2.9, a summary of which is given below.

Theorem 1.0.5. Let W be a minimal terminal almost del Pezzo order over

Z with ramification divisor D = ∪Di and ramification degrees ei. Also let

g : Y → W represent n iterated blowups of W at the points Σ ⊂ Z. Then

any of the followings gives us a KY-zero curve E such that if f : Y → X

contracts E, we get a canonical del Pezzo order X which is not terminal.
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1. Z = P2, degD = 3 and we have one of the followings

• Σ is the set of a double infinitely near point. The exceptional

curves are E1 and E2, where E2
1 = −2 and E2

2 = −1; E := E1.

• Σ = {p, q} where p ∈ D and q /∈ D; E is the strict transform of

the line going through p and q.

• Σ contains 3 points in D (infinitely near points are allowed) where

there is a line L with multiplicity 3 at Σ; E := l.

• Σ contains 6 points in D (infinitely near points are allowed) where

there is a conic C with multiplicity 6 at Σ; E := C.

• Σ contains 8 points in D (infinitely near points are allowed) where

there is a nodal cubic C ′ with multiplicity 9 at Σ; E := C ′.

2. Z = P1 × P1, and we have one of the followings

• D ≡ 2C0 + 2F , e = 2, and Σ = {p} is a single point, where

p /∈ D. Then E is the proper transform of any fibre (in any

direction) passing p.

• D ≡ 3C0 +2F , e = 2, and Σ = {p} is a single point, where p ∈ D.

Then E is the proper transform of any fibre in [F ] passing p.

• D ≡ 3C0 + 3F , e = 2, and Σ = {p} is a single point, where

p ∈ D. Then E is the proper transform of any fibre (in any

direction) passing p.
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• D ≡ 2C0 + 2F , e > 1, and Σ ⊂ D is a set of points in almost

general position. Then E is the blowup of any curve in Σ-almost

general position.

3. Z = F1, Σ is in almost general position, D ≡ 2C0 + 4F , e = 2, and we

have one of the followings

• E := C0.

• Any fibre F̃ , where multiplicity of F at Σ is 2.

• An exceptional curve E, where E2 = −2.

4. Z = F2, Σ is in almost general position, D ≡ 2C0 + 4F , e is free and

we have one of the followings

• E := C0

• Σ = {p} where p /∈ D, E is the fibre F passing p.

• Σ = {p1, · · · , pn} ⊂ D in almost general position where n ≤ 7, E

is any fibre F with multiplicity e at Σ.

• An exceptional curve E, where E2 = −2.

At the end, in Appendix A, we give a classification of degree 4 ramification

divisors of canonical del Pezzo orders over P2 which might be of interest to

the reader.

We will be always working on algebraically closed fields with characteris-

tic zero. Also the surfaces are irreducible and projective. It is assumed
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that the reader is familiar with the contents of ”Algebraic Geometry” by R.

Hartshorne, [9].
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Chapter 2

Canonical Del Pezzo Surfaces

In this chapter we look at the classification of del Pezzo surfaces with only

canonical singularities. Such a classification involves birational geometry.

One way to study this is by running the Minimal Model Program (MMP).

We will see that the minimal model of a del Pezzo surface with canonical

singularities is P2, P1×P1 or F2. If there is no ambiguity we write canonical

surface and refer to a surface with canonical singularities

2.1 Minimal Model Program (MMP)

Minimal Model Program is a part of the birational classification of algebraic

varieties. In this work it is a tool for the classification of algebraic surfaces.
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It is used to construct a birational model for any projective surface which

is as canonical as possible. Meaning that the canonical bundle is nef, or if

K.E is negative for some irreducible curve E and canonical divisor K, then

E2 ≥ 0. Note that if the canonical bundle is not nef, then K.E < 0 for

an irreducible curve E. If E2 < 0, then K.E = −1 and E2 = −1. Such a

curve is called a (−1)-curve and E ' P1. The following Proposition, called

Castelnuovo’s Contractibility Criterion, is a key point of MMP for surfaces.

Proposition 2.1.1. [12, Theorem 1.1.6] Let S be a nonsingular projective

surface and let E ⊂ S be a (−1)-curve. Then there exists a nonsingular

surface S ′ and a single blowup at a point p, g : S → S ′ such that E is the

corresponding exceptional curve.

Having Castelnuovo’s contraction for (−1)-curves, we can construct minimal

models of nonsingular surfaces. The following proposition shows that the

minimal model always exists for smooth surfaces, however it may not be

unique.

Proposition 2.1.2. [9, Theorem 5.8] Every nonsingular surface admits a

birational morphism to a minimal model.

The goal of minimal model program is to contract nonsingular surfaces to

simpler surfaces which are also nonsingular. But what if we have a singular

surface? In this work we consider only canonical singularities for surfaces.

Canonical singularities for surfaces are only rational double points and they
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are sometimes called du Val or Kleinian singularities as they were studied by

Patrick du Val and Felix Klein. For more details and types of singularities

see [13].

Remark 2.1.3. If a normal Gorenstein surface T is not smooth, there is a

resolution f : S → T where f is a sequence of blowups and S is a nonsingular

surface. Then we have the following equation for canonical divisors.

KS ≡ f ∗(KT ) +
∑
i

aiEi

where the sum is over all f -exceptional curves and the ai are rational num-

bers. In the case that singularities of T are only rational double points then

ai ≥ 0 for every i. Further f is called minimal if ai ≤ 0 for every i and we

can see that the minimal resolution always exists [5, Corrolary 3.6] and is

unique [11, Theorem 3.52]. So if a surface T has only canonical singularities

and f : S → T is a minimal resolution, then

KS ≡ f ∗(KT ).

Thus for a singular surface we first resolve it to a nonsingular surface and

then run MMP. This gives the following diagram.
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S

T

S ′

f

g

gof−1

Figure 2.1: Contraction of the minimal resolution of a canonical surface to a
minimal model

2.2 Del Pezzo Surfaces

In this section we define del Pezzo surfaces and recall their classification when

they have no worse than canonical singularities. We will see that any such

del Pezzo surface can be resolved to a smooth surface and the contracted to

one of the surfaces P2, P1×P1, and F2. These three surfaces are the minimal

models for del Pezzo surfaces.

2.2.1 Smooth Del Pezzo Surfaces

Definition 2.2.1. Let S be a surface and let KS denote the canonical divisor

on S. S is called del Pezzo if −KS is ample or equivalently if
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1. K2
S > 0

2. −KS.C > 0 for every effective curve C.

If 2 is replaced by −KS.C ≥ 0 for every effective curve, then S is called

almost del Pezzo.

Now let S be a smooth del Pezzo surface and let g : S → S ′ be a contraction

to a minimal model S ′. Then is S ′ also del Pezzo?

Proposition 2.2.2. Let S be a smooth del Pezzo surface and let g : S → S ′

be a contraction to a minimal model S ′. Then S ′ is also del Pezzo.

Proof. By [9, Proposition 3.3] we know K2
S′ = K2

S + 1 > 0 and so K2
S′ > 0.

Now let C ′ be an effective curve in S ′. We let C denote the proper transform

of C ′. Then C ′ = g∗C and

KS′ .C
′ = KS′ .g∗C

= g∗KS′ .C

=

(
KS −

∑
i

riEi

)
C

<

(
−
∑
i

riEi

)
C. (∗)

The following claim finishes the proof.

Claim 2.2.3. We claim that (−
∑

i riEi)C ≤ 0. So then S ′ is del Pezzo.
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Remark 2.2.4. Note that the same calculation works for almost del Pezzo

surfaces. The only difference is in the equation (∗) where < shall be replaced

by ≤ which proves S ′ is almost del Pezzo.

Proof of Claim 2.2.3. Let g : S → S ′ be the contraction of S to the minimal

model S ′. Then we have the following equation.

KS = g∗KS′ +
∑
i

riEi,

where the ri are non negative as S ′ is nonsingular. Since EiC ≥ 0 for every

i, then (
∑

i riEi)C is non negative.

Let S be a smooth del Pezzo surface and let S ′ be a minimal model of S. As

S ′ is del Pezzo KS′ can not be nef, then minimality here means that there is

no (−1)-curve in S ′. Using [10, Corollary 3.6] and the fact that F2 is not del

Pezzo we see that S ′ is the projective surface P2 or the ruled surface P1×P1.

This gives us the classification for minimal del Pezzo surfaces. To classify all

smooth del Pezzo surfaces we need to blow up the minimal models and keep

it del Pezzo. Theorem 2.2.10 indicates how many and what type of points

in S ′ can be blown up while the surface remains del Pezzo. But before that

we need to state the definition of almost general position for points on the

projective surface.

Definition 2.2.5. Let p ∈ S be a single point in the surface S and let

f : T → S be a blowup of S at p. Now let q be a point in the exceptional
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curve E = f−1(p). Then q is determined by a point in P(TpS). The points

p and q are called infinitely near points as they are both mapped to the same

point in S. This can be inducted to a set of n infinitely near points p1, · · · , pn

blown up from a point p = p1 ∈ S. If E1, · · · , Em are the corresponding

exceptional curves and the blowups are done in order, meaning that the i-th

blowup replaces the point pi by the exceptional curve Ei, then {E1, · · · , En}

are in a tree of exceptional curve, see the following Figure as an example. By

the figure we mean that E1 is obtained by the blowup f at p.

E2
5 = −1

E2
3 = −3

E2
4 = −1

E2
2 = −2

E2
1 = −2

p
•

f

Figure 2.2: Example of an exceptional tree corresponding to p ∈ S

Definition 2.2.6. Let p1, · · · , pm be infinitely near points blown up from a

point p ∈ S where S is a smooth surface. Further let tp = {E1, · · · , Em} be

the exceptional tree corresponding to p. If C is an irreducible curve C passing

through p, then we define the multiplicity of C at the infinitely near points

p1, · · · , pm as the following.

mp(C) =
m∑
j=1

`jEj.C̃. (2.1)

C̃ is the f -proper transform of C where f is the birational morphism repre-
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senting the sequence of blowups and `j − 1 is the least number of exceptional

curves in tp which connect Ej to p. For instance in Figure 2.2, `5 = 4 and

`2 = 2. Note that if C is a smooth curve at p, then C̃ intersect exactly one

of the exceptional curves in tp.

Proposition 2.2.7. Let C be a curve in the surface S. Multiplicity of C

at the infinitely near points is a generalization of the well-known multiplicity

defined for C at a single point p.

Proof. Let C be a curve in the smooth surface S and let f : S ′ → S denote a

single blowup at a point p ∈ S. To refuse any confiusion, for now we denote

the well-know multiplicity of C at a point p by m′p(C). In Equation 2.1 we

have j = 1 and `1 = 1. So

mp(C) = `1E1.C̃ = E1.C̃. (∗)

On the other hand

E1.C̃ = E1(f ∗C −m′p(C)E1) = 0 +m′p(C). (∗∗)

comparing (∗) and (∗∗) we get m′p(C) = mp(C)

Definition 2.2.8. Let Σ be a set of points in P2 where infinitely near points

are allowed. Σ is in almost general position if

1. No four points (counting the multiplicities) are on a line.
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2. No seven points (counting the multiplicities) are on a conic.

3. No point is on a (−2)-curve.

Note that the above definition is a recall of the definition of ”in almost general

position points” given in [6]. We only use a different language for the last

condition. One can compare our definition with the one in [6] stated in the

following.

Definition 2.2.9. [6, Definition 15] Let Σ = {p1, · · · , pn} be a set of closed

points in P2 where we allow infinitely near points. Denote by Σj the subset

Σ = {p1, · · · , pj}(1 ≤ j ≤ n) and let V (Σj) → P2 be the blowup of P2 with

the centre Σj. Then there exists the sequence

V (Σ) = V (Σn)→ · · ·V (Σ1)→ P2.

Let Ej be the exceptional curve for V (Σj) → V (Σj−1). Then Σ is in almost

general position if

1. No four points (counting the multiplicities) are on a line.

2. No seven points (counting the multiplicities) are on a conic.

3. No point pj+1 of V (Σj) lies on the strict transform of an exceptional

curve Ei(1 ≤ i ≤ j) with Ê2
i = −2.
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Theorem 2.2.10. [10, Theorem 3.4.v] Let g : S → P2 be blowups at points

Σ = {p1, · · · , pn}. Then S is almost del Pezzo if and only if n ≤ 8 and Σ is

in almost general position.

2.2.2 Del Pezzo Surfaces with Canonical Singularities

If a del Pezzo surface has singularities, then we need to resolve it first to

a smooth surface and then find the minimal model for the smooth surface.

But note that if a surface T is del Pezzo with canonical singularities and

f : S → T is a resolution, then S is not necessarily del Pezzo. More precisely

we will see that if f is the minimal resolution, then S is almost del Pezzo.

Proposition 2.2.11. Let T be a del Pezzo surface with canonical singular-

ities and let f : S → T be the minimal resolution. Then S is almost del

Pezzo.

Proof. Let f : S → T be the minimal resolution of the del Pezzo surface T

with canonical singularities. So

0 < K2
T = f ∗(KT )2 = K2

S
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and for any irreducible curve C ⊂ S

KS.C = f ∗(KT ).C = KT .f∗C = 0 if f∗C is a point

< 0 otherwise.
(∗)

The equations in (∗) indicates that KS.C = 0 if and only if C is an f -

exceptional curve. Further in this case C2 = −2. Having Remark 2.2.4, we

see that the minimal model S ′ is almost del Pezzo and minimality here means

that if there is any curve C ′ ⊂ S ′ with (C ′)2 < 0, then (C ′)2 = −2. Moreover

the (−2)-curves are the ones which we can contract to get a canonical del

Pezzo surface.

Proposition 2.2.12. [10, Corollary 3.6 and Theorem 3.4] Let T be a del

Pezzo surface with canonical singularities and let f : S → T and g : S → S ′

be the minimal resolution of T and the contraction of S to the minimal model

S ′ respectively. Then S ′ is P2, P1×P1, or F2. Further, in the first case g is a

sequence of blowups at points Σ = {p1, · · · , pn} where n < 9 and Σ contains

at least one of

• three points on a line l and l is an f -exceptional curve, or

• six points on a conic C and C is an f -exceptional curve, or
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• eight points on a nodal cubic C where the singularity of C is at one of

the points. Then C is an f -exceptional curve, or

• two infinitely near points pi and pj and the line going through pi with

direction pj is an f -exceptional curve.
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Chapter 3

Orders

In this chapter we define and work with (maximal) orders over surfaces. To

have a good understanding of orders, we can say that in this work orders

are non-commutative surfaces which are finite over their centres. If a non-

commutative surface is finite over its centre, then the centre should be a

surface as well, and of course it is a commutative surface. In algebraic geom-

etry, when the notion of non-commutativity comes up, there should be some

non-commutative algebras involved. However, working with commutative

algebras is always easier, and that is why people try to find a nice relation

between commutativity and non-commutativity in a geometric sense. In this

chapter we define the canonical bundle of an order and we give a description

of it which involves the canonical bundle of the centre. During this work

we let k be an algebraically closed field with characteristic zero and also we
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always assume the centres are normal and Gorenstein surfaces.

3.1 Maximal Orders

Definition 3.1.1. Let R be a noetherian integrally closed domain with frac-

tion field K. An R-order is an R-module A such that:

1. A is finitely generated as an R module,

2. A is torsion free as an R-module and K ⊗R A is a central simple K-

algebra.

Since A is torsion free, it is a subring of D := K ⊗R A, therefore it is

sometimes said that A is an order in D. We say A is maximal if it is

maximal with respect to inclusion among orders in D. Note that it is always

assumed that A is a central R-module, i.e. R ⊆ Z(A).

Definition 3.1.2. Let Z be a scheme. Also let A be a sheaf of rings which is

at the same time a quasi-coherent sheaf of OZ-modules. Namely, for U ⊂ Z,

A(U) is an OZ(U)-central algebra. Then we say A is an OZ-central algebra.

Definition 3.1.3. Let Z be an integral noetherian scheme with function field

K. An OZ-order A over Z is a coherent torsion free OZ-central algebra such

that A ⊗Z K is a central simple K-algebra. An OZ-order is called maximal

if it is maximal with respect to inclusion amongst orders in A⊗Z K.
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Example 3.1.4. Let k be an algebraically closed field with characteristic

zero. Consider the following algebra

A =
k〈x, y〉
xy + yx

.

The centre of A is R := Z(A) = k[x2, y2] and

A = R⊕ xR⊕ yR⊕ xyR.

Therefore A is finitely generated over its centre. Further, it is easy to check

that A is torsion free. Since

K ⊗R A = K ⊕ xK ⊕ yK ⊕ xyK,

K ⊗R A is a central simple K-algebra.

Let u := x2 and v := y2. Then Z = Spec(k[u, v]) = A2 and for an open

subset U ⊂ Z we have A(U) = OZ(U)⊗RA. Therefore, A is an OZ-algebra.

We are interested in maximal orders. Maximality of orders generalizes the

notion of normality for schemes. Therefore the concept of normalization

extends to embedding in a maximal order. But unfortunately the maximal

order is not unique unless the order is over a discrete valuation ring which is

in this case unique up to conjugation.
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Throughout when we say order we refer to Definition 3.1.3. For us an order

A is defined over a normal Gorenstein scheme Z as the centre. Also during

this work, orders are assumed to be maximal unless specified differently.

Moreover, the term commutative is usually ignored and surfaces refer to

commutative surfaces.

Let A be an order (not necessarily maximal). We are looking for a maximal

order containing A. One way is to take its double dual (or reflexive hull),

however it may not be maximal yet.

Definition 3.1.5. Let R be a commutative noetherian normal domain and let

A be a finitely generated R-module. Then the dual of A is A∗ := HomR(A, R).

We say A is reflexive if it is isomorphic to its double dual A∗∗.

Let R be a commutative noetherian normal domain and let K be its fraction

field. If A is an R-order in D = K ⊗R A, then A∗∗ is also an order in D, [3,

Lemma 6.3]. Since A and A∗ are torsion free R-modules, therefore A ⊆ A∗∗.

There is a criteria given by Auslander and Goldman for an order to be max-

imal. The idea is to look at the localization of A at the prime ideals of Z

rather that A itself. But before that we need to study the localization of

a module. Note that it is easier to check maximality of Ap as an Rp-order

because in this case the order is over a discrete valuation ring.

Definition 3.1.6. Let R be a commutative ring and let A be an R-module. If

p is a prime ideal in R, then localization of A at p as a module is (R−p)−1A
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which is an Rp-module.

Proposition 3.1.7. [3, Proposition 6.4] An R-order A is maximal if and

only if A is reflexive and Ap is maximal for every irreducible divisor p ∈ Z,

where Z = Spec(R).

LetA be an order in K⊗RA. The double dualA∗∗ is always a good candidate

for the maximal order containing A. Since A∗∗ is reflexive by Proposition

3.1.7 we only need to check if for every prime divisor p the Rp-module Ap is

maximal.

3.2 Del Pezzo Orders

In the present work we are interested in a class of orders called del Pezzo.

Since del Pezzo orders are the generalization of del Pezzo surfaces it is very

natural to define del Pezzo orders to be the ones with ample anti-canonical

sheaf. So we need to define the canonical sheaf for orders. Later on we also

talk about types of singularities for orders as we want to classify del Pezzo

orders with only canonical singularities.

Definition 3.2.1. Let A be an order over a surface Z. Since Z is normal it is

Cohen-Macaulay, therefore the dualizing sheaf exists. Since Z is Gorenstein

the dualizing sheaf is actually the canonical sheaf ωZ ≡ OZ(KZ) where KZ is
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a canonical divisor. Then the canonical sheaf of A is defined as the following

ωA := HomOZ
(A, ωZ).

Definition 3.2.2. An order A is called del Pezzo if the anti-canonical sheaf

ω∗A = HomA(ωA,A) is ample, see [6, p: 152] for details about the ampleness

on orders.

In Definition 2.2.1 we saw that a surface is del Pezzo if and only if some

numerical inequalities hold for the canonical divisors which is significantly

helpful for working on del Pezzo surfaces. We are looking for a similar equiv-

alence for del Pezzo orders. To this end we need to define the ramification

divisor. following discussion is recalled from [6, p:151].

Let Z1 be the set of irreducible divisors in Z = Spec(R) which are irreducible

curves in our case. Let D0 be in Z1 and let p0 ∼ D0 be the height 1 prime

ideal so that D0 = Spec

(
R

p0

)
. Moreover let K(D0) denote the function field

of D0 and let F be the centre of the residue ring
Ap0

radAp0

. Then we get the

field extension [F : K(D0)] which is almost always trivial. When the field

extension is not trivial for a curve D0, we say that A ramifies at D0 with

(ramification) degree e0 = [F : K(D0)]. Also D0 is called a ramified divisor

with degree e0 and it has a cyclic cover D̃0 of degree e0. Let D = ∪iDi be

the union of all ramification divisors and let {ei} be the ramification degrees.

We call D the discriminant of the order A.
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Proposition 3.2.3. [6, Lemma 8] Let A be an order over Z and let (D =

∪iDi, {ei}i) be its discriminant and the ramification degrees. Then A is del

Pezzo if and only if the divisor

−KA := −

(
KZ +

∑
i

(
1− 1

ei

)
Di

)
,

is ample. We call KA the canonical divisor on Z corresponding to A.

Proposition 3.2.3 suggests that numerical calculations for the canonical sheaf

ωA of A depend only on the centre and the ramification divisors. Canonical

sheaves of the centres of del Pezzo orders are easy and straightforward to

find. So it is crucial to find the ramification degrees of the ramified divisors

in order to do numerical calculations for orders. We know all ei are strictly

greater than 0 but they are more restricted when A is del Pezzo. This

will come in the next chapters where we talk about terminal and canonical

singularities for orders. We will see that classification of singularities for

orders depends on the centre of the orders as well as the configuration of the

ramified divisors.

3.3 Ramifications and Blowups

In this section, X and Y denote maximal orders over normal Gorenstein

surfaces. Let (D = ∪iDi, {ei}i) be the discriminant and the ramification
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degrees of an order X and let µ denote the lowest common multiple of the

ei. The points that two or more of the ramification divisors intersect are

called branch points. Beside the degrees for the ramification curves, at each

branch point p we define a ramification index for each divisor Di passing p,

denoted by µ̄i,p. We denote the ramification index by a line above because

for every i and p, the ramification index µ̄i,p belongs to the cyclic group Zµ.

If a divisor does not pass a branch point, we can define its ramification index

at the point to be 0. We also denote the order of µ̄i,p in the group Zµ by ri,p.

There are also some compatibilities between µ̄i,p, ri,p, ei, and µ which come

in Definition 3.3.1.

Definition 3.3.1. Let D = ∪iDi be the discriminant of an order X and let

ei be its ramification degrees. Also let µi,p denote the ramification index of

the ramification divisor Di at the branch point p. A ramification diagram is

the data (D = ∪iDi, {ei}i, {µi,p}), such that the following properties hold.

1. For every branch point p of any ramification divisor Di, ri,p|ei.

2. On any ramification curve Di, the sum
∑

ν∈Di
µ̄i,ν is zero.

3. At any branch point ν, the sum
∑
{i|ν∈Di

¯µi,ν} is zero.

4. Let Di be a rational ramification curve and let {µ̄i,ν}ν be the indices for

Di at its branch points. Then the lowest common multiple of the ri,ν is

ei.
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We say Di ramifies at p if ri,p is not 1 and we say it totally ramifies at p if

ri,p = ei.

Example 3.3.2. Consider the diagrams in Figure 3.1. The left figure is the

ramification diagram of a configuration of four divisors (in this case lines).

The numbers near the curves are the ramification degrees for the divisors

and the numbers near branch points are the ramification indices for the curves

passing the branch point. The right diagram is a more detailed figure for only

one branch point as an example to describe what we mean by the numbers in

the left diagram.

One can check that the numbers in the left diagram satisfy all the hypothesis

in Definition 3.3.1. Note that the choice of the numbers for a configuration

of divisors is not unique and there may be other possibilities. In the right

diagram there are two irreducible divisors (lines) with ramification degrees 6

and 2. Then they have sextuple and double covers respectively. Further, the

order of 3̄ in both Z6 and Z2 is 2. Therefore the covers at the branch point

are irreducible curves of multiplicities 2.
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• 3̄

3̄

6
23̄

3̄
6

1̄

5̄

2̄

4̄

2̄ 1̄

3̄

3 6
2

Figure 3.1: A ramification diagram of four lines

Proposition 3.3.3. [6, Corollary 20] Given any ramification diagram, there

exists an order with that ramification.

We seek to classify del Pezzo orders with canonical singularities. To this end

we will show that any such order can be contracted by a finite number of

blowdowns to a minimal (almost) del Pezzo order with terminal singulari-

ties. The definition of almost del Pezzo orders is just a generalization of the

definition of almost del Pezzo surfaces, see Definition 2.2.1, we will define it

more precisely in Definition 5.2.2. To give the desired classification we will

first classify minimal del Pezzo orders with terminal singularities and then

we blow them up. The idea is to find all the blowups that remain del Pezzo.

So one needs to know the canonical divisor of the orders after the blowups

explicitly.
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Let X be a minimal terminal del Pezzo order, we will see that in the case

of minimal terminal del Pezzo orders the centre and the discriminant are

both very restrictive and easy to classify. So we basically need to classify the

blowups and this is what we do in the next chapters. Here we provide an

introduction about blowups of orders.

Talking about singularities of orders is not as easy as commutative surfaces.

Singularities for an order not only depend on the centre, but also depend on

the ramification diagram of the order. However when an order has termi-

nal or canonical singularities its centre should have no worse than canonical

singularities, see table 5.1. During this work when we say canonical singu-

larities we include terminal singularities too, unless specified differently. In

the commutative case, surfaces with terminal singularities are smooth and

surfaces with canonical singularities have rational singularities. Canonical

singularities of surfaces are also called simple surface singularities or du Val

singularities. When we have an order with terminal singularities the centre

has to be smooth, see Definition 4.1.1. We talk about the canonical singular-

ities for surfaces in Chapter 5. In this setting, when we say resolution of an

order X , we say a sequence of blowups of its centre to a smooth surface such

that the ramification diagram is also resolved to a terminal ramification di-

agram. In Chapters 4 and 5 will see the definition of terminal and canonical

singularities for orders.

To classify del Pezzo orders with canonical singularities we need to know
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how the blowups and blowdowns change the discriminant or more precisely

the ramification diagram. Note that blowups and blowdowns of orders are

indeed birational morphisms of the centres.

Proposition 3.3.4. [3, Proposition 6.4] Let X be an R-order, then X is

maximal if and only if X is reflexive and Xp is maximal for all height 1

primes p ∈ SpecR.

Let X be an order over Z with the discriminant D = ∪iDi and the rami-

fication degrees {ei}. And let f : Z → Z ′ represent blowing down a con-

tractible curve E. Then f∗(OX ) is an f∗(OZ)-module. Having the morphism

f# : OZ′ → f∗OZ , we find a natural structure of OZ′-module for f∗OX . So

f∗OX is an order (not necessarily maximal) over Z ′. Using Proposition 3.3.4,

we see that Y := (f∗X )∗∗ is a maximal order. Now let g : Z ′′ → Z represent

blowing up a point p ∈ Z to the exceptional curve E. Then g−1(OX ) is a

g−1(OZ)-module. We define f ∗(OX ) to be f−1(OX )⊗f−1(OZ)OZ′′ . In the case

of blowups, there is not always a unique maximal order containing f ∗(OX ).

Then when blowup a maximal order there may be several maximals contain-

ing f ∗(OX ) to choose. For more details about the maps and notations see [9,

p:109, Definitions].

Further, the discriminant in Z ′ is D′ = f∗D and the ramification degrees

are preserved when the centre is blown down, i.e. e′i = ei where e′i is the

ramification degree for f∗Di. For the blowup g : Z ′′ → Z at the point p, the

discriminant on Z ′′ depends on the choice of p. If p /∈ D or if p is a smooth
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point of D, then the discriminant D′′ in Z ′′ is the proper transform of D and

the ramification degrees do not change. But if p ∈ D is a singular point of

D, then the g-exceptional curve E may belong to the discriminant in Z ′′,

however the ramification degree for E needs some discussion which will come

in Chapter 4. Therefore we have the following equation

∆Z′′ =
∑
i

(
1− 1

ei

)
D′′i +

(
1− 1

e

)
E,

where as we said before e can vary and D′′i is the proper transform of Di.

Note that if E does not ramify or equivalently e = 1, then E disappears from

the equation.

Definition 3.3.5. Let X be an order over Z. If f : Z → Z ′ represents

blowing down a contractible curve E, then we call Y = (f∗X )∗∗ a blowdown

of X by contracting E. Further if g : Z ′′ → Z represents blowing up a

point p ∈ Z to the exceptional curve E, then we choose a maximal order W

containing f ∗(OX ) and we call it a blowup of X at a point p.

Let f : Z → Z ′ be a birational morphism between normal Gorenstein sur-

faces. Often by abuse of notation, we say f is a morphism between orders X

and Y and we have the following equation

KY = KX +
∑
i

aiEi,

where KX = KZ + ∆Z , KY = KZ′ + ∆, Ei are f -exceptional curves, and the
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numbers ai depend on f .
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Chapter 4

Del Pezzo Terminal Orders

In this chapter we will introduce orders with terminal singularities. In the

commutative case, surfaces with terminal singularities and smooth surfaces

are the same, but it is not in general true for orders. We will see that when

we have an order with terminal singularities the centre should be a smooth

surface, however the discriminant may also have singularities. We seek to

classify del Pezzo orders with terminal singularities. Throughout when we

say terminal orders we mean orders with terminal singularities.

Chan and Ingalls in [5], generalized the notion of minimal model program

(MMP) to terminal orders over surfaces. We introduced the term ”minimal

model program” (or Mori’s program) in classical algebraic geometry and

specifically for del Pezzo surfaces in Chapter 2. We have a similar procedure
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for the non-commutative cases or more precisely for terminal orders. We let

X and Y denote orders over centres ZX and ZY .

Let X be a terminal order. Then it can be contracted to a minimal terminal

order Y , meaning that there is no KX -negative curve. We show that if

the terminal order X is del Pezzo, then so is its minimal terminal order.

This helps us classify terminal del Pezzo orders via classification of minimal

terminal del Pezzo orders.

For a minimal terminal del Pezzo order the centre is very restrictive and we

show that it is either Z = P1 × P1 or Z = P2. Thus to classify terminal del

Pezzo orders, we give a classification for minimal terminal del Pezzo orders

on these well-known surfaces. Then all we need to do is to blowup these

orders and at the same time keep them del Pezzo.

4.1 Orders with Terminal Singularities

Definition 4.1.1. Let X be an order on Z and let D = ∪iDi be its ramifi-

cation divisor with ramification degrees ei and ramification covers D̃i. Then

X has terminal singularities if

• Z is a smooth surface,

• the ramification divisor has normal crossings
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• the cyclic cover D̃i ramifies at all the nodes of Di

• locally at any branch point p, only two divisors intersect, one cover D̃i

ramifies totally with ramification degree ei (see Definition 3.3.1), and

the other one, D̃j, ramifies with ramification degree ej = nei for some

positive integer n. Moreover ri,p = rj,p = ei.

The following diagram clarifies the last condition for terminal singularities.

For the oblique line the ramification degree eo = 2 and the order of the

branch index at the node is ro,p = 2 and for the horizontal line the order of

the branch index rh,p = 2 and eh = 3.2 = 6.

• 3̄

3̄p
6

2

Definition 4.1.2. Let X be a terminal order over Z and let KX = KZ + ∆

be its canonical divisor. Then X is a minimal terminal order if for every

irreducible curve C ∈ Z, either KXC ≥ 0 or C2 ≥ 0.

Proposition 4.1.3. [5, Theorem 3.10] Let X be a terminal order over Z.

Suppose there is an irreducible curve E ∈ Z such that E2 < 0 and KX .E < 0.

Then there exists a map π : Z → Z ′ that contracts exactly E and the order

X ′ over Z ′ is terminal.
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The following proposition proves that every terminal order over a surface

is minimal or it can be blown down to a minimal terminal order. This is

as a result of generalizing the minimal model program to terminal orders

over surfaces by Chan and Ingalls, [5]. Before stating the proposition we

refer reader to [11, Definition 1.15] for details and the definition of extremal

curves.

Proposition 4.1.4. Let X be a terminal order over Z. Then KX is nef or

there exists an extremal curve E such that KX .E < 0 and one of the following

occurs.

• E2 < 0: E is a (−1)-curve and there exists π : Z → Z ′ contracting

exactly E.

• E2 = 0: π : Z → C is a ruled surface over a smooth curve C with E a

fibre. Moreover, KX .E < 0.

• E2 > 0: Z ' P2 and −KX is ample.

Let KX be not nef. If for an extremal curve E the self intersection is negative,

then π : Z → Z ′ contracts E. Proposition 4.1.3 proves that the order X ′ over

Z ′ is a terminal order. Then X can be replaced by X ′ and we can repeat the

proposition for X ′. This ensures that we end with a minimal terminal order.

Further, note that if for an extremal curve E the self intersection is zero, then

the order is not necessarily minimal. More precisely there are some smooth
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surfaces with extremal curves E and E ′ where E2 = 0 and E ′2 < 0 and E ′

is contractible. For instance in Hirzebruch surface F1 there are two extremal

curves C0 and F where C0 is the negative section and F is any fibre.

Corollary 4.1.5. Let X be a terminal order over Z. Then there exists a

sequence of blowdowns of (−1)-curves

f : Z → Z1 → · · · → Zn = Z ′

and a maximal order X ′ over Z ′. Let KX ′ = KZ′ + ∆′. Then one of the

following holds,

• KX ′ is nef.

• π : Z ′ → C is a ruled surface and −KX ′ .F > 0 for F a fibre. Further,

Z ′ contains no irreducible curve C such that C2 < 0 and KX ′ .C < 0.

• Z ′ ' P2 and −KX ′ is ample.

where X ′ is the terminal order over Z ′ and KX ′ = KZ′ + ∆′.

4.2 Minimal Terminal Del Pezzo Orders

In this section we seek to give a classification of minimal terminal del Pezzo

orders. But the classification is actually for the centres of minimal terminal
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orders. This is still very helpful as del Pezzo orders are significantly depen-

dent on their centres. We will show that the centre of a del Pezzo order

is either P1 × P1 or P2. The key point of the proof is based on a theorem

by Chan and Kulkarni. They showed that if an order over a surface is del

Pezzo, then the centre is necessarily del Pezzo, Proposition 4.2.2. Then we

aim to classify all terminal orders by blowups of minimal terminal orders.

But before that we need to show that any terminal del Pezzo order can be

contracted to a minimal terminal order.

Lemma 4.2.1. Let X be a del Pezzo order over Z and let f : Z → Z ′ be a

birational morphism which contracts exactly an irreducible curve E suth that

E2 = −1. Then the order X ′ over Z ′ is del Pezzo.

Proof. Consider the equations

KX = KZ + ∆

KY = KZ′ + ∆′

KZ + ∆ ≡ f ∗(KZ′ + ∆′) + aE.

As X is a del Pezzo order, (KZ + ∆)2 > 0 and (KZ + ∆).C < 0 for any

effective curve C ∈ Z. So

(KZ + ∆)2 = (f ∗(KZ′ + ∆′) + aE)2

= (KZ′ + ∆′)2 − (a)2 > 0,
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so (KZ′ + ∆′)2 > 0.

If C is an effective curve in Z, then f ∗C is an effective curve in Z ′.

0 > (KZ′ + ∆′)f ∗C = (f ∗(KZ + ∆) + aE)f ∗C

= f ∗(KZ + ∆)f ∗C ′ + aEf ∗C

= (KZ + ∆)f∗f
∗C + 0

= (KZ + ∆)C.

Proposition 4.2.2. [6, Theorem 12] Let X be a del Pezzo order on the centre

Z. Then Z is a del Pezzo surface.

Now if we add the assumption of ampleness of the anti-canonical bundle

−KX to Corollary 5.3.4 we get the following result.

Theorem 4.2.3. Let X be a minimal terminal del Pezzo order on Z. Then

Z = P1 × P1 or Z = P2.

Proof. Using Corollary 5.3.4 for terminal del Pezzo orders we get the follow-

ing sequence of contraction

f : Z → Z1 → · · · → Zn = Z ′

such that X ′ is a minimal terminal del Pezzo order. So Z ′ is a del Pezzo
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surface and since X ′ is del Pezzo KX ′ is not nef, thus one of the following

holds,

• π : Z ′ → C is a ruled surface.

• Z ′ ' P2.

All we need is to show that if the first case occurs, then Z = P1 × P1. So let

S be a ruled surface and let C0 be the minimal section, as in [9] , and F a

fibre. Then by the genus formula for ruled surfaces we have

KZC0 = n+ 2g − 2 and

K2
Z = 8(1− g),

where g denotes the genus of C0 and n = −C2
0 . Since Z ′ is del Pezzo, we

have 1 − g > 0 and n + 2g − 2 < 0. Then g < 1, i.e. C0 is a rational ruled

surface, and n < 2. Now we only need to show that n 6= 1.

Let n = 1 and Z ′ = F1 and let C0 be the (−1)-section in Z. So C2
0 = −1

and as X ′ is del Pezzo, C.KX ′ < 0 which violates the hypothesis of X to be

a minimal order.

On the other hand, if Z = P1 × P1 or Z = P2 then for every effective curve

C ∈ Z, C2 ≥ 0 and the hypothesis of Definition 4.1.2 hold.

So all terminal orders are blowups of minimal terminal orders over P1×P1 or
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P2. Therefore, to classify terminal del Pezzo orders we first classify the ones

over P2 and P1 × P1 and then we blow them up. We give the restrictions for

the number and the types of the blowups which keep the order del Pezzo.

4.3 Terminal Del Pezzo Orders on Blowups

of P2

In this section we present the classification of terminal del Pezzo orders over

blowups of P2. To this end we first classify minimal teminal del Pezzo orders

over P2. Then we can classify terminal del Pezzo orders as they can be

constructed by blowups of the minimal orders over P2. We let X denote a del

Pezzo order on P2 and D = ∪Di, {ei} denote the ramification configuration

of X . Using the results in [5] and [6], we have that 3 ≤ deg(D) ≤ 5.

Additionally for a ramification configuration D = ∪Di, all the indices ei are

equal.

deg(D) e

3 ≥ 2

4 2, 3

5 2

Table 4.1: Degrees and indices for terminal orders on P2
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Degree 3 ramification divisors

Let Z = P2 and let X be a maximal order on Z. Moreover let D be a degree

3 ramification divisor on Z and define ∆ =
(
1− 1

e

)
D. Then D is of one of

the types in Figure 4.1. The number e represents the ramification degree of

the curves and µ is any generator of the cyclic group Z
eZ and represents the

ramification index of the curves at the branch points.

e

e

µ̄

-µ̄

µ̄

-µ̄

Transverse line &

conic

e e

e
-µ̄
µ̄

µ̄

-µ̄

µ̄ -µ̄

Transverse lines

e

A smooth cubic

e
µ̄

-µ̄

A nodal cubic

Figure 4.1: Cubic ramification configurations

When we blowup an order at a point p the canonical bundle of the new order

depends on p and the discriminant. There are always three cases, the point

can be out of D, or it can be a smooth or a singular point of the discriminant.

Lemma 4.3.1. Let X be a terminal order over Z and let f : Z ′ → Z be a

blowup at a point p. Then we have the equation

KZ′ + ∆′ ≡ f ∗(KZ + ∆) + aE,

where
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1. a = 1, if p is not in D = d∆e.

2. a =
1

e
, if p is a smooth point of D, where e is the ramification degree

of D.

3. a =
1

ne
, if p is a singular point of D, where the ramification degrees of

the ramification curves crossing at p are e and ne.

Proof. Let f : Z ′ → Z be a blowup at a point p. We have the following

equations

aE ≡ KZ′ + ∆′ − f ∗(KZ + ∆)

KZ′ ≡ f ∗KZ + E

∆′ ≡


∆̃ +

(
1− 1

e

)
E; if p is a singular point of D

∆̃; otherwise

(∗)

f ∗(KZ + ∆) ≡ f ∗KZ + f ∗∆

f ∗∆ ≡


∆̃; if p is not a point of D

∆̃ +

(
1− 1

e

)
E; if p is a smooth point of D

∆̃ +

(
1− 1

e

)
E +

(
1− 1

ne

)
E; if p is a singular point of D

where ∆̃ represents the proper transform of ∆ and equation in (∗) comes

from [4, Remark 2.8]. These give us the desired result.

We start with blowing up a point p /∈ D. We show that if a del Pezzo order
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with a discriminant of degree 3 in P2 is blown up at a point p /∈ D, then the

order remains del Pezzo only if e = 2. Our work here is independent from

but similar to what is done in [2].

Lemma 4.3.2. Let X be a terminal order on Z = P2 and let D be a dis-

criminant of degree 3 with the ramification degree e. Also let f : Z ′ → Z be

a blowup at a point not in D. Then the associated order Y over Z ′ is del

Pezzo if and only if e = 2.

Proof. Let e = 2 and let f : Z ′ → Z be a blowup at the point p /∈ D and let

C ′ be an effective curve in Z ′. Then

KZ′ + ∆′ ≡ f ∗(KZ + ∆) + E,

and

(KZ′ + ∆′)C ′ = (f ∗(KZ + ∆) + E)C ′

= f ∗(KZ + ∆)C ′ + EC ′

=

(
−3H +

(
1− 1

2

)
3H

)
f∗C

′ + EC ′

= −3

2
d+ r,

where d = deg(f∗C
′) and r is the multiplicity of C ′ at p which is not greater
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than d. So (KZ′ + ∆′)C ′ < 0. Now we need to find (KZ′ + ∆′)2.

(KZ′ + ∆′)2 = (f ∗(KZ + ∆) + E)2

= (KZ + ∆)2 − 1

= (−3H + (1− 1

e
)3H)2 − 1

= (
−3

e
H)2 − 1

=
9

e2
− 1.

Therefore
9

e2
− 1 > 0 if and only if e < 3.

Proposition 4.3.3. Let X be a terminal order on Z = P2 and let D be a

discriminant of degree 3. Also Let Z ′
f−→ Z be two blowups at the points p and

q and let Y be the associated maximal order on Z ′ obtained by the blowups.

If any of p or q is not in D then Y is not del Pezzo.

Proof. By Lemma 4.3.2 we know if e 6= 2, then the order is not del Pezzo.

So let e = 2 and without loss of generality let us assume p /∈ D. Then

KZ′′ + ∆′′ ≡ h∗(KZ′ + ∆′) + Ep + aEq,

48



where a depends on q whether it is in the ramification divisor or not.

(KZ′ + ∆′)2 = (f ∗(KZ + ∆) + Ep + aEq)
2

= (KZ + ∆)2 − 1− a2

=
9

22
− 1− a2 > 0.

For any effective curve C ′ ∈ Z ′,

(KZ′ + ∆′)C ′ = (f ∗(KZ + ∆) + Ep + aEq)C
′

= f ∗(KZ + ∆)C ′ + EpC
′ + aEqC

′

= (−3H + (1− 1

2
)3H)h∗C

′ + EpC
′ + aEqC

′

= −3

2
d+ rp + arq,

where rp and rq are multiplicities of C := f∗C
′ at p and q, respectively, and

d = deg(C). So rp + arq ≤ (1 + a)d and equality holds if C is a d-tuple

line going through p and q. So for a d-tuple line C going through p and q,

(KZ′ + ∆′)C̃ ≥ 0 since a ≥ 1

2
, i.e. Y is not del Pezzo.

Proposition 4.3.3 indicates that if a point p /∈ D is blown up, then the order

remains del Pezzo if e = 2 and further, no more blowups are allowed either

in or not in D. So the only remaining case here for degree 3 discriminants is

to know how many points in D and what configurations of blowups preserve

the order being del Pezzo. We will see that the classification of the points is
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very similar to the commutative case, which says blowups of up to 8 points

in general position is allowed.

Definition 4.3.4. Let Σ = {p1, · · · , pn} be a set of distinct points of P2. We

say Σ is in general position if

1. No three points lie on a line;

2. No six points lie on a conic.

Theorem 4.3.5. Let X be a terminal order on Z = P2 with the ramification

divisor D of degree 3 and the ramification degree e. Let f : Z ′ → Z be a

sequence of blowups at the points Σ = {p1, · · · , pn}. Then the associated

maximal order Y over Z ′ is del Pezzo if and only if one of the following

occurs.

1. Σ ⊂ D, then Σ is in general position and n < 9;

2. Σ 6⊂ D, then n = 1, p1 /∈ D and e = 2.

Proof. The second case is actually is what we showed in Proposition 4.3.3.

So we only need to prove the case that Σ ⊂ D.

Let f : Z ′ → Z be a sequence of blowups at the points Σ = {p1, · · · , pn} ⊂ D

and let Ei be the expetional curve obtained by the blowup at pi. By abuse

of notation, we assume Ei ⊆ Z ′, but we actually mean the proper transform

of Ei. Then
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KZ′ + ∆′ ≡ f ∗(KZ′ + ∆′) +
1

e

n∑
i=1

Ei

(KZ′ + ∆′)2 = (f ∗(KZ + ∆) +
1

e

n∑
i=1

Ei)
2

= (KZ + ∆)2 − n

e2

=
9

e2
− n

e2
> 0.

Therefor n < 9. Now let C ′ = C0 +
∑n

i=1 aiEi be an effective curve in Z ′,

where for every i, C0 − Ei is not effective. Let C := f∗C
′ = f∗C0, then

(KZ′ + ∆′)C ′ = (f ∗(KZ + ∆) +
1

e

n∑
i=1

Ei)C
′

= (KZ + ∆)f∗C
′ +

1

e

n∑
i=1

(EiC
′)

=
−3

e
d+

1

e

n∑
i=1

(EiC0)− 1

e

n∑
i=1

ai

=
−3

e
d+

1

e

n∑
i=1

mpi(C)− 1

e

n∑
i=1

ai,

where d = deg(C), and mpi(C) is the multiplicity of C at pi. We need

to find
∑n

i=1 mpi(C) which is the total multiplicities of C at Σ. Let C =

n1C1 + n2C2 + · · · + nkCk be an effective curve in Z = P2 with n1 lines, n2

conics, etc. Then as n < 9 and the points are in general position, each line

intersects at most 2 points, each conic intersects at most 5 points and the
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other can go through all the n points. Then

mp1,...,p8(C) ≤ 2n1 + 5n2 + 8n3 + · · · 8nk.

Moreover deg(D) = n1 + 2n2 + · · ·+ knk, thus

(KZ′ + ∆′)C ′ =
−3

e
d+

1

e

n∑
i=1

mpi −
1

e

n∑
i=1

ai

≤ −3
n1 + · · ·+ knk

e
+

2n1 + 5n2 + 8n3 + · · · 8nk
e︸ ︷︷ ︸

strictly less than 0

−1

e

8∑
i=1

ai.

Degree 4 and 5 Ramification Divisors

In this section we blowup maximal orders on P2 with degree 4 or 5 rami-

fication divisors. We denote the ramification divisors by D = ∪Di, and d

indicates the degree of D. According to Table 4.1, ramification degrees are

all equal, say e, and e = 2 or e = 3 if d = 4 and e = 2 if d = 5.

For terminal del Pezzo order X on Z = P2 let D = ∪Di denote the ramifica-

tion divisor and let d = degD. If f : Z ′ → Z is a blowup at a point p. Then

we get the following equation

KZ′ + ∆′ ≡ f ∗(KZ + ∆) + aE ′,
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where by Lemma 4.3.1 a = 1 if p /∈ D and a =
1

e
if p ∈ D.

Theorem 4.3.6. Let X be a terminal del Pezzo order on Z = P2 with the

ramification divisor D = ∪Di of degree 4. Also let f : Z ′ → Z be a blowup

at a point p and let Y be the associated maximal order over Z ′. Then Y is

del Pezzo if and only if p ∈ D and e = 2. Moreover Y can not be blown up

to a del Pezzo order.

Proof. Let X be a terminal del Pezzo order on Z = P2 with the ramification

divisor D = ∪Di of degree 4. Let f : Z ′ → Z be a blowup at a point p and

let Y be the associated maximal order over Z ′.

(KZ′ + ∆′)2 = (f ∗(KZ + ∆) + aE ′)2

= (KZ + ∆)2 − a2

=

(
−3H +

(
1− 1

e

)
4H

)2

− a2

=

((
1− 4

e

)
H

)2

− a2

= 1− 8

e
+

16

e2
− a2.

e = 2 or e = 3. If a = 1, then (KZ′ + ∆′)2 ≤ 0. Therefore a =
1

e
and

(KZ′ + ∆′)2 = 1− 8

e
+

16

e2
− 1

e2
which is zero for e = 3 and greater than zero

if e = 2. Now we show Y is del Pezzo if e = 2. Let C ′ be an effective curve

53



in Z ′ and let C = f∗C
′.

(KZ′ + ∆′)C ′ = (f ∗(KZ + ∆) +
1

2
E)C ′

= f ∗(KZ + ∆)C ′ +
1

2
EC ′

=

(
−3H +

(
1− 1

2

)
4H

)
f∗C

′ +
1

2
EC ′

= (−H)f∗C
′ +

1

2
EC ′

≤ −d+
1

2
mp(C)

≤ −1

2
d,

where d = deg(C) and mp(C) is the multiplicity of C at p.

Now let f : Z ′ → Z be blowups at the points p and q in D. And let C ′ be

an effective curve in Z ′ and let C = f∗(C
′)

KZ′ + ∆′ ≡ f ∗(KZ + ∆) +
1

2
Ep +

1

2
Eq;

(KZ′ + ∆′)2 =

(
f ∗(KZ + ∆) +

1

2
Ep +

1

2
Eq

)2

= (KZ + ∆)2 − 1

4
− 1

4

= 1− 8

2
+

16

4
− 1

2

=
1

2
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and

(KZ′ + ∆′)C ′ =

(
f ∗(KZ + ∆) +

1

2
Ep +

1

2
Eq

)
C ′

= f ∗(KZ + ∆)C ′ +
1

2
(Ep + Eq)C

′

≤ −d+ d,

where equality occurs when C is a d-tuple line passing p and q, d = deg(C)

and mp(C) and mq(C) are the multiplicities of C at p and q, respectively.

Theorem 4.3.7. Let X be a terminal del Pezzo order on Z = P2 with the

ramification divisor D = ∪Di of degree 5. Also let f : Z ′ → Z be a blowup

at a point p and let Y be the associated maximal order over Z ′. Then Y is

not del Pezzo.

Proof. Let X be a terminal del Pezzo order on Z = P2 with the ramification

divisor D = ∪Di of degree 5. And let f : Z ′ → Z be a blowup at a point p

and let Y be the maximal order over Z ′.

(KZ′ + ∆′)2 = (f ∗(KZ + ∆) + aE)2

= (KZ + ∆)2 − a2

= (−3H + (1− 1

e
)5H)2 − a2

= (−1

2
H)2 − a2

=
1

4
− a2,
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where a = 1 or a = 1
2
, both of which make the self intersection (KZ′ + ∆′)2

less than or equal to zero.

Theorem 4.3.8. The followings figures give us a complete list of degree 4

terminal ramification divisors on P2.

1̄

1̄

Irreducible

quartic with one

node

1̄

1̄

1̄

1̄

Irreducible

quartic with two

nodes

1̄1̄

1̄

1̄1̄ 1̄

Irreducible

quartic with

three nodes

1̄

1̄

1̄

1̄

1̄

1̄

1̄

1̄

Two conics

crossing at 4

points.

Figure 4.2: Quartic ramification configurations with e = 2

Before proving, the reader should note that since there are no branch points

for smooth cases they are not interesting. So the smooth ramification divisors

are ignored. See Appendix A for more details about the types of singularities.

Proof. Having Definition 3.3.1, by Proposition 3.3.3 the given ramification

divisors are ramification of orders and one can check that they satisfy the

hypothesis of ramification divisors of terminal orders. We only need to show

that other cases are not possible. Let e = 2 and let D contains a line `. Then

` intersects D− ` three times. By the hypothesis of terminal orders we know
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1̄

2̄

Irreducible quartic with
one node

1̄

2̄

1̄

2̄

1̄

2̄

1̄
2̄

Transverse
nodal cubic & line

2̄
1̄

1̄

2̄

2̄

1̄

Transverse
smooth cubic & line

2̄

1̄

2̄

1̄

Irreducible quartic with
two node

1̄
2̄

1̄
2̄

2̄

1̄

2̄

1̄

Transverse conics

2̄

1̄

2̄

1̄

2̄

1̄

1̄
2̄

Transverse
nodal cubic & line

1̄2̄

1̄

2̄1̄ 2̄

Irreducible quartic with
three node

1̄
2̄

2̄

1̄

1̄

2̄

Transverse
smooth cubic & line

2̄
1̄

1̄

2̄

2̄

1̄

2̄

1̄

1̄

2̄

Transverse
conic & lines

Figure 4.3: Quartic ramification configurations with e = 3

` should ramify at all the three branch points. So the ramification indices

for ` at its branch points are 1. But it can not occur since they must add up

to 2. This finishes the proof for the case e = 2.

For e = 3 the proof is similar and straight forward. We work on the case

where D is a configuration of four lines as an example.

Let D be a configuration of four lines. So each line intersect each of the
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other lines once. Meaning that each line has exactly three branch points.

Since e = 3, then at each branch point the ramification indices of the two

intersecting curves must add up to 3. So one of them has ramification degree

2 and the other one has ramification degree 1. Further, since the ramification

indices of any curve must add up to 3 then each curve has ramification indices

as (1, 1, 1) or (2, 2, 2). Now let `1, `2 and `3 intersect at points p12, p13, and

p23. Without loss of generality let the ramification degree of `1 at p12 and

consequently at p13 be 1. Then the ramification indices of `2 and `3 are 2.

But it is not possible as we get a contradiction at the point p23.

4.4 Terminal Del Pezzo Orders on P1 × P1

In this section we classify minimal terminal del Pezzo orders on P1 × P1 and

then we find blowups of the minimal models that remain del Pezzo. We let

X denote a minimal terminal del Pezzo order on P1 × P1 and let D = ∪iDi

be the discriminant with ramification degrees ei. The following is a nice

restriction for the discriminants of del Pezzo orders on P1 × P1.

Proposition 4.4.1. [6, Proposition 30] If D is the discriminant of a del

Pezzo order on the ruled surface P1 × P1, then 2C0 + 2F ≤ [D] ≤ 3C0 + 3F

where C0 and F denote fibres of P1 × P1 in the rwo different directions of

ruling, say C0 is a section of the projection to the first component and F

is a section of the projection to the second component, and [D] denotes the

58



divisor class of D. Moreover the ramification degrees for D are equal, say e,

and e = 2 if 2C0 + 2F < [D] ≤ 3C0 + 3F . Conversely any maximal order

with such ramification data is del Pezzo.

Proposition 4.4.2. Let X be a terminal del Pezzo order over P1 × P1 and

let D be its discriminant. Then if f : Z ′ → P1 × P1 is a blowup at a point

p /∈ D, then the order X ′ associated to Z ′ is not del Pezzo.

Proof. Let X be a terminal del Pezzo order on P1 × P1 and let D be its

discriminant with the ramification degree e, then the canonical divisor is as

the following

KX = KP1×P1 + ∆ ≡ (−2C0 − 2F ) +

(
1− 1

e

)
(aC0 + bF ) , for suitable a and b,

=
(
a− 2− a

e

)
C0 +

(
b− 2− b

e

)
F.

Further, let f : Z ′ → P1 × P1 represents a blowup at a point p /∈ D. Then if

E is the corresponding exceptional curve, we have the following equations

KZ′ + ∆′ ≡ f ∗(KP1×P1 + ∆) + E,

= f ∗
((

a− 2− a

e

)
C0 +

(
b− 2− b

e

)
F

)
+ E.
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Let a = b = 2. Then

(KZ′ + ∆′)2 = (f ∗(KP1×P1 + ∆))2 − 1,

=

(
f ∗
(
−2

e
C0 −

2

e
F

))2

− 1,

=
8

e2
− 1.

Therefore in order for a blowup at a point out of D to keep the order del

Pezzo the ramification degree of the discriminant should be e = 2. Also we

can see that if f : Z ′ → P1×P1 represents two blowup at the points p, q /∈ D

then (KZ′ + ∆′)2 = 0 and the order will not be del Pezzo. But for the first

blowup we still need to check if the intersection of the effective curves with

the canonical divisor is negative. So let C = C ′+ rE be an effective curve in

Z ′ where C ′ − E is not effective. Also let f∗C
′ = aC0 + bF for non-negative

integers a and b. Then

(KZ′ + ∆′)C = (f ∗(KP1×P1 + ∆))C + E.C,

= (−C0 − F )f∗C + (f∗C)p − r,

= (−C0 − F )(aC0 + bF ) + (aC0 + bF )p − r,

≤ −a− b+ (aC0 + bF )p,

where (aC0 + bF )p is the multiplicity of (aC0 + bF ) at p. In the last equation

equality holds if C is the proper transform of an effective curve in P1 × P1.

Now let C be the proper transform of a line l ≡ F going through p, then
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we see that (KZ′ + ∆′)C = 0. Therefore the order will not remain del Pezzo

after a blowup at a point out of the discriminant D ≡ 2C0 + 2F . Now let

a = b = 3. Then

(KZ′ + ∆′)2 = (f ∗(KP1×P1 + ∆))2 − 1,

=

(
f ∗
(
−1

2
C0 +−1

2
F

))2

− 1,

= 2

(
−1

2

)(
−1

2

)
− 1,

=
1

2
− 1 < 0

Now without loss of generality let us assume that a = 2 and b = 3. Then

e = 2 and we have the following equations

(KZ′ + ∆′)2 = (f ∗(KP1×P1 + ∆))2 − 1,

=

(
f ∗
(
−C0 −

1

2
F

))2

− 1,

= 2 (−1)

(
−1

2

)
− 1 = 0

Now let us blow up the order X at a point p in the discriminant. If f : Z ′ →
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P1 × P1 represents such a blowup, then

KZ′ + ∆′ ≡ f ∗(KP1×P1 + ∆) +
1

e
E,

= f ∗
((

a− 2− a

e

)
C0 +

(
b− 2− b

e

)
F

)
+

1

e
E.

We again work on three different cases, which are a = b = 2, a = 2 and

b = 3, and a = b = 3. Note that in the last two cases e = 2.

Theorem 4.4.3. Let X be an order over P1×P1 and let D be its discriminant

such that 2C0 + 2F < [D] where C0 and F are fibres of the centre of the two

different projections of P1 × P1. Then any blowup of the order at a point in

D fails to be del Pezzo.

Proof. Let f : Z ′ → P1 × P1 represent a blowup at a point p ∈ D with the

exceptional curve E where 2C0 + 2F < [D ≡ aC0 + bF ] ≤ 3C0 + 3F . Then

we know the ramification degrees for D are e = 2. Without loss of generality

we assume a = 3 and consider the effective curve C = F̃ where F is a fibre
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passing p.

(KZ′ + ∆′)C = (f ∗(KP1×P1 + ∆))C +
1

2
E.C

=

(
−1

2
C0 +

(
b− 2− b

2

)
F

)
f∗C +

1

2
mp(f∗C)

=

(
−1

2
C0 +

(
b− 2− b

2

)
F

)
F +

1

2
mp(F )

≤ −1

2
+

1

2
mp(F )

= 0

Now the only remaining case for orders obtained by the blowups of the order

over P1 × P1 is where

Definition 4.4.4. Let Σ be a set of points in P1×P1. The points of Σ are in

general position if any curve of the form aC0 + bF contains less than 2(a+ b)

of the points.

Theorem 4.4.5. Let X be an order over P1×P1 and let D be its discriminant

such that [D] = 2C0 + 2F where C0 and F are two intersecting fibres of the

centre. Further let f : Z ′ → P1 × P1 be a sequence of blowups at the points

Σ = {p1, · · · , pn} ⊂ D. Then the associated maximal order Y over Z ′ is del

Pezzo if and only if Σ is in general position and n ≤ 7.

Before to start the proof we need to define a notation for our convenience. If
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C is a curve and Σ a set of points we define mΣ(C) to be the totall multiplicity

of C at the points of Σ.

Proof. Let f : Z ′ → P1 × P1 be blowups at points Σ = {p1, · · · , pn} and let

E1, · · · , En be the corresponding exeptional curves. Then

KZ′ + ∆′ ≡ f ∗(KP1×P1 + ∆) +
n∑
i=1

1

e
Ei,

= f ∗
(
−2

e
C0 −

2

e
F

)
+

n∑
i=1

1

e
Ei.

So the self intersection is as the following

(KZ′ + ∆′)2 = (f ∗(KP1×P1 + ∆))2 + (
n∑
i=1

1

e
Ei)

2,

=

(
f ∗
(
−2

e
C0 −

2

e
F

))2

−
n∑
i=1

1

e2
,

=
8

e2
− n

e2
.

Therefore n ≤ 7. Further, let C = C ′+
∑n

i=1 riEi be an effective curve where
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C ′ is the proper transform of an effective curve in Z, say C ′ = ˜aC0 + bF .

(KZ′ + ∆′)C = (f ∗(KP1×P1 + ∆))C +

(
n∑
i=1

1

e
Ei

)
C

= (−2

e
C0 −

2

e
F )f∗C +

1

e
mΣ(f∗C)−

n∑
i=1

ri
e

= (−2

e
C0 −

2

e
F )(aC0 + bF ) +

1

e
mΣ(aC0 + bF )−

n∑
i=1

ri
e

≤ 2

e
(−a− b) +

1

e
mΣ(aC0 + bF )

< 0 (∗)

where inequality in (∗) comes from the fact that the point of Σ are in general

position.

Followings are the lists of possible minimal terminal del Pezzo orders on

P1 × P1. In the descriptions, by (a, b) we mean a curve in the divisor class

aC0 + bF .
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ee

e

e

µ̄
-µ̄

-µ̄
µ̄

µ̄
-µ̄

-µ̄
µ̄

2× (1, 0) + 2× (0, 1)

ee

e

-µ̄
µ̄

-µ̄
µ̄

-µ̄
µ̄

(1, 0) + (0, 1) + (1, 1)

e

e
-µ̄

µ̄

-µ̄
µ̄

(1, 0) + (1, 2)

e

-µ̄

µ̄

(2, 2)

e

-µ̄

µ̄

-µ̄

µ̄

(2, 2)

Figure 4.4: [D] = 2C0 + 2F

2× (1, 0) + (1, 2) (2, 2) + (0, 1)
(2, 2) + (0, 1)

3× (1, 1)

Figure 4.5: 2C0 + 2F < [D] ≤ 3C0 + 3F, e = 2

In Figure 4.5 all the ramification degrees are e = 2 and all the indices for the

branch points are 1̄.
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Chapter 5

Minimal Models of Canonical

Del Pezzo Orders

In this chapter we will classify del Pezzo orders with canonical (not terminal)

singularities. We will follow the approach in the commutative case for our

classifications where it is appropriate, however it may not work the same

in general. We saw in Chapter 3 that for an order to be del Pezzo it only

depends on the centre and the ramification divisors, further, we mentioned

that when we have an order with canonical singularities its centre should

have no worse than canonical singularities. So the classification for orders

with canonical singularities is doubtlessly related to classification of canonical

surfaces.
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Now Let X denote a surface with canonical singularities. Then the following

diagram exists

Y

X

W

f

g

gof−1

Figure 5.1: Resolution of canonical surfaces to the minimal model

where f : Y → X is the unique minimal resolution of X to a smooth surface

Y , and g : Y → W contracts Y to a minimal model. Minimal model means

that W is one of P2, P1×P1, or Fn for n 6= 1. For more details about minimal

model program for surfaces see [11].

5.1 Resolution of Canonical Orders

Let X be a maximal order on Z and let DZ be its discriminant. Also let

∆Z =
∑

i

(
1− 1

ei

)
Di be the ramification configuration of X . Whenever it is

clear we simply write D and ∆ to refer to DZ and ∆Z . Also we are always
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working on Gorenstein surfaces as the centres of the orders.

Definition 5.1.1. Let X be a maximal order on Z. Then by [5, Corollary

3.6] there exists a sequence of blowups f : Y → X , called resolution of X ,

where Y is a terminal order. The resolution f : Y → X is called minimal

if (KY)E ≥ 0 for every f -exceptional curve E. See the proof of existence of

the minimal resolution in [4, Theorem 2.15].

Definition 5.1.2. Let X be a maximal order and let f : Y → X be a

resolution of X . Then we have the following equation

KY = KX +
∑
i

aiEi,

where Ei are f -exceptional curves. Also KX = KZ+∆Z and KY = KZ′+∆Z′.

The order X has canonical singularities if a = min{ai} ≥ 0. We shortly call

X a canonical order.

Proposition 5.1.3. [4, Theorem 6.5] Let X be an order over Z with rami-

fication divisor D and let p ∈ Z be a closed point. Then the singularity at p

is canonical if D in an étale neighbourhood of p is of one of the types listed

in the Table 5.1. Here eD denotes the ramification degree and eP denotes

branch ramification index. Note that the list excludes terminal singularities

that we discussed before but they are also considered as canonical singulari-

ties. Further, an order X is canonical if at every point it has no worse that

canonical singularities.
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Type Centre Discriminant eD eP

A1,2,ξ smooth xy 2e, 2e e, e

BLn smooth y2 − x2n+1 2 1

Bn smooth (y + xn)(y − xn) 2, 2 1, 1

Ln smooth (y + xn+1)(y − xn+1) 2, 2 2, 2

DLn smooth x(y2 − x2n−1) 2, 2 2, 2

BDn smooth x(y + xn−1)(y − xn−1) 2, 2, 2 2, 2, 1

An x2 + y2 + zn+1 1 − −
Dn x2 + zy2 + zn−1 1 − −
E6 x2 + y3 + z4 1 − −
E7 x2 + y3 + yz3 1 − −
E8 x2 + y3 + z5 1 − −
An,ξ xy = zn+1 z e, e e, e

Table 5.1: Configurations of Exceptional and Ramification Curves in Canon-
ical Orders

In Table 5.1, note that for An, Dn, E6, E7, and E8 the centres are singular,

indeed the singularities are in the centres and there is no ramification curve

at the single point.

5.2 The Minimal Model of Terminal Orders

for Del Pezzo Canonical Orders

Let us have a canonical order X . Reviewing the diagram in Figure 5.1,

as in the commutative case, we now need to find the minimal model for

the terminal order Y defined in 5.1.1. In this section we recall the work of
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Chan and Ingalls in [5] to define a minimal model W of a terminal order Y .

This gives a complete diagram for minimal terminal resolutions of canonical

orders. Later we seek to repeat the same procedure for del Pezzo canonical

orders. We will show that if a canonical order X is del Pezzo, then its

minimal model denoted by W is almost del Pezzo, see Definition 5.2.2. We

will classify canonical del Pezzo orders via classification of minimal terminal

almost del Pezzo orders.

Theorem 5.2.1. [4, Proposition 6.1] Let X be a canonical order and let

f : Y → X be its minimal resolution. Then KY = f ∗KX .

Definition 5.2.2. Let X be a maximal order over a Gorenstein surface Z.

We call X almost del Pezzo if K2
X > 0, and for every effective curve C ∈ Z,

−KXC ≥ 0.

Theorem 5.2.3. Let X be a del Pezzo canonical order and let f : Y → X

be its minimal resolution. Then Y is almost del Pezzo.

Proof. Let X be a del Pezzo canonical order and let f : Y → X be its

minimal resolution. Then by theorem 5.2.1 we have

K2
Y = (f ∗KX )2 = K2

X > 0.

Now let C be an effective curve in ZY . f∗C is either an effective divisor or

some finite points in ZX depending on whether C is a non exceptional curve.
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Then we have

−KYC = −f ∗KXC = −KXf∗C ≥ 0,

where equality occurs only if f∗C is a set of points or equivalently only if C

contains only f -exceptional curves.

Theorem 5.2.4. Let Y be a terminal almost del Pezzo order over ZY and

let W over ZW be a minimal terminal order obtained by running the minimal

model program on Y. Then W is almost del Pezzo.

Proof. If Y is a minimal terminal order it is almost del Pezzo by the assump-

tion and we are done. So assume that Y is not minimal, then by blowing

down some (−1)-curves, Ei’s, we get a minimal terminal order. So by induc-

tion we only need to show that if Y is a terminal almost del Pezzo order and

g : ZY → ZW contracts a (−1)-curve E, then W := (g∗Y)∗∗ is almost del

Pezzo. To do so, we have

(g∗KW)2 > K2
Y > 0

and for any effective curve C in ZW , we know g∗C is effective in ZY . So

−KWC = −g∗KWg∗C = −(KY − aE)g∗C = −KYg∗C ≥ 0.

72



Lemma 5.2.5. [6, Theorem 1] Let Z be a surface with canonical singularities

and let C be an irreducible curve. If (KZ + C)C < 0 and KZC ≥ 0, then C

is a smooth rational curve.

Chan and Kulkarni showed that if an order X on a normal Gorenstein surface

Z is del Pezzo, then the centre is del Pezzo. We want to generalize their result

to almost del Pezzo orders. The proof is mostly the same, however we need

to prove the following Lemma.

Lemma 5.2.6. Let X be a maximal order on a normal Gorenstein surface

Z. If X is almost del Pezzo, then for every irreducible curve C, KZC ≤ 0.

Proof. Chan and Kulkarni showed that if an order X on the centre Z is del

Pezzo, then KZC < 0 for every irreducible curve C ∈ Z, [6, Theorem 12].

To do so, by contradiction it is assumed that there is an irreducible curve C,

such that KXC < 0 but KZC ≥ 0. Then the curve C is a smooth rational

curve and it leads to a contradiction. Here we only need to show that if for

any curve C, KXC ≤ 0 and KZC > 0, then C is smooth rational. For then,

the same contradiction would be reached.

Thus let ∆ =
∑

i(1 −
1
ei

)Di be the ramification configuration for the order

X and let C be an irreducible curve in Z. If C is not one of the ramification

divisors Di, then ∆C ≥ 0 and the arguments is proved by the following

equation

KXC = (KZ + ∆)C ≤ 0.
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If C is a ramification divisor, then without loss of generality we can assume

that C = D1 and the ramification degree for C, e = e1. X is almost del

Pezzo, so KXC ≤ 0.

0 ≥ KXC =

(
KZ +

∑
i

(
1− 1

ei

)
Di

)
C

=

(
1

e
(KZC) +

(
1− 1

e

)
(KZ + C)C +

∑
i 6=1

(
1− 1

ei

)
Di

)
C.

By contradiction, let KZC > 0. As
(∑

i 6=1

(
1− 1

ei

)
Di

)
C ≥ 0, then (KZ +

C)C < 0. So by Lemma 5.2.5 we conclude that C is a smooth rational

curve.

Theorem 5.2.7. Let X be a maximal order on a normal Gorenstein surface

Z. Then if X is almost del Pezzo, so is Z.

Proof. X is almost del Pezzo, so KX∆ ≤ 0 and 0 < K2
X , also by Lemma

5.2.6, KZ∆ ≤ 0. Then

0 < K2
X = KX (KZ + ∆)

= KXKZ +KX∆

≤ KXKZ

= (KZ + ∆)KZ

= K2
Z +KZ∆

≤ K2
Z .
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This together with Lemma 5.2.6 finishes the proof.

Theorem 5.2.8. Let W be a minimal terminal almost del Pezzo order on

Z. Then we have one of the followings

1. Z = P2, and W is del Pezzo;

2. Z is a rational ruled surface. More precisely, Z = Fn for n = 0, 1, or

2.

Proof. By [5, Corollary 3.20] we know for minimal terminal orders, we have

one of the following

1. Z = P2, and W is del Pezzo;

2. Z → C is a ruled surface for a smooth rationa curve C.

So we only need to show if for a minimal terminal almost del Pezzo order the

later occurs, then the surface is rationally ruled and moreover it is F0,F1, or

F2.

Let W be a minimal almost del Pezzo order on Z and let π : Z → C be the

morphism surjecting Z to the curve C. We note the arithmetic genus of C
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by g. By the genus formula for ruled surfaces we have

KZC0 = n+ 2g − 2 and

K2
Z = 8(1− g),

where n = −C2
0 . By Theorem 5.2.7 we have that Z is almost del Pezzo, so

K2
Z > 0 and KZC0 ≤ 0. Therefore g = 0 and n ≤ 2, i.e. ZW = Fn for

0 ≤ n ≤ 2.

Classification of del Pezzo orders over P2 with singularities is given in [6] and

we also described in Chapter 4 the classification for del Pezzo orders with

terminal singularities. In this section we firstly resolved a canonical order

and then contracted it to a minimal model which is almost del Pezzo and

has terminal singularities. We can classify minimal terminal almost del Pezzo

orders first and then classify canonical orders via this classification. That is

what we do in the next section.

5.3 Minimal Almost Del Pezzo Terminal Or-

ders on Rational Ruled Surfaces

In this section we classify minimal almost del Pezzo terminal orders on ra-

tional ruled surfaces P1×P1,F1 and F2 . We let Z denote any of these ruled
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surfaces if it is not specified which. Let us recall first some results from [5, 6].

Proposition 5.3.1. [5, p: 450] Let X denote a minimal terminal order over

a rational ruled surface Z. Also let ∪Di and {ei} denote its discriminant and

ramification degrees. Also let C0 be a minimal section and F a fixed fibre of

the ruled surface Z. If D = ∪Di ≡ aC0 + bF for non-negative integers a

and b, then a = 2 or a = 3. Moreover the ramification degrees for divisors

intersecting F are equal and when a = 3 they are 2.

Proposition 5.3.2. [6, Lemma 23] Let p be a prime integer dividing some

ramification degree ei and let pmax be the largest power of p dividing any of

the ramification degrees. Let Dp be the union of all ramification divisors

Di whose ramification degrees are divisible by pmax, then pa(Dp) ≥ 1, where

pa(Dp) denotes the arithmetic genus of Dp.

Now let D be a ramification divisor of some order over the rational ruled

surface Fn. If p is a prime number dividing any ramification degree and

Dp = apC0 + bpF for some ap and bp, then by genus formula and Proposition

5.3.2 we have

2pa(Dp) = (ap − 1)(2bp − nap − 2) ≥ 2. (5.1)

Remark 5.3.3. Let X denote a minimal terminal order over a rational ruled

surface Z and let D = ∪Di ≡ 3C0 + bF be its ramification divisor. Then by

Proposition 5.3.1 we know the ramification degree of the divisors intersecting

F is 2. Further, by Proposition 5.3.2 and Equation 5.1 we know all other
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ramification degrees divide 2, therefore they are all equal.

Z=P1 × P1

Let X be a minimal terminal order on Z = P1 × P1 and let D = ∪Di ≡

aC0 + bF be the discriminant and the ramification degrees, where C0 and F

indicate the fibres for the two different ways of ruling P1 × P1.

Theorem 5.3.4. Let X be a minimal terminal order on Z = P1 × P1 and

let D = ∪Di ≡ aC0 + bF be its discriminant. Then 2 ≤ a, b ≤ 3 and all the

ramification degrees ei = e. Further, e = 2 if 2C0 + 2F < [D].

Proof. By Proposition 5.3.1 we know 2 ≤ a, b ≤ 3. If 2C0 + 2F < D, then

Remark 5.3.3 gives us the desired result. If D ≡ 2C0 + 2F , then Proposition

5.3.1 finishes the proof.

Remark 5.3.5. Let W be a minimal terminal almost del Pezzo order on

P1×P1 with the discriminant D. Then by Theorem 5.3.4 we know 2C0+2F ≤

[D] ≤ 3C0 + 3F and all the ramification degrees are the same. Considering

Proposition 4.4.1, we see that W is actually a del Pezzo order.
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Z=F1

Now assume that X denotes a minimal terminal almost del Pezzo order on

Z = F1. And let ∪Di and {ei} denote its discriminant and the ramification

degrees. Also let C0 be a fixed section and F a fixed fibre of the ruled

surface, where C2
0 = −1, F 2 = 0, C0.F = 1, and the canonical bundle is

KZ ≡ −2C0− 3F . Then for suitable ai and bi we have Di ≡ aiC0 + biF . We

also set D := ∪Di ≡ aC0 + bF for non negative integers a and b.

As X is a minimal terminal order and C2
0 < 0, then KXC0 ≥ 0. On the other

hand X is almost del Pezzo, so KXC0 ≤ 0, thus KXC0 = 0.

0 = KXC0 =

(
−2C0 − 3F +

∑
(1− 1

ei
)(aiC0 + biF )

)
C0

= 2− 3 +
∑

(1− 1

ei
)(−ai + bi)

⇒
∑

(1− 1

ei
)bi =

∑
(1− 1

ei
)ai + 1 (5.2)

Theorem 5.3.6. Let X be a minimal almost del Pezzo terminal order on

Z = F1 and let D = ∪Di ≡ aC0 + bF be its discriminant. Then D satisfies

1. D ≡ 2C0 + 4F or

2. D ≡ 3C0 + 5F .
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Furthermore, the ramification degrees are all equal to 2.

Proof. Let X be a minimal almost del Pezzo terminal order over Z = F1

and let D = ∪Di ≡ ∪(aiC0 + biF ) = aC0 + bF and {ei} be its ramification

configuration. We firstly show all the ramification degrees are equal, for then

by Equation 5.2 we have

a(1− 1

e
) + 1 = b(1− 1

e
)

⇒ (b− a)(
e− 1

e
) = 1

⇒ b− a =
e

e− 1
∈ Z

⇒ e = 2 & b = a+ 2.

By Proposition 5.3.1 we know 2 ≤ a ≤ 3. Moreover if a = 3, then by Remark

5.3.3 we know all the ramification degrees are 2 and so b = 5.

Now let a = 2. By Proposition 5.3.1, we know all the ramification degrees

for ramification divisors intersecting F are equal, say e, and Remark 5.3.2

ensures that all other ramification degrees divide e. Then by Equation 5.2
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we have the following inequality

3(1− 1

e
) < 3− 2

e

= 2(1− 1

e
) + 1

=
∑

(1− 1

ei
)bi

≤
∑

(1− 1

e
)bi (∗)

= b(1− 1

e
)

⇒ 4 ≤ b,

where the inequality in (∗) is because all ramification degrees divide e.

On the other hand, we know ei ≥ 2 for all i. Using Equation 5.2 once more

we get

1

2
b ≤

∑
(1− 1

ei
)bi

= 2(1− 1

e
) + 1

< 3

⇒ b ≤ 5.

Let e = eiti for some ti’s. Then ti is one if e = ei, and ti is greater than one

81



if e 6= ei.

2(1− 1

e
) + 1 =

∑
bi −

∑ bi
ei

= b− biti
e

⇒ (b− 3)e+ 2

e
=

∑
biti
e

⇒ (b− 3)e+ 2 =
∑

biti.

We allow repetition in the numbers ti, so we can assume that all the bi are

one. Then

(b− 3)e+ 2 =
∑

ti, (5.3)

where ti =
e

ei
.

Let b = 5. If e is a power of a prime number, say e = pn, thenDp = apC0+bpF

is the union of ramification divisors whose ramification degree is equal to pn.

By Equation 5.1 and Remark 5.3.2 we see that bp ≥ 3. Namely, ti = 1 for at

least three different i, say t1 = t2 = t3 = 1. Then Equation 5.3 is simplified

to

2e = 1 +
e

e4

+
e

e5

≤ 1 + e,

which is not true.

So it only remains to discuss the case that there are two or more prime

numbers dividing e. Let 2 and 3 divide e. Then by Equation 5.1 and Remark

5.3.2 we see that at least 3 of the divisors are divisible by 2 and at least 3 of
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the divisors are divisible by 3. Therefore we get the following contradiction

2e+ 2 =
e

e1

+
e

e2

+
e

e3

+
e

e4

+
e

e5

≤


e
6

+ e
6

+ e
6

+ e
2

+ e
2
; or

e
6

+ e
6

+ e
2

+ e
2

+ e
3
; or

e
6

+ e
2

+ e
2

+ e
3

+ e
3

< 2e

If the prime numbers dividing e are different from 2 and 3, then the contra-

diction is even more clear. Therefore b 6= 5. Now we need to find what the

ramification degrees are.

b = 4, so we have

e+ 2 =
e

e1

+
e

e2

+
e

e3

+
e

e4

.

Let e1 be the smallest degree. If e1 ≥ 4,

e+ 2 =
e

e1

+
e

e2

+
e

e3

+
e

e4

≤ 4
e

e1

≤ 4e

4
.

So e1 = p where p is one of the prime numbers 2 or 3. We claim that p

divides all the degrees. If so, by Proposition 5.3.2 we have e2 = e3 = e4 = e

and we can see that it results in equality of all the degrees and e = 2. If

by contradiction, for instance p - e2, then e2 divide both e3 and e4, we get
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e3 = e4 = e. Since (p, e2) = 1 we have

e =
e

p
+

e

e2

< e.

which is not true.

Z=F2

Now assume that we have a minimal almost del Pezzo order X over Z = F2.

As before we show the ramification configuration of the order by (∪Di, {ei}).

Let C0 be a fixed section and F a fixed fibre of the ruled surface, where C2
0 =

−2, F 2 = 0, C0.F = 1. Recall that the canonical divisor is KZ ≡ −2C0−4F .

Then for suitable ai and bi we have Di ≡ (aiC0 +biF ). We also set D := ∪Di

and aC0 + bF = ∪(aiC0 + biF ) for non negative integers a and b.

Theorem 5.3.7. Let X be a minimal almost del Pezzo terminal order over

Z = F2 and let D, {ei} be its ramification configuration. Then D satisfies

1. D ≡ 2C + 4F or

2. D ≡ 3C + 6F .

Furthermore, the ramification degrees are all equal and in the second case

they are 2.
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Proof. Let D ≡ aC+bF = ∪(aiC+biF ), {ei} be a ramification configuration

for a minimal almost del Pezzo terminal order over F2. Let D = aC0 + bF

be a curve in F2, then we have

0 = KXC0 =

(
−2C0 − 4F +

∑
(1− 1

ei
)(aiC0 + biF )

)
C0

= 4− 4 +
∑

(1− 1

ei
)(−2ai + bi)

⇒ 2
∑

(1− 1

ei
)ai =

∑
(1− 1

ei
)bi, (∗)

By Proposition 5.3.1, we know a = 2 or 3. Further if a = 3, by Remark 5.3.3

we know all the ramification degrees are 2. So, by Equation (∗), b = 6. Now

let a = 2. We know by Proposition 5.3.1 that the ramification degrees of all

the divisors in D intersecting F are equal, say e.

Since ei ≥ 2 for every i, we have b ≤ 7 by the following equation

1

2
b ≤

∑
(1− 1

ei
)bi = 4(1− 1

e
) < 4.

Furthermore we know ramification degrees for divisors intersecting F are all

equal, say e, and other ramification degrees ei divide e. Therefore for every

i, (1− 1
ei

) ≤ (1− 1
e
) and we have

4(1− 1

e
) =

∑
(1− 1

ei
)bi ≤ b(1− 1

e
)

⇒ 4 ≤ b,
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Where equality holds if and only if all the ramification degrees are equal. We

claim that b = 4. To prove the claim we firstly let e be a power of a prime

number, pn. And then we prove the general case by contraditions.

Let e = pn for a prime number p and a positive integer n, Note that n = 1 is

allowed. Then Dp = apC0 + bpF is the union of ramification divisors whose

ramification degree is equal to pn = e. By Equation 5.1 and Remark 5.3.2

we see that bp ≥ 4. Recall Equation (∗)

4

(
1− 1

e

)
=
∑(

1− 1

ei

)
bi = 4

(
1− 1

e

)
+

(
1− 1

ei

)
bi,

for some i. Therefore bi = 0, i.e. b = 4

Now we prove the general case. We let e = pnqmr where p and q are distinct

prime numbers and r is coprime to p and q and it can be 1. Simplifying

equation (∗) we have

4(1− 1

e
) =

∑
bi −

∑ bi
ei
. (∗∗)

We know each ei divides e, so let e = eiti where ti is a positive integer.

Therefore we have ∑
tibi =

(∑
bi − 4

)
e+ 4.

We allow repetition in the numbers ti and we assume all bi are one. So we

have
∑
ti = (

∑
bi − 4) e + 4. Let in the factorization e = pnqmr, p and
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q be the biggest prime numbers dividing e and let Dp = apC0 + bpF and

Dq = aqC0 + bqF be their corresponding sub divisors of D. By Equation

5.1 and remark 5.3.2 we have bp ≥ 4 and bq ≥ 4. Namely each of bp and

bq divide at least four of the ramification degrees ei in the sum
∑
ti =

e

e1

+
e

e2

+
e

e3

+
e

e4

+
e

e5

.

Now by contradiction let
∑
bi = b = 5. Then

∑
tibi = e+ 4.

Therefore we have one of the followings

∑
ti =

e

e1

+
e

e2

+
e

e3

+
e

e4

+
e

e5

=


pnqmr

pnr1

+
pnqmr

pnqmr2

+
pnqmr

pnqmr3

+
pnqmr

pnqmr4

+
pnqmr

qmr5

; or

pnqmr

pnqmr1

+
pnqmr

pnqmr2

+
pnqmr

pnqmr3

+
pnqmr

pnqmr4

+
pnqmr

r5

≤

 qmr + r + r + r + pnr;

r + r + r + r +
pnqmr

2

=

 r(qm + 3 + pn);

r(4 +
pnqm

2
).
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If r = 1, then we have qm+3+pn < pnqm+4 and 4+
pnqm

2
< pnqm+4. If r > 1,

then {p, q} 6= {2, 3}. Thus r(pn+qm+3) < rpnqm and r(4+
pnqm

2
) < rpnqm.

So we get
∑
ti < e+ 4 which can not be true.

Now let b = 6. Then we have

4(1− 1

e
) =

∑
bi −

∑ bi
ei

= 6−
∑
tibi
e

⇒
∑

tibi = 2e+ 4.

Since e is divisible by two distinct prime numbers, say p and q, then by

remark 5.3.2 we have the following possibilities.

2e+ 4 =
∑

ti

=
e

e1

+
e

e2

+
e

e3

+
e

e4

+
e

e5

+
e

e6

≤


e
pq

+ e
pq

+ e
pq

+ e
pq

+ e
2

+ e
2
; or

e
pq

+ e
pq

+ e
pq

+ e
p

+ e
q

+ e
2
; or

e
pq

+ e
pq

+ e
p

+ e
p

+ e
q

+ e
q

≤ 2e.

So b can not be 6.
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For b = 7 we have

4(1− 1

e
) =

∑
bi −

∑ bi
ei

= 7−
∑
tibi
e

⇒
∑

tibi = 3e+ 4.

Since e is divisible by two distinct prime numbers, say p and q, then by

remark 5.3.2 we have the following possibilities.

3e+ 4 =
∑

ti

=
e

e1

+
e

e2

+
e

e3

+
e

e4

+
e

e5

+
e

e6

+
e

e7

≤



e
pq

+ e
pq

+ e
pq

+ e
pq

+ e
2

+ e
2

+ e
2
; or

e
pq

+ e
pq

+ e
pq

+ e
p

+ e
q

+ e
2

+ e
2
; or

e
pq

+ e
pq

+ e
pq

+ e
p

+ e
q

+ e
2

+ e
2
; or

e
pq

+ e
p

+ e
p

+ e
p

+ e
q

+ e
q

+ e
q

≤ 3e.

So b can not be 7. This finishes the proof of b = 4.
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Chapter 6

Classification of Canonical Del

Pezzo Orders

In this section we will give the classification of all canonical del Pezzo orders.

Let X be a canonical order, in the previous chapter we showed there is the

following diagram
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Y

X

W

f

g

gof−1

,

Figure 6.1: Resolution of canonical orders to the minimal model

where f : Y → X is the unique minimal resolution for X ; meaning that X is

resolved to a terminal order Y over a smooth surface ZY , 5.1.1, and W is a

minimal terminal order on ZW = P2,P1×P1,F1, or F2, 5.2.4. Further, if X is

a del Pezzo order, thenW is also del Pezzo when ZW = P2 and it is almost del

Pezzo otherwise. So we can blowup a minimal terminal (almost) del Pezzo

order W on Z to classify del Pezzo orders with canonical singularities. But

it is clear that not any blowups are allowed. Once the order W is blowup by

f : Y → W , then Y should be an almost del Pezzo order. Moreover we need

to have a KY-zero curve in order to do the contraction f : Y → X where X

is a canonical del Pezzo order.
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6.1 Canonical Orders Obtained by Terminal

Orders on P2

Let Z = P2, and we let D be the discriminant on Z corresponding to an

order W . Then 3 ≤ deg(D) ≤ 5. We firstly let D be a of degree 3. So all

the ramification degrees are the same, say e. We skip some steps and we

refer the reader to Chapter 4 for more detailed calculations. Here we denote

birational morphisms for blowups by f : Y → W where f is a sequence of

blowups.

Let f : Y → W be a blowup at a point p not in D, then we know the

(unique) obtained maximal order Y is almost del Pezzo if the ramification

degree for D is 2; however it actually remains del Pezzo, so there is no KY-

zero curve. So Let f : Y → W denote a blowup at a point p out of D twice

with the exeptionals Ep and E ′p such that E2
p = −2, (E ′p)

2 = −1. Then

K2
Y = K2

W − 2 = 1
4

and further, we have the following equation.

KY ≡ f ∗(KW) + 2Eq + E ′p.

Let C = C0 + aEp + bEq be an effective curve in ZY where neither C0 − Ep
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nor C0 − Ep′ is effective. Then

KYD = (f ∗(KW) + 2Ep′ + Ep)C

= f ∗(KW)C + (2Ep′ + Ep)C

= KWf∗C + (2Ep′ + Ep)C

=
−3

2
d+ (2Ep′ + Ep)(C0 + aEp + bEp′)

=
−3

2
d+ (2Ep′ + Ep)C0 + (2Ep′ + Ep)(aEp + bEp′)

≤ −3

2
d+ d− b

≤ 0.

Note that the only case that (KY + ∆Y)C = 0 is when C = aEp for any

positive integer a.

If we blowup one more point, then K2 ≤ 0 where by K we mean the canonical

order after the third blowup. So the order would not be (almost) del Pezzo.

Now let f : Y → W refer to a birational morphisms which blowup the points
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p /∈ D and q ∈ D. Then

KY ≡ f ∗(KW) + Ep +
1

2
Eq;

K2
Y =

9

4
− 1− 1

4
> 0;

KYD = (f ∗(KW) + Ep +
1

2
Eq)D

= −3d

2
+ EpC +

1

2
EqC − a−

b

2

≤ −a− b

2
,

where D ≡ C + aEp + bEq and d = deg(f∗C). In order for the equality to

occur, a and b should be zero and multiplicity of C at both p and q should

be d. Therefore, D := L̃ where L is the line going through p and q.

Now we focus only on blowups at the points in the ramification divisors. It

is the main and actually the only remaining part for degree 3 divisors to be

covered. Before to start we need to state the definition of ”in almost general

position points”.

Definition 6.1.1. Let f : Z → P2 be a sequence of blowups at points Σ =

{p1, · · · , pn} in order and let E1, · · · , En be the corresponding exceptional

curves, 1 ≤ i ≤ n. Note that the points are not in the same surfaces; however

they are all in blowups of P2 and we allow infinitely near points. The set of

points p1, · · · , pn is in almost general position if:

1. No four points (counting the multiplicities) are on a line.
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2. No seven points (counting the multiplicities) are on a conic.

3. No point of a (−2)-exceptional curve is blown up.

Let f : Z → P2 be blowups of points Σ = {p1, · · · , p8} as follows. We denote

a degree 3 ramification divisor in P2 by D0 and we blowup a point p0 ∈ D0

to get the exceptional curve E1. By induction for 1 ≤ i ≤ 7 we define

Di := Di−1 + riEi, where ri equals 1 or 0 depending on the ramification

degree of Ei. Then we blowup pi ∈ Di and get the exceptional curve Ei+1.

Thus we have the following equation.

KZ + ∆Z = f ∗(KP2 + ∆P2) +
8∑
1

bi
e
Ei

(KZ + ∆Z)2 = f ∗(KP2 + ∆P2)− 8

e2

=
1

e2
> 0.

Where bi’s are as follows. Let Ei1 , · · · , Eim are exeptional curves which make

the following tree.

E2
im

= −1
E2

im−1
= −2

E2
i1

= −2· · · · · ·

Figure 6.2: Configuration of exceptional trees for canonical singularities
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Then bij = j.

Now let the points Σ = {p1, · · · , p8} be in almost general position and let

f : Z → P2 denote the blowups of these points. Also let D = C +
∑8

1 aiEi

be any effective divisor where for every i, C − Ei is not effective. Then

(KZ + ∆Z)D = (f ∗(KP2 + ∆P2) +
8∑
1

bi
e
Ei)D

= f ∗(KP2 + ∆P2)C + (
8∑
1

bi
e
Ei)D

= (−3

e
H)f∗C + (

8∑
1

bi
e
Ei)(C +

8∑
1

aiEi)

= −3

e
d+ (

8∑
1

bi
e
Ei)C + (

8∑
1

bi
e
Ei)(

8∑
1

aiEi)

= −3

e
d+ (

1

e

8∑
1

biEi)C +
1

e

8∑
i,j=1

biajEiEj

= −3

e
d+ (

1

e

8∑
1

biEi)C +
1

e

∑
k|E2

k=−1

−ak

≤ −3

e
d+ (

1

e

8∑
1

biEi)C

≤ 0, (∗)

where d = deg(f∗C). Now we need to prove the last inequality, for then we

see that if D contains any exceptional curve, then (KZ + ∆Z)D is strictly
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less than zero. So in order for some effective curve D to be a (KZ +∆Z)-zero

curve, it is necessary to be the proper transform of some effective curve in

P2, i.e. D = f̃∗D = C.

To prove (∗), let D be as above and let C = f∗D. We only need to show the

inequality for irreducible curves. For now let C be a line in P2. Then d = 1

and we have

(
1

e

8∑
1

biEi)C = (
1

e

8∑
1

biEi)C

1

e
m(C)p

≤ 1

e
3

=
3

e
d.

If C is a conic, then d = 2 and

(
1

e

8∑
1

biEi)C = (
1

e

8∑
1

biEi)C

1

e
m(C)p

≤ 1

e
6

=
3

e
d.

We see that if C is a conic or a line, the equality occurs if the multiplicity of

C at p is exactly 6 for a conic and 3 for a line. We can also see that when C
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is a curve of higher degrees, then we get the strict inequality.

Now we can state the following theorem.

Theorem 6.1.2. Let W be a minimal terminal almost del Pezzo order on

Z = P2 with ramification divisor D and let deg(D) = 3. Also let g : Y →

W represent the blowups of W. Then each of the followings gives us the

contractible mentioned KY-zero curve E such that if f : Y → X contracts E,

we get a canonical del Pezzo order X .

1. Blowing up a point p ∈ D twice, to get the exceptional curves E1 and

E2, where E2
1 = −2 and E2

2 = −1; E := E1.

2. Blowing up points p ∈ D and q /∈ D; E is the line going through p and

q.

3. Blowing up 3 points in D, counting multiplicities, where all the points

belong to a line l; and E := l.

4. Blowing up 6 points in D, counting multiplicities, where all the points

belong to a conic C; and E := C.

Now let the degree of the ramification divisor D be equal to 4.

Theorem 6.1.3. Let W be a minimal terminal almost del Pezzo order on

Z = P2. Let D be the ramification divisor and let deg(D) = 4. If g : Y → W

represents the blowups of W at points Σ = {p1, · · · , pn}, then Σ ⊂ D, n ≤ 3

and the point are not linear.
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Proof. By Theorem 4.3.6 we know all the blowups should be at points in D

and also e = 2. Let ∆ = 1
2
D, where D is a ramification divisor in Z = P2

and deg(D) = 4. Then we have the following equation

(KZ + ∆)2 = (−3H + (1− 1

2
)4H)2

= (1− 4

2
H)2

= 1− 8

2
+

16

22

= 1

It is easy to see each blowup, reduces (KZ + ∆)2 by 1
4
. So there are only 3

blowups allowed. Now letf : ZY → Z be blowups at n points, n ≤ 3, with

Ei, 1 ≤ i ≤ n. Also let C = C ′
∑n

1 aiEi be an effective divisor such that for
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every i, C ′ − Ei is not effective.

(KZY + ∆ZY )C = (f ∗(KZ + ∆Z) +
n∑
1

bi
e
Ei)C

= f ∗(KZ + ∆Z)C + (
n∑
1

bi
e
Ei)C

= −Hf∗C + (
n∑
1

bi
e
Ei)(C

′ +
n∑
1

aiEi)

= −d+ (
n∑
1

bi
e
Ei)C

′ + (
n∑
1

bi
e
Ei)(

n∑
1

aiEi)

= −d+ (
1

2

n∑
1

biEi)C
′ +

1

2

n∑
i,j=1

biajEiEj

= −d+ (
1

2

n∑
1

biEi)C
′ +

1

2

∑
k|E2

k=−1

−ak

≤ −d+ (
1

2

n∑
1

biEi)C
′

≤ 0.

So in order to get KY-zero curves it is necessary that ai = 0 for every i. Let

C ′ be an irreducible line. d = 1 so then
∑n

1 biEiC
′ = 2. So the multiplicity

of f∗(C
′) at Σ should be 2. So in the diagram in Figure 6.1, f : Y → X

should contract lines with multiplicity two at Σ.

The last case to check for the orders on the projective plane is the orders with

degree 5 discriminants. But looking at calculations in the proof of Theorem

4.3.7 we see that the first blowup g : Y → W results in (KZY + ∆ZY )2 ≤ 0.
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So the order Y can not be almost del Pezzo.

6.2 Canonical Orders Obtained by Terminal

Orders over Rational Ruled Surfaces

The case Z = P1 × P1

Let W be a minimal terminal almost del Pezzo order on P1× P1. And let D

denote the discriminant corresponding to W and let C0 and F denote two

fixed fibres in different ruling directions. Then 2C0 + 2F ≤ [D] ≤ 3C0 + 3F

and ∆ =

(
1− 1

e

)
D. We know that e = 2 if 2C0 + 2F < [D]. Further by

Remark 5.3.5 W is actually del Pezzo. Recall that the canonical divisor of

W is as the following.

KW = KP1×P1 + ∆ ≡ (−2C0 − 2F ) +

(
1− 1

e

)
(aC0 + bF ), for suitable a and b,

=
(
a− 2− a

e

)
C0 +

(
b− 2− b

e

)
F.

Recalling the diagram in Figure 6.1, we seek to find a KY-zero curve E ∈ ZY .

This lets us blow down Y to a canonical del Pezzo order X by contracting

E. Before that we need the following definition.

Definition 6.2.1. Let Σ be a set of point in P1×P1. The points of Σ are in
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almost general position if any curve of the form aC0 + bF contains no more

than than 2(a+ b) of the points. If C is a (a, b)-curve, we call C in Σ-almost

general position if it contains exactly 2(a+ b) points of Σ

Theorem 6.2.2. Let W be a minimal terminal (almost) del Pezzo order on

P1×P1 with the discriminant D and the ramification degree e. Let g : Y → W

be a sequence of blowups at points Σ = {p1, · · · , pn}. Then each of the

followings gives us a contractible KY-zero curve E such that if f : Y →

X contracts E, then X is a del Pezzo canonical order. And this actually

classifies all the canonical del Pezzo orders.

1. D ≡ 2C0 + 2F , e = 2, and Σ = {p} is a single point, where p /∈ D.

Then E is the proper transform of any fibre (in any direction) passing

p.

2. D ≡ 3C0 + 2F , e = 2, and Σ = {p} is a single point, where p ∈ D.

Then E is the proper transform of any fibre in [F ] passing p.

3. D ≡ 3C0 + 3F , e = 2, and Σ = {p} is a single point, where p ∈ D.

Then E is the proper transform of any fibre (in any direction) passing

p.

4. D ≡ 2C0 + 2F , e is free, and Σ ⊂ D is a set of points in almost

general position. Then E is the blowup of any curve in Σ-almost general

position.
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Note that if D is a (2, 3)-curve, then the same statement as the second case

is true just by exchanging C0 and F .

Proof. For the proof we just refer the reader to the calculations in Chapter

4. More specifically look at Remark 4.4.2 and Theorems 4.4.3 and 4.4.5

The cases Z = F1

Let W be an almost del Pezzo order on Hirzebruch surface F1 with the

discriminant D. By Theorem 5.3.6, D ≡ 2C0 + 4F or D ≡ 3C0 + 5F and

the ramification degrees are all equall to 2. Further we have the following

equations for the canonical divisors.

D ≡ 2C0 + 4F : KW = −2C0 − 3F +
1

2
(2C0 + 4F ) = −(C0 + F ) (6.1)

D ≡ 3C0 + 5F : KW = −2C0 − 3F +
1

2
(3C0 + 5F ) = −1

2
(C0 + F ) (6.2)

Lemma 6.2.3. Let W be a minimal terminal (almost) del Pezzo order on

F1 with the discriminant D ≡ 3C0 + 5F . Let g : Y → W be any blowup of

W. Then Y is not almost del Pezzo.

Proof. Let g : Y → W dontes a blowup at a point p. Then we have the
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following equations

p /∈ D : K2
Y = (g∗(KW) + E)2

=
1

4
(C0 + F )2 − 1 < 0

p ∈ D : K2
Y = (g∗(KW) +

1

2
E)2

=
1

4
(C0 + F )2 − 1

4
= 0

which can not occur for almost del Pezzo surfaces.

Reviewing calculations in the proof of Theorem 5.3.6 we see that if W is an

almost del Pezzo order on Hirzebruch surface F1 with the discriminant D.

Then C0 is a KW-zero curve. Therefore contracting C0 gives a blowdown to

a canonical del Pezzo order.

If D ≡ 3C0 + 5F , then by Lemma 6.2.3 there is no blowup to almost del

Pezzo orders. Thus C0 is the only contractible curve. So X is a canonical del

Pezzo order over P2 with a discriminant of degree 5 and ramification degree

e = 2.

If D ≡ 2C0 + 4F , it needs more detailed discussion. We claim that if W is

blown up to an almost del Pezzo order, then the blowups are at points in D.
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Otherwise if we blowup a point p /∈ D then

K2
Y = (g∗(KW) + E)2

= (−C0 − F )2 − 1

= 0,

which is not true for almost del Pezzo orders.

Definition 6.2.4. Let Σ = {p1, · · · , pn} be a set of point in F1. Σ is in

almost general position if

1. Non of the points pi lie on (proper transform of) the section C0

2. No more that 2 points (counting multiplicities) lie on (proper transform

of) a fibre.

3. No point is on a (−2)-curve.

Now we would like to classify del Pezzo orders with canonical singularities

for which the minimal terminal del Pezzo order is over F1 and D ≡ 2C0 +4F .

In the next two theorems we assume that the blowups are done in orders.

Namely the i-th blowup is at the point pi for 1 ≤ i ≤ n and Σ ⊂ D. Note

that if p1 and p2 are infinitely near, then depending on p1 if it is a singular

point or not E1 may be in the discriminant. Since p2 must be in D if E1 ∈ D,

then any point on E1 can be blown up, but if E1 is not in the discriminant,

then p2 is the only point of intersection of E1 and D.
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Theorem 6.2.5. Let W be a minimal terminal almost del Pezzo order on

F1 with the discriminant D ≡ 2C0 + 4F . Also Let g : Y → W be a sequence

of blowups at points Σ = {p1, · · · , pn}. Then Y is almost del Pezzo if and

only if n ≤ 3 and Σ is in almost general position.

Proof. Let g : Y → W be a sequence of blowups at points Σ = {p1, · · · , pn}.

Since all the blowups are at points in D and e = 2, each blowup reduces

the self intersection KW by
1

4
. Moreover, K2

W = (C0 + F )2 = 1. Then

K2
Y > 0 implies n < 4. For the rest of the proof we first show that if Σ is

in almost general position, then Y is almost del Pezzo. And then we show

that if Σ is not in almost general position, then Y is not almost del Pezzo.

Let C = ˜aC0 + bF + r1E1 + r2E2 + r3E3 be an effective curve in ZY , where

r2 and r3 can be zero depending on the number of blowups n. Then

KY = g∗(−C0 − F ) + a1E1 + a2E2 + a3E3,

where ai ∈ {
1

2
, 1,

3

2
} depend on the blowups and the tree of exceptional
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curves.

KY .C = (g∗(−C0 − F ) + a1E1 + a2E2 + a3E3).C

= (−C0 − F )(aC0 + bF ) + (a1E1 + a2E2 + a3E3)(aC0 + bF ) +
3∑
1

aiEi.
3∑
1

riEi︸ ︷︷ ︸
≤0

≤ −b+ b (a1E1 + a2E2 + a3E3).F︸ ︷︷ ︸
≤1

≤ 0.

Now if Σ is not in almost general position, then at least one of the three

conditions fails. If g : Y → W denotes a blowup at a point p ∈ C0. Then

KYC̃0 =

(
g∗(KW) +

1

2
E

)
C̃0

= g∗(KW).C̃0 +
1

2
E.C̃0

= (−C0 − F ).C0 +
1

2

=
1

2
.

Which is agains the definition for almost del Pezzo surfaces.
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If there is a fibre F with multiplicity more than 2 at Σ, then

KY F̃ =

(
g∗(KW) +

∑
i

aiEi

)
F̃

= g∗(KW).F̃ +

(∑
i

aiEi

)
F̃

≥ (−C0 − F ).F +
3

2

=
1

2
.

And finally there is no blowup at a point in a (−2)-exceptional curve for the

obvious reasean that there is no (−3)-curve in the resolution of canonical

orders.

Theorem 6.2.6. Let W be a minimal terminal almost del Pezzo order on F1

with the discriminant D ≡ 2C0 + 4F . Also Let g : Y → W be a sequence of

blowups at points Σ = {p1, · · · , pn} in almost general position. Each of the

followings is a KY-zero curve E such that if f : Y → X contracts E, then X

is a canonical del Pezzo order.

1. The section C0.

2. Any fibre F̃ , where multiplicity of F at Σ is 2.

3. An exceptional curve E, where E2 = −2.
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Proof. Let g : Y → W be a sequence of blowups at points Σ = {p1, · · · , pn} in

almost general position. We only need to find the intersection of the canonical

divisor KY with each of the listed curve. The first case where E = C0 is

proved in Theorem 5.3.6. Now let there is a fibre F with multiplicity 2 at Σ.

Then

two single points on F : KY .F̃ =

(
g∗(−C0 − F ) +

1

2
(E1 + E2)

)
.F̃

= −1 + 1 = 0

a double point on F : KY .F̃ =

(
g∗(−C0 − F ) +

1

2
E1 + E2

)
.F̃

= −1 + 1 = 0.

Now let E1 and E2 be a tree of exceptional curves where E2
1 = −2. Then

KY .E1 =

(
g∗(−C0 − F ) +

1

2
E1 + E2

)
.E1

= 0 +
1

2
(−2) + 1 = 0

The cases Z = F2

Let W be an almost del Pezzo order on the surface F2 with the discriminant

D. By Theorem 5.3.7, D ≡ 2C0 + 4F or D ≡ 3C0 + 6F and the ramification
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degrees are all equal to e and further in the second case e = 2. Then we have

the following equations for the canonical divisors.

D ≡ 2C0 + 4F : KW = −1

e
(2C0 + 4F )

K2
W =

8

e2
(∗)

D ≡ 3C0 + 6F : KW = −1

2
C0 − F

K2
W =

1

2
. (∗∗)

We want to know how many what types of blowups give a KY-zero curve

where we denote the sequence of blowups by f : Y → W . We start to

classify the case D ≡ 3C0 + 6F as it is very restrictive. By (∗∗) we know

only one single blowup keeps the order almost del Pezzo and it has to be at

a point p ∈ D. By the calculations in the proof of Theorem 5.3.7 we know

that KY .C0 = 0 and so p /∈ C0. Let C = b̃F + rE be an effective curve in

ZY . Then

KYC =

(
f ∗
(
−1

2
C0 − F

)
+

1

2
E

)
C

= f ∗
(
−1

2
C0 − F

)
.C +

1

2
E.C

=

(
−1

2
C0 − F

)
.bF +

1

2
E.(b̃F + rE)

= − b
2

+
b

2
− r

2
.
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So if g : Y → X contracts C0 or the fibre F where the blowup is at a point

p ∈ F , then X is a del Pezzo order with canonical singularities.

The classification for minimal terminal almost del Pezzo orders over F2 with

the discriminant D ≡ 2C0 + 4F is more enormous. This is actually in two

extents, a blowup at a point out of D and on the other hand, more blowups

at points in D keep the order almost del Pezzo.

Definition 6.2.7. Let Σ = {pi}i be a set of points in F2. Σ is in almost

general position respect to m if

1. Non of the points pi lie on (proper transform of) the section C0

2. No more than m points (counting multiplicity) lie on (proper transform

of) a fibre.

3. No point is on a (−2)-curve.

Proposition 6.2.8. Let W be a minimal terminal almost del Pezzo order

on Z = F2 with ramification divisor D ≡ 2C0 + 4F . Also let g : Y → W

represent a sequence of blowups at the point Σ = {pi}i. Then Y is almost del

Pezzo if and only if all the followings hold.

1. None of the points pi is in C0.

2. If there is a blowup at a point pi /∈ D, then there are at most three more

blowups, they should be in D, and also they should be in almost general
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position respect to 2. Further non of them should lie on the same fibre

as the one pi does.

3. There are no more than 7 blowups and the points should be in almost

general position respect to the ramification degree e.

Proof. Since C0 is a (−2)-curve and in the resolution of canonical orders

there is no (−3)-curve, then no point of C0 can be blown up. By Equation

(∗) we know that if there is any blowup at a point out of then then e = 2

and therefore K2
W = 2. Further each blowup at a point out D reduces KY by

one, thus only one point pi can lie out of D. Now let W ′ →W and Y → W ′

represent respectively a blowup at p1 /∈ D and a sequence of blowups at the

points Σ− {p1} ⊂ D. Then e = 2 and we know each blowup at a point out

of D reduces K2
W ′ = 1 by

1

4
. Thus we can only have three more blowups and

they are all at points of D.

Let g : Y → W represent a sequence of blowups at the points p1 /∈ D and

{p2, p3, p4} ⊂ D with the exceptional curves {Ei} respecting indices. If by
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contradiction p1 and p2 ∈ F for some fibre F , then

KY .F̃ =

(
f ∗ (−C0 − 2F ) + E1 +

1

2

3∑
i=1

aiEi

)
F̃

= −1 + E1F̃ +
1

2

3∑
i=1

aiEiF̃︸ ︷︷ ︸
>0

> 0,

which is a contradiction. With the same calculation we can see that if F is

any fibre where p1 /∈ F , then
∑3

i=1 aiEiF̃ ≤ 2 which means that no more

than two points of {p2, p3, p4} lie on F . Further we can see that for any j

KY .Ej =

(
f ∗ (−C0 − 2F ) + E1 +

1

2

3∑
i=1

aiEi

)
Ej

=

(
E1 +

1

2

3∑
i=1

aiEi

)
Ej < 0

Finally we need to show that if all the blowups are at points out of D, then

item 3 has to be the case and conversely if item 3 occurs as well as the

condition in item 1, then the order is almost del Pezzo. So let g : Y → W

represent a sequence of blowups at the points Σ = {p1, · · · , pn} ⊂ D with

the exceptional curves {Ei} respecting indices. Then by Equation (∗) and

the fact that each blowup reduces KW by
1

e2
we see n ≤ 7.

Moreover by the following equation we see that the multiplicity of any fibre
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F at Σ can not be more than e.

KY .F̃ =

(
f ∗ (−C0 − 2F ) +

1

e

7∑
i=1

aiEi

)
F̃

= −1 +
1

e

7∑
i=1

aiEiF̃

The classification for KY-zero curves is as the following.

Theorem 6.2.9. Let W be a minimal terminal almost del Pezzo order on

Z = F2 with ramification divisor D ≡ 2C0 + 4F and ramification degree e.

Also let g : Y → W represent the blowups of W. Then each of the followings

gives a KY-zero curve E such that if f : Y → X contracts E, then the order

X is a del Pezzo order with canonical singularities.

1. The sectionC0

2. Blowing up points p /∈ D, E := F where F is the fibre passing p.

3. Blowing up a set of points Σ = {p1, · · · , pn} ⊂ D in almost general

position where n ≤ 7, E := F is any fibre with multiplicity e at Σ.

4. E := Ej where Ej is (−2)-exceptional curve.

Note that all the blowups are assumed to satisfy conditions of Proposition

6.2.8.
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Proof. See the calculations of the proofs of Theorem 5.3.7 and Proposition

6.2.8.
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Appendix A

Quadric Ramification Curves

Let D be the discriminant for an order A over P2. And let

∆ =
∑
i

(
1− 1

e

)
Di,

where D is the union of the irreducible ramification curves Di. If the order

is del Pezzo, then 3 ≤ deg(D) ≤ 5. When deg(D) = 3 it is easy to find all

possible configurations for the discriminant, see the list in Figure 4.1. But

for higher degrees the possible configurations are more numerous especially

when the order has canonical singularities. For the configuration of the dis-

criminants of canonical orders, not only the ramification indices for branch

points are different, but also the types of singularities for branch points are

more various.
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In the following diagrams we classify all ramification configurations for dis-

criminants of degree 4. In 4 we saw the lists for terminal del Pezzo orders so

here we give the classification for canonical del Pezzo orders. Note that in

all the configurations the ramification degrees are e = 2 and the ramification

indices for each branch point are written near the curves intersecting at the

point. The numbers are all in the modular group Z2.

Theorem A.0.10. The diagrams in the following give a complete classifica-

tion of quartic discriminant of canonical del Pezzo orders.

Before proving the theorem let us give a short description of some of the sin-

gularities which may not be familiar to reader. We write a possible equation

for these singularities, however, there are equations in degree 4 with the same

types of singularities. An e6-singularity is the singularity of the curve y3 = x4

at the origin, a rhamphoid cusp is a double cusp which can be written as

y2 = x5, and an oscular rhamphoid singularity is the singularity of the curve

y2 = x7 at the origin.

Proof. See [7, p:449,450] to find a complete classification of plane quartic

curves with simple (canonical) singularities. The following list follows the

same classification but it is missing some of them because of more restrictions

on the ramification curves of canonical del Pezzo orders. It is easy to see that

all the diagrams satisfy the hypothesis of Definition 3.3.1 and the types of

canonical singularities in Table 5.1. All we need to show is to prove that the
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missing curves can not occur in our case. Comparing the following list with

the list in [7, p:449,450] we see that the missing ones are the following.

• a cuspidal cubic and its cuspidal tangent;

• a conic with a tangent line and another line through the point of con-

tanct;

• four lines with three concurrent;

• a cuspidal cubic and an inflection tangent;

• a nodal cubic and its inflection tangent;

• a nodal cubic and a line tangent at one branch;

• a cubic and its inflection tangent;

• an irreducible quartic with one e6-singularity;

• a three cuspidal quartic;

• one oscular rhamphoid cusp;

• one rhamphoid cusp and a cusp;

• two conics intersecting at one point.

We can see that the first 7 ones which contain line(s) are against the rule

that the cover of any line has to ramify at some point and also sum of all
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the ramification indices of the line is zero. The last 4 cases fail for the

same reasoning as they involve rational curves with geometric genus 0. The

remaining one, i.e. e6-singularity is not a type of canonical singularities of

orders listed in Table 5.1.

Note that the names of the singularities are chosen to agree with [8, p:260-

263] and [7, p:449,450].

Irreducible plane quartic curves.

0

0

One node

0

One cusp

0

0

One tacnode

1

1

One tacnode

0 0

1 1

Two nodes

0 0

Two cusps

1

1

0

One cusp and One node

0

0

0

One cusp and One node

0

One ramphoid cusp

11

0
11 0

Three nodes
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0

0
11 0

Three nodes

0

0

1

1

0

One cusp and two

nodes

11
0

One ordinary triple

point

0 0
1

1

One node and two

cusps

0

0

1

1

One node and One

taconode

1

1

0

0

One node and One

taconode

01

1

One cusp and One

taconode

1

1

0

One ramiphoid cusp

and One node

11

One oscnode

1

1

Triple point with one

cuspidal branch

For the next list which is the classification of reducible plane quartic curves
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we skip writing the names of the singularities as they are no worse than the

singularities in above list.

1

1

1

1

0

0

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

1

1

1

1

1

1 1
1

0

1
1

0
0

1

1

1

1 1

1

1

1

0

0

1 1

0

1
1

1 1

0

1

1

1

1

1
1

0
0

0
0

1
1

11

0

0

1

1

1

1

1

1

11 1 1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

1

1

1
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1

1

1

1

1 0

1

1

1

1

1

1

1

0

0

1

1

1

1

1
1

1
11

1
0

0
1

1

1
1

0 0

0
00

0
1

1
1

1

1
1

1 1
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