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The stable derived category Dyy(R) of a Gorenstein ring R is defined as the Verdier quotient of the
bounded derived category D®(mod R) by the thick subcategory of perfect complexes, that is, those with
finite projective resolutions, and was introduced by Ragnar-Olaf Buchweitz as a homological measure
of the singularities of R. This thesis contributes to its study, centered around representation-theoretic,
homological and Koszul duality aspects.

In Part I, we first complete (over C) the classification of homogeneous complete intersection isolated
singularities R for which the graded stable derived category ng(R) (respectively, D?(coh X) for X =
proj R) contains a tilting object. This is done by proving the existence of a full strong exceptional
collection of vector bundles on a 2n-dimensional smooth complete intersection of two quadrics X =
V(Q1,Q2) C P22 building on work of Kuznetsov. We then use recent results of Buchweitz-Iyama-
Yamaura to classify the indecomposable objects in D%Q(Ry) and the Betti tables of their complete
resolutions, over Ry the homogeneous coordinate rings of 4 points on P! and 4 points on P? in general
position.

In Part II, for R a Koszul Gorenstein algebra, we study a natural pair of full subcategories whose
intersection H'"(R) C ng(R) consists of modules with eventually linear projective resolutions. We
prove that such a pair forms a bounded t-structure if and only if R is absolutely Koszul in the sense of
Herzog-Iyengar, in which case there is an equivalence of triangulated categories D*(H'™(R)) = ng(R).
We then relate the heart to modules over the Koszul dual algebra R'. As first application, we extend
the Bernstein-Gel’fand-Gel’fand correspondence beyond the case of exterior and symmetric algebras,
or more generally complete intersections of quadrics and homogeneous Clifford algebras, to any pair
of Koszul dual algebras (R, R') with R absolutely Koszul Gorenstein. In particular the correspondence
holds for the coordinate ring of elliptic normal curves of degree > 4 and for the anticanonical model of del
Pezzo surfaces of degree > 4. We then relate our results to conjectures of Bondal and Minamoto on the
graded coherence of Artin-Schelter regular algebras and higher preprojective algebras; we characterise
when these conjectures hold in a restricted setting, and give counterexamples to both in all dimension

> 4.
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Chapter 1

Introduction

This is currently in draft form.

This thesis is concerned with representation-theoretic and homological aspects of the stable derived
categories of Gorenstein rings, mostly centered around questions of derived Morita theory, Koszul duality
and tame classification problems. Stable derived categories were originally introduced by Ragnar-Olaf
Buchweitz and later independently by D. Orlov under the name of singularity categories. The stable

derived category of a Noetherian ring R is defined as the Verdier quotient
D,y (R) = D’(mod R)/DP*"'(mod R)

of the bounded derived category of R by the thick subcategory of perfect complexes, meaning complexes
with finite projective resolutions. When R is commutative, the Auslander-Buchsbaum-Serre character-
isation of regular rings as the commutative rings of finite global dimension shows that the singularity
category D4 (R) vanishes precisely for R regular, and thus in general provides a measure of the singu-
larities of spec R.

A two-sided Noetherian, not necessarily commutative ring R is Gorenstein if both injective dimensions
idim (rR) < oo and idim (Rgr) < oo are finite, in which case those dimensions are equal and define the
Gorenstein dimension of R. When R is Gorenstein, a foundational theorem of Buchweitz identifies
Dyg(R) = MCM(R) with the stable module category of maximal Cohen-Macaulay (MCM) R-modules,
whose study interpolates singularity theory, commutative algebra and representation theory. When R is
graded, we write D?Q(R) for the version involving graded modules. These triangulated categories have
turned out to be ubiquitous in the last 30 years, and routinely appear in algebra and geometry. We list

some notable examples:

i. The homotopy category of matrix factorizations of f € S for S regular is equivalent to the stable
derived category of the hypersurface singularity S/ f, that is MF(S, f) = MCM(S/f) by a theorem
of Eisenbud.

ii. The stable derived category of a self-injective algebra A is equivalent to its stable module category
mod A. This applies in particular to the group algebra A = kG of a finite group G over a field of
characteristic p > 0 dividing the order of G.
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iii.

iv.

vi.

The stable derived category of the group ring SG for S regular and G finite is equivalent to the
stable category of lattices over SG.

Stable derived categories arise on the opposite side of Koszul duality equivalences with the bounded
derived categories D’(coh X) of coherent sheaves on projective varieties X, as in the Bernstein-
Gel'fand-Gel’fand (BGG) correspondence

DZ,(AV*) 2 D’(coh P(V))
and its generalisations to complete intersections of quadrics by Buchweitz and Kapranov.

Let X C P" be an arithmetically Gorenstein projective variety with homogeneous coordinate ring
Rx, meaning that the affine cone spec Rx over X has Gorenstein singularities. Then there is an
adjoint pair D% (Rx) < DP(coh X) between the graded stable derived category of Rx and the
derived category of coherent sheaves on X, which, by a theorem of Orlov, is always an equivalence
when X is Calabi-Yau, and in general embeds one category inside the other according to the sign

of the twist on the canonical module wg, = Rx(a) of Rx.

Let A be a finite dimensional algebra over a field, with finite global dimension gldim A < co. By
Happel’s Theorem, one can associate to A a graded Gorenstein finite dimensional algebra T'(A),
its trivial extension algebra, for which we always have a triangulated equivalence D’(mod A) =
D%, (T(A)).

The present thesis makes contributions to various aspects of the study of D, (R) for R Gorenstein.

The work is separated into two independent sections, motivated by different ways of presenting D.4(R).

Each comes with applications to problems in related fields. In particular, this thesis pulls ideas from

commutative algebra, algebraic geometry, representation theory of associative algebras and noncom-

mutative algebraic geometry, which are tied together by the use of triangulated categories and can be

fruitfully studied by means of the stable derived category.

L.

II.

In the first part, we study the tilting problem, which asks for abstract realisations
Z ~ rf
Dy, (R) = DP(A)

of the graded stable derived categories of graded Gorenstein k-algebras as the perfect derived
category DPef(A) C D’(mod A) of a finite dimensional k-algebra A, with DPef(A) = D’(mod A)
when gldimA < co. This gives a strong handle on the structure of the triangulated category ng(R),
giving an understand of its numerical invariants such as its Grothendieck group Ky, or in good
cases producing classifications of the indecomposable objects in ng(R) when the representation
theory of A is well-understood. Producing such equivalences amounts to finding a tilting object in
ng(R)7 from which the equivalence arises through Morita theory. We study existence questions
and obstructions to such equivalences, and apply tilting theory to classification problems over tame

curve singularities.

In the second part, we study the stable derived categories of Koszul Gorenstein algebras. We

relate questions of existence of t-structures of ‘Koszul type’ to classical rationality problems in
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commutative algebra. We then show that the Koszul Gorenstein algebras satisfying the statement

of the Bernstein-Gel’fand-Gel’fand correspondence
Y/ ~ T !

are precisely the absolutely Koszul algebras of Herzog-Iyengar. This broadly extends the class of al-
gebras for which the correspondence holds, and we study the equivalence of triangulated categories
in many new cases, as well as produce explicit counterexamples where such an equivalence fails to
exist. We further relate the matter to structural questions in noncommutative algebraic geometry:
we characterise the graded coherence of a class of Artin-Schelter regular algebras and higher prepro-
jective algebras by the absolute Koszulity of an associated Gorenstein Koszul algebras. This leads
us to construct examples of non-coherent Artin-Schelter regular algebras and non-coherent higher
preprojective algebras in all global dimension > 4, thereby giving counterexamples to conjectures

of A. Bondal and H. Minamoto, respectively.

1.1 Overview of the thesis

Chapter 1

We begin with various preliminaries on standard notation, well-known constructions and basic notions
to be taken for granted throughout this thesis. We then give a short background exposition of the theory
of maximal Cohen-Macaulay (MCM) modules over a Gorenstein ring, beginning with classical local com-
mutative algebra, continuing on to Buchweitz’s manuscript [28], and ending with Orlov’s semiorthogonal

decomposition theorem.

The importance of the class of MCM modules over a Gorenstein ring R is encapsuled in the following

results of Buchweitz and Orlov.

For any complex of R-module with bounded cohomology N € D®(mod R), there is an MCM module
M = N*!, unique up to stable isomorphism, which becomes isomorphic to N in the Verdier quotient
Dsy(R) := D’(mod R)/DP*f(R) by complexes of finite projective dimension. Moreover, MCM modules

can be characterised as those modules M admitting a two-sided projective resolution C.

1 C_,

Ci

Co C_
\ " /

called its complete resolution. The homotopy theory of the resulting acyclic complexes C, then describes

the triangulated category D4(R), which is the content of Buchweitz’s Theorem.

Given a projective variety X and an ample line bundle £ with section ring

Rx = Rx . = @H(X, L")

n>0

a graded Gorenstein ring, the structure of graded MCM modules over Ry reveals a surprising amount of

the geometry of X. Letting M be a graded MCM Rx-module with complete resolution C,, and killing
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free summands in C\ generated in degree below some fixed cut-off i € Z, one obtains a right bounded

complex F' = C5; of free Rx-modules with bounded cohomology

Fn+3 Fn+2 Fn+1*>FnHO

which sheafifies to a complex of coherent sheaves F = Fe D®(coh X) with bounded cohomology. By

Orlov’s Theorem, the resulting functor
DZ (Rx) — D’(coh X)

is an equivalence of triangulated categories whenever X is Calabi-Yau, and otherwise induces an equiv-

alence up to killing known components.

Chapter 2

In Chapter 2, we review historical background and definitions concerning tilting theory for derived
categories of coherent sheaves D?(coh X) and graded singularity categories ng (R). Roughly speaking, a
tilting object T' € T in a triangulated category 7, with 7 idempotent complete and of algebraic origin,
is the triangulated category analog of a small projective generator in Morita Theory, in that it induces

an equivalence of triangulated categories
RHom(T, —) : T —» DP*f(Mod End(T)).

We review briefly the important classes of Gorenstein algebras for which ng(R) is known to contain a
tilting object, with special attention to results of Yamaura and Buchweitz-Iyama-Yamaura which guar-
antee this in dimension < 1, under mild hypotheses. In particular, this applies to graded connected
Artinian graded self-injective algebras (dimension zero) and reduced Gorenstein curve singularities (di-

mension one).

We then turn our attention to dimension > 2 and, restricting to the case of commutative Gorenstein
algebras, prove the following results. In the next two results, R graded will implicitly mean generated

in degree one over Ry = k.

Proposition. Let k be an algebraically closed field and let R be a graded Gorenstein k-algebra of dim R >
2, having at most isolated singularities. Let X = proj R. Assume that ng (R) admits a tilting object T
Then:

i) HY(X,0x) =0 for ¢ > 0.
it) The a-invariant of R satisfies a < 0. In particular X is a Fano variety.

Moreover, if k has characteristic zero, then i) may be strenghthened to the vanishing of Hodge numbers:
i’) HY(X, Q%) =0 for p #q.

Theorem. Let k be an algebraically closed field of characteristic zero. Let R be a (non-regular) graded

complete intersection with at most isolated singularities, and let X = projR. The following are equivalent:

1) DZ (R) admits a tilting object T
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2) DP(coh X) admits a tilting object .

3) We have H1(X,Q%) =0 for p # q.
Moreover, when dim X > 1, this is equivalent to
4) X is one of the following:

a) A smooth quadric hypersurface.
b) A smooth 2n-dimensional complete intersection of two quadrics.

c) A smooth cubic surface.

Lastly, the tilting object £ € Db(coh X) can always be chosen to come from a full strong exceptional

collection of vector bundles.

The first proposition should be expected if not folklore amongst experts. Likewise many of the
implications in the above theorem are known, and follow from work of Beilinson, Kapranov, Kuleshov-
Orlov, Kuznetsov, Rapoport and Buchweitz-Iyama-Yamaura. Our contributions is to treat the remaining
case of the 2n-dimensional intersection of two quadrics X = V(Q1,Q2) C P22 in particular proving
that D®(coh X) admits a full strong exceptional collection of vector bundles, which is compatible with

an analogous collection in the graded singularity category D%Q(R).

Chapter 3

In Chapter 3, we explore applications of tilting theory to reduced curve singularities, where we apply
the recent tilting result of Buchweitz-Iyama-Yamaura to the classification problem for indecomposable
MCM modules over certain tame curve singularities. Namely, we study the homogeneous coordinate
rings Ry of 4 points on P? in general position and 4 points on P!, respectively. To each algebra Ry, the
theorem of Buchweitz-Iyama-Yamaura associates a quiver path algebra with relations kQ/I along with

an equivalence of triangulated categories
D%, (Ry) = D*(mod kQ/I).

In the case of 4 points Y C P? in general position, the algebra is given by the path algebra kQ of the
4-subspace quiver

To 4 points Y C P! on the projective line, one attaches the ‘Squid’ path algebra Sq(2,2,2,2;\) = kQ/I
with quiver

-%0/%)%'
x \

and relations p;l;(z,y) =0 for ¢ = 1,2, 3,4, where [; is the linear form cuting out the i-th point in Y.
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Both algebras have derived tame representation type, meaning that the classification problem for
indecomposables in D®(mod kQ/I) is of mild complexity. In fact the representation theory of both
algebras is well-understood. Our contribution is to studying the analogous classification in the graded
singularity ng (Ry): in the first case we show that one recovers the regular components of mod k@) over
the 4-subspace quiver from the geometry of the pencil of conics through 4 points ¥ C P2. We then
deduce the classification of indecomposable MCM modules over Ry and write down the Betti tables of

indecomposable complete resolutions.

In the second case of Ry the coordinate ring of 4 points Y C P!, we study the classification problem
for MCM modules over Ry by reducing the problem to the weighted projective line X = P1(2,2,2,2; \)
of genus one, which is derived equivalent to the tubular algebra Sq(2,2,2,2;X). We discuss the role
of the induced braid group action on the singularity category, write down the indecomposable MCM
modules corresponding to the simple torsion sheaves on X, and give a complete classification of the Betti

tables of indecomposable graded MCM modules over Ry .

Chapter 4

Chapter 4 is largely expository but contains many of the key ideas and setup required for later chapters.
We begin with recalling the basics of a class of finite dimensional algebras A called Fano algebras. The
prototypical example of a Fano algebra arises as follows: let X be a smooth projective Fano variety with

a tilting bundle £, and set A = Endx (€). We obtain an equivalence
RHom(&, —) : D¥(coh X) =» D’(mod A).

One may take here X = P™ and A = End(@]"_, O(i)) the n-th Beilinson algebra. Further assume that
dim X = gldim A =: n, which holds for the example above. Let

SAZ—(X)H/‘\DA

be the Serre functor for D?(mod A) where DA = Homy(A, k), and set S,, = Sp o [-n] for the n-shifted
Serre functor on D?(mod A), which corresponds under the above equivalence to —®@wy. Since X is Fano,
using ampleness of w)_(l it is easy to see that the equivalence sends the subcategory coh X C D(coh X)
onto the subcategory H(A) € D’(mod A) of asymptotic modules

H(A) := {M € D’(mod A) | S, (M) € mod A C D’(mod A) for all m > 0}
and so we recover the coherent sheaves on X via a canonically defined subcategory of D?(mod A).

The class of Fano algebras, as introduced by H. Minamoto, precisely captures those finite dimensional
algebras which come from Fano varieties, at least if one allows the varieties to be noncommutative. More

precisely, by a beautiful theorem of Minamoto, any Fano algebra A satisfies
D’(mod A) = D(qgrII)

for some graded algebra II, where qgr Il is the category of finitely presented modules modulo torsion

modules, thought of as a category of coherent sheaves of a noncommutative variety, and furthermore
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qggr IT corresponds to H(A) under this equivalence. The graded algebra II is moreover coherent, a
weakening of the Noetherian condition which is required for the whole machinery to work. The algebra
IT is constructed out of A by a process reminescent of the anticanonical ring P, HY(X,wy") of a

smooth variety X.

Fano algebras belong to the larger class of almost Fano algebras, which are finite dimensional algebras
containing enough data to construct II canonically, but without the a priori knowledge that II is a
graded coherent algebra. Almost fano algebras arise much more often in practice, and it is important to

determine whether they are actually Fano.

The class of Fano algebras contains all representation infinite quiver path algebras k£Q, meaning that
Q is a finite acyclic non-Dynkin quiver @, and II = II(Q) is the classical preprojective algebra of Q.
Similarly, the class of almost Fano algebras contains the subclass of higher representation infinite alge-
bras introduced by Herschend-Iyama-Oppermann, and IT = TI(A) is the associated higher preprojective
algebra. The missing ingredient for such algebras to be Fano is to establish the graded coherence of

II(A). As such, central to this storyline is the conjecture:

Conjecture (Minamoto). Higher preprojective algebras II(A) of higher representation infinite algebras

are always graded coherent.

This conjecture appears to be partially modelled on an older conjecture of A. Bondal, concerning the

class of Artin-Schelter regular algebras, which share many similarities with II(A).
Conjecture (Bondal). Artin-Schelter reqular algebras are always graded coherent.

In this chapter, we will see how to associate, to any Koszul Frobenius algebras A, a pair (E,II)
consisting of an Artin-Schelter regular algebra E and the higher preprojective algebra II = TI(A) of a
higher representation infinite algebra A. That one can do this is not new, but this doesn’t appear to
have been exploited as much as one would expect. More interestingly, we will see how to characterise
the coherence of E and II in terms of the graded singularity category ng (A), and therefore characterise

the algebras A giving rise to a pair of coherent graded algebras (E,II). Our main results will then be:
Theorem. The following are equivalent:

i) E is coherent.
i1) II is coherent.

i11) A is absolutely Koszul in the sense of Herzog-Iyengar.

This last condition is well-studied and holds for many classes of Koszul algebra. However we will

also construct Koszul Frobenius algebras which are not absolutely Koszul, and so obtain:

Theorem. There are Artin-Schelter regular algebras {Eq}q>a and higher preprojective algebras {Ilg}g>a
in each global dimension d > 4 which fail to be graded coherent.

This produces a counterexample to the conjectures of Minamoto and Bondal in all global dimensions
d > 4, although the counterexamples are somehow isolated and don’t seem representative of typical

behavior. Since both conjectures hold in global dimension d < 2, this leaves open the case of d = 3.

The proofs of the above theorems appear only in Chapter 6 after the relevant machinery has been

setup in Chapter 5.
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Chapter 5

Chapter 5 forms the technical core of this thesis. Initially motivated by ideas of Chapter 4, this chapter

can be seen as a long digression and can be read mostly independently from the previous ones.

Given a Koszul Gorenstein algebra R, we are lead to consider a natural candidate for a t-structure
on D% (R), namely a natural pair of full subcategories (D5 (R), Dz0(R)) with intersection #'"(R) :=
D5’(R) N DZX(R) C DZ (R) the subcategory of modules with eventually linear minimal projective
resolution

H'"(R) := {M € D% (R) | B;;(M) = 0 for all i # j whenever i > 0}.

Recall that 3; ;(M) is the number of generators of degree j in the i-th term of the minimal projective
resolution P, =+ M, and will be independent of representative of the isomorphism class of M € ng (R)
so long as i > 0. Pairs of the form (D5”(R),Dz?(R)) often arise through Koszul duality equivalence as
the t-structures pulled back from the standard t-structure attached to the Koszul dual R' = Ext’(k, k).

For instance, under the (contravariant) BGG correspondence
Z *\op ~ b
Dy, (AV*)?? =2 D”(coh P(V))

one sees that the standard t-structure on D’(coh P(V')) gives rise to (D5 (AV*),DZ?(AV*)) and so

induces a (contravariant) equivalence of abelian categories
H'M(AV*)P 2 coh P(V).

However, for a general Koszul Gorenstein algebra R with Koszul dual R' = Ext’;(k, k), it isn’t a priori
clear that D% (R) takes part in an equivalence of the type above, and so whether (D5’(R), DZ"(R))

should form a t-structure at all.

It is well-known that an appropriate equivalence exists whenever R is Artinian and R' Noetherian,
as in the classical situation of (R, R') = (AV*,SymV). It isn’t hard to see that the same hold for R
Artinian if we only require that R' be coherent as a graded algebra. Much more difficult is the extension
to pairs of Noetherian Koszul Gorenstein algebras (R, R'), as is done in by Buchweitz [30, Appendix] in
a beautiful tour de force. Buchweitz studies in particular the case where one of R, R' is commutative,
say R. Requiring that R' = Ext’(k, k) be Noetherian is then such a strong constraint that it forces R
to be given by a complete intersection of quadrics R = k[z]/(¢); indeed in all other cases Ext%x(k,k)
has exponential growth and so cannot be Noetherian. No improvement beyond the case of complete
intersections of quadrics has been obtained since the work of Buchweitz.

In this chapter, we will obtain a complete characterisation of the Koszul Gorenstein algebras R
for which the natural candidate (D5”(R),Dz(R)) forms a bounded t-structure on D%, (R). Our main

results are as follows:
Theorem (Theorem . Let R be a Koszul Gorenstein algebra. The following are equivalent:
i) (D52(R),DZ2(R)) forms a bounded t-structure for D% (R).

it) R is absolutely Koszul in the sense of Herzog-Iyengar.
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Furthermore, when these equivalent conditions hold, the natural realisation functor
real : D*(#""(R)) = DZ,(R)

is an equivalence of triangulated categories which extends the inclusion on H'™(R).

Note that the theorem makes no mention of the Koszul dual R' = Ext}(k, k), and so in particular
makes no demand on the structure of the Ext algebra. The role of R' is relegated to giving a convenient

presentation of the abelian category H'"(R), as in the next theorem.

Theorem (Theorem . Let R be a Koszul Gorenstein algebra. If R is absolutely Koszul, then the
graded algebra E = (R')°P = Ext}(k, k)°P is coherent, and there is a contravariant equivalence of abelian

categories

H'n (R)°P = qer B

given by M — Exti (M, k), where qgr E is the Serre quotient of the category of finitely presented graded
E-modules modulo the subcategory of finite length modules.

Conversely, if R is Artinian and E = Exty(k, k)P is coherent, then R is absolutely Koszul.

Putting those two theorems together, we deduce the general Bernstein-Gel’fand-Gel’fand correspon-

dence.

Theorem (Theorem. Let R be an absolutely Koszul Gorenstein algebra with E = (R')°P = Ext}(k, k)P.

Then there is a contravariant equivalence of triangulated categories
D%, (R)* = D"(qgr E)

such, that the bounded t-structure (D5 (R),Dz0(R)) arises as the pullback of the standard t-structure on
the right-hand side.

Chapter 6

Finally, Chapter 6 consists of assorted corollaries, applications and worked out examples arising out of
Chapter 4 and 5.

We first spend some time collecting from the literature examples and classes of Koszul Gorenstein
algebras which are known to be absolutely Koszul, and so to which our results apply. Of note, all Koszul
Gorenstein algebras of codimension < 4 are automatically absolutely Koszul by results of Avramov-
Kustin-Miller and Herzog-Iyengar. Moreover, many interesting projective varieties admit embeddings
X C P™ with absolutely Koszul Gorenstein homogeneous coordinate ring Rx. In particular we take a
close look at the cone over an elliptic normal curve £ C P?~! of degree d > 4, at the anticanonical
model of a smooth del Pezzo X, C P? of degree d > 4, and at the canonical embedding C' C P9~ ! of a

non-hyperelliptic smooth projective curve of genus g > 3, which is assumed to be cut-out by quadrics.

For the homogeneous coordinate ring Rg 4 of the elliptic normal curve E C P?~1, we obtain from

the BGG correspondence an equivalence

D(coh E) = DY (H™(Rp.4)).
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The induced heart H'""(Rg 4) C Db(coh E) is also hereditary and admits a simple description by results
of Pavlov [80]. Recall that the derived category of the elliptic curve E admits a fully faithful action
by the braid group B3 on three strands, generated by Thomas-Seidel twists along the spherical objects
Og and k(z) where x € E is any closed point. For each d > 4, one can associate a positive braid
element 0 = 04 € By C Aut(D(coh E)) acting on the derived category of E, which one normalises to

an antoequivalence y := o[—1]. The full subcategory
HY(E) := {F € D’(coh E) | H*(E, Yy’ F) = 0 for n # 0 whenever j > 0}
then corresponds to H'"(Rp 4) under the above equivalence.

For the anticanonical model Ry, of the del Pezzo surface X4 C P, using a theorem of Happel we
obtain that H'"(Rx,) must be derived equivalent to the representation category mod kQ of a finite
acyclic quiver or the category of coherent sheaves coh X over a weighted projective line in the sense of

Geigle-Lenzing.

Afterwards, we then construct a sequence of Artinian Koszul Gorenstein algebras {R,},>4 which
fail to be absolutely Koszul, building on work of J.-E. Roos. This is directly applied to construct the

counterexamples to the coherence conjectures discussed in Chapter 4.

Lastly, we end this thesis with a discussion of various philosophical points behind the results obtained

and lay out some conjectures.

1.2 Preliminaries

Throughout this thesis, k will stand for a fixed choice of field. A graded object X in a category C consists
of a sequence of objects {X;}icz in C. A graded algebra R over k will always stand for a non-negatively
graded k-module, meaning that R; = 0 for + < 0, with products R; ® R; — R;;;, and abusing notation
we will typically conflate R with its direct sum totalisation and write R = @, R;. We say that R is
connected if Ry = k, and standard graded if R is generated in degree one over }%0, that is R = Ro[R;].

Similarly we will often write M = @, _, M; for a graded module over a graded algebra. When done this

i€z
way, elements r € R or € M are understood to be homogeneous, and we write |r|, || for their degree.
Outside of specific parts at the beginning of Chapter 2, graded algebras will be generated in degree one

over Ry, which will often be k but sometimes a finite dimensional semisimple k-algebra.

Given a ring .S, we write Mod S for the category of right S-modules, and mod .S for the full subcategory
of finitely presented S-modules, which is an abelian category whenever S is right Noetherian (more
generally right coherent). Similarly we write Grmod S and grmod S for the corresponding categories
of graded modules. All module-theoretic notions will always implicitly refer to right modules, and we

identify the category of left modules with right modules over the opposite ring S°P.

A complex X = (X,d) in an abelian category .4 will mean a graded object X = {X;};cz equipped
with a differential d; : X; — X;_1, meaning that d?> = 0. We always write complexes from left to right

d; d;
"'—>Xi+1$>Xi—>Xi—l_>"'
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and we define its homology by H;(X) = ker(d;)/im(d;_1). We will often write complexes cohomologically
by setting X? = X_;, in which case the differential increases degree. The suspension X[1] of a complex
(sometimes written ¥X) is defined by (X[1])* = X!, or equivalently (X[1]); = X;_1, and we define
X|[n] analogously for any n € Z. A chain-map f : X — Y of complexes consists maps f; : X; = Y;
commuting with the differential. A chain-map f : X — Y is called nullhomotopic if it is of the form
f =dy oh+ hodx for a morphism of graded object h : X — Y[—1]. We say that f : X — Y is
a quasi-isomorphism if the induced map on homology f. : H.(X) N H.(Y) is an isomorphism. The
mapping cone of f: X — Y is defined as the complex

Cone(f)n =X,10Y,
with differential 0(z +y) = f(z) — d(x) + d(y).
Given two graded objects X,Y in A, their graded Hom abelian group Hom(X,Y") is defined by

Hom"(X,Y) = [ [ Hom(X",Y"+™).
€L

When X,Y are complexes, Hom(X,Y) inherits a differential by 9(f) = dy o f — (=1)//If o dx. When
A admits a tensor product, the tensor product X ® Y is the graded object with components

Xey)'= @ xrev.

ptg=n

This inherits the structure of a complex from X,Y by setting dxgy =dx ® 1 + 1 ® dy.

We define the following categories:
i. C(A) is the category of complexes over A, with morphisms given by chain-maps.

ii. K(A) is the homotopy category of complexes over A, which is obtained from C(A) by quotienting

out nullhomotopic morphisms.

ili. D(A) is the derived category of A, obtained from K(A) by inverting quasi-isomorphisms (see [104]
or [52] for details).

We let D*(A) for x = {—,+,b} denote the full subcategories of D(A) consisting of complexes with
right bounded cohomology, left bounded cohomology or bounded cohomology, respectively. When R
is a ring, we write D(R) := D(Mod R). When R is right Noetherian (or right coherent) we denote
D?(R) := D’(mod R), and we write D(X) := D(QCoh X) and D®(X) := D¥(coh X) for any scheme X.

In any triangulated category T, for any set of objects S C T we define the thick closure thick(S) C T
to be the smallest triangulated category of 7 containing S which is closed under finite direct sums
and summands. Likewise we define the localising closure Loc(S) C T to be the smallest triangulated
category of T containing S and closed under arbitrary direct sums and summands. We write [1] for
the suspension in a triangulated category, and Ext7(X,Y") := Hom (X, Y [n]). We say that a k-linear
nez ExtT(X,Y) < oo for any X,Y € 7. All triangulated
categories in this thesis will be k-linear over our base field k, and typically will be Ext-finite.

triangulated category is Ext-finite if dim €5
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A t-structure t = (7=°,72%) on T is a pair of full subcategories satisfying three defining axioms.
Define 75" = T=00 [—n] and T=" = T=% o [-n]. Then ¢ forms a t-structure on 7 if

T1. We have containments 7= C 7=! and 72! C 729,
T2. We have Hom(7=°,721) = 0.

T3. For every object X € T, there are objects X< € 7<% and X=! € T=! fitting in a distinguished
triangle
X0 X - x2! 5 x=0).

When ¢ forms a t-structure, there are truncation functors 7=" : 7 — T=" and 72" : T — T 2" which

are adjoint to the respective inclusions

S TS TS G,

G T2V ST 12"

such that 70X = X <0 and 72! X = X! above, and with the maps in the distinguished triangle coming

from the counit and unit maps of the respective adjunctions.

The triangulated category 7 = D(A) has a standard t-structure (D<=, D=°), given by complexes

with cohomology supported in degree < 0 and > 0, respectively. The truncation functors are given by

dn—1

TS"X . e s X1l ker(dn) 0
X: i x| e an Xt
ey .. 0 coker(d,,—1) oy xmt

A differential graded (dg) algebra over k is a complex A = (A4, d) with an associative multiplication
m : A®? — A which is a chain-map, or equivalently d satisfies the Leibniz rule d(ab) = (da)b +
(=1)lela(db). Every graded algebra can be thought of as a dg algebra with trivial differential. A
morphism of dg algebras f : A — B is a homomorphism of algebras which respects the differential,
and a quasi-isomorphism of dg algebras f : A = B is a morphism which is a quasi-isomorphism of
underlying complexes. We will say that two dg algebras A, B are quasi-isomorphic if they are connected
to each other by a zig-zag of quasi-isomorphisms, and denote this by A ~ B. Moreover, A is formal if

it is quasi-isomorphic to its cohomology algebra H*(A), that is A ~ H*(A).

Finally, we will make some usage of the theory of Koszul algebras. Let A = Ag@® A1 @®--- be a locally
finite graded k-algebra generated by A; over Ap, and we assume that Ag is semisimple. Let P, =N Ay
be the minimal graded projective resolution of Ay = A/A>; over A. We say that A is Koszul if P; is

generated in degree ¢ for all ¢ > 0.

When A is Koszul, we denote by A' = Ext’ (Ag, Ag) its Koszul dual algebra. One can see that A'
is also Koszul with degree zero part A}, = Ay and that Ext%,(A}, A)) = A. While we assume some
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familiarity with the class of Koszul algebras, perhaps at the level of [16], the two above facts will suffice

for the entirety of this thesis.

1.3 Background: Maximal Cohen-Macaulay modules over Goren-
stein rings

In this section, we review classical definitions and characterizations of MCM modules, and give an

exposition of Buchweitz’s manuscript. We refer the reader to [25] [107, [65] 28] for complete references.

MCM modules over CM local rings

Let R = (R, m,k) here denote a commutative Noetherian local ring (respectively, graded local ring)
of finite Krull dimension d. All definitions and results have natural extensions to the case of graded
modules over graded rings which this thesis is concerned with, and we will spell out the graded version
of a result when appropriate. For an R-module M, a sequence of elements z1,...,x, in m is a regular

M-sequence if ;11 is a non zero divisor on M/(x1,...,2;)M for all i =0,1,...,n — 1.

Definition 1.3.1. The depth of an R-module M, denoted depth M, is the maximal length of regular

M-sequences.

The depth of a module is always upper bounded by the Krull dimension of its support, that is
depth M < dim M.

Definition 1.3.2. A module M is Cohen-Macaulay if depth M = dim M. A module M is maximal
Cohen-Macaulay if furthermore dim M = dim R, that is depth M = d.

Definition 1.3.3. A ring R is Cohen-Macaulay if R is maximal Cohen-Macaulay as an R-module. That
is, m contains a regular R-sequence of length d. The ring R is regular if m is actually generated by a
regular sequence (then of length d).

Proposition 1.3.4. Let M be a finite MCM module over a regular local ring R. Then M is free.

Proof. Since R is regular pdim M < oo and the Auslander-Buchsbaum formula pdim M + depth M =
depth R gives pdim M = 0, and M is free since R is local. O

It follows that we may think of non-free MCM modules as measuring the singularities of R in some
way. Depth and the Cohen-Macaulay property are best recognized by cohomological criteria. To this
end, let X = spec R, and for any R-module M, by abuse of notation we denote by M the associated
quasi-coherent sheaf on X. Let 'y, = 'y (X, —) : QCoh X — Mod R be the functor of global sections

with support in m, meaning
IFm(M)=Tw(X,M)={ze M |m"-z=0 for some r > 0}.

T is left exact with total derived functor RI'y,, and we denote by an(f) = RT',, the i-th local
cohomology functor. Local cohomology detects depth.

Proposition 1.3.5 ([25]). Let M be a finite R-module. We have:
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i) depth g M = inf{i | H. (M) # 0}.
i) M is Cohen-Macaulay if and only if Hi (M) = 0 for i # dim M.

In the graded local case, say when R = €, ., Ry, is a standard graded connected k-algebra and
m = Ry, we can reinterpret local cohomology of g_raded R-modules in terms of the projective k-scheme
proj R. Here let X = proj R and X = spec R is the affine cone over X. Let U C X be the punctured
spectrum U = X \ m. For a graded module M, by abuse of notation we denote by M the quasi-coherent

sheaf on X and M denote the quasi-coherent sheaf on X.
0 — Tw(X, M) = (X, M) = T(U, M) = 0
giving rise to distinguished triangles
R, (X, M) — RI(X, M) & RI(U, M) — R (X, M)[1].

Quasi-coherent sheaf cohomology vanishes over the affine scheme X. By [65], we have RT'(U, M) =

RI, (X, M) := @D, ., RT(X, M (n)). Putting these together, we have:
Proposition 1.3.6. Let M be a graded R-module.

i) There is an exact sequence of graded modules

0 — T(M) — M "5 T, (X, M) — HL (M) — 0.

ii) We have natural isomorphisms of graded R-modules H: (X, M) =~ HLFL (M) for all i > 1.
Corollary 1.3.7. Let M be a finite graded R-module. The following are equivalent:

i) M is maximal Cohen-Macaulay.

ii) The map res is an isomorphism, and we have H' (X, M(n)) =0 for alln € Z for all i # 0,dim X .

A coherent sheaf F corresponding to a finite MCM module M is called Arithmetically Cohen-
Macaulay (ACM).

Definition 1.3.8. Let R be a local CM ring of dimension d. A canonical module wg for R is a finite
R-module such that

Exth(k,wgr) =
i=d.

Such a module wg is unique up to isomorphism whenever it exists.

Proposition 1.3.9 (Local Duality [25]). Let R be a local CM ring with a canonical module wg. Let
Eg(k) be the injective hull of k. For any finite R-module M , we have natural isomorphisms of R-modules

HY, (M) = Hompg (Ext% "(M,wr), Er(k)).

Proposition 1.3.10 (Graded Local Duality [25]). Let R be a graded connected CM k-algebra with graded
canonical module wg. For any finite graded R-module M, we have natural isomorphisms of graded R-
modules

H: (M) = Homy, (Ext% (M, wr), k).
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Proposition 1.3.11. A finite R-module M is Cohen-Macaulay if and only if Ext%_i(M, wgr) = 0 for
i # dim M. In particular M is MCM if and only if Extk(M,wr) =0 for all n > 0.

Definition 1.3.12. Let R be a CM local ring (respectively graded local). We say that R is Gorenstein
if wg := R is a canonical module (respectively wg := R(a) for some a € Z). In the graded case, the

integer a is called the a-invariant]T]

Note that by proposition [1.3.10} we have a = max{i | H% (R); # 0}. Gorenstein rings are ubiquitous

[15], and have many characterizations and standard examples.

Proposition 1.3.13 ([25]). Let R be a local Noetherian ring of dimension d. The following are equiva-

lent:
i) R is Gorenstein.
it) The injective dimension of Rg is finite (then equal to d).
iii) R/(x) is Gorenstein for some (and then all) reqular R-sequence x = (T1,...,%y).

We say that R is a complete intersection if its completion R at m is isomorphic to R Q/(x) for Q

a regular local ring and x = (1, ...,2.) C mg a regular sequence. We have strict implications:
regular = complete intersection = Gorenstein = Cohen-Macaulay.

Example 1.3.14. Let R be of Krull dimension zero. The following are equivalent:
i) R is Gorenstein.

ii) R is self-injective.

iii) Rg has simple socle.

Moreover when R is a graded connected k-algebra, wgp = DR = R(a) with a the degree of the socle

element.

Example 1.3.15 (Watanabe [I03]). Let V be a finite-dimensional vector space over an algebraically
closed field k and let G < GL(V) be a finite group with char k1 |G|. Assume that G is small, meaning
containing no pseudo-reflection. Then the invariant ring R = k[V]¢ is Gorenstein if and only if G <

SL(V).

The Stable Derived Category of a Gorenstein Ring

From now on, modules are taken to be finitely generated unless specified. Taking a cue from proposi-
tion |1.3.13] we call a possibly noncommutative two-sided Noetherian ring R Gorenstein (or Iwanaga-

Gorenstein) if
i) idim (Rg) < 0o

ii) idim (zR) < 0o

1The integer —a is also called the Gorenstein parameter, and sometimes denoted by the same letter a. We will not
follow this convention.
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in which case both injective dimensions are equal, say to some integer d. We call d the Gorenstein

dimension of R. Gorenstein rings admit a natural duality given by

(=)Y := RHompg(—, R) : D’(R)°? — D(R°P).
Lemma 1.3.16 ([32, Lemma 5.3]). The functor (—)V is a duality. That is, the natural map X — XV
is an isomorphism for all X € D*(R).

Definition 1.3.17. Let R be Gorenstein. An R-module M is maximal Cohen-Macaulay if Ext's (M, R) =
0 for n > 0. Equivalently, M" is a module in D?(R°P).

We then have MY = M* := Hompg (M, R), and since (M*)¥ = MYV = M is an R-module, M* is an
MCM module over R°? and M** = M. We denote by MCM(R) the full subcategory of MCM modules
in mod R (respectively MCM”(R) the category of graded MCM modules over a Z-graded Gorenstein

ring). Collecting some standard properties, we have:

Proposition 1.3.18. The category MCM(R) has the following properties:
i) The category MCM(R) is closed under sums, summands and extensions.
it) MCM modules are closed under taking duals.

i11) MCM modules are reflexive, that is M** = M.

i) Projective R-modules are MCM.

v) The projective R-modules are injective objects in MCM(R).

Definition 1.3.19. The projectively stable, or stable, module category Mod R (resp. mod R) has for
objects all R-modules (resp. finitely generated R-modules), with morphisms given by

Homp(M,N) = Homg(M,N)/P(M,N)

where P(M, N) is the ideal of morphisms factoring through a projective module. The stable category
of MCM modules MCM(R) is the full subcategory of mod R consisting of MCM modules.

Given a finite projective presentation Pj 9, Py — M, we define the first syzygy Q(M) = im(9;).
The first syzygy of M depends on the choice of presentation, but it is well-known (Schanuel’s Lemma)
that any two choice of presentations give rise to stably isomorphic syzygies, and that one obtains a
well-defined functor Q2 : mod R — mod R. The functor €2 preserves the subcategory of MCM modules,
and since R has finite injective dimension, any syzygy module Q"(N) is MCM for n > 0 (note that

n > d is enough). By a fundamental result of Buchweitz, all MCM modules are actually of this form.
Proposition 1.3.20 (Buchweitz). The following are equivalent over R Gorenstein:

i) M is an MCM module.

it) For every n > 0, there is an R-module N such that M = Q™(N).

Proof. Let P = M be a projective resolution and ) —+ M* be a projective resolution of the dual. Since

M is MCM, so is M* and by cohomology vanishing Ext70,(M*, R) = 0 we have a quasi-isomorphism
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~ ~

M = M** = @Q*. Composing the quasi-isomorphisms P = M = M** = Q*, we obtain an acyclic
complex of projectives by taking the (shifted) cone C, = Cone(P — Q*)[—1]

Py

50 Qo Q7
. y 7

Truncating the complex C, sufficiently far to the right reveals M as the n-th syzygy module of N =
coker(C_,,+1 — C_p). O

Extracting a definition from the above proof, we set:

Definition 1.3.21. A complete resolution C, — M of an MCM module M is an infinite acyclic complex

of finite projectives whose non-negative truncation resolves M.

As for projective resolutions, complete resolutions are unique up to homotopy and, when R is local
(or graded local), admit a minimal model which is unique up to non-canonical isomorphism. Let us
write proj(R) C Grmod R for the full subcategory of finitely generated projectives. We denote by
Kac(proj(R)) the homotopy category of complete resolutions, or equivalently the homotopy category of

acyclic complexes of finitely generated projectives.

Proposition 1.3.22 (Buchweitz [28]). The functor C, — coker(Cy — Cy) gives rise to an equivalence
of categories ICoc(proj(R)) = MCM(R). The inverse sends M to its complete resolution.

The triangulated structure on MCM(R)

The homotopy category Ku.(proj(R)) is naturally triangulated, and we pull back the triangulated struc-

ture onto MCM(R). Let us describe some of its main features:
i) Suspension: We have M[1] = XM = cosyzr (M) with inverse M[—1] = QM = syzr(M):

..4>C1 CO C_1 C_Q—>...
™~ N 7 N T
QM M XM

ii) Distinguished triangles: The distinguished triangles in MCM(R) are the images of short exact
sequences of MCM modules in MCM(R).

iii) Mapping cones: Given a map f : M — M’, first embed ¢ : M < C_; into a projective module and
define Cone(f) := Coker(: @ f : M — C_; & M'). We have a distinguished triangle

of Coa®M
/ 12 \
M M’ Cone(f) —=XM

e ~

where the map Cone(f) — XM is induced from the quotient C_; — XM.

0 0
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Tate cohomology

Every triangulated category carries a natural cohomology theory by taking Hom into a fixed object. In

the present context, this gives rise to Tate cohomology. Slightly more generally, we define:

Definition 1.3.23. Let N be an R-module and M an MCM module, with complete resolution C, — M.
For n € Z, we define the n-th Tate cohomology group of M with coefficients in N by

Exth (M, N) := H"Hompg(Cy, N).
Proposition 1.3.24 (|28]). Tate cohomology has the following properties.
i) We can calculate Ext'y (M, N) via:

Ext's (M, N) n>1
Exth(M,N) = ¢ Homy(M, N) n=20
Tor®, (N, M*) n< -2

and we have a short exact sequence

0 — Extp'(M,N) — N @z M* <% Homg(M, N) — Ext% (M, N) — 0.

i) We have Extls™ (XM, N) = Ext’y(M, N) = Ext’"}(QM, N).
iii) Let N be a perfect module. Then Extr(M,N) =0 for alln € Z.

iv) Let N be an MCM module with complete resolution D.. Then the natural map D, — N induces a

quasi-isomorphism of Hom complexes
HomR(C’*, D*) l) HomR(C*, N)
Hence we have natural isomorphisms H"Homp(Cy, D,) = Exth (M, N). In particular

HHompg(Cy, D,) = Homp (M, N).

Stable derived categories and Buchweitz’s equivalence

Next, consider the bounded derived category D?(R) and its subcategory of perfect complexes DP*f(R) =

thick(R), meaning complexes quasi-isomorphic to a bounded complex of projective modules.

Definition 1.3.25. The stable derived category of R, also called singularity category, is the Verdier

quotient

D, (R) = D’(R)/thick(R).

of the bounded derived category of R by the subcategory of perfect complexes.
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The composition of the natural embedding and projection factors as

MCM(R) —— D’(R) ——= Dy, (R)

}

MCM(R)

Theorem 1.3.26 (Buchweitz [28]). The induced functor MCM(R) =N Dsg(R) is an equivalence of

triangulated categories.

Implicit in this theorem is the existence of an exact functor
(=) : D*(R) — Dyy(R) = MCM(R)

which we call MCM approximation, or stabilization. We can describe it as follows: let F' € D*(R) be
a complex with bounded cohomology and take a projective resolution P, = F. Since P, has bounded
cohomology, its tail P>, is exact and resolves an MCM module for n > 0, say M = Coker(P,41 — Py).
Now, note that we can realise P, as the shifted cone P, = Cone(P>,, On, P<y,_1[1])[—1], which gives rise

to a distinguished triangle in D*(R)

P, P>y Pﬁn—l[l] — P[]
2 2 [ 2
F —— M[n] —— P<,,_1[1] —— F[1]

with P<,_; perfect, and so F** = M[n] = cosyz%(M) in MCM(R). When F = N is a module in D°(R),
we have a stronger statement:

Proposition 1.3.27 ([28]). Let N be an R-module. There is a short exact sequence of R-modules
0P N'"N=0

P perfect and Nt MCM, unique up to stable isomorphism.

Corollary 1.3.28. Tate cohomology is representable. That is, for any R-module N, we have natural

isomorphisms
Exty(M, N) 2 Hom (M, N*'[n])

for all M MCM and n € Z.

In particular Tate cohomology forms a cohomological functor on MCM(R), in that any distinguished

triangle gives rise to a long exact sequence of Tate cohomology groups.

Auslander-Reiten-Serre duality and Almost-Split sequences

A standard concern of representation theory is the classification of indecomposables in various settings.

This mostly make sense only in the context of Krull-Schmidt categories.

Definition 1.3.29. Let C be an additive k-linear category. We say that C is Krull-Schmidt if End¢(X)
is local for each X € C, in the sense that End¢(X)/rad Ende(X) is a division ring,.



CHAPTER 1. INTRODUCTION 20

Each object in a Krull-Schmidt category has an essentially unique decomposition X = @;_, X Des

K2

with {X;} indecomposables, which we assume pairwise non-isomorphic with multiplicity e; € N.

Proposition 1.3.30. Let R be a Gorenstein ring, which is either complete local commutative or graded
connected. Then the k-linear categories MCM(R) and MCM(R) are Krull-Schmidt when R is complete
local (resp. MCMZ%(R) and MCM?(R) when R is graded connected).

Throughout this subsection we assume that R is as above. In this case, for any MCM module M
(resp. graded module), we write M = F @ [M] for F the largest free summand of M and [M] the
remaining sum of indecomposable summands. It follows from the Krull-Schmidt property that M and
M’ are stably isomorphic if and only if [M] and [M’] are isomorphic, and so the classification of MCM
modules reduces to the classification of indecomposable objects in the stable category. Note that the

stable category is idempotent closed since any indecomposable object has local endomorphism ring.

We now review standard background that is common to algebraic geometry, commutative algebra

and representation theory of Artin algebras.

Definition 1.3.31. Let 7 be a triangulated Hom-finite k-linear category. A Serre functor for 7 is an

exact autoequivalence S: 7 — T equipped with natural isomorphisms
Homy(X,S(Y)) = DHomy (Y, X).

When they exist, Serre functors are unique up to isomorphism.

When X is a smooth projective variety over k, the functor Sx(—) = — ®p, wx[dim X] is a Serre
functor for D¥(X). It is quite remarkable that this extends to the stable category of MCM modules.

Definition 1.3.32. A local (resp. graded local) commutative ring R = (R, m, k) has isolated singularities
if R, is regular for each p € spec R\ {m} (resp. homogenecous primes p € spec*R \ {m}).

Proposition 1.3.33 (Auslander [0], [64]). Assume that R has isolated singularities. Then MCM(R) is
Hom-finite, and Sg(—) = — @pwg [dim R — 1] is a Serre functor for MCM(R) (resp. for MCMZ%(R) in
the graded case).

Note that when R is a standard-graded, connected k-algebra, the punctured spectrum spec R \ {m}
forms a G,,-bundle over X = proj R, and so R has isolated singularities if and only if X is smooth. We

will use this fact implicitly throughout the thesis.

Serre functors were independently discovered by Auslander and Reiten in the guise of the translate
T, introduced in the context of stable module categories, see [7]. In [88], Reiten-Van den Bergh studied

7 in the context of a Krull-Schmidt Hom-finite k-linear triangulated category 7. Let
XY zZ58 X
be a distinguished triangle in 7. We call £ an almost-split triangle if

i. X and Z are indecomposable,

ii. h#0,
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iii. if W is indecomposable, then for every non-isomorphism ¢ : W — Z we have ht = 0. Equivalently,

we have a lift as in the diagram below

X vy -7

Proposition 1.3.34 (Reiten-Van den Bergh, [88]). Assume that k is algebraically closed. The following

are equivalent:

1. Fach indecomposable Z of T sits inside an almost-split triangle, say

7Y = 25 7)1

2. T admits a Serre functor S.

In this case T = S o [—1] and the map Z LN T7Z[1] = S(Z) classifying the extension is Serre dual to the
trace map End(Z) — End(Z)/radEnd(Z) = k.

Now for T as above, the Auslander-Reiten quiver I'(7) is the quiver whose vertices are the iso-
morphism classes of indecomposables of 7 and arrows taken from a basis for Irr(X,Y’), the space
of equivalence classes of irreducible maps between indecomposables (see e.g. [46] for details). The

Auslander-Reiten quiver I'(7) is related to almost-split triangles as follows.

Proposition 1.3.35 ([46], 4.8]). Let X, M,Z be indecomposable objects in T and X —Y — Z — X]1]
almost-split, with ¥ = @Zzl Yi@ei decomposed into pairwise non-isomorphic indecomposables. Then
Irr(X, M) # 0 if and only if M 2Y; for some i, in which case e; = dim Irr(X,Y;).

Remark 1.3.36. The Auslander-Reiten quiver of MCM(R) was defined in [I07] in terms of almost-split
short exact sequences. It is immediate that almost-split sequences descend to almost-split triangles in
MCM(R), and one obtains the Auslander-Reiten quiver of MCM(R) from that of MCM(R) by removing

the vertex corresponding to R.

Complete resolutions over complete intersections rings

Let @ be a regular local ring with element f € @, and set R = @/ f the hypersurface ring. Complete
resolutions of MCM modules over R take a rather simple form using a construction of Eisenbud [41],
[107, Chp. 7].

Let M € MCM(R) be an MCM R-module, so that depthy M = dim R = dim @ — 1. The Auslander-
Buchsbaum formula for the projective dimension of M over @ gives pdimg M + depthgy M = dim @,
since depthy M = depthp M = dim @ — 1 gives pdimy M = 1. Hence we have a length two resolution

0 F G M 0

with F, G finite free modules over ). Moreover, M is annihilated by f and so multiplication by f on
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the deleted resolution must be nullhomotopic

0 F -G 0
/v/
0 F—2.¢g 0.

That is, we have factorisations f -idg = AB and f -idp = BA. Since f is a regular element, A and B
become isomorphisms over Q[f~!] and so the free modules F' and G have the same rank, say r. The
tuple (A, B) then forms a pair of r x r matrices in @ whose product is the diagonal matrix f - I.. Such

a pair is called a matrix factorisation of f.

Since f is regular, it isn’t hard to see that the complex obtained from the above by applying — ®¢g R
and extending by 2-periodicity is acyclic

GLFo..

E

F

1=l

T

and yields a complete resolution of M over R. It follows that all complete resolutions and MCM
R-modules are described by matrix factorisations. We note that this extends to an equivalence of

triangulated categories
MF(Q, f) = MCM(R)

between the homotopy category (or stable category) of matrix factorisations, and the stable category
of MCM R-modules (see [I07, Chp. 7] for details on this category). Lastly, all results above extend

naturally to graded modules over graded hypersurface rings.

Finally, we note that the description of complete resolutions of MCM modules above was extended
to arbitrary complete intersections R = Q/(f1,- - , fe) by Buchweitz-Pham-Roberts in [29].

Orlov’s semiorthogonal decomposition Theorem

Finally we arrive at Orlov’s Theorem, following [78]. We will sketch the basic statement and refer to
Appendix and [78] for the more general picture. Let k be a field and R a commutative, standard-

graded, connected Gorenstein k-algebra (or more generally a noncommutative Artin-Schelter Gorenstein

algebra, see Appendix [A.3)).

In such a scenario, the projective scheme X = proj R and its derived category D’(coh X) are closely
related to the singularity category ng(R). Recall that by Serre’s Theorem, we can reconstruct coh X =
qgr R as the quotient category of finitely generated graded R-modules grmod R, modulo the Serre
subcategory of torsion modules. For any choice of cut-off i € Z, denote by grmod; R the full abelian
subcategory of graded R-modules with M; = 0 for j < i. The quotient functor 7 : grmod R — coh X

restricts to an essentially surjective exact functor m; : grmod; R — coh X.

The functor 7; admits a right adjoint I'>; : coh X — grmod; R given by

I>i(F) = PI(X, F(n))

n>i
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with its natural graded R-module structure. Moreover, we have a natural isomorphism m; o I's; ~ id

and so I'>; is fully faithful. This extends to an adjoint pair on derived categories
i Db(grmodzl- R) = D(qgrR) : RT's;
with RI'>; fully faithful and m; essentially surjective.

We have another Verdier quotient st : D¥(grmod R) —» DZ,(R) = MCMZ#(R) given by stabilisation,
or MCM approximation. Following an observation of Buchweitz, the stabilisation functor also admits a

left adjoint. Given on an MCM module M, first pick a complete resolution C'
o= Cpy1 2 Cp = Cpy — -

Quotienting out the subcomplex C|.;; € € whose terms are given by summands generated in degree less
than ¢, one obtains this way a complex C[> € D?(grmod >; i) with at most bounded cohomology, which
is functorial in M and provides a left adjoint to stabilisation (see Appendix and Prop. for
details). With slight abuse of notation, we denote this by:

()= D%Q(R) = Db(grmodZi R) : st

Moreover, we have st o (—);>;) =~ id, and so (—)[>; is also fully faithful. We may then compose both

adjoints as shown below:

D(grmod; R)
(=1 RI'>;
: b
DZ,(R) = DP(coh X)

This yields an adjoint pair (®;, ¥;) with ®; = m; o (=)[»; and ¥; = st o R'>;. Note that while the
categories D?(coh X) and ng (R) do not depend on the resulting cutoff ¢, both functors (®;, ¥;) do and

will generally differ as ¢ varies.

The following is Orlov’s semiorthogonal decomposition theorem in the current setting. We refer
to [78], [32] or Appendix for the more general statement and for the definition of semiorthogonal

decomposition.

Theorem 1.3.37 ([78, Thm. 2.5]). Let R be a commutative, standard-graded, connected Gorenstein k-
algebra with projective scheme X = proj R, and a-invariant a € Z. The above functors and triangulated

categories are related as follows:

i) (Fano case) if a < 0, there is a semiorthogonal decomposition
RT'>; (D’(coh X)) = (R(—i+a+1),R(—i+a+2),...,R(—i), D% (R)[>)-
Applying m;, this descends to a semiorthogonal decomposition

D’(coh X) = (Ox(—i+a+1),0x(—i+a+2),...,0x(—i),®D% (R))).

59
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ii) (Calabi-Yau case) if a =0, the essential images of both embeddings in Db(grmodZi R) are equal
D%, (R)(>q = RI'>;(D"(coh X))
hence (®;,¥;) give inverse equivalences
®; : D7 (R) = D(coh X) : ;.
i11) (General type case) if a > 0, there is a semiorthogonal decomposition
D2, (R)»i = (k(=i), k(=i —1),..., k(=i — a+1),RT'>;1,D"(qgr R)).
Applying the stabilisation st, this descends to a semiorthogonal decomposition

D2 (R) = (k**(—i), k" (=i — 1),...,k*" (=i — a + 1), ¥;; ,D’(coh X)).

24
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Chapter 2

Graded Gorenstein rings with tilting
MCM modules

2.1 Some history: Tilting theory, exceptional singularities and

low dimension

A classical problem of algebraic geometry asks for the realisation of a vector bundle £ on projective

space P =P(V) over a field k as the zeroth cohomology sheaf of a complex of ‘known’ vector bundles
0—=-&n— =& =&, —0

with cohomology concentrated in degree 0 and where & a sum of bundles of the form O(j), A*Tp(j) or
pr,g (j) for j € Z. This problem was solved in its general form by Beilinson [I§], who proved that every

coherent sheaf F over P was quasi-isomorphic to a complex of the form
0—-& — =& —>-—=E,—0

with general term

& =EPHT(P", F(—5)) @k U (4)
J
as well as to one with terms

& =EPH T (P, F @ Q(j)) @ Opn (—)).

J

These complexes are known as the Beilinson monads (see [43] for a constructive approach). Beilinson’s

approach took a derived category perspective: he showed that the sequences of sheaves
(Q"(n), Q" '(n—1),...,Q(1),0)

(O(—n),0(-n+1),--- ,0(-1),0)

26



CHAPTER 2. GRADED GORENSTEIN RINGS WITH TILTING MCM MODULES 27

form full, strong exceptional collections in D®(P"), meaning that upon setting F; = Q"~%(n — i) (respec-
tively E; = O(—n +1)), for 0 < i,5 <n and [ > 1 we have
0, i>j

Hom(FE;, E;) = Ext!(E;, E;) = 0 for all 4, j
k, i=j

and that D?(IP") is the smallest triangulated subcategory closed under direct summands containing the
{E;}. Letting T = @, E; and A = End(7), it follows [31, Thm. 1.8] that we have inverse equivalences

of triangulated categories
RHom(T,—) : D*(P") S D*(A) : —@% T (2.1)

onto the derived category of a finite dimensional noncommutative k-algebra A. This sends the E; onto
the indecomposable projective A-modules, and pulls back a general complex of A-modules to a complex

whose terms are sums of €7 (j) (respectively O(—j)).

Equivalences of the form for smooth projective varieties X have been heavily studied since, and
they are always induced from a special object 7' € D?(X). It isn’t necessary that the indecomposable
summands of T' = @, T; form a full strong exceptional collection. Rather, the slightly weaker condition
is that T be a tilting object.

Let T be a triangulated k-linear category. For F € T, we denote by thick(F) C T the smallest
triangulated subcategory containing F closed under direct summands. We say that 7' € T is tilting if it

is a classical generator for 7 with no non-trivial self-extensions, that is:

1) (Generating) We have thick(T) = T, that is T is the smallest triangulated subcategory containing T

and closed under summands.
2) (No self-extensions) We have Homt (T, T[n]) = 0 for n # 0.

Other variants of the definition are in use but the above suffices for our purpose (See [3I], Section 1] for

a general discussion).

Let X be a smooth projective variety over k with a tilting object 7 € D?(X). The general picture is

given as follows:
Theorem 2.1.1 ([3I, Thm. 1.8]). We have the following properties:
1) The endomorphism algebra A = End(T) is a finite dimensional k-algebra of finite global dimension.

2) There are induced equivalences of triangulated categories
RHom(T,—) : D’(X) = DP(A) : — &% T.

Finite dimensionality of A is a consequence of the properness of X over k, while finite global dimension
actually follows from X being smooth. Varieties with tilting objects include projective spaces, quadric
hypersurfaces, Del Pezzo surfaces, some Toric varieties and generalised flag varieties, and furthermore

any products of such X or iterated projective bundles over a base S with a tilting object.
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Theorem [2.1.1]is a specialisation of Keller’s derived Morita Theorem.

Theorem 2.1.2 (Keller, [61]). Let T be an (algebraic) triangulated k-linear category with a tilting object
T. Let A = Ends(T). Then there exists an equivalence of triangulated categories

RHom7 (T, —) : T —» DP*(A)

onto the subcategory DPf(A) = thick(A) C D(A) of perfect complexes, meaning complezes quasi-

isomorphic to bounded complexes of finitely generated projectives.

All triangulated categories appearing in this thesis will be algebraic, see [61] or the appendix for the
definition. Note that we have DPef(A) = D®(A) when A is Noetherian of finite global dimension.

This thesis is concerned with tilting objects in the triangulated category 7 = MCM*(R), the stable
category of graded MCM modules over a graded Gorenstein k-algebra R, which is a close cousin of the
triangulated categories of the form D?(X). The role of tilting theory for MCM modules first came to
the front in the study of Kleinian singularities and the McKay correspondence, and we review some of

this story.

The McKay Correspondence

Let k here be an algebraically closed field of characteristic zero, and let G < SL(2,k) be a finite
subgroup. The possible such subgroups G up to conjugacy were classified by Klein, and are in one-to-
one correspondence with the simply-laced Dynkin diagrams of type ADE (where p below denotes the

number of vertices):

Ay ° ° ° ° n>1

D, : . ° o/ w>4
\

Fg : ° ° ° ° °
.
.
FEs: ° ° ‘o ° ° ° °

Let ¢, be a primitive n-th root of unity. The classification of finite subgroups G < SL(2, k) is as follows,
up to conjugacy [107, 10.15]:

A, + The cyclic group of order pt 4+ 1

L C;L+1 0 >
C,:=
' << 0 C;i1>
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D,, : The binary dihedral group of order 4(u — 2)

0
D, = < <<4 Cg) ) 02,L+5>

Eg : The binary tetrahedral group of order 24

/1 s G >
_<\/§<C8 Cs7>7D4

E7 : The binary octahedral group of order 48

o-((§ 2)

Eg : The binary icosahedral group of order 120

I <1 G-G G-¢\ 1 (G- ¢-1 >
VE\G -G ¢-¢) Vvi\1-¢G -6
Let S = k[u,v] and R = SY, so that X = spec R = A2//( is the associated quotient singularity. Let

Q be the Dynkin graph associated to G = Gg. The graph () has many natural incarnations throughout

this story. In particular:
1) The ADE graph @ is the dual graph of the exceptional divisor in the minimal resolution 7 : X = X.

2) The extended ADE graph @ arises as the McKay graph associated to the representation theory of
G, with extended vertex corresponding to the trivial representation of G. The McKay graph of
G has vertices {V;} a representative set of all irreducible representations of G, with multiplicity
of edges between (V;,V;) given by dimy Homyg(V; ® V,V;) where V is the standard 2-dimensional
representation of G < SL(2, k:)E|

3) Over k = C, the root system of type @ arises as the vanishing cohomology (or Milnor lattice) of the
generic fibre X} in the semiuniversal deformation X — B.

The Kleinian singularities X = A%//G form one of the most exceptional setting in all of algebra and
geometry, and have many intrinsic characterisations. The coordinate ring R = S¢ is always generated
by three fundamental invariants satisfying one relation, and so the invariant ring is isomorphic to a

hypersurface ring S¢ = k[x,y, 2]/ f, with f given by:
(Ap) f=a+ytt+2% p>1
(D) f=ay+yr +2° np>4

(Be) f=a®+y*+ 22

1Note that the edge multiplicity is well-defined: any choice of isomorphism /\2 V = k with the trivial G-representation
gives V = V* equivariantly, so that dim, Homgg (Vi ® V., V;) = dimy Homgg (Vi, V @ V) = dimg Homyq (V; @ V, V).
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(B7) f=a®+ay’+2°
(Bs) [=a®+y°+2°

When working over C, the above list of ADE polynomials give the local normal forms for the “simple”
hypersurface singularities classified by the Arnold school of singularity theory, up to adding or removing

squares in disjoint variables to vary dimension.

Taking a more commutative algebraic perspective under the Auslander school, one notes that the
invariant ring R = S¢ C S is Gorenstein, and that S is a maximal Cohen-Macaulay module over R.

Furthermore, the natural G-equivariant decomposition

S = Homyg(kG, S) = EB Homyg (V;, S)
Vj
= Homk(Vj, S)G

Vi

is a decomposition of S into indecomposable MCM R-modules, where {V;} runs over the irreducible
representations of G with the same multiplicity as they arise in kG. Moreover, one can run the same

construction over the completion S = k[[u, v]] and R= k[[u,v]]¢ to obtain MCM modules over R.

Theorem 2.1.3 (Auslander [107, Cor. 10.10])). The above gives a bijection between irreducible G-
representations and indecomposable MCM R-modules. This sends the trivial representation to the free

module R.

Since there are finitely many indecomposable MCM ﬁ—module, the Gorenstein ring R is said to be of

finite MCM representation type (or CM-type for short). This turns out to characterise ADE singularities.

Theorem 2.1.4 (Buchweitz-Greuel-Knorrer-Schreyer [107, Thm. 8.10, Cor. 12.6]). Let A = k[[z1,- -+ , x4]]/(9)
be a complete hypersurface ring over k with g € (x1,--- ,x,)?. Then A is of finite CM-type if and only
if A2 K[z, y,25,...,2,]]/(f) with f an ADE polynomial in n > 2 variables:

(Au) f:$2+y“+1+zg+”'+z1%7 M>1

(Dp) f=a?y+yrt + 25+ + o, p >4
(Be) f=a"+y* +25+--+ 2,
(Br) f=a3+ay> + 22+ +22
(Bs) f=a3+y>+22+--- 422

Theorem 2.1.5 (Herzog [107, Cor. 8.16]). Let A be a complete Gorenstein local k-algebra. If A is of
finite CM-type, then A is a hypersurface singularity, and therefore an ADE hypersurface singularity.

Let us denote by MCM(R) the projectively stable category of MCM R-modules obtained by killing
morphisms factoring through projective modules. Rephrasing the above homologically, as one runs over
Gorenstein complete local k-algebras R, the triangulated categories of the form MCM(R) with finitely

many indecomposables are precisely given by the ADE hypersurface singularities.
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The search for triangulated categories of ‘finite representation type’ is one of the central problem of
abstract representation theory, where the ADE graphs feature prominently. Recall that amongst the
acyclic quivers @, the ones of finite representation type are precisely the quivers whose underlying graph
is of type ADE.

The representation theory of the ADE quiver @) (with arbitrary choice of orientation) actually arises
as part of the above storyline. To see this, consider again the Kleinian singularites X = A%2//G, and note
that the invariant ring R = S = k[u,v]“ inherits a grading from the standard grading on S = k[u, v]
with |u| = |v] = 1, obtained by taking G-invariants in each degree. For simplicity, let us restrict to
the case of |G| everﬂ In this case, the fundamental invariants x,y,z € S of G have even degrees with
ged(|z|, |y],|2]) = 2, and R = @,, Ran is properly supported in even degrees. We hence regrade R by

halving the degrees of its homogeneous elements.

Since R is graded, we may consider the stable category of graded MCM modules MCMZ (R). Recall
that graded modules have a degree shift operator given by M — M (1) where M (1), = My41.

Theorem 2.1.6 (Kajiura-Saito-A.Takahashi, Iyama-R.Takahashi [58] [64]). There is a tilting object
T € MCM”(R) with endomorphism algebra End , (T) = kQ, the path algebra of Q. Hence there is an

equivalence of triangulated categories
MCMZ%(R) = D*(kQ).

In particular, this identifies the Grothendieck lattice K (MCMZ(R)), equipped with the symmetrized Euler
pairing, with the root lattice of Q. Moreover, this equivalence sends the degree shift operator M +— M (1)
to the Auslander-Reiten translate T = — ®I,[;Q D(kQ)[-1] on D*(kQ).

The indecomposable MCM R-modules M; := Homy(V}, S )¢ are naturally graded modules. Combin-

ing the above results, we obtain bijections between isomorphisms classes of:

i. Irreducible representations of G other than the trivial representation.

ii. Indecomposable non-free graded MCM modules up to degree shift.
iii. Orbits of indecomposables under the Auslander-Reiten translate 7 in D?(kQ).
iv. Vertices of Q.

The bijection i <> i is Auslander’s, ii <> 4ii follows from Theorem [2.1.6] while iii <> iv follows since
kQ has finite representation type, so that each indecomposable complex is in the 7-orbit of a unique
indecomposable projective k@-module, which are indexed by the vertices of (). This gives a powerful
extension of McKay’s observation of the bijection ¢ <+ iv. By a theorem of Keller-Murfet-Van den Bergh
[62], the equivalence above further descends to an equivalence of triangulated orbit categories (in the
sense of Keller [59])

MCM(R) = MCM?(R)/(1) = D*(kQ) /7

and one recovers the McKay quiver (except for the vertex corresponding to the trivial representation)

by taking the Auslander-Reiten quiver of either category.

2This covers all groups G except for the odd cyclic group of order p2n4+1 corresponding to the Ag, singularity. All
results stated below have their analog for this case after suitable modification.
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Existence of tilting objects

Fix an algebraically closed field k. In the first part of the thesis, we will be interested in the following

central question and its applications:

Question 2.1.7. Let R = @nZO R, be a non-negatively graded Gorenstein k-algebra. When does the
triangulated category MCM? (R) admits a tilting object?

Many interesting results have been obtained by Iyama and his collaborators, and we first review their

work. For a more complete recent survey, see [53].

One can first extend the tilting result for Kleinian singularities to higher dimensional quotient sin-
gularities. The following is due to Iyama-Takahashi (but see also [7] for a noncommutative variant
and a different interpretation). Let S = k[z1,...,z,] be the standard graded polynomial algebra, and
recall that we write Q%(—) to denote i-th syzygy. Given an R-module N below, we let [N]cm denote the
largest MCM summand of V.

Theorem 2.1.8 (Iyama-Takahashi, [54, Thm. 1.7]). Let G < SL(n, k) be a finite group with char k 1 |G|,
and let R = S C S inherit the natural grading. Then MCMZ(R) admits a tilting object U given by

Example 2.1.9 (54, Ex. 7.16]). Let C5 = (diag(w,w,w)) C SL(3,k) with w a primitive third root of
unity in k and char k # 3. Let @ be the 3-Kronecker quiver

Then End,, »(U) = kQ x kQ x kQ, so that MCM*(R) = D*(kQ) x D*(kQ) x D*(kQ). The i-th copy of
D’(kQ) corresponds to the subcategory MCM ™ 3%(R) of graded MCM modules M = (M,,) supported
in degrees n =i (mod 3).

Dimension zero

The first systematic result is the next theorem of Yamaura, which provides a complete characterisation

of Gorenstein algebras with tilting objects in dimension zero.

Theorem 2.1.10 (Yamaura, [105, Thm. 3.1]). Let A = €P,,5, An be a finite dimensional graded self-
injective algebra A, so that MCM?%(A) = mod”A. The following are equivalent:

i) mod”A admits a tilting object T.
i) gldim Ay < oo.

When this holds, letting a > 0 be the mazimal degree of A = @ _, An, we may take T = @3;01 Al)<o =
@::01 AJA>iy1(i). Letting A = End, ,(T), we have gldim A < oo and we have an isomorphism of
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algebras
Ag Ay o0 Ag2 Au
Ag o0 Auz Ag2
A= : :
Ag Ay
Ag

Example 2.1.11. Let A = Ag @ A1 @ A2 = k@ V & k, with multiplication given by a perfect pairing
V xV — k, extended as a unital graded algebra structure to all of A. It is easy to see that A is

self-injective, and since Ay = k, Yamaura’s result applies to give a tilting object with endomorphism

= 3)

Equivalently, if n = dim V' with basis {z;}, then A = kQ,, for @,, the n-Kronecker quiver

algebra

Example 2.1.12. Let A = A"V = A (y1,...,Yn) be the exterior algebra on an n-dimensional vector
space. Then A is given by

EV oo ANTPVvOANTVY
koo NTPVONTRY
A= : :
k 1%
k

Equivalently, A = kQ/I is given by the quiver path algebra of @

{y:} {ys} {yi} {yi} {y:}

with n — 1 vertices, and relations on paths of length two y;y; + y;y; = 0 for ¢ # j, and y;; = 0.

Example 2.1.13 (Happel’s Theorem, [I05, Ex. 3.15]). Using his theorem, Yamaura gave a simple proof
of a theorem of Happel. Let A be a finite dimensional k-algebra with gldimA < co. Define T'(A) = Ax DA
to be the trivial extension algebra of A by the bimodule DA = Homy (A, k), with multiplication

(z,0)(a', ") = (w2’ 29" + pz’).

Grade T'(A) as T(A)g = A, T(A); = DA and T'(A),, = 0 otherwise. Then T'(A) is a graded self-injective
algebra with gldim T'(A)y < oo, and T = A is a tilting object in modZT(A). It follows that we have an

equivalence of triangulated categories
D’(A) = mod” T'(A)

which is the content of Happel’s Theorem.
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Dimension one

The next theorem due to Buchweitz-Iyama-Yamaura [27] establishes the existence of tilting objects in
dimension one, at the cost of imposing a few conditions. We briefly review their results under the

simplest hypotheses, and refer to [27] for the general results.

Here we let R = @,,~, Ry, be a graded connected, finitely generated, commutative reduced Gorenstein
k-algebra of Krull dimension one. One may see [27, Lemma 4.9(a)] that any such algebra with a < 0
must be isomorphic to R 2 k[t] with |t| = —a > 0, and so without loss of generality we impose a > 0.
Let K = Q(R) be the (homogeneous) total field of fraction of R, obtained by inverting all homogeneous

non zero-divisors. We have an isomorphism of graded algebras
-
K= ]kt t;1]
j=1

with [t;| > 1. The number r is the number of branches of the singularity spec R. Let p > 1 be the
least integer degree of a non zero-divisor z € m = R>;. At least one non zero-divisor exists since R is
Gorenstein and in particular Cohen-Macaulay, and by a prime avoidance argument one can assume that

x € m\ m?, and so one sees that p = 1 whenever R is generated in degree one.

Theorem 2.1.14 (Buchweitz-Iyama-Yamaura, [27]). The category MCM”*(R) admits a tilting object

a+p a a+p
T=@R=i(i) = (@ Rzz’(i)> D < D Rzi(i)> :
i=1 =1 i=a+1

Moreover, the objects R>;(i) for 1 < i < a are exceptional. The remaining module has semisimple

endomorphism ring and decomposes into indecomposables as

a+p r
D i) = D E
i=a+1 j=1

with v distinct indecomposables up to multiplicity.

Example 2.1.15 (Buchweitz-Iyama-Yamaura, [27, Thm. 2.3(d)]). Let f € k[x,y] be a homogeneous
polynomial of degree d > 2 with squarefree decomposition into irreducibles f = f1fs... fy. Since k is
algebraically closed, all irreducible factors f; = a;x + b;y are linear forms. The ring R = k[z,y]/(f) is a
reduced Gorenstein ring with a-invariant a = d — 2 whose spectrum gives the cone over d points on P*,
and so we have r = d branches and moreover p = 1 since R is generated by R;. Writing m = R>,, we
have T = m(1)om2(2)@- - -@m?~2(d—2)@m?~1(d—1), with endomorphism algebra End,, p(T) = kQ/I
given by the quiver @
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with a ‘tail’ of length a = d — 2 and r = d many vertices to the right, with relations zy = yx and
pi(a;x + byy) = 0.

We will make use of special cases of this theorem in Chapter 3, to investigate the construction of
MCM modules over certain curve singularities of tame CM representation type. In particular, and for
completeness we will prove special cases of Thm. [2.1.14] although in cases which circumvent the main

difficulties in the above theorem.

Finally, we refer to [53] for more examples of graded Gorenstein algebras admitting tilting objects.

2.2 Hodge theory obstruction in higher dimension

In this section, graded Gorenstein algebras will denote a graded connected commutative Gorenstein
k-algebra R = @, Rn. In this case, R is graded local with homogeneous maximal ideal m = R, .
We say that R has 7(graded) isolated singularities if R, is regular for each homogeneous prime p # m.
Zero dimensional rings vacuously have isolated singularities, and one dimensional rings have isolated

singularities if and only if they are reduced.

We can restate the results of the previous section as follows.

Proposition 2.2.1 (Yamaura, Buchweitz-Iyama-Yamaura). Let R be a graded Gorenstein algebra sat-
isfying dim R < 1, with at most isolated singularities. Then MCM”(R) has a (canonical) tilting object
T.

Going up in dimension, one has the natural question:

Question 2.2.2. Let R be a graded Gorenstein algebra, with dim R > 2 and at most isolated singularities.
When does MCMZ(R) have a tilting object?

The tilting problem for singularity categories is closely related to the tilting problem for D’(X) on an
algebraic variety X, which is known to be heavily obstructed. Similarly, it isn’t hard to find a Gorenstein

algebra R with no tilting object.

Example 2.2.3. Let R = k[x,y, z]/(f) for f a cubic polynomial with isolated singularities at the origin.
Then a = |f| — || — |y| — |2| =3 — 3 =0 and so wg = R. Therefore the Serre functor for MCM*(R) is
given by

Sr(—) = — ®@rwg[dim R — 1] = (-)[1]

and so MCM”(R) is 1-Calabi-Yau. Thus there can be no equivalence MCM”(R) = DPf(A) since

projective modules in mod A C DPef(A) cannot exist in an n-Calabi-Yau category for n # 0.

In the above example note that £ = proj R is a plane elliptic curve, and by Orlov’s theorem, since
E is Calabi-Yau have an equivalence of categories MCM?*(R) = D?(E). The tilting problem for D*(E)

is obstructed for the same reason (and several more, see below).

For the remainder of Chapter 2, R graded will refer to R being connected standard graded, meaning
that Ry = k and R = Rg[R1] is generated in degree one over k. We let X = proj R be the associated

projective scheme. In general, one may conjecture the followingﬂ

3This can be stated more generally but we will stick to these hypotheses.
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Conjecture 2.2.4. Let R be a graded Gorenstein algebra with isolated singularities. Then the following

are equivalent:
1) MCM?%(R) admits a tilting object T
2) DY(X) admits a tilting object E.

The author has heard this conjecture from O. Iyama, who credits it to G. Stevenson. Using Orlov’s
semiorthogonal decompositions and making use of the recent theory of ‘additive invariants’, one may
observe that these two categories share essentially the same principal obstructions to tilting, such as K
being finitely generated free or the category not being Calabi-Yau (of dimension n # 0). In algebraic
geometry, one of the most useful obstructions to tilting is the Hodge obstruction. Recall that we denote
by h?4(X) = dimj, HY(X, Q%) the bigraded Hodge numbers of an algebraic variety X.

Proposition 2.2.5 ([31, Thm. 5.2, Cor. 4.2]). Let k be a field and let X be a smooth projective variety
over k. If DY(X) admits a tilting object £, then h?°(X) = 0 for ¢ > 0. Moreover, if the characteristic
of k is zero, then h?1(X) =0 for p # q.

Using standard methods, it isn’t hard to prove an analogous result for MCM?Z (R), which should be

at least expected if not well-known to experts. We will show:

Proposition 2.2.6 (Hodge obstruction for MCM modules). Let k be an algebraically closed field and
R be a graded Gorenstein k-algebra of dim R > 2, having at most isolated singularities. Let X = proj R.
Assume that MCM”(R) admits a tilting object T. Then:

i) h?%(X) =0 for ¢ > 0.

it) The a-invariant of R satisfies a < 0. In particular X is a Fano variety.
Moreover, if the characteristic of k is zero, then i) may be strenghthened to:

i) h?1(X) =0 forp #q.

The result essentially follows from Hochschild homology computations. One may deduce it from the
additivity properties of Hochschild homology, which falls under the wide-reaching umbrella of the recent
theory of additive invariants introduced by Tabuada [102], 10Tl [72].

However, a recent embedding result of Orlov [79], which we will apply under the mild assumption
that k be algebraically closedEl, allows us to avoid the use of additive invariants, relying instead on more
direct arguments, at the cost of stating various facts in a weaker form that is nevertheless sufficient for

our purposes.

The necessary condition a < 0 when dim R > 2 is an interesting reversal from lower dimension, since
we have seen that ¢ > 0 in dim R < 1 unless R is regular. The author ignores if this still holds if the

assumption that R is generated in degree one is dropped.

The remaining of Section [2.2] will be devoted to the proof of Prop. 2:2.6]

40ne can likely weaken this assumption, but this will be enough for us.
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Hochschild homology of schemes

Fix a field k£ throughout. All k-varieties will be assumed quasi-projective, and we fix such an X to start
and set d = dim X. We first review standard background following [31], [100), [67].

Let A: X — X x X be the diagonal embedding and let Opn = A,Ox be the structure sheaf of the
diagonal. Let M € D(X x X).

Definition 2.2.7 (|31} 3.1]). We define the Hochschild cohomology and homology of X with coefficients
in M by:

1) HH*(X, M) = Ext%, 4 (Oa, M).
2) HH, (X, M) = H~*(X,LA*M).

Note that when M is a quasicoherent sheaf we have HH'(X, M) = 0 for i < 0, and since LA* M € D~ (X)
we also obtain HH; (X, M) = 0 for j < —dim X by Grothendieck vanishing. When M = O, we write
HH*(X) and HH, (X) respectively.

When X = spec R is affine, the diagonal embedding A : X — X x X is induced from the multipli-
cation map R’ := R®; R — R, and so Hochschild (co)homology specialises to the usual definition of
HH* (X, M) = Ext}e.(R, M) and HH, (X, M) = Tor™" (R, M).

When X is smooth affine over k of characteristic zero, the classical Hochschild-Kostant-Rosenberg
(HKR) Theorem asserts that
HH, (X) = HO(X, Q).

R. Swan ([1I00], [52, Rem 6.3]) has constructed, for general X smooth, two Hodge-to-Hochschild spectral

sequences

EDY = HP(X,A\Tx) = HHPMI(X)
EDY = HP (X, Qifiq) — HHpyq—a(X)

the second of which resembles the Hodge-to-DeRham spectral sequence when k = C.

Theorem 2.2.8 ([I00, Cor. 2.6]). When X is smooth over k of characteristic zero, the above spectral

sequences degenerate at FEo. After reindexing, this gives isomorphisms:

HH'(X) = @5 HY(X,A\PTx)
p+q=i
HH;(X) = @ HY(X,0%).

pP—q=1

The second decomposition is often referred to as the general HKR Theorem. In general characteristic,

we have the weaker but useful lemma of Buchweitz-Hille, whose proof we give for completeness.

Lemma 2.2.9 (Buchweitz-Hille, [31, Cor. 4.2]). Let k be a field and X a k-variety. Then H1(X,Ox)

embeds as a direct summand in HH_,(X).
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Proof. We have an adjoint pair (LA*, A,), and note that the counit map LA*(Oa) = LA*(AOx) —
Ox splits after applying A, as in any adjunction. The vector space

HY(X x X,A,Ox) = Homp- (xxx)(Oxxx, AOx[q])
= Homp- (x)(LA*(Oxxx), Ox|[q])
= HY(X,0x)

is then a summand of

HY(X x X, A (LA*(A.Ox))) = Homp - (xxx)(Oxxx, A (LAY (A, Ox))[q])
= Homp- (x)(LA*(Oxxx), LA*(A.Ox)[q])
= Homp- (x)(Ox,LA™(A.Ox)[q])
= HH_,(X).

O

The advantage of working with Hochschild homology lies in its derived invariance, giving flexibility

in choosing models to compute it. Here are a few standard applications.

Example 2.2.10 ([52, Prop. 5.39, Rem. 6.3]). Let X,Y be two smooth projective varieties with
DY(X) = D*(Y). Then we have HH, (X) = HH,(Y), and so in characteristic zero this implies

dOrPUX) = Y RPY).

pP—q=t pP—q=t

Proposition 2.2.11 ([3I, Thm. 4.1, Cor. 4.2]). Let X be a smooth projective variety with a tilting
object T € D*(X), and A = End(T). Then A is finite dimensional over k, gldim A < oo and we have
an isomorphism HH,(X) = HH.(A). In particular, HH;(X) = HH;(A) = 0 for ¢ < 0, and when k is
of characteristic zero we obtain HH;(X) = 0 for all i # 0 by making use of the HKR Theorem and the
Hodge symmetries h?1(X) = hP(X). This is essentially the content of Prop. [2.2.5

The tilting hypothesis on T only plays a role in showing HH;(X) = 0 for ¢ < 0. Working instead
with any classical generator T and setting A = RHome, (T,T), the proof of Buchweitz-Hille actually
shows the following, which is well-known folklore. Recall that we define the Hochschild homology of a
dg k-algebra A by HH, (A) := HH, (A/k, A) := Tor" (A, A), where A%’ = A% @ A.

Proposition 2.2.12. Let X be a smooth projective variety with classical generator T € DY(X) and
differential graded algebra A = RHomoe, (T,T). Then we have an isomorphism HH,(X) = HH,(A) of
Hochschild homologies.

One does not need T to be tilting to have control over the groups HH;(X). Define an object
T € D*(X) to be silting if it satisfies the following weaker conditions:

i) T is a classical generator for D?(X);

ii) Exty (T,7) =0 for all i > 0.
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It follows that RHome, (T, T) may be replaced by a quasi-isomorphic dg algebra, which we denote again
by A by abuse of notation, with the property that A* = 0 for i > 0:

B e N - Y Ly

Regrading A~" = A,,, we observe that A = (A,),>0 is a non-negatively graded homological dg algebra.

For such algebras, one has

Lemma 2.2.13. Let A = ®n20 A, be a non-negatively graded homological dg algebra. Then HH;(A) =
0 fori <O0.

Proof. We have HH;(A) = H;(A ®%.., A) = H;(P ® 4e» A) where P =5 A is any h-projective resolution
of A over A?Y. Since A = A>¢ and A® = AL, it is easy to construct P with the property P = P>q
(e.g. taking P to be the two-sided Bar resolution), and so H;(P ® g4ev A) = 0 for i < 0. O

Corollary 2.2.14. Let X be a smooth projective variety over k with a silting object T € D*(X). Then
HH;(X) =0 fori <0, and moreover HH;(X) = 0 for i # 0 when the characteristic of k is zero.

Before we move to establish the Hodge obstruction result for tilting objects in graded singularity
categories MCMZ(R), we will need a few standard facts concerning Fourier-Mukai transforms. Let X,Y

denote smooth projective varieties over k throughout.

Proposition 2.2.15 (Orlov, Bondal-Van den Bergh [52, Thm. 5.14]). Let F : D*(X) — D®(Y) be a

fully faithful functor. Then F is naturally isomorphic to a Fourier-Mukai transform F ~ @ .

Proposition 2.2.16 ([67, Lemma 6.5]). Let ® : D*(X) — Db(Y) be a Fourier-Mukai transform. Then

there is an induced linear map on Hochschild homology
O HH, (X) — HH,(Y).

Moreover, the above satisfies the following properties:
i) It is natural, in that ®E o @HH = LI “yhere KoL is the convolution product of kernels [52, [677].
ii) Naturally isomorphic transforms ®x ~ @y give rise to equal linear maps ®HLH = GILH

i) Let K = Oa so that ®o, =~ idps(x). Then @gf = idgn, (x)-

Proof. The main claim along with 4) is [67, Lemma 6.5], with the claims #¢) and #i¢) implicit and easy
to see. Note that Kuznetsov uses a different model for HH,(—), and the equivalence with our definition

is given in [67), Prop. 8.1]. O

Remark 2.2.17. Working over k = C and using the Hodge decomposition, one can instead work with the
cohomology groups H*(X;C). Appropriate linear maps ®£ : H*(X;C) — H*(Y; C) were constructed in
[52, Chp. 5, Lemma 5.32, Prop. 5.33|, and one could use these instead in all arguments below.

The following argument is due to Kiem and Lee over k¥ = C but their argument applies equally to

our situation, and we reproduce it here for convenience.

Proposition 2.2.18 ([63, Prop. 4.7]). Assume that the Fourier-Mukai transform ®x : D*(X) — D*(Y)
is a fully faithful. Then the induced map ®H is split-injective.
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Proof. By [52], Prop. 5.9], the Fourier-Mukai transform ® ;- admits a right adjoint which is also a Fourier-
Mukai transform, which we denote ®r . By [52, Cor. 1.22], the natural morphism idpsx)y — ®x, 0 Px

is an isomorphism, and so we obtain
(I)OA ~ idDb(X) >~ (I)KR o (bK ~ (I)KROK-

We then obtain

: _ &HH _ sHH _ gHH gHH
dun, (x) = o, = Prrox = Pk, © Pk

and so ®HH is split-injective. O
Finally, we will make use of the recent ‘geometric realisation’ theorem of Orlov. The following is a
special case:

Proposition 2.2.19 (Orlov [79]). Let A be a finite dimensional k-algebra over an algebraically closed
field k. Then there is a fully faithful exact functor

F:DPf(A) = D(Y)

for some smooth projective k-variety Y. Moreover:
i) When gldim A < co, F' can be taken to have both adjoints.
i) DP(Y) contains a full strong exceptional collection of line bundles.

Remark 2.2.20. In particular by Prop. [2.2.11 we have HH;(Y) = 0 for ¢ < 0, which improvesﬂ to
HH;(Y) = 0 for i # 0 in characteristic zero.

Proof. This is a special case of [79, Thm. 5.2, Thm. 5.8]. Let J = rad(A), and let n € N be the smallest
n such that J" = 0. Define M = @;_, A/J* and let T' = End (M), which satisfies the following by a
theorem of Auslander [79, Thm. 5.1J:

1) gldimI' <n+1;
2) The A — I'-bimodule P = Hompu (M, A) is a finite projective module over I' satisfying Endp(P) = A.

By [79, Thm. 5.2], there is a full exceptional collection
D’(T) = (E4,...,En)

for some N € N (here we are using a simplification afforded by k being algebraically closed). Orlov then
deduces the existence of a fully faithful embedding

—®p P :DPF(A) — DY(T).

Lastly, by [f9, Thm. 5.8], for any (small, enhanced) triangulated category 7 with a full exceptional
sequence, such as 7 = D?(I), there is a fully faithful embedding

T < DU(Y)

50f course, using Kuznetsov [67] and Keller’s work on additivity of Hochschild homology, one can obtain HH;(Y) = 0
for i # 0 independent of characteristic, which follows from the existence of a full exceptional collection alone. However the
above will suffice.
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for Y a smooth projective variety, constructed by taking iterated projective bundles Y =Y, — Y1 —
<+ = Y] — Yy = P™. In particular D®(Y) also has a full strong exceptional collection of line bundles
by standard results [34]. Combining these embeddings gives the result. O

After all this setup, we are now ready to establish Prop. [2.2.6] We restate it for convenience.

Proposition. Let k be an algebraically closed field and R be a graded Gorenstein k-algebra of dim R > 2,
having at most isolated singularities. Let X = proj R. Assume that MCMZ(R) admits a tilting object T'.
Then:

i) h%(X) =0 for ¢ > 0.

it) The a-invariant of R satisfies a < 0. In particular X is a Fano variety.
Moreover, if k has characteristic zero, then i) may be strenghthened to:

i) W»4(X) =0 forp+#q.

Proof. We first prove i) and /). Under the hypothesis, we have MCMZ(R) = DPef(A) for A =
End,, r(T). We split the argument according to a > 0, a = 0 or a < 0 and use Orlov’s semiorthogonality

decomposition theorem.

a > 0: We have a fully faithful embedding ¥, : D?(X) < MCM?#(R), which we compose with the fully
faithful functor MCM?(R) = DP(A) < D(Y) of Prop. [2.2.19| (since k is algebraically closed) to

obtain an embedding
F:DYX) < Db(Y)

By Prop. [2.2.15] F ~ ® is naturally isomorphic to a Fourier-Mukai transform and applying Prop.
2.2.18| gives an embedding
OIH . HH;(X) — HH,(Y)

with HH;(Y) = 0 for ¢ < 0 (and ¢ # 0 in characteristic zero), and so the same holds for HH;(X).
Making use of Lemma the HKR Theorem and the Hodge symmetries, we obtain ) and ¢').

a = 0: This case is vacuous as MCM” (R) is d-Calabi-Yau for d > 1, and so admits no tilting object.

a < 0: In this case we have an embedding ® : MCMZ(R) < D¥(X) and semiorthogonal decomposition
D*(X) = (B, Ey_1,..., E1, Ey, ®o(MCM?(R)))

where E; = Ox(—i) and k = |a] — 1. We will show that the tilting object ®o(T) € ®o(MCM*(R))
extends to a silting object of D*(X). Semiorthogonality means that

Homp (x)(®o(T), Ei[n]) = 0
foralli=0,1...,k and all n € Z, and similarly
Hompe(x)(E;, Ej[n]) =0

for all 0 < i < j < k and n € Z. Moreover, none of the objects F; and ®4(T") have any positive

self-extensions.
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Now, D?(X) is Ext-finite and so Homps(x)(F,G[m]) = 0 for m > 0 for any F,G. It follows that
there is an ng € N such that

HOHlDb(X) (Eo, <I>0(T)[n}) =0 for all n > ng

or equivalently
Ext"(Eo[—no], ®o(T)) = 0 for all n > 0.

Similarly, there is an nj > ng such that
Eth(El [77?,1], Eo[fno] ©® (I)O(T)) =0 for all n > 0.

Continuing this way, we obtain a sequence ng K ny < - -+ <K ngx—1 < ny such that upon setting

K
T= (@ Ei[—nz'}>  Po(T)
i=0

we have Ext"(f, IN“) =0 for all n > 0. Since T classically generated D?(X), Tisa silting object.
The claims i) and ') then follow from Cor. [2.2.14

This proves parts i) and ¢'). We claim that ) implies 7). To see this, using local cohomology for R at
m = R, we have
HY(X, Ox(n)) = HE (R),

for all 1 < ¢ < d and n € Z. By graded Local duality we have Ext%(R,wr) = Hom(HEH —(R), k) as
graded R-modules, and so
R(a) = wr = Homy (HEY(R), k).

In particular H4 ! (R)y = HY(X,Ox) = 0 gives R(a)g = R, = 0, and so a < 0. Lastly, Ox(a) = wg =

wx shows that w;(l is ample, and so X is Fano. O

2.3 Cones over smooth projective complete intersections

Complete intersections form the simplest class of (non-regular) Gorenstein algebras, and are a good class

to start investigating the converse of Prop. Namely we are interested in the following question:

Question 2.3.1. Let R be a graded Gorenstein k-algebra and X = proj R. Assume that h?4(X) =0 for
p # q. Do the categories D*(X) and MCM”(R) admit tilting objects?

Recall that we implicitly take graded to mean finitely generated in degree one. We assume that k is

algebraically closed of characteristic zero throughout this section.

The simplest class of graded Gorenstein rings on which to test this question are the complete intersec-
tions. Consider rings of the form R = k[xo,...,Znic]/(f1,---, fc) where (fi,..., fe) € (zo,-- - Tnte)?
is a regular sequence of homogeneous polynomials, and let proj R = X = V(f1,...,f.) € P"*¢ the
associated projective complete intersection. We will further assume that R has isolated singularities at

the origin, or equivalently that X is smooth.
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A generating series for the Hodge numbers of X was given by Hirzebruch [50] as one of the first
applications of the Hirzebruch-Riemann-Roch Theorem. Based on the above, Rapoport classified the

smooth complete intersections X with h??(X) = 0 for p # q.

Proposition 2.3.2 (Rapoport [84]). Let X C P"¢ be a smooth complete intersection with dim X > 1
and codim X > 1. Then X satisfies h?9(X) = 0 for p # q if and only if X belongs to one of three

families:

a) X =V(Q) C P! is a quadric hypersurface.

b) X =V(Q1,Q2) C P22 s q 2n-dimensional intersection of two quadrics.
c) X = X3 CP3 is a cubic surface.

Using Rapoport’s list, we will obtain the converse of Prop. In fact, most of the following
is already known from work of Kapranov (quadric hypersurfaces) and Orlov-Kuleshov (cubic surfaces),
and with partial statements in the work of Kuznetsov (quadrics intersections). Our contribution will

be to complete that last case, by showing the existence of a full strong exceptional collection of vector
bundles on X = V(Q1,Qs) C P?+2,

Theorem 2.3.3. Let R be a graded complete intersection algebra with isolated singularities, and X =

proj R. The following are equivalent:

1) MCM%(R) admits a tilting object T.

2) DY(X) admits a tilting object £.

3) We have h?1(X) =0 for p # q.

When dim X > 1 and codim X > 1, this is equivalent to:
4) X belongs to one of the three familes a) — b) — ¢).

Moreover, when these conditions hold, £ can always be assumed to come from a strong exceptional

collection of vector bundles on X.

Let us quickly go through what is known. First, the corner cases: codim X = 0 means that X = P",
in which case MCM”(R) = 0 and D?(P") has a full strong exceptional collection by Beilinson’s Theorem.
Likewise dim X = 0 means that dim R = 1, and MZ(R) has a tilting object by the Buchweitz-Iyama-
Yamaura Theorem, while X is a finite collection of points and so the corresponding results holds trivially
for Db(X).

Quadric hypersurfaces

Next, let X = V(Q) C P**! be a smooth quadric hypersurface for n > 1. Kapranov has shown the

existence of a full strong exceptional collection of vector bundles on X of the form

(Ox(=(n—1)), -, 0x(~1),0x,E) n even,

D(X) =
<0X(_(” -1)),---,0x(-1), Ox,5+,57> n odd.
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Moreover, the bundles £ and £+ are ACM bundles and generate a semisimple category, equivalent to

the image ®(MCM*(R)) under Orlov’s semiorthogonal decomposition theorem.

Let us give a full proof of the above, since it will allow us to introduce standard ideas to be reused
in the case of quadrics intersections. Working somewhat anachronistically, one can establish Kapranov’s
Theorem from Orlov’s Theorem. By [30], the singularity category MZ(R) of a quadrics hypersurface
isolated singularity R = k[zo,...,z,+1]/(Q) is semisimple, with one or two simple MCM modules (up
to degree shift), say M (for n odd) and M., M_ (for n even). These have 2-periodic resolutions given
by matrix factorisations of ) with linear entries (A, B) (resp. (Ax, By))

AR E RS R S M0

and respectively
By

e B R(-1)m 25 R 5 My 0

— R(-2)"*

with r =n + 2 (resp. r =n+1). Orlov’s Theorem then gives

<Ox(—(n—1)),...,Ox(—1),OX,¢)0(M)> n even,
(Ox(—=(n—=1)),...,0x(=1),0x, 8o (M), ®o(M_)) n odd.

Let us recall how to compute the functor ®; for any ¢ € Z. Given a graded MCM module N with
complete resolution C
o= Cpy1 > Cp = Cpqg — -+

Let Ci<j € C be the subcomplex given by the summands generated in degree < i, and define Cl>;) =
C/C|<;). Then C[s;) € D’(grmod R) is a lower bounded complex with bounded cohomology, and so one
may sheafifify it to obtain a complex of coherent sheaves 6'[\2/1] € D(X). By Lemma|A.3.10, we have

—

D;(N) = C[Zi]'

Finally, applying this to the linear resolution of M, My, we see that ®o(M) = ]\7, Do(My) = ]\7:; is
simply given by sheafification. Setting & = M and & = ]/\4;, we obtain the exceptional ACM bundles
of Kapranov, and it’s easy to see from the linearity of the resolution of M, My that the relevant sheaf

cohomology groups vanish and so the collection is strong.

Cubic surfaces

Next, let X = X3 C P3 be a smooth cubic surface and R its coordinate ring. The next argument is
due to Kuleshov-Orlov, see also [B, Thm. 2.5]. Since X3 is smooth, it is well-known that it is abstractly
isomorphic to the blow-up 7 : X = BIgP? —» P2 of the projective plane in 6 points in general position.
Let E; = 7~ 1(p;) be the i-th exceptional fibre. By [52, Sect. 11.2] (see also references in [5]), the derived
pullback Lx* : D?(P?) — D?(X) is fully faithful, and there is a semiorthogonal decomposition

Db(X) = <]L7T*Db(IP2)7 Og,,- 70E6>
= <7T*g]_, 77*52771-*537 OE1? T 7OE5>
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where (£1,&,&3) is any strong full exceptional sequence of vector bundles on P2. By [5, Thm. 2.5]
(or direct calculations using the adjunction (L7*, R, )), the above sequence is a full strong exceptional
collection of sheaves. In particular, taking & = Op2, we have 7*&; = Ox. Since R has a-invariant —1,

Orlov’s semiorthogonal decomposition yields

Db(X) == <7T*51,7T*52,7T*53,OE1,"~ 70E6>
= (Ox, ®o(MCM*(R)))

and so we obtain a full strong collection of objects in MCM?” (R)ﬁ It follows that both MCM?*(R) and
D®(X) have tilting objects. The claim that D?(X) actually has a tilting object coming from a full strong

exceptional collection of vector bundles (even line bundles) is due to Hille-Perling in [49, Thm. 5.14].

We are left with analysing the 2n-dimensional smooth complete intersection of quadrics X = V(Q1,Q2) C

P?7+2 Again let R denote the coordinate ring.

Even dimensional intersections of two quadrics

Complete intersections of quadrics in projective space have been studied by Buchweitz, Kapranov,
Bondal-Orlov and Kuznetsov. In particular Kuznetsov produced [66, Cor. 5.7], for a smooth complete

intersection of two quadrics, a semiorthogonal decompositiorﬂ of X =V(Q1,Qz) C PN+2
D®(coh X) = (A, D’(coh C))

with A generated by an exceptional collection of line bundles, and C' is an associated hyperelliptic curve
of genus g = XL (for N odd) or a stacky projective line with Zy-stack structure at N + 3 many points
(for N even). It was noted in [I7, Ex. 5.3, Sect. 6] that in the latter case, the above semiorthogonal
decomposition refines to a full exceptional sequence of objects in D?(coh X) for N even. However, the
objects involved were given no explicit description, and it is unclear if such a collection is strong or even

consists of sheaves.

Our argument will proceed in parallel: setting N = 2n, using slightly different (but essentially
equivalent) models, for X = V(Q1,Q2) C P?"*2 we will identify the non-trivial component of D®(coh X)
as the derived category D’(coh O) of an hereditary order O over P!, with ramification of order 2 at
2n 4 3 points. A theorem of Reiten-Van den Bergh [89, Prop. 5.1] then guarantees the existence of a
full strong exceptional collection of sheaves (Fi, ..., Fanis) in coh @ C D?(coh ©). Our contribution will
be to show that, after suitable modification, any such collection extends under Orlov’s semiorthogonal

decomposition to a full strong exceptional collection

Db(X> = <Ox(—2n+2)),...,Ox<—1),OX,51,...752n+5>

6Determining the resulting MCM modules is delicate: formally, such exceptional modules are obtained by taking derived
global sections RI'> (X, F) for F an exceptional sheaf above, and then taking MCM approximation. Doing this explicitly
requires knowledge of the resolution of RI'>o(X, F) as a complex of graded modules over the homogeneous coordinate ring
R. A complete description of the exceptional MCM modules will be taken up elsewhere.

"Kuznetsov’s semiorthogonal decomposition was technically of the form D®(coh X) = (D%(coh C), A’), but one can
exchange the two terms up to twist by the Serre functor, and we will do this here.
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with &; exceptional ACM vector bundles, analogous to Kapranov’s decomposition in the hypersurface

case.

We begin with recalling Buchweitz’s extension of the Bernstein-Gel’fand-Gel’fand correspondence
to complete intersections of quadrics [30, Appendix]. Let V be a finite dimensional vector space of
dimension 2n + 3, and let S = S(V) & k[zq, . .., Zan12] be the symmetric algebra on V. Let W C S?(V)
be a 2-dimensional subspace with basis given by a regular sequence, and let R := S(V)/(W) be the
complete intersection algebra.

Complete intersections of quadrics are Koszul, which follows from the Tate resolution of the residue
field [9]. The Koszul dual R' = Ext}(k, k) takes an especially simple form. Following [30, Appendix,
Sect. A.2], consider the k-quadratic map ¢ : V* — W* obtained by composition ¢ = ¢t* o x

Ve s2 vy L W

of the quadratic map x : V* — S2(V)* given by x(£)(vv') = £(v)€(v') with the pullback of the embedding
t: W < S2(V). Consider the symmetric algebra S(W*). We obtain an induced quadratic form

q: V' = W*CS(W*)

with value in the algebra S(WW*), and so one can form the Clifford algebra C' = Cgqw+)(V*, q) given by
C=T(V")SW")/I

with T(V*) the tensor algebra on V* and I the two-sided ideal generated by elements of the form

§®&—q(§) forE eV

The Clifford algebra C' is Z-graded by setting |[V*| = 1 and |[W*| = 2, and is finite over the central
subalgebra S(W*) C C. By a theorem of Sjodin [9, Chp. 10], we then have an isomorphism of graded
algebras

R' = Ext}(k, k) = Clgw-(V*,q) = C.

Since C' is finite over S(W*), it is two-sided Noetherian, and Buchweitz moreover proves that it has
finite injective dimension idim (C¢) = idim (¢C) = codim R = dim W, which in our scenario is 2. Hence
C'is a non-commutative Gorenstein ring, and in particular we have an equivalence D% (C) = MCM%(C)

as per Buchweitz’s theorem.

The pair (R, C) is then a pair of Koszul dual Noetherian Gorenstein Koszul algebras. In [30, Ap-
pendix|, Buchweitz proves the following extension of the Bernstein-Gel’'fand-Gel’fand correspondence.
Letting A be either R or C, denote by D?,(A4) C D’(grmod A) and DPf(A) C Db(grmod A) the full

art

subcategories of complexes with Artinian cohomology and perfect complexes, respectively.

Theorem 2.3.4 (Buchweitz [30, Appendix]). Let A be either R or C. Then there is a functor

3 : Db(grmod A) — D®(grmod A')
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satisfying the following properties:

1) B is an equivalence of triangulated categories

8 : D (grmod A) = D®(grmod A').

2) Given M € D®(grmod A), the cohomology module of B(M) has graded components

HI(B(M)); = Exctyt) (k, M(—i)).

3) The equivalence 3 sends D8, (A) onto DP*f(A') and DPe*(A) onto DS, (A'), and so descends to equiv-

art

alences of Verdier quotients

D’(qgr A) = DZ (A"),

Dy(A) = D’ (qgr A').

We extract the following important corollary. Let A = R in the theorem above, and let wgp = R(a)
and d = dim R. Consider the duality D = RHompg(—,wgr][d])

D : D’(grmod R)P =N D’(grmod R).

and note that D o D ~id and D(k) = kﬁ

Recall that a complex F of free graded R-module is called linear if F; is generated in degree i. We
will also abuse notation slightly and identify MCM?”(R) = DZ (R).

Corollary 2.3.5. The following holds:

a) Under the contravariant equivalence
B oD :Dbgrmod R)°P =N D®(grmod C)

the standard t-structure on D®(grmod C) pulls back to a t-structure whose heart consists of compleves

M € D*(grmod R) whose minimal free resolution is linear.

b) Under the induced contravariant equivalence
BoD: MCM*(R)* = D¥(qgr C)

the standard t-structure on D®(grmod C) pulls back to a t-structure whose heart consists of modules

M € MCMZ%(R) whose minimal free resolution is eventually linear.

8The complex R(a)[d] is sometimes called the normalised canonical complex.
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Proof. By Property 2) of Thm. 4} for M € D?(grmod R) we have

(8 0 D(M)) = Ext! ", (k, D(M)(~i))

grR )
- Home (grmod R) k7 D(M)( Z)[Z +j])
= Home (grmod R) k7 D(M(Z)[_Z - ]]))
)| -

= Ext % (M, k(—i))

and so a) follows. To see b), note that every object of qgr C C D?(qgr C) arises as the “sheafification”
of some graded module in grmod C' C D?(grmod C). Hence the induced heart on DZ (R)°? has objects
consisting of MCM approximations of complexes whose minimal resolution is linear. Those are precisely

the MCM modules whose minimal resolution is eventually linear. O

Remark 2.3.6. There is a minor error in [30, Appendix], where this corollary is misstated. In particular
it is claimed that 8 pulls back graded C-modules to complexes with linear minimal resolution, and that
the induced heart on MCM modules consists precisely of linear MCM modules. The first claim is false
as one needs to dualise first, and the second claim is false because MCM approximations of complexes
with linear minimal resolutions can fail to be linear. Indeed this is the case for k¢ over certain Koszul
algebras, where k has a linear resolution but k%% will typically admit generators in various non-zero

degrees. We will see such an example in Chapter 3.

The induced heart on MCM”(R) will play a central role in this thesis, and in particular in the

construction of a tilting bundle for D*(X), and so we give it a name. We define

H'"(R) € MCM?(R)

the full subcategory of eventually linear stable MCM modules. In the above scenario, we have a diagram

MCM? (R)? 222 Db (qgr )

e

fHIin(R)op qng

with vertical arrows the natural inclusions.

Next, we summarise our approach to constructing a tilting object in MCM%(R) and D?(coh X) with
proj R = X = V(Q1,Q2) C P?"*2 smooth, and recall that we assume dim X > 0. We first tie the two

questions:

Proposition 2.3.7. Assume that H'™(R) contains a tilting object T for MCM?%(R). Then D®(coh X)
admits a tilting ACM vector bundle €. Moreover, if the summands of T form a full strong exceptional

collection, then so does of £.
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Proof. Recall that R = k[xq, ..., Zant2]/(Q1,Q2) has a-invariant a = —2n+ 1 < 0 since we assume that
dim X > 0 and so n > 0. Consider the fully faithful embedding

RI's : DP(coh X) < Db(grmodz0 R).
The strong version of Orlov’s Theorem (see Appendix A.3) gives a semiorthogonal decomposition
RI'>o(D%(coh X)) = (R(2 — 2n),..., R(-1), R, (MCM?*(R))[>0))

Since T € H'"(R), it follows that some sufficiently large syzygy T’ = Q™ (T)(m) has a linear minimal
resolution, and 7" is also a tilting object. Since 7" is linear, we then have L>o(7T") =2 T’ € D*(grmod>oR).

Since 7" is a module (and not a complex), we have
EXtZ7R(R(—Z),T/) =0 for all n # 0.

It follows that @5252 R(—i) ® T’ forms a tilting module for R['>o(D’(coh X)) which is moreover an
MCM module, and its sheafification & is a tilting ACM vector bundle for D?(coh X). This proves the

main claim, and the second claim is clear. O

It remains to construct a tilting object 7' € H'"(R). By making use of the BGG equivalence (Thm.
2.3.4)), this reduces to constructing a tilting object in qgr C C D®(qgr O).

Analysing the category qgr C

We review some generalities concerning C, which can be taken from [30, Appendix] or [66, Sect. 3].
Recall that the graded algebra C is finite projective over the central subalgebra S(W*) with W* in degree
2. Since C' is generated by C; over Cy = k, passing to the 2nd Veronese subalgebra Cye, induces an
equivalence qgr C' 2 qgr Ceyen, sending M to Meyen (see [82] Prop. 2.5]). Taking central homogeneous
localisations of S(W*) is compatible with forming Clifford algebras, and so Ceyen, descends to a locally
free sheaf of even Clifford algebras O := Ceyen over P(W*) of rank 24imV—1 — 92n+2,

Next, sheafification over proj S(W*) = P(W™*) gives an exact functor F : grmod Ceyer, — coh P(W*)

which vanishes precisely on finite length Ceyen-modules. It then factors as

grmod Ceyen N S——eN P(W™)

~—

qgr Ceven

The functor 7 is an exact functor between abelian categories, and we claim that it is faithful. Since it
is exact, it suffices to show that 7(X) = 0 if and only if X = 0. But this holds by construction since
7(X) = 0 implies F(X) = 0 for any module representative X of X, in which case X has finite length
and X = 0. We have then shown that 7 is faithful, and so it identifies

o

7 qgr Cepen — coh O

with the subcategory of coherent sheaves over P(W*) admitting an action from O, or in other words

coherent sheaves of modules over the sheaf of even Clifford algebras O. We are left with obtaining a
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good description of O.

For convenience, since W is 2-dimensional, picking a basis qg, o We get a parameterisation for the
pencil of quadrics by q; = togeo + t1qo for t = [to : t1] € P = P(W*). The quadratic form ¢; € W then
defines a functional on W*, which lets us define a k-quadratic form

Ve L w2k

which is by definition the quadratic form defined by ¢ € W C S?(V). The following falls out of our

identifications.

Lemma 2.3.8. Under the parameterisation P! = P(W*), the fibre of O over the point 1, : speck(t) — P!
is isomorphic to the Clifford algebra of q;, that is

1O = Clyy(V*, qt)

where k(t) = k denotes the residue field at the point t.

We now use a result of Reid. Since we are in char k # 2, the quadratic form ¢; has an associated
bilinear form B;, and we define the corank of g; by the dimension of the kernel of the map V* — V** =V
induced from B;. Recall that ¢; is called non-degenerate if B; defines a perfect pairing, or equivalent g;

has corank zero.

Lemma 2.3.9 ([85, Prop. 2.1]). A complete intersection of quadrics X = V(qo,qs0) € PV is smooth if
and only if the quadratic form q; has corank < 1 for all t, is generically non-degenerate and otherwise
of corank 1 at (N + 1)-many values of t.

We can now prove that the sheaf of even Clifford algebras O over P! is a sheaf of hereditary orders.

We begin by recalling some definitions from [89].

Hereditary orders over P!

Let R = (R, m, k) be a discrete valuation domain with fraction field K. An order A over R consists of
a subalgebra A C A of a central simple K-algebra A, such that A contains R as a central subring and
which is finitely generated as a module over R. An hereditary order A over R is simply an order A that

is hereditary as an algebra.

Let J = J(A) be the Jacobson radical. Then there is a natural number e € N such that J¢ = mA,

called the ramification order of A over R, and we say that A is unramified if e = 1.

Next consider P! with function field K = K(P!), thought of as a constant sheaf on P! so that
Opr C K. Let A be a central simple algebra over K. A sheaf of hereditary order @ over P! is an

Op1-algebra @ C A which is coherent over P!, and which is locally an hereditary order over each DVR
Opl’t.

Next, recall some facts from the structure theory of Clifford algebras, see [30]. Let F' be an al-

gebraically closed field of characteristic not 2. Let (U,q) be a finite dimensional vector space over F
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equipped with a non-degenerate quadratic form g. Then the even Clifford algebra Clg (U, q)even is iso-
morphic to a matrix algebra over F' when dim U is odd, and to a product of two matrix algebras when

dim U is even.

We now prove the anticipated result. This can be seen as analogous to [66, Cor. 3.16], however

phrased in the language of sheaves of orders rather than stacks.

Theorem 2.3.10. The sheaf O of even Clifford algebras is a sheaf of hereditary orders over P(W*) = P!,

with ramification order over t € P! given by e; = 1 + corank(q;), where corank(q;) < 1.

Proof. For t € P!, set m; C Op1 ; and J; € O, the respective Jacobson radicals. The algebra O; is given
by the even Clifford algebra O, = Clo , t(V*, Gt )even for the induced Op:-valued quadratic form ¢, and
so is module-finite over the central DVR Op: ;. We have

OIPl,t C O, CO ®OH”1,t K= OZK(V*7Q)eUen = MT(K)

where 7 = 22""2. For the last isomorphism, observe that Clx (V*,q)even ®x K = Cliz(ViE, @)even =
M, (K) for the base change V;: = V* ® K, since ¢ : Vj: — K is non-degenerate, and so Clx (V3,q) is
a central simple algebra. However by Tsen’s Theorem, there are no non-trivial central simple algebras

over K since k is algebraically closed, hence Cli (V, ¢) must be a matrix algebra.

Hence O; is an order over Op: ; inside a matrix algebra. To compute the ramification order e,
we claim that JtHcomnk(qt) = mO;. To see this, note that Oy /Oymy = Cli(V*, ¢t )even and let U; be
the kernel of the map V* — V** = V associated to the corresponding symmetric bilinear form. Then
dim U; = corank(q;) and Clp(V*, q) = Clk(l_'Nf,qt) ® A U; for some complement U of U,. Applying
Lemma [2.3.9] we see that the dimension of U, is zero for generic ¢, and one otherwise. When dimU; = 1,
one sees that elements of the form u - u; for w € U and u; € U; generate the Jacobson radical J of
Clp(V*,q), and so J? = 0 since Uy is one dimensional and A2U; = 0.

It remains to prove that O; is hereditary. We will do this in three steps:
i) Show O is hereditary for ¢; non-degenerate, and so ¢ generic.
ii) Show that the abelian category coh O is hereditary.
iii) Deduce that the remaining ramified orders Oy, are hereditary.

For the first claim, we may apply the Auslander-Goldman theorem [87, Thm. 39.1], which claims
that an order A over a DVR R is hereditary if and only if the radical J(A) is a projective A-module.
When ¢; is non-degenerate, we have seen that J; = Op1 ymy, and since Op: ; is a DVR, m; is generated
by a single element, say ;. The annihilator of 7y is trivial in O; and so J; = 7 - O, is a free module of

rank one. By Auslander-Goldman, O, is hereditary.

For the second claim, we will use the BGG correspondence to construct a Serre functor on D?(coh O)
and deduce the result. Recall that the contravariant form of Buchweitz’s BGG correspondence gave rise
to an equivalence

MOM?(k[zo, - -+ , 2n-+2]/ (40, doo))*? 2= D(coh O)
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which induces identifications of corresponding hearts

H™(k[zo, -, Tant2]/ (05 4o )P = coh O

where the left hand side is given by MCM modules with eventually linear resolutions. Now, since
klxo,- -+ ,Z2n+2]/(q0, goo) has isolated singularities at the origin, the stable category of MCM modules

has a Serre functor of the form

S = (a)[2n]
= (1 —2n)[2n]
=(1-2n)[2n —1][1]
= — @ wy(l]

where the notation — ® wy is a placeholder for (1 —2n)[2n — 1], but more importantly — ® wy, preserves
the heart H'"(k[xo, -, Zan12]/(q0,ds0) Of eventually linear modules. The functor S is sent onto the
inverse Serre functor S,,' on D¥(coh ©), which then has the form Sp' = — ® w™![~1], where — ® w is

the induced autoequivalence of coh @. From the form of Serre duality
Exti(F,G ® w) = Extyy (G, F)*

one deduces that coh O is hereditary.

Lastly, we let t; € P! be a point over which O ramifies, and ¢ correspond to a generic (unramified)
point. We first note that since O is Noetherian (as it is finite over a central DVR), the full module
category Mod O; is hereditary. Similarly O is a sheaf of Noetherian Opi-algebras and so QCoh O is
hereditary. To show that O, is hereditary, for any F,G € QCoh O we invoke the (first quadrant,

cohomological) local-to-global spectral sequence for the ringed space Y = (P!, O)
HP(Y, Eat(F,G)) = Exth(F,G).

Since Y is a Noetherian topological space of dimension 1, by the Grothendieck Vanishing Theorem we
have HP(Y, A) = 0 for all p > 2 and sheaves of abelian groups A. It follows that the above spectral

degenerates.

Next, since Oy is generically hereditary, the sheaf Ext(F,G) is supported at most over the ramified
points {t;} C P!, and we have

HO(Y> 5%2 (}—a g)) = H EXt%’)ti (]:tl ) gtz)
t;

By degeneration of the spectral sequence, the left-hand is a summand of Ext%(]—' ,G) = 0 and so vanishes,
and therefore so do the individual Ext3, (Fy,,Gr,).-

Finally, letting j : U C P! be an affine open neighbourhood of #;, denote by Oy the restriction of O to
U. It is easy to see that localisation QCoh Oy — Mod Oy, is essentially surjective, and any F € QCoh Oy
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extends to a quasi-coherent sheaf j,F € QCoh O without changing its stalk at ¢;. It follows that any
M € Mod O, arises as J;, for some F € QCoh O, and we are done. O

Let us now put everything together. Writing R = k[xo,- - , Z2n+2]/(00, G0 ), by Buchweitz’s BGG
correspondence we have a contravariant equivalence H'"(R)°P = coh O for an hereditary order O over

P'. We can then apply the following theorem of Reiten and Van den Bergh.

Theorem 2.3.11 (Reiten-Van den Bergh [89, Prop. 5.1]). Let O be an hereditary order on P* with
ramification of order e; at the point p;, i = 1,--- ;r. Then there is a full strong exceptional collection of
sheaves

D’(coh ©) = (F,..., F)

of length 1 =2+>""_ (e; —1).

The sheaf of even Clifford algebras O is an hereditary order, ramified of order 2 at 2n + 3 points. We

deduce:

Corollary 2.3.12. The category H'"(R) C MCMZ(R) contains a full strong exceptional collection of
length 2n + 5 for MCM”(R).

Finally, together with Prop. we deduce the existence of a full strong exceptional collection of
(ACM) vector bundles on X = V(qo, ¢oo) C P22

D’(coh X) = (Ox (2 —2n),...,0x(-1),0x,E1,...,Emts)

This finishes the proof of Thm. 2.3:3]



Chapter 3

Classifications of MCM modules and
Betti tables over tame curve

singularities

In this section we will take up the classification of indecomposable MCM modules over certain reduced
curve singularities of tame Cohen-Macaulay representation type (CM-type for short). We begin by

recalling basic notions from [39].

Fix an algebraically closed field & throughout and let C' = (C,m, k) be a reduced complete local
Cohen-Macaulay curve singularity over k, with X = specC'. Any MCM C-module M is locally free away
from the singular locus and so defines a vector bundle on each irreducible component of the regular locus
Xieg = [ 1| Xreg,i» with rank vector rk(M) = (rky,...,rk,) and (total) rank N = )", rk;. We say that
the CM-type of C is of:

1) finite type, if C has finitely many indecomposable MCM modules;

2) tame type, if C' has infinitely many indecomposables and the indecomposables of fixed rank N can
be parameterized by finitely many 1-parameter families 1, ..., F,(n), with at most finitely many

exceptions;
3) wild type, if C' admits n-parameter families of non-isomorphic indecomposables for n arbitrarily large.

By [38], the CM-type of C falls precisely in one of these three cases (see also [39]). The classification
of curve singularities of finite and tame CM-type is closely related to the Arnold school classification of
polynomials with isolated critical points of low modality over ¥ = C. The modality of a holomorphic
function germ f : (C™,0) — (C,0) is, roughly, the minimal number m for which one can obtain all
isomorphism classes of deformations of f by finitely many m-parameter families, see [3, 1.9] for the precise
definition. The holomorphic functions of low modality were classified by Arnold and his collaborators,

who produced the following list of normal forms.

Given a function f = f(x1,...,x,) depending on variables {z1,...,x,} and a set of disjoint variables

54
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{z1,...,2}, we call the function
9@y Ty 21,y 2) = f(T1, ) 20 4 2R

a stabilisation of f. Up to stabilisation and isomorphism, the function germs of modality m < 1 are [3|
2.3]:

e (m =0): These are the simple (or ADE) singularities

Ay, p>11] Dy, p>4 Es E; Eg
ZCMJ'_I l,Qy_’_yu—l 1’3 +y4 1’3 +(Ey3 x3 +y5

e (m = 1): There are 3 families of parabolic singularities

P Xy J1o
PP+ 2 tazys | 2+t +aziy? | 28+ 15 + aziy?
a3 42740 44 40P +27 40

as well as the hyperbolic singularities
r 1 1 1
Tpgr : 2P +y? 4+ 2" + azyz, a # 0, 5+5+; <1

and an additional 14 exceptional families, whose CM-type is wild.

The above normal forms play an essential role in the classification of curves of finite and tame
CM-types over a general algebraically closed field k. Given C as above, consider its normalisation
C C C C Q(0O) in its total quotient ring Q(C). We say that a ring D birationally dominates C' if there
are embeddings C C D C C.

Proposition 3.0.1 (Greuel-Knoérrer [I07, Thm. 9.2]). The curve C has finite CM type if and only if it

birationally dominates a simple curve singularity.

Note that per the results of Buchweitz-Greuel-Knorrer-Schreyer-Herzog in Chapter 2, the only Goren-
stein curves of finite CM type are the simple curve singularities themselves. Next, by [37] the hyperbolic
singularity of type T}42 are isomorphic to the stabilisation of the curves T},

b q 9 9 . 1 1 1

Tpq : P +y? + b y”, withb#0, -+ - < -

Poq 2
for b= —%. Extending this family to T}, with % + % = % enlarges it by the two parabolic singularities

Ty = Xg and T36 = J19. We impose char k # 2 for the next two propositions.

Proposition 3.0.2 (Drozd-Greuel, [39]). The curve C is of tame CM-type if and only if it birationally
: 01 1 1
dominates a curve of type Tpq with & + + < 3.

Given a curve C' of tame type, we say that C is tame of domestic representation type if there is a

uniform bound p(n) < N on the number of 1-parameter families of indecomposables of fixed rank n.

Proposition 3.0.3 (Drozd-Greuel, [39]). Let C be a curve of tame CM-type. Then C is of domestic
type if and only if it properly birationally dominates a curve of type Tyy or Tsg.
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Tameness of the T, was originally established in the hyperbolic case by indirect methods via defor-
mation theory [39], with the indecomposables later described by use of the minimal resolution of the
surface singularity Tpq2 [37]. The parabolic case Tu4, T3¢ was first studied by Dieterich [36], who proved
tameness by somewhat indirect methods; in particular this left open the description of the indecompos-
ables. The question of obtaining explicit presentations of the indecomposables, or equivalently of writing
down the indecomposable matrix factorizations, was raised by Drozd and Tovpyha in [40], where they

produced some of the indecomposable matrix factorizations of Tyy.

Results

We now outline the results of this chapter. Let k£ be an algebraically closed field. We will classify the
indecomposable graded MCM modules over the following graded algebras:

e The homogeneous coordinate ring Ry, of 4 points Y C P2 in general linear position, meaning that

Y, arises as the complete intersection of two conics.

e The homogeneous coordinate ring Ry, of 4 points Y3 C P!, which can be written in normalised

form as the hypersurface ring Ry, = k[z,y|/(f\) with f\ = l1lal3ly a product of linear forms
fx=aylr —y)(@z - Ay), A#0,1.

To do this, we will prove and use the following equivalences of categories. Both are special cases of the

general theorem of Buchweitz-Iyama-Yamaura [27] see in Chapter 2, but we will prove these directly.

Theorem 3.0.4. There is an equivalence of triangulated categories
MCM?(Ry,) = D*(kQ)

with @ the Dy quiver

Theorem 3.0.5. There is an equivalence of triangulated categories

MCM*(Ry,) = D(5¢(2,2,2,2; )

where the “Squid” algebra Sq(2,2,2,2; \) is the path algebra of the quiver

with relations pil;(x,y) =0 for i =1,2,3,4.

Both path algebras are derived tame and have a well-studied representation theory.
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In the case of Ry,, we will construct all indecomposable graded MCM modules and compare them
to the known classification of indecomposable representations of £Q). We will see that one then recovers
the regular components of kQ out of the classical pencil of conics construction. We will also write down

the Betti tables of complete resolutions of indecomposables.

In the case Ry,, we will make use of the derived equivalence
D’(Sq(2,2,2,2; \)) = D*(X)

with X = P1(2,2,2,2; \) a weighted projective line of genus one in the sense of Geigle-Lenzing. We will
produce the MCM modules corresponding to the simple torsion sheaves on X. By results of Lenzing
and Meltzer [69], one can obtain all indecomposable sheaves by iterated applications of two ‘twists’

autoequivalences
Ty, T, : D*(X) = DY(X)

applied to indecomposable torsion sheaves, which send the simple torsion sheaves to the stable sheaves,
and we study these autoequivalences on MCM modules. Finally, we will classify the Betti tables of

indecomposable graded MCM modules.

For either algebra Ry;, i = 1,2, we will see that all indecomposable MCM J/%; -modules arise as the

completion of some graded MCM Ry,-modules, and so the classification results extend to MCM(E; ).

3.1 The tilting modules

Let us now prove the above theorems by exhibiting an appropriate tilting MCM module. The proofs make
use of Orlov’s semiorthogonal decomposition theorem. Recall that k is algebraically closed throughout
this chapter, and we write R = S/I for S the ambient polynomial ring and R = Ry,, i = 1,2. To

simplify calculations, we shall make use of the Orlov-Buchweitz embedding (see Appendix)
MCM#(R) — Db(grmodZOR)

where M|>q) is the complex with bounded cohomology obtained by taking a complete resolution C of

M and killing generators of degree < 0. This is most useful in the following situation:

Lemma 3.1.1. Let R be a graded connected Gorenstein algebra, and let M be a graded MCM R-module
generated in degree zero with no free summand. Then M>q = M in Db(grmodZOR), In particular, if

M, N are both generated in degree zero without free summands, we have

Ext!n(M,N) n>0

MZTR(Ma N) =
0 n < 0.

Proof. Since R is graded connected, minimal complete resolutions exist for MCM modules without free
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summandq’} Let C' be a minimal complete resolution of M:

Cl C() C—l
\M/f

Since M is generated in degree zero, so is Cyp by minimality the graded free modules C,, are generated in
positive degrees for n > 0 and in negative degrees for n < 0. Killing negative degree generators returns
the minimal free resolution Mg =, M of M. For the second claim, since (—)[>q] is fully faithful, we
have Ext, r(M, N) = Homps grmod 1) (M[>0]; Ni>q) = Ext, z(M, N) and the result follows. O

The algebra Ry,

Now let R = Ry,. Under the assumption that Y, C P? be in general position, meaning no three
points of Y5 lie on a line, then Yo = V(Q,Q’) is a complete intersection of conics, and so we have

Ry, 2 k[x,y,2]/(Q, Q). In particular, Ry, is Gorenstein with a-invariant a = 1.

Theorem 3.1.2. Let R = Ry,, so that X = proj R = Yo C P? is the set of 4 points {p;}. Let
L; = R/I(p;) be the homogeneous coordinate ring of p;, thought of as an R-module. Then there is a full

strong exceptional collection
MCM?*(R) = {m(1), L1, Ly, Ls, La)

with the endomorphism algebra of T = m(1) ® (@?:1 LZ-) giwen by kQ as above.

Proof. We have a = a(R) = 1. Applying Orlov’s theorem with cutoff : = —a = —1 gives a semiorthonal

decomposition

MCM?%(R) = (k*(1),st o RT'>44 ,D?(X))
= <k5t(1)) L17 L2a L37 L4>

since RT'>44(X,0p,)% = I'so(X,0,,)*" = L{* = L; since L, = R/I(p;) = k[z;] has depth 1 and
is already MCM. This exceptional sequence is not strong, but we claim that it becomes strong upon
replacing £°%(1) by m(1) = k5'(1)[—1].

Since st oRI'> 44 (X, —) is fully faithful the L; are pairwise orthogonal. To verify that the exceptional

sequence is strong, we calculate the remaining extension groups by Serre duality:

Extyg, r(m(1), L;) = DExty, p(L;, m(2))
= DExt] » (Li, k**(2))
= DExtp 5 (Li, k(2)).

We claim that
1, n=0

dimy, Ext], s (m(1), L;) = dimy, Ext? 4 (L, k(2)) =
) 0, n#0.

INote that minimality of C' also reqmres M to have no free summands, since any summand of M isomorphic to R would

produce a summand of the form 0 — R —> R — 0 of C in degree 0, —1.
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Equivalently, the minimal complete resolution of L; over R looks like

1 —=R R(2) —= C_,

The right hand tail of the minimal complete resolution dualises to a minimal projective resolution of the
R-dual
ey, C = L =0

and so the above claim C_; = R(2) is equivalent to C*; = R(—2), meaning that L} is singly generated
in degree 2. Now, writing R = S/(Q,Q’) for S = k[z,y, 2] and (Q,Q’) a regular sequence of quadrics,

by a well-known change-of-rings result (see [30, Lemma 2.5]) we have isomorphisms of graded R-module
Ext%(L;, S) = Exty *(Ly, R).

Setting n = 2 gives Ext%(L;, S) = Homp(L;, R) = L}. Writing L; = S/(I,1') for a regular sequence of
linear forms (7,1’) in S, self-duality of the Koszul complex Kg(i,1") gives

Ext3(L;, S) = Li(—2)
and so LY 2 L;(—2) is singly generated in degree 2, as we wanted, and so we obtain that

1, n=0

dimy, Exty, p(m(1), L;) = dimy, Exty o (Li, k(2)) =
0, n#0.

This proves that the exceptional sequence is strong.

Finally, for dimension reasons we have End , z(T') = kQ, where Q is the quiver

The algebra Ry,

Let R = Ry, for 4 points Y; C P!, which is isomorphic to the hypersurface ring Ry, = k[z,y]/(f\), with
r=lLllsly = zy(z — y)(z — M\y), A # 0,1, a product of 4 linear forms in normalised form. Using the

same approach, we now prove:

Theorem 3.1.3. Let R = Ry,, so that X = proj R = Y; C P! is a set of 4 points {p; = V(I;)}. Let

L; = R/l;. Then there is a full strong exceptional collection

MCMZ%(R) = (m(1),m?(2), L1, Ly, L3, Ly)
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with the endomorphism algebra of T = m(1)dm?(2)® (@le Li) given by the squid algebra Sq(2,2,2,2; \)

presented above.

As before, the calculations of the Tate cohomology groups Exty, r(m7 (), L;) are the most involved

part of the proof, and we collect them in the next lemma.

Lemma 3.1.4. We have

. 1, n=0
dimy, erR(m(l)sz) =

0, n#0

. n 5 1, n=0
dimyg mgr}%(m (2)7L’L) =

0, n#0

. n 1 9 2, n=0
dlmk mgrﬂ’,(m (1)’m (2)) =

0, n#0.

Before we prove this, we begin by writing down some relevant complete resolutions for calculations.
Note that the complete resolution of L; is easy to obtain, since L; = R/l; and [; is part of the matrix
factorization (I;, fa/l;) in S = k[x,y]. Its complete resolution is then

Ia/li

DI R—1) & R DL Re3) Ly R(4) > -

The complete resolution of k%! is known and can be obtained by a classical method of Eisenbud, see [41].
In this case, decompose fx = z- fy +y- fy in S for two cubic polynomials fz, f,. Note that in chark # 2,
we can take f, = %335 frand f, = %81, fx by the Euler identity. We then have a matrix factorization

(A, B) of fy
A < x y) B <fac y>
—fy fa fy =

giving rise to the minimal complete resolution of k%' = coker(A) below

C(k*): - — R(—4) ® R(-2) & R(-1)*2 5 Ro R(2) 2 R(3)®2 2 R(4) & R(6) — ...

We can now prove the lemma.

Proof. First, letting T = m(1) ® m?(2) ® (EB?:l Li), note that Lemma |3.1.1| gives

Ext!!, (T, T) = Ext{}, p(T,T)

which vanishes for n < 0, taking care of all negative groups. Now, we have a = a(R) = 2, hence Serre

duality gives

Exty, g(m(1), L;) = DExty, p(Li, m(3))
= DExty, 7 (Li, k(3))

= DExty, 1 (Li, k(3))



CHAPTER 3. MCM MODULES AND BETTI TABLES OVER TAME CURVE SINGULARITIES 61

and the first equality follows from C(L;). For the next equality, consider the extension
£:0—>m/m?> - R/m*> -k —0
where m/m? 2 k(—1)®2. This gives rise to an exact triangle in MCM”(R)
€ (m/m?)* — (R/m?)* — &k — (m/m?)*'[1]
which can be rewritten as
€1 ((=1)° - m2[1] > k™ > (K (~1))2[1]

Serre duality gives

Ext!!, n(m?(2), L;) = DExt!), (L;, m?(4))
= DExty, p (L, m*[2])
= DExt)z (Li, m?[1])

Applying the long exact sequence of Tate cohomology to £t and reading off from C(L;), while remem-
bering that the above groups vanish for n < 0, we obtain mgj}% (L;, m?[1]) = 0 for n # 0 and the long

exact sequence amounts to

0 — Ext), p(Li, k") — Ext

grr(Liy K (=1))®2 = Bxtg, p(Li, m*[1]) — 0.

A dimension count then gives dimy Exty . (L;, m?[1]) = dimy, Ext), z(m?(2), L;) = 1.

Finally we compute

Applying the long exact sequence from £%¢, note that MZTR(k‘St, k(1)) = 0 from the structure of C(k*?),
giving Exty, p(m?[1], k(1)) = Exty, (k*(—1), k(1))®? whose dimension is as stated. O

We can now prove the theorem.

Proof. We use Orlov’s theorem with cutoff i = —a = —2 and X = proj R to obtain a semiorthogonal

decomposition (living inside D?(grmods _,R))

(<)) (MOM*(R)) = (k(2), k(1), RPoD" (X))
= (k(2),k(1),L1,..., Ly).
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This full exceptional collection is not strong, and we will apply a right mutation to obtain
R: (k(2), k(1)) = (k(1), R/m*(2))
To see this, note that the extension
€:m/m? = R/m? = k — m/m?[1]
is isomorphic to the universal extension
Ext!(k, k(=1))* @k k(1) = Ri(k(=1)) = k =% BExt! (k, k(—1))* @ k(—1)[1].

This calculates the right mutation Rj(k(—1)) = R/m?, and similarly Ry (k(1)) = (R/m?) (2). After

mutating and desuspending the first two terms, we obtain the resulting exceptional collection
(k(1)[-1], (R/m?) (2)[~1], L1,...,La)
Upon stabilising, this is sent to the full exceptional collection
MCM*(R) = (m(1),m?(2), L1, Lo, L3, Ly)

which is strong by Lemma It remains to calculate the endomorphism algebra. Letting T = m(1) &
m2(2) & (@?:1 Li), we have seen that End,, r(T') = Endg,.r(T). Consider the following morphisms:

with ¢; : m?(2) — L; induced by z,y — T,7 € R/l; = L;. These satisfy the relations of the squid algebra
Sq(2,2,2,2; A\) and so there is an injective map

5q(2,2,2,2;\) — Endg,r(T)

which is an isomorphism for dimension reasons. O

Finally, to end this section and as alluded to above, let us mention a basic fact relating graded MCM
modules over the previous rings R to MCM modules over the completion R at m. It is well-known (see
[107]) that the completion functor M = M ®p R preserves indecomposables MCM modules, and that
two graded modules satisfy M = N if and only if M = N(n) for some n € Z. It isn’t however always
true that indecomposable MCM R-modules arise as the completion of a graded module, but this does

hold in special circumstances. For instance:

Corollary 3.1.5. Let R be the completion of R = Ry, fori=1,2 at m = R>1. Then every indecom-
posable MCM R-module is the completion M of an indecomposable graded MCM R-module M .
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Proof. By [62, Prop. 1.5], the completion functor (/—\) : MZ(R) — M(é) identifies with the
universal functor to the triangulated hull of the orbit category MCM?(R)/(1). By Keller’s theorem [59],
this functor is essentially surjective whenever MCM?%(R) 2 D(#) for H an hereditary category, and (1)
moves away from the heart H in that X(n) ¢ H for all n > 0 and X € H. We do this in each case as

follows:
i) (R = Ry,): Take H = mod k@, then (1) =S = 7[—1] moves away from the heart H.

ii) (R = Ry,;): Take H = coh X where X is the weighted projective line of type (2,2,2,2; ) derived
equivalent to Sq(2,2,2,2; \), then Sg = (2) corresponds to Sx = — ®wx|[1] on D¥(X), and one easily
sees that (1) moves away from the heart H.

3.2 Graded MCM modules over the cone of 4 points on P? in

general position

Let R = Ry, = k[z,v,2]/(Q,Q’). We now investigate the structure of MCM*(R). Thinking ahead, we
will modify the equivalence of the previous section to simplify calculations down the line. Recall that
Sr(=) = — ®g wr[dim R — 1] = (1) is a Serre functor for MCM?(R) since R has isolated singularities.

Writing k%t = Slgl(kSt(l)), the full strong exceptional sequence of the previous section
(kS'(1)[~1], Ly, ..., Ls)
can be exchanged for the exceptional sequence
(Ly,..., Ly, k).

This sequence is also full by Serre duality, since it has trivial right orthogonal category, and is also
strong as one immediately verifies that Exty, p(Li, k) = Exty,.p(Li, k) = 0 for n # 0. Letting T =
(Br_, Li) & ks, we have End , r(T) = kQ with Q the “four subspace” quiver

P2 0

p3

N

3

4
The module T is also a tilting object in the opposite category MCMZ(R)OP with endomorphism algebra
kQ°P, and mod kQ°P = kQ mod. From Tilting theory we obtain:

Proposition 3.2.1. There is a contravariant equivalence of triangulated categories

F : MCM?(R)*? =5 D (kQ mod)
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onto the bounded derived category of left kQ-modules, or equivalently covariant quiver representations of
Q.
We will need an explicit description of the functor F. Given M, N € MCMZ(R), recall that we write

RHom,, (M, N) = Homy, r(C(M), C(N))

where C'(M), C(N) are complete resolutions of M, N, so that

H"RHom,, z(M, N) = Ext”, (M, N).

Let R = RHomgrR(T, T) be the derived endomorphism algebra of T, quasi-isomorphic to the usual

endomorphism algebra End, r(T) = kQ via the standard truncation zigzag
0:R < SR S5 HR = kQ.
The zigzag of quasi-isomorphisms ¢ induces an equivalence of derived categories

¢, : DP(R Mod) =5 DP*f(kQ Mod) = D’ (kQ mod)

given by
X = kQ ®@Yoop X.

We then define F' as the composite equivalence F' = ¢, o RHomgrR(—7 T)

D®(kQ mod).

F : MCM?(R)°P = DPef (R Mod) =
RHOimgTR(*’T) #x

Working with the contravariant equivalence F' will turn out to be easier in practice. Note that since

kQ is hereditary, any complex in D®(kQ mod) is formal, that is to say

X = @H(X)[-n]

neEZ

and it suffices to understand the cohomology modules H"(X).
Lemma 3.2.2. Let M € MCMZ(R). Then for each n € Z, we have an isomorphism of left kQ-module
H"(F(M)) = Extg, (M, T).

Proof. The action of Z°R ¢ 7SR C R on RHom,, (M, T) by post-composition descends to the action
of HR = kQ on ¢«(RHom,, r(M,T)) by post-composition. Taking n-th cohomology gives the above
O

module structure.

Equivalently, the quiver representation H"(F'(M)) is given by
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Exty, p(M, L1)

Extg,,R(M, Lo)
~
Ext!, (M, k*)

/

ExtgrR(M, Ls)

mZTR (M’ L4)
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with linear maps induced from the morphism L; — k%, To classify the indecomposable graded MCM R-

module, it then suffices to classify the indecomposable representations of () and find the indecomposables

M for which H°(F(M)) exhaust this list. One obtains the remaining indecomposables by suspension

3.2.1 Four Subspace Problem

In this section we review the known classification of representations of the Dy quiver @ with “four

subspace” orientation. A good reference for this classification is [96, XIII.3] and Happel’s monograph [46]

for the derived category aspects, and we refer to Appendix [A-] for standard definitions and generalities

on quiver representations.

Since @ is an extended Dynkin quiver, the structure of the module category kQ mod contains three

types of Auslander-Reiten components, namely the preprojective, preinjective components and regular

components, and the first two become attached in the derived category. Let

Skq(—) = — ®jo D(KQ)

be the Serre functor on D?(kQ mod), and 7 = Spg o [—1] the Auslander-Reiten translateﬂ Letting
e; be the idempotent at the i-th vertex, the indecomposable projectives P(i) = kQe; are given for
i=0,1,2,3,4 by

0
O§k

N\

o

k
oxk

0
0

x> O

NN

b 1
o7 7
0

0

NS

2This is somewhat anachronistic. See Appendix

k

0
O§k

0
k

2\
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and the indecomposable injectives I(i) = D(P(i)rg) = D(e;kQ) are given by

k k 0 0 0
N Y £\ Y "N
%\ k Ny Ny ~y Ny
v, o 7 o 7 7 o/
k 0 0 0 k
The Auslander-Reiten translate exchanges those modules up to suspension, via 7P (i) = I(i)[—1] and

7711(i) = P(i)[1]. The family of indecomposable complexes {7™P(i)} for i = 0,1,2,3,4 and m € Z
form a connected component in the Auslander-Reiten quiver I'(D®(kQ mod)) of the form (see [46] 1.5])

1(1)[-1] P(1) *1P<1)

x / (2)[ \ / (2§ / P(2)\
N i

I(0)[-1] P(o) +=1p(0)

7 \ I(3)[-1] \ (3)7 \ P(3)

1(4)[-1] P(4) r=lpa)

called a transjective component. The indecomposables complexes 7™ P(i) for m < 0 are modules
called preprojective modules, while the indecomposables complexes of the form 7™1(i) for m > 0 are
modules called preinjective modules. Note that the transjective component consists of the preprojective
component in kQ mod attached to the suspended preinjective component in (kQ mod)[—1]. We denote

the transjective component by PZ and its n-th suspension by PZ[n].

One can write down the preprojective and preinjective modules explicitly but we will be satisfied

with the description

U PZin) = {="P(i)[n] | i =0,1,2,3,4, and m,n € Z}.
neZ

Regular components

A module whose indecomposable summands are neither preprojective nor preinjective is called regular.

Let R(Q) denote the category of regular modules. Its structure is as follows.

Proposition 3.2.3. The category R(Q) is a full abelian subcategory closed under extension and under
the Auslander-Reiten 7. Moreover, R(Q) is serial in that every object has a unique finite composition

series with simple reqular factors.

Since @ is extended Dynkin, the Auslander-Reiten components in R(Q) break down into a P! family
of disjoint tubes of finite ranks {7} ep1. The additive closures add 7, are abelian subcategories closed
under extension and under 7, with finitely many simples (whose number is the rank of the tube).

Moreover, the categories add 7, are pairwise Hom and Ext orthogonal.

We begin with a description of the simple regular modules in R(Q). Consider quiver representations
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of the form

with all ¢; # 0. One can identify this with the set {im ¢;} of 4 lines through the origin in k2. Assume

that the first three lines are distinct, so that up to change of basis the above representation is given by

(%017@27%73,904) = ([?HH,[%]’ [iﬂ)

Writing A = (A\g, A1), we denote the above representation by Ry. It is clear that the isomorphism class
of Ry only depends on the point A = [\g : A\;] € PL.
Again considering the 4-tuples of lines given by (o1, @2, @3, 1), now assume that exactly two of the

lines collide. This yields a partition of {¢1, 2, ¢3, 04} = {pi, 9;} [[{p, g} Where im ¢; = im ¢; and

4

im ¢, # im ¢,. Keeping track of ordering, there are (2

) = 6 such partitions. Let us define corresponding

representations as

Ry« (190, 111181, 19D) Ry (L IYL Y] 6D
Ry - (31,011, [81.[1D) By (L9 [ (6D
RS (911161, [6D) R (6] (61 8] [1])

We have chosen this normalization with the following properties in mind:
i. For A=0,1,00, we have R) = R;.
ii. The involution Ry <+ R, corresponds to interchanging {¢;, ¢, } and {p,, p,}.

Finally, let us introduce additional representations {Soi, Sf[, SE} as in Figure We now have a

complete set of simple regular modules for kQ.
Proposition 3.2.4. The following properties hold:

1) The set S = {Rx}rep1\{0,1,00} U {S,\i}/\:o,l,oo is a complete set of isomorphism classes of simples in
R(Q). In particular, each S € S is indecomposable with Endyg(S) = k.

2) The Auslander-Reiten translate acts by

TRy = Ry, A#0,1,00

S = ST, A=0,1,00.
3) For each A = 0,1, 00, we have non-trivial short exact sequences
0— Sf = R = ST —o.

The simples { Rx}aept\{0,1,00} €ach generate a rank one tube 7, and {Soi,Loo} generate tubes 70 1,00
of rank two, as in Figure [3:2.1] with the edges attached. Since each category add 7 is a serial abelian
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k 0
Sq Oxk Sy k§k
0 - 0 1
% %
k 0
0 k
1
St kl&k ST O§k
1 1 1
0 W
k 0
0 k
1
St Oxk S k§k
e F > T
£ 7

o O

Figure 3.1: The simple regular modules ngl,oo.
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category with finitely many simples, each indecomposable in 7, is uniquely determined by its simple

socle and its length (or equivalently its height in the tube).

Definition 3.2.5. Let S € S be a simple regular module. We denote by S(r) the unique indecomposable

regular module of length r with socle S.

Note that by Prop. m we have Rf = S%(2) for A = 0,1, 00. The remaining indecomposables are

constructed by iterated extensions as follows. Let S{r) be an indecomposable regular with simple socle

S. From Auslander-Reiten duality (or Serre duality) we have

ExtiQ(S(r),TS) =~ DHomygg(S, S(r)) =k

and so there is a unique non-split extension

E:0—=>785— (79)(r+1) = S{r) = 0.

Its middle term must be indecomposable, since a decomposable module would have summands of length

< r and, as S(r) is uniserial, any surjection (7S5){(r + 1) — S(r) would have to restrict to a surjection

on some indecomposable summand, which would be an isomorphism for length reason and hence create

a splitting of &. Applying this to our set of simple regulars gives unique short exact sequences
0— Ry — Rx(r+1) = Ry(r) — 0, A#£0,1,00

0= Sf = SFr+1) = SF(r) =0, A=0,1,00
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Ry (6) Sx(6)* Sx(6)~
7 N 7 N 7 N
Ry (5) Ry (5) Sy (5)* Sx(5)~ Sy(5)t
N 7 S e N 7
Ry (4) Sx(4)~ Sx(4)*

7 N 7 S 7 N
R\(3) Rx(3) Sy (3)~ Sy (3)F Sy (3)~
I - ~. . _/

R\ (2) Ry R}
i 7 \*RA ) TN ) TN )
SA SA SA

Figure 3.2: Tubes T, of rank one and two.

and we have a description of the indecomposables in each tube {7} cp1, as in figure As before,
denote by 7Tx[n] the n-th suspension of a tube in D?(kQ mod).
Theorem 3.2.6. The Auslander-Reiten quiver of D*(kQ mod) is given by the union of disjoint compo-

I'(D’(kQ mod)) = ( U ”PI[n]) U ( U mn]).

nez AEPL nEZ

nents

In particular this yields a full classification of indecomposables in D?(kQ mod).

3.2.2 Indecomposable graded MCM modules

We want to describe the classification of indecomposables on the other side via F : MCM* (R)°P =N
D’(kQ mod). First recall that the Serre functor on MCM%(R) is given by Sg = (1) and the Auslander-
Reiten translate by 7 = (1)[—1] = syzkL(—)(1).

Since F'is a contravariant equivalence, we have F'oSg = S,:é oF and Fot = 7~ ! o F by uniqueness of
Serre functor&ﬂ Since the indecomposable summands of a tilting object are sent onto the indecomposable

projectives, we immediately have:
Proposition 3.2.7. We have isomorphisms
F (syz’]{mks‘f(—m)) =~ 7™ P(0)[n]
F (syzy " Li(—m)) = 7" P(i)[n]
forallmne€Z andi=1,2,3,4.

The indecomposable regular modules in kQ mod C D?(kQ mod) are characterised amongst indecom-
posables by being 7-periodic, of period 1 or 2. In MCMZ (R) this corresponds to indecomposables with

a periodic minimal free resolution (then of period 1 or 2), and we have seen that they vary in families.

3The functor S~! is a Serre functor for the opposite triangulated category.
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5

Figure 3.3: The four points X = V(Qp) N V(Qw) in P2

Before we describe the periodic modules, let us apply some normalisations. For the remainder of this
section, assume that char k # 2. The complete intersection R = k[z,y, 2]/(Q, Q") is the homogeneous
coordinate ring of a set X of 4 distinct points in P? in general positiorﬂ and conversely any set of 4
points in general position arise as the complete intersection of two conics. Moreover, there is a unique
pencil of conics through X and this pencil contains 3 singular conics.

It is well-known that any sets of 4 points in general position are related by a projective transformation,
and so up to coordinate change we can assume that the points are given by [£1 : £1 : £1] € P2, and so

that the singular conics are given by equations

Q0=$2—y2
Qu=a"-2"
Qoo:yz_z2

with general conic in the pencil given by {Q = 0} with Q) = AoQoo+A1Q0, A = [Mo : A1] € PL. With this
normalisation, we have an isomorphism R 2 k[x,y, 2]/(Qo, Qo). We may picture X = V(Qo) NV (Qx)
as in figure [3.2.2] where we let [; stand for both the line and the corresponding linear form in the

factorizations

Qo= (z—y)(xz+y)=lhls
Qoo =(y—2)(y+2)=1laly

and from the figure we have I(p;) = (I;,1;11), using cyclic indexing. Recall that for each point
p; € X, we defined L; = R/I(p;) = S/(l;,1;41) as its homogeneous coordinate ring thought of as an
R-module, with S = k[z,y, z].

Now for A = (Ao, A1) € k2 \ {0}, let (@], @) be the pair of matrices over S given by

T—y -y — 2

= Ao(y—2) Mz +y)

We have @j\'q); =Q\ I = @;\@j\'. Letting s = (po, 1) correspond to a different point in P!, the
sequence (Q,,@Q,) is regular in S and the pair (®},®)) defines a matrix factorization of @y over

4A set of n + 2 points in P" is in general position if no n 4+ 1 of them lie in a proper linear subspace. Here this means
that no 3 points in X are collinear.
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S"=5/(Q.). The module
T
Ny = coker(R(—1)®2 22, Ro?)

is then an MCM module over R = S§'/(Q,), with isomorphism class independent of representative of

[Ao : A\1] € PL. Its complete resolution is then given by

__ — _
C(NA) s R(_Q)@Q ﬁb_%> R(_1)€B2 <1>—/\> REBZ <1>—/\> R(1)€B2 S

Proposition 3.2.8. The following holds for all A € P':
i) We have Endg,r(Ny) = End,, r(Nx) = k, hence the modules Ny are indecomposable.
ii) We have 72Ny = Nj.

Proof. For part i), direct calculations show that the only scalar matrices A, B fitting in a commutative

diagram

R(=1)22 5, e

o s

R(-1)®2 2 R9?

are given by A = B = ¢ I for some ¢ € k, for any A € P'. Thus Endg,z(Nx) = End,, z(Ny) = k.
Part ii) follows from the definition of 7 = syzhL(—)(1) and the minimal complete resolution of N, is

2-periodic. O

Next, consider A = 0, 1, oo corresponding to the 3 singular conics listed above. Then the factorizations

Qo=2>—y*=(z—y)(z+y)
Qr=2>-2=(x—2)(z+2)
Qoo =y —2"=(y—2)(y +2)

are size one matrix factorizations of @y, netting us additional MCM modulesﬂ

Dy = coker(R(~1) = R) Dy = coker(R(—1) =% R)
DY = coker(R(~1) = R) Dy = coker(R(~1) =% R)
DZ, = coker(R(—1) yre, R) D, = coker(R(~1) Y= R)

We will write Df = R/lf for l)j\[ the corresponding linear forrrﬁ Each pair (lj,l;) corresponds
to a pair of lines in Figure forming the singular conic V(Q,). We then have minimal complete

resolutions
iF it

I5S i
C(D¥):— R(—2) 25 R(-1) 25 R 25 R(1) 2> R(2) — -~
Proposition 3.2.9. The following holds for each A =0,1,00:

i) We have Endg,r(D5) = EndgTR(DiE) =k, hence the modules D/\i are indecomposable.

5The choice of sign will become clear in Theorem [3.2.10
6There is some ambiguity in that (I1,l2,13,l4) = g ,l;,la,ljo). In practice we will use {l;} solely to refer to L; =
R/(li,li+1) and the {If} to refer to DY = R/I.
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Figure 3.4: The three pairs of lines corresponding to singular conics.

ii) We have TD¥ = DF.

Proof. We have Endg, (DY) = (R/lf)o = k hence i) follows, and i) follows from the definition 7 =
syzp(=)(1). O

We now have enough indecomposable MCM modules to produce all simple regular modules over kQ.

The following is the main calculation of this section.

Theorem 3.2.10. We have the following isomorphisms in D?(kQ mod):
i) F(Ny) = Ry for all A € PL.
ii) F(D¥)= ST for \=0,1,00.

Proof. For ease of calculations we will use Orlov’s fully faithful embedding
(=)z0 : MCM*(R) — D(grmod~, R).

Note that we have (L;)i>0) = Li, (Nx);z0p = Na, (Df)[zo] = D/j\E by Lemma since they are
generated in degree zero, and (k**)>o) = k since a > 0 by Cor. [A.3.11]to Orlov’s Theorem.
We first show ). Let U = Ti>) = (@?:1 L;) ® k. We have

Hom , r(Nx,T) = Homg,g(Nx, U) — Homg,r(Ny, k) # 0

since N}, is generated in degree 0. This means that H?(F(Ny)) = Hom,, z(Nx,T) # 0 and so H'(F(Ny)) =
0 for i # 0 since N} is indecomposable and F/(Ny ) is formal in D?(kQmod). Hence F(Ny) is a kQ-module.
By Lemma we have to compute the module structure on Hom, p(Nx,T) = Homg,r(Ny,U)

under endomorphisms of U, or equivalently the maps in the diagram
Homg,«R(NA, Ll)

Homg7'R (NA ) L2)

\

HOIHQTR(N)\, k)

/

HOngTR(]V,\7 Lg)

HOHIQTR(]V)\7 L4)
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induced by the canonical quotient L; — k. Let dim(Ny) := dim(F(Ny)) = (do,d1,ds,ds,ds) be the
dimension vector of the above quiver representation. We have dy = dimy Homgy,r(Ny, k) = 2 with the
obvious basis, and we claim that d; = dimy Homg,r(Ny, L;) = 1 for ¢ = 1,2,3,4. We prove this by
constructing explicit bases. Present L; = R/I(p;) = R/(l;,1;+1) as a quotient of two linear forms as

above. Consider the morphisms

&t ot
—1)®2 2 R®? Ny R(-1)®2 2 R®2 N,y
i 2 e [ERA R
Y Y
R L R(—1)®2 R Loy
[z y y—=z] [z+y y—=]
&t ot
R(—1)%? 2 R®2 Ny R(—1)%? 2~ R®2 Ny
i oo [ERE (PN
Y \
R(—1)®? R L R(—1)®2 R L
(=1) [z+y y+2] 3 (=1) [z—y y+2] 4

where we recall that & = D;E:fz; zfz

} . These chain-maps cannot be nullhomotopic for degree reasons
as there are no non-zero morphism h : R — R(—1), and so d; > 1 for i = 1,2,3,4. Since 72Ny = Ny,
we know that F(N,) must be a regular indecomposable with dy = 2, and an appeal to the classification
of regular indecomposables then shows that d; = 1 for ¢« = 1,2,3,4. With the bases constructed above,

it is now clear that F'(Ny) = Rj.

We now show ). By the same argument as above, F' (D/\i) must be a regular indecomposable kQ-
module and we are left with computing the module structure on Homg,g(D¥,U). Let dim(DY) :=
dlim(F(Df) = (do, d1,da,d3,ds) be its dimension vector. We have dy = dimy, HomgrR(Df, k) =1 with
generator given by the canonical quotient D;\r — k. Writing Df\t = R/lf\E for lf the corresponding
linear form, we have Hom,,gr(R/I¥, L;) = Homy,s(S/I5, L;) and one calculates its dimension from the
incidence relations

1, peV(iy)

d; = dimy Homg,5(S/1E, L;) =

which can be read from Figure Since F' (Df) is an indecomposable regular module, by comparing

dimension vectors we obtain F(D5) = S5 as claimed.

O

Remark 3.2.11. We can pick explicit bases for Homg, r(Dy, L;) as below:

R(-1)=> R > Dy >R~ Dy R( 1)=>R>Df  R(-1)—>R>D{
lm im i i l[s] im

Y Y Y

R(—1)€B2 > R—> L1 R 1 2 > R—> Lg R( 1)@2 R— 3 R(—l)@Q > R—> L4

[2—y y—=] [r+yy z] [r+yy z] [z2—y y+=]
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R R-Df R R R>Df RC1JSR->D;

—1 R D
l[S] im] ! l[_ im ! l[g] i[o] ! l[ﬂ im V
> Ly

R(—1)€B2 —>R*>L1 R(—1)€B2 > R(—1)®2 %R»Lg R(—1)®2 —>R*>L4

[z—y y—z] [ty y—=] [ty y+z] [z—y y+z]

55
11]

+z +z +z +z
R(-1J">R=Dtf R(-1J>R=Df R(-1J>R=D:f R(-1J—>R=>D%

l[%ﬂ im i[8] im l[?] im l[?l im
Y \ \ \
R(*l)GBQ >R — L1 1%(*].)@2 > R— L2 Ff(*l)a92 >R — L3 ]%(*].)EB2 >R — L4
[~y y—=z] [2+y y—=] [T+y y+2] [2—y y+2]

This clearly shows that F(D}) = Sy, and so that F(D}) = S by using 7.

Remark 3.2.12. As a result, we see that the pencil of conics {V(Qx)}rcpr serves as natural parameter

space for the family of tubes {7} ep1, with the rank of T, given by the number of branches of V(Q)).

Finally we obtain the remaining indecomposables by taking extensions. Let &' = {Nx}x0,1,00 U
{D/j\[} A=0,1,00, Which is sent contravariantly onto the set of simple regular modules & C D?(kQ mod)
by F. For any MCM modules M, N, we have M;TR(M, N) = ExtérR(M, N). We can define MCM
modules Ny (r), DE (r) for 7 > 1 iteratively as the unique modules fitting inside non-trivial short exact

sequences
0 — Nx(r) = Nx(r+1) = Ny — 0, A#0,1,00
0— Df(r) = Df(r+1) = Df -0, A=0,1,00

corresponding to the short exact sequences
0— Ry — Rx(r+1) = Ry(r) — 0, A#£0,1,00

0—S§ = SF(r+1) = SF(r) =0, A=0,1,00

under the isomorphisms
Exty, p(Nx, Na(r)) & Ext}, p(Nx, Na(r)) 2 Extgo(Ra(r), Ry) = k

and respectively for D (r). Note that under this notation we have Ny = Dy (2) and syzk(Ny)(1) =
TNy = D, (2) for A =0,1, 00, while 7N = N, for XA # 0,1, c0 by Prop. [3.2.4
A priori, the modules Ny(r), Di(r) in MCM%(R) only have indecomposable images in MCM?(R),

and so might contain a free summand. We show that this is not so.
Lemma 3.2.13. The modules Ny(r), Df(r) are indecomposable in the module category.

Proof. Let M be such a module, and we can write M = F @ [M] for F a maximal free summand and
[M] indecomposable. From the above short exact sequences one sees that M is generated in degree
zero by Boo0(M) generators, and Betti numbers are subadditive under short exact sequences. We have
Bo,0([M]) < Bo,o(M). We will show that the numbers S o([M]) are additive under the above short exact
sequences, thus reversing the inequality So0([M]) > Bo,0(M) and proving M = [M].

We have £o,0([M]) = dimy Homg,r([M], k), and we claim that Hom,r([M], k) = Hom, ([M], k).
To see this, note that a non-zero map f : [M] — k factoring through a free module G must surject
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onto one of its summand to reach k, thus splitting off a free summand of [M], a contradiction. We then

obtain

Fo,0([M]) = dimy, Homg, r([M], k)
— dim. Hom,, (M), )
(M, k)
k)
= dimy, Homy (P(0), F(M))

= dimy, HomgrR M
= dimy, Hom, (M

and dimg Homyg(P(0), —) is additive on short exact sequence of kQ-modules, from which the above
extensions come from. This shows By (M) < 5o o([M]) and so M = [M]. O

This completes the classification of graded MCM R-modules. To state the result in full, recall that
the complexity of a module M is the least integer ¢ = cax(M) such that the minimal free resolution Fi
of M has ranks rk(F),) with growth of order O(n¢™1).

Let C be the Auslander-Reiten component of F(MZ(R)) containing L1,..., Ly, k%, and let Q)
be the component contaning Ny for A € P'. All indecomposables in Q, have periodic minimal free
resolution period 1 or 2 according to whether A # 0,1, 00 or A = 0, 1, 0o, corresponding to the 7-period.
Hence these modules have complexity one. In particular they satisfy M[2] = M(2). In the next section,
we will construct the minimal complete resolutions of Ly, ..., L4, k** which will be of complexity two.

Summarising this section, we have shown:

Theorem 3.2.14. The indecomposable (non-free) graded MCM R-modules are listed in the following
table, up to degree shift:

Indecomposable objects (up to degree shift)

Complexity 2 Complexity 1
Ae P\ {0,1,00} A=0,1,00

kst[n], n € Z Nx(r),r>1 Dy(ry*t, r>1
Liln],neZ Dy{r)y=, r>1

Theorem 3.2.15. The Auslander-Reiten quiver of MCMZ(R) is given by the union of disjoint compo-

ruaatm) = (Uen)u( U o)

nez AeP neZ

nents

The components C can be drawn as

L1 ()[-1] Li(=1)[1]

Ly
\ Lo(1)[—1] /LQ\ %(1)[1]
kot (2)[—2] kSH(1)[-1] kSt
L3(1)[—1] Lg Lz (—1)[1]
La(1)[—1] Ly Ly(—1)[1]
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and the components Qy as below, with the edges identified

76

Nx(6) Dy (6) Dy (6)
7 S~ SN\ 7
N (5) Nx(5)  Di(5) Dy (5) Dy (5)
S~ 7 AN 7 N e
Nx(4) Dy (4) Dy (4)
7 S~ e N 7 AN
N (3) NA(3) Dy (3) Dy (3) Dy (3)
S~ 7 AN 7 N e
Nx(2) Dy (2) DY (2)
NA/ \NA Dj/ \D;/ \Dj
A€ P\ {0,1,00} A=0,1,00.

3.2.3 Betti tables of indecomposables

Let M be a graded MCM R-module with minimal complete free resolution

RN @R(_]’)@Bi,j ey @R(_]’)@Bl,j — @R(_j)@ﬁo,j N @R(_j)EBﬂ—lJ O

JEZ

JEZ

JEZ

JEZ

The Betti table of M is the table whose entry in the i-th column and j-th row is given by 3; ;4.

0 1 a-2 a-1 a
-2 Bo,—2  Bi1,-1 Ba—2,a-4 Ba—1,a—3 Baa—2
-1 60,—1 ﬁl,O 6(1—2,(1—3 ﬂa—l,a—Q ﬁa,a—l
0 Boo P Ba—2,a—2  Ba-1a=1  Baya
1 Boai P2 Ba=2,0-1  Ba—1,a  PBaa+t1

We list here all Betti tables of indecomposables. Note that 7! = syzﬁl(—)(il) and (£1) correspond
to horizontal and vertical shifts respectively.

It is simple to obtain the Betti tables from our classifications. Let F' : MCMZ(R)°P =N D*(kQ mod)
be the previous equivalence. For any quiver representation X of @, we write X for the vector space

sitting over the 0 vertex. We will use the following lemma for calculations.
Lemma 3.2.16. For any M € MCM?(R), we have
Bi,i+j(M) = dimy H (Tﬁi*jF(M))O.

Proof. We have B; ;4;(M) = dimg Ext}, p(M, k(—i — j)) = dimg Ext}, p(M, k*'(—i — j)). We also have
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TM = M (1)[-1], and so we obtain

Biyi+i (M) = dimy, m;TR(M7 k(=i = )
= dimy, Hom,, (M, k* (—i — j)[i])
— dimy, Hom, (M, 7= 7k J])
= dimy, Hom,, (779 M, k*![—j))
= dimg Homps (,gor (F (K™ [—4]), F (7"t M)
= dimy Homps (yeny (P(0)[j], 777 F (M)
= dimy H™/ (77777 F(M))o.

O

It follows that the Betti table of any indecomposable M can be computed from the dimension vectors
of the T-orbit of quiver representation {7"F (M)}, cz. We deduce that, if X € kQ mod C D®(kQmod) is a
k@-module such that 77" X is also a k@Q-module for all n > 0, then any MCM R-module corresponding to
X has a linear resolution in that f; ;1 ;(M) = 0 for j # 0 for all i > 0. Moreover, the regular kQ-modules
correspond precisely to the MCM modules which are completely linear, meaning that §; ;+;(M) = 0 for
any j # 0 and all ¢ € Z.

The dimension vectors of indecomposable representations of @) are written down in [96], XIII.3], and
from this it is easy to obtain the corresponding Betti tables of indecomposables MCM modules. We

record this in the next proposition.

Proposition 3.2.17. The Betti tables of indecomposable graded MCM modules are given up to syzygy
and degree shifts by:

No(r) Dy(r)*
-10 1 2 -10 1 2
-1 - - - - - i, -1 - - - -
0 2r 2r 2r 2r 0 ror ror
1 - - - - - - 1 - - - - - -
kst L;:
-2 -1 0 1 2 3 -2 -1 0 1 2 8
—9| - _ - - i 2| - - - oL -
-1 5 8 1 - - - - -1 2 1 - - - - -
0 - - - 1 3 5 7T .. 0 - - -1 2 8 4
1 - - - - - - - - 1 - - - - - - - -

3.3 Graded MCM modules over the cone of 4 points on P!

The algebra Ry, had tame domestic CM-type and almost all of the isomorphism classes of indecompos-

able MCM modules were exhausted by a 1-parameter family of tubes {7} cp:. In contrast, the algebra
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Ry, studied in this section is of tame but non-domestic CM-type, and we will see that all indecomposables

live in 1-parameter familes of tubes

{Thatrerr ¢ € QU {00}

indexed by a choice of slope g for an appropriate stability condition. We have shown the existence of an

equivalence of triangulated categories

MCM*(Ry,) = D’(Sq(2,2,2,2; \))

onto the derived category of the squid algebra Sq(2,2,2,2; \) with quiver

and relations p;l;(x,y) = 0 for i = 1,2,3,4. Squid algebras arise as endomorphism algebras of tilting

sheaves on Geigle-Lenzing weighted projective line of the corresponding weight type, in this case giving
D’(Sq(2,2,2,2; ) = D*(X)

for X = P(2,2,2,2;\) a weighted projective line of genus one. The above description of the set of
indecomposables was obtained by Geigle, Lenzing and Meltzer and parallels the Atiyah classification of
vector bundles on the elliptic curve. The main aspect of the classification is the existence of two ‘twist’
autoequivalences

Ty, Ty : DY(X) = DV(X)

generating a braid group on three strands Bs = (T3, T»), from which one obtains all indecomposables
(up to suspension) by successive applications starting from the category of torsion sheaves cohg X.

Let R = Ry, = S/(fy) for S = k[z,y] and f) = 2y(z — y)(z — Ay), A # 0,1. The aim of this section
is to understand the parallel classification in the category MCM? (R), or equivalently in the homotopy
category of matrix factorisations MF(S, fy) = MCM”(R). In this chapter, we will do the following
things:

1) We will write down the matrix factorisations corresponding to the simple torsion sheaves, from which

the remaining indecomposables can be produced by taking extensions and applying Bs.

2) We will give formulas for the rank and degree of a (complex of) sheaves Fy; € DP(X) = MCM*(R)
in terms of the Betti table of the corresponding MCM module M, allowing an intrinsic description
of the ‘charge’ of a graded MCM module Z : Ko(MCM”(R)) — Z®? defined as

kM kF
zm)y =" =M
deg M deg Fur
Along with the t-structure giving rise to cohX C MCMZ(R), this gives the data of a stability condition
on MCM”(R) in the sense of Bridgeland.
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3) We will write down the action of the operations M +— M (1) and M — M* on the charge Z(M),
giving rise to an action of the Dihedral group G' = Dg of order 8 on the lattice Z®2. We then describe

the action of 17,75 on modules with charge in a fundamental domain for G.

4) Finally as main result, we will completely classify the Betti tables of indecomposable graded MCM
modules M up to degree shift and syzygy.

Relations to previous work

The parabolic surface singularities

Pq Xo J1o
PP+ tanys | B+t artP 422 | B+ o+ aniy? + 2
0+ 27 #0 a2 # 4 163 + 27T #0

give the cone over the embedding of an elliptic curve F, inside P2, P(1,1,2) and P(1, 2, 3) respectively.
In his thesis, A. Pavlov classified the Betti tables of graded MCM modules over a hypersurface ring
A = k[z,y,z]/(f) for f in the above table by making use of Orlov’s equivalence

MCM%(A) = Db(E,).

to reduce calculations of Betti tables to sheaf cohomology calculations. Our methods are directly inspired
from his, although the presence of exceptional objects (sitting in tubes of rank two) adds a layer of

complexity for which further ideas are required.

Lastly, the above picture suggests that similar results hold for the curve singularity of type T3¢. This

requires more involved (but similar) calculations, and we will not go through this here.

Weighted projective lines

We now recall standard notation, definitions and background results which will be used implicitly
throughout this section. The reader is referred to [44] [69] [74] for a more in-depth view of the topic.
Note that we will only use the weighted projective line of genus one X = Pl(p,A) = P1(2,2,2,2; )
with A = (0,00,1,A). The derived categories of weighted projective lines of genus one were thoroughly

investigated by Lenzing and Meltzer in [69] [74].

Let us fix notation. Given a set of weights p = (p1,...,p,) and points A = (A1,...,\,) on P! a
weighted projective line X = P*(p, \) is constructed from P! from an appropriate ‘root construction’ of
order p; at the point A;, with the resulting geometric object living in one of many categories according
to one’s taste (as a Deligne-Mumford stack, as an orbifold P!, as a ‘noncommutative’ projective variety,
... ). The resulting category of coherent sheaves coh X being the main object of interest, we will use the
original (and most tractable) model for it introduced by Geigle and Lenzing [44].

Given a set (p,\) of weighted points on P!, we can and will assume that p; > 2 and that A =
(0,00,1,\4,...An). Let S = k[u,v] be the homogeneous coordinate ring of P!. Introduce the "homoge-
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neous coordinate ring’ of X by adding p;-roots at the points \;

S[xlv"'vxn]

(li(uvv) - mfi)izl ..... n

S(pv’\) -

where I; € k[u, v] is the linear form cutting out \; € P, Since we assume that A\; = [0: 1] and Ay = [1 : (]

the first two relations become u = zi*,v = 2?, hence it is customary to write

klzy,...,z5]
(li(2, 25?) — af")

S(p,A) =

1=3,...,n

To the set of weights p, one associates a rank one abelian group L. = L(p) with presentation
L(p) = <'fla v 7'fnv€| plfl == pnfn = E)

Setting p = lem(py, ..., pn), there is a group homomorphism ¢ : L — Z given by §(Z;) = ﬁ, with finite
kernel. We denote by & = (n — 2)é— Y., #; the canonical element in L. The coordinate ring S(p,A)
admits a grading by the group L by setting |z;| := &;. Taking a cue from the Serre’s Theorem, we define

the abelian category of coherent sheaves coh X as the Serre quotient

grmod“S(p, A)

cohX = T
grmOdO S(p7 A)

of the finitely generated graded S(p, A)-modules by the subcategory of finite length modules, with QCohX
defined similarly. Alternatively, these categories have models as actual (quasi-)coherent sheaves on a

ringed spaced, see [44].

Writing B = S(p,A) to alleviate notation, each & € L gives rise to a corresponding line bundle
Ox(#) = B(Z), and we denote by

M ® Ox(Z) := M(Z)

the twisting operator on sheaves. Note that by [68, Appendix], coh X has a symmetric closed monoidal
structure with unit Ox for which the above line bundles are the invertible objects, compatible with
sheafification, so that # — Ox(Z) gives an isomorphism of abelian groups L = Pic(X). We denote
wx = Ox(&) the canonical line bundle.

The categories coh X and QCoh X share the same formal properties as those of smooth projective

curves. In particular coh X is an Ext-finite hereditary category with Serre duality
Ext'(F,G ® wx) = DExt' (G, F)

and we set Sx(—) = — ® wx[1] the Serre functor on D?(X) with 7 = — ® wx the Auslander-Reiten
translate.

We can compute the cohomology of line bundles as HO(X, Ox (%)) & Bz, and H! (X, Ox (%)) by Serre
duality. Every coherent sheaf on X is the direct sum of its torsion subsheaf and quotient torsion-free
sheaf, which is then a vector bundle, and vector bundles admit finite filtrations with line bundle successive
quotients. One is lead to understand torsion sheaves and vector bundles separately.

The indecomposable torsion sheaves are supported over a single point € P'. We say that x is
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ordinary if it lies outside of the set A, and exceptional otherwise. Torsion sheaves supported over x
form a serial abelian subcategory, with unique simple sheaf over x ordinary and p;-many simple sheaves

{Si,j}jez/p.z over x = A; exceptional. These have presentations
0= Ox((j — D)#) =5 Ox(ji) — Siy — 0.

In particular we single out S; ¢ as the unique simple sheaf with a non-zero sectiorﬂ and we have
Hom(Ox, S;0) = k and S;; ® wx = S j+1. There is a family of indecomposable “ordinary” torsion

sheaves S, for any z, with presentations

1
0 — Ox(—0) M), Ox — S, —0
where [(u,v) € S = k[u,v] = k[2*, 25?] C B is the linear form cutting down the point 2 € PL. The sheaf
Sy has length one when z is ordinary and length p; over x = );, with the S; ; as simple composition
factors. The Auslander-Reiten quiver of the subcategory of torsion sheaves cohg X then forms a P! family

of tubes {7} ep:, of rank p; over \; and rank one elsewhere.

In contrast, the classification of indecomposable vector bundles on X differs greatly in complexity
according to whether the virtual genus gx € Q satisfies gx < 1, gx = 1 or gx > 1 as in the case of

algebraic curves, and a complete classification is only attainable for gx < 1. See [44] [74] for more details.

The rank and degree of a sheaf define maps on Ky(X) := K(cohX), uniquely determined by additivity
from their value on line bundles as

rk(Ox(#)) = 1
deg(Ox(#)) = 3(7).

In particular deg(S;) = deg(Ox(€)) = p and deg(S; ;) = 1.

Finally, there are two tilting sheaves of note in D®(X). To fix notation, note that L is an ordered
abelian group with positive cone Ly = N - {Z,...,Z,}, and let .S; ;(r) be the unique indecomposable

torsion sheaf of length r supported over \; with simple socle S; ;. Then we have a tilting bundle

whose endomorphism algebra is given by Ringel’s canonical algebra C'(p,A) = kQ/I with quiver

T 1 1

Ox(%7) Ox(247) Ox((pr — 1)21)

x2 T2 T2

Ox (%) Ox(245) Ox((p2 — @)\

Ox

A
k

Tn Tn Tn

Ox (%)

Ox(2%,,)

"This agrees with the notation in [35] but disagrees with [74].
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and relations [;(al", 25?) — 2" = 0, as well as a tilting sheaf

i=1 r=1

quuid = OX 2 OX(a @ (@ é Si70 <T>>

with endomorphism algebra a Squid algebra Sq(p,A) = kQ/I with quiver

S10— 51,0(2) St0(p1 — 1)

%520—>520<> S2.0(p2 — 1)
X\n 10*>5n 10< > Sn71,0<pn71_1>

n0—>Sn0< ) Sn,0<pn*1>

Ox

and relations p;l;(u,v) = 0. Note that the indecomposable summands of T, and Tsgyq naturally form
full strong exceptional collections since the above quivers have no cycles. Since the head of the Squid

algebra is a Kronecker quiver, we can interpret that second full exceptional collection as
Db(X) = <Db(P1)7 51,07 e 7S1,0<p1 - 1>7 Tty STL,Oa o aS7L,O<p7L - 1>> .
Moreover, this admissible embedding D?(P!) «— D?(X) sends

O]pl (n) — Ox(néj
k(z) — Sy

for n € Z and any = € P'. In this way, the category cohX can be thought of as an enlargement of cohP!,
see [68].

Setup

We can now go ahead with the results of this section. Thinking ahead, we will normalise our calculations
by replacing the tilting object T = m(1) ® m?(2) ® (@f 1 ) by

U =T(=3)[1] = *'(~2) & (R/m?)*( (@ Li( )
with same endomorphism algebra Endg,,R( ) 2 5q(2,2,2,2; A). From previous results, we obtain:

Corollary 3.3.1. For X = P1(2,2,2,2; \), we have equivalences of triangulated categories

MCM*(R) 2 D*(Sq(2,2,2,2; \)) = D¥(X).
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The composed equivalence sends the full strong exceptional collection
(k*(=2), (B/m*)* (=1), Ly(=3)[1],..., La(~3)[1])
to

(OX7 OX(E)a Sl,Oa R S4,O) .
Next, we review the structure of D?(X) for X = P%(2,2,2,2; \).

3.3.1 Weighted projective lines of genus one and braid group actions

In this subsection we review the classification of indecomposable coherent sheaves over a weighted pro-
jective line of genus one due to Lenzing and Meltzer [69], which closely mirrors Atiyah’s classification of

sheaves on an elliptic curve. Everything here is due to them, and we follow [69, [74]. Let
Z: Ko(X) — 7%?

be the ‘chargeﬂ sending the class [F] of a coherent sheaf to

2(F) = <rk(.7:)>

deg(F)

Let pu(F) = drekg((}_}—)) be the slope of F. We say that F is semistable (resp. stable) if for each proper
subsheaf 0 # F' C F we have pu(F') < p(F) (vesp. wu(F') < wu(F)). Denote by C, the category of
semistable sheaves of slope ¢ € Q U {oo}. Note that Co = cohg X is the subcategory of torsion sheaves.

The category C, is a full abelian subcategory of cohX closed under extension for any ¢, with simple objects
given by the stable sheaves. Weighted projective lines of genus one are characterised by deg(wx) = 0,
or equivalently wx has finite order in Pic(X), and so C, is closed under the Auslander-Reiten translate
7T = — ®wx. In the genus one case, indecomposable sheaves are semistable [44] Thm. 5.6] and we are
lead to describe the categories C, for each g. We will do this by means of the Telescopic functors of
Lenzing and Meltzer.

Let U be the 7-orbit of a stable sheaf, e.g. U = {Ox,wx, ... ,w%'(l}, U={S80,5i1,-,S p;—1}, or
U = {S,}. We define the left mutation L, (respectively right mutation Ry) by U acting on F € D?(X)

via the distinguished triangles

Ly(F)[-1] — @ Hom® (€, F) @4 € < F — Lu/(F)
geu

Ry(F) = F == D Hom* (F, £)* @4 £ — Ry(F)[1]
geu
The Ly, Ry are called tubular mutations and recover the notion of spherical twists when U = {£}.
Proposition 3.3.2 ([T4, Thm. 5.1.3]). The constructions Ly, Ry are functorial in F. Moreover, they
give inverse autoequivalences Ly, Ry : DP(X) N D*(X).

For simplicity and to fix notation, let us restrict to the case of interest X = P1(2,2,2,2;\). In this

case, wx has order 2 in Pic(X). In [69], [74, Chp. 5], Lenzing and Meltzer consider two autoequivalences

8This follows Bridgeland’s terminology in [23].
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Ty, Ty : DY(X) = DY(X) given respectively by right mutation by the orbit of the structure sheaf U =
{Ox,wx}, and left mutation by the orbit of a simple torsion sheaf U = {510,511}

Ty (F) = F <= @ Hom*(F,wi?)* @k wi? — Ty(F)[1]
JE€EZ2

To(F)[-1] = D Hom*(S1 5, F) @k S1,; < F = Ta(F)
JEZLs

rk(F)\ (1 1 rk(F)
deg(TyF))  \0 1) \deg(F)

These act on rank and degree by

and restrict to equivalences

lecqic#l forall 0 < ¢ < o0
Ty : Cy iCqH for all ¢ € QU {0}
lecooicl.

Let By = (01,09 | 010201 = 020103) be the braid group on 3 strands.

Proposition 3.3.3 (|74, Sect. 5.3.6]). The functors Ty, Ty * satisfy the Braid relations
T, ' =T, Ty

Moreover, the homomorphism Bs — Aut(D*(X)) given by o1 +— T}, o9 +— Ty " is fully faithful.

The induced action on rank and degree then gives rise to the well-known homomorphism Bs —
SL(2,7Z). Tt is also well-known that the transformations 77 : ¢ (;ﬁ and Ty : ¢ — ¢q + 1 defines
an action of the free monoid on two words F{Ty,T>} on the positive rationals Q,, which is free and
transitive with single generator 1. This gives the positive rationals the structure of an infinite binary
tree called the Calkins- Wilf tree. Writing ¢ € Q4 as wq(Th,T2) - 1 for some unique word wq (71, T%), one

deduces the existence of an autoequivalence
Dy oo = wy(Ty, Ty) o Ty : DY(X) = D(X)

restricting to Cso =N Cq for any ¢ > 0. One then extends ®, ., with the same property to any ¢ < 0 by
Dy oo i =T5 "0Pgyn oo for n > 0, with result independent of n. The functors ® o, are called Telescopic
Functors.

Since the category Co, consists of all skyscraper sheaves, the category C, is serial for any ¢, with
simples given by the stable sheaves of slope q. As the type of X is (2,2,2,2), the Auslander-Reiten
quiver of C, breaks down into tubes of rank one indexed by the ordinary points € P! and tubes of

rank two indexed by the exceptional points z; € P!. These correspond to indecomposables for which
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Figure 3.5: The Calkins-Wilf tree.
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FRuwx 2 F and F ® wx 2 F, respectively. Moreover, the exceptional sheaves are precisely the stable

sheaves living in rank two tubes.

For computing morphism spaces in D?(X), we have the following well-known results.
Lemma 3.3.4 (Lemma 4.1, [69]). Let F,G be semistable sheaves of slopes q,q’.

1. If ¢ > ¢, then Hom(F,G) = 0.

2. If ¢ < ¢, then Ext'(F,G) = 0.

Proposition 3.3.5 (Weighted Riemann-Roch, [69]). We have

X(F,G) +x(F, G @wx) =

rk(F) rk(G) |
deg(F) deg(G)|

In particular, we get

X(F) + X(F @ wx) = deg(F).

3.3.2 DMatrix factorisations corresponding to simple torsion sheaves

We see that to understand the classification of indecomposables in MCM”(R) = D*(X), we must:

1) Understand the rank and degree maps
rk, deg : Ko(MCM*(R)) — 7Z
and thus define the slope of an (indecomposable) graded MCM module.

2) Recover the category Co inside MCM”(R).

3) Understand the action of T7,T5 on Co, C MCMZ(R).

In order to situate ourselves, let us first calculate the images of {k*'(—j)};jez under the above equiv-

alence. By 2-periodicity we have k*(—j — 4) = k%(—j)[—2], and so it suffices to compute the image

of
kRS (=1), k% (=2), k¥ (=3).
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The Serre functor Sg(M) = M(2) is sent to the Serre functor Sx(F) = F ® wx[1]. The periodicity
identity (4) = [2] corresponds to the fact that wx is 2-torsion. Keeping this in mind, we will prove the

following:
Theorem 3.3.6. Under the equivalence of Cor. we have

k5 s wg[1]
FH(~1) - Ox(~2)[1]
k¥ (—2) — Ox
kH(—3) s Ox(—&) ® wy.

Proof. By Corollary[3.3.1] we already have k%¢(—2) — Ox, and so k*t = Sg (k*(—2)) — Sx (Ox) = wx[1].
Let Fyet (1 correspond to k**(—1). We previously obtained the exceptional pair (k% (—2), (R/m?) ot (-1))

as the right mutation
R (R (1), K (~2)) o (K (=2), Ry (1) ((~2)))
and so we can obtain (Ox, Ox(C)) as the right mutation
R (Fpst(—1), Ox) = (OxaRfW(,l)(OX))

Since left and right mutations are inverses (Prop. , we can recover JFp.t(_1) as the left mutation
Fior(1) = Loy (Rre ) (0x)) = Lo, (0x(@)
calculated by the distinguished triangle
Lo, (0x(9))[~1] = RHom(Ox, Ox(¢)) @ Ox — Ox(&) = Lo, (Ox(?)).

This calculation can be done inside D®(P') C D®(X), where the above corresponds to the Euler sequence
(up to twist)
0 — Opi(—1) = HO(P, Op1 (1)) @1 Opr =% Ops1 (1) — 0.

This gives Fyet(—1) = Lo, (Ox(€)) = Ox(—&)[1], and finally k**(—3) — Ox(—0)@wy ' = Ox(—0)@wx. O

Remark 3.3.7. Our choice of tilting object U = T'(—3)[1] in Cor. was made in anticipation of this

result, and this normalisation will be helpful in calculations of Betti tables in further sections.

We can produce the indecomposable matrix factorisations corresponding to the simple objects in Co.
For simplicity we assume char k& # 2 for the calculation. We already have the bases of the rank two
tubes, given by

Li(~3)[1] = coker(R(—3) 2% R) = R/(%)
K]

which are sent to S; o under Cor. and 7L;(—3)[1] = L;(—1) = R/l;(—1) sent to S; 1. By the previ-
ous theorem, the pair (k% (—1)[—1], k¥ (—2)) corresponds to (Ox(—¢c), Ox), with 2-dimensional morphism
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space. Taking a basiﬂ $0; ¢oo for Hom,, 5 (k% (—1)[=1],k*(=2)), for any p = [po : p1] € P! we define
the MCM module M, as the cone of ¢, = p1do + Podo

B (—1)[—1] 2 kH(=2) = M, — k*(—1)[2]
whose distinguished triangle is sent to
Ox (=) 2 Ox — 8, — Ox(—=)[1].

for the corresponding cosection sp,, with cokernel an ordinary skyscraper sheaf. We can produce the
associated matrix factorisations. We have fy = xy(x — y)(z — \y) = 23y — (1 + N)a?y? + Axy®. Write

fr=afs +yf, for fo = %% and f, = %%, and note that z|f, and y|f,. We have already seen part

1) of the next result, which we restate for convenience.
Proposition 3.3.8. Assume char k # 2. We have the following explicit presentations.

1) k%t corresponds to the matriz factorisation

S(—4) ® S(-2) —Z= S(-1) ® S(~1) —2= S & S(2)

A<x y) B<fz y>'
_fy fz fy Y

2) A basis of morphisms ¢o, boo : k¥ (=1)[—1] = k%' (—=2) can be taken as

with

S(—6) @ S(—6) — 2= S(—5) @ §(—3) — 2= S(~2) & S(—2)

|- |- |-

S(—6) @ S(—4) —2> S(—3) @ S(—3) — 2= §(-2) @ §

with matrices given by

0 1 ,f?y -1
=l ) ()
1 0 0 0
(2 e (5 0)
Y Yy

Proof. Part 1) follows from the Tate resolution, see [4I]. For part 2), note that the MCM approximation

kst(—2) — k(—2) corresponds to the natural projection and induces natural isomorphisms on Tate

cohomology
Ext?, (K (~1)[=1], F*(~2)) = Ext?, g (F*(~1)[~ 1], k(~2)) .
The morphisms ¢q, ¢~ descend to the natural basis on the latter. O

9This may not correspond a priori to the basis {u,v} of HO(X, Ox(€)) on the other side. However, the choices we will
make in Prop. will turn out to correspond to {u,v} up to rescaling, see Lemma [3.3.10| and following remark.
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Now let ¢, = p1¢po + Podoo. Taking Cone(e,) yields a 4 x 4 matrix factorisation

S(—6) (B wp) S(-3) (A sop) S(=2)
S(—4) \0 B) g(-3 \0 A S

S(-5) 5(-2) S(-1)
S(-3) 5(-2) S(1)

with ¢, = p19o + PoPec: ¥p = P1%0 + Po¥e and matrices given by

x ¥y Po 41
(A ‘Pp> —fy fo pofjc —p1%

0 A B 0 0 x Y
0 0 _fy fw

fo —y -ml —p
(B %) _ fy z —po% Po
0 B 0 0 fa -y
0 0 fy x

The matrices ¢,, ¥, have two scalar entries, and so this matrix factorisation is stably equivalent to a

2 X 2 matrix factorisation. Direct calculations show the following:

Proposition 3.3.9. The module M, is given by the reduced matriz factorisation

S(=5) @ S(—4) —> §(~2) @ S(~3) —2~ S(~1) @ §

where (Ap, Bp) for p1 # 0 are given by

_ Do, 1,2 I 1,2
A, = =Y »Y B, = z o
—pol L pols - oy

and for py =0, pg # 0 by

2 o 2
Ap:yx B,=1"Y v
0o L 0y

Recall that L;(—3)[1] = R/(];—*) and L;(—1) = R/l;(—1) correspond to the simple sheaves S; ¢, S 1.

From the above presentation, one verifies:

Lemma 3.3.10. For each exceptional point p; = V(I;) € P, there are short exact sequences of MCM
modules
0— R/li(—1) = M, — R/(%) — 0.

Hence the M, corresponds to S,,, the ‘ordinary’ skyscraper sheaf over the exceptional point p; for
pi = 0,00, 1, \.
Remark 3.3.11. Let {u/,v'} be a basis of Hom(Ox, Ox(—¢)) = H°(X, Ox(¢)) corresponding to {¢q, poo }-
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There is an invertible matrix taking {u/,v'} to {u,v}. However, the induced transformation on P! fixes

the 4 exceptional points and so must be trivial, hence the basis {u/, v’} is given by {u, v} up to rescaling.

Summarising, we have shown:

Proposition 3.3.12. Assume char k # 2. The set of indecomposable MCM modules

A
My 0,01 UAR/CR), RA 1)) 12
correspond under the equivalence of Corollary[3.3.1] to the set of simple torsion sheaves in Coo
{Sp}pioyoo,l,/\ U {Si,07 Si,l}i:1,2,3,4-

We now investigate the shape of the Betti table of indecomposable graded MCM modules in a more

systematic way. This will occupy the remaining sections.

3.3.3 Betti tables from cohomology tables

Now given M, write F)s for the corresponding complex of coherent sheaves. In Thm. we saw that

]:kst = WX[H
Fist(—1) = Ox(=2)[1]
.stt(_2) = OX

fkst(_g) = Ox(—g) & wx.

with Free_j_4y = Fret(—j) [-2]. Let C be the minimal complete resolution of M, which looks like

s @ R DR > @R

JEZL JEZ JEZ

We can calculate the graded Betti numbers j3; ; by

Bi,; = dimg Homg, g (C, k[i](—j)) = dimy ExthR(M7k:(—j)) = dimy, ExtgrR(]M7 kSt(—5))

and so by the dimension of the corresponding morphism space in D’(X). This idea was used by A.
Pavlov in his thesis to produce classifications of Betti tables of graded MCM modules over the cone of
various embeddings of an elliptic curve [80]. In our context, Thm. implies:

Corollary 3.3.13. We can calculate Betti numbers B; j = B; ;(M) as follows:

Bi,o = dimy, Ext’(Far,wx[1]) = h™(Fur)

Bin = dimy, Ext'(Far, Ox(=)[1]) = b~ (Fu (&) ® wx)
Bi2 = dimy, Ext’(Far, Ox) = b7 (Far @ wx)

Bis = dimy, Ext’(Far, Ox(—0) @ wx) = b (Fur(9)).

When Far is a coherent sheaf, collecting terms via the periodicity B; ; = Bit2,j+a, the only possible
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non-trivial Betti numbers for M of the form By ., b1« are
Bo,05 Bo,15 Bo,2: Bo,3: B1,2: B1,3: B4, P15

Since coh X is hereditary, indecomposables in D*(X) are of the form F[n] for F an indecomposable
coherent sheaf and n € Z, and it suffices to work out Betti tables corresponding to coherent sheaves. In

this case, the data is best expressed in the following table:

Bo,o Bi2 hO(F) h(F © wx)
B(M) = Bo1 B3 _ h?(]:(g) ® wx) h?(]:(é))

Bo2 P4 hH(F ® wx) h'(F)

Bo3  Bis W' (F(0)) W (F (@) © wx)

where F = Fj;. We will refer to the latter table as the cohomology table 5(F).

Example 3.3.14. Since Fjs:(_z) = Ox, we can calculate

1 0 h°(Ox) hO (wx)
B 0 2 h2(0x(6) ® w ho(Ox(c
Bk (—2)) = _ 1( x(€) ® wx) 1( x(€))
1 0 h (WX) h (Ox)
0 0) WO  KOL@ D)
and we recover the Betti table of Prop. [3:3.8
Example 3.3.15. Since Fum, = Sp, we have
ho(S,) hO(S, © w)

IB(MP) =

S O = o=
S O = =

( (
h(Sp(@) @ wx)  h°(Sp(0))
h1<5p ® wx) hl(sp)
ht(Sp(€)) h'(Sp(6) ® wx)

as S, ® L =2 5, for any line bundle £ and ‘ordinary’ skyscraper sheaf S,. This recovers the Betti table
of Prop. [3.3.9

Dihedral group action

The autoequivalence M ~ M(1) on MCM*(R) induces an autoequivalence Fyr — Fas{1} on D?(X).
Since shifting the grading acts by translation on Betti tables, it suffices to compute one Betti table in the
orbit {M(n)}nez, or equivalently one cohomology table in the orbit {Fas{n}}nez. First, we calculate
the effect of (1) on rank and degree. We begin by finding an intrinsic description of the maps

rk,deg : Ko(MCM*(R)) — 7Z

defined by deg(M) := deg(Fpr) and rk(M) := rk(Far).
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Lemma 3.3.16. For any graded MCM module M, we have

deg(M) = x(M, k") — x(M, k*'(~2))

= Z(_lyﬂi’o - Z(_l)iﬁi,m

<vA 1€Z
PR(M) = Dx(M,k*(~1) & k*(~2)) — sx(M, K & K (~3))
= %Z(—l)i(ﬁi,l + Bi2) — %Z(—l)i(ﬂi,o + Bi3)-
1€Z 1€Z

When M corresponds to a coherent sheaf, this simplifies to

deg(M) = (Bo,o + P1,2) — (Bo,2 + B1,4),

rk(M) = %(50,1 + Bo2+ Pr,3+ Bia) — %(ﬁo,o + Bos + P2+ Fis)

Proof. The formula for deg(M) falls out of the weighted Riemann-Roch theorem via Thm. m To
deduce the formula for rk(M), we use deg(F(¢)) = deg(F) + 2rk(F), so that rk(F) = 3(deg(F(é)) —
deg(F)), then collect terms via Thm. O

The duality M — M™* also acts predictably on Betti tables, as we have 3; ;(M™*) = f_; _;(M) simply
by dualising the complete resolution. We now calculate the effect of M +— M (1) and M — M* on the

rk(M) )

deg(M)

vector

Z(M) = (

Proposition 3.3.17. For any graded MCM module M, we have
<rk(M(1))> B (-1 —1> (m(M))
deg(M(1)))  \ 2 1) \deg(M)
rk(M*)\ (-1 -1 rk(M)
deg(M*)) \ 0 1 deg(M) ]~

Proof. Writing Ky := Ko(MCM”(R)), we will check that the following commutes:

Ky—2— 72

lw l(; 1)

Kg—2 72

The full exceptional collection of Orlov’s Theorem (k5'(—1), k5*(—2), L1(—3)[1],..., L4a(—3)[1]) gives a
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Z-basis of Ky on which this can be checked. We have

2 (k(-2)) = 2(00) = (;)
2 (k1) = Z (Ox(-0)1) = (‘21)

The last line is calculated by Lemma [3.3.16] and so the above diagram commutes. Next, by Lemma
3.3.16| and using periodicity 5; ; = Bi42,j+4 We have

Pk(M*) = ig—l)i(ﬁi,l(zw*) + Bia(M°)) - ;g—ni(@,ow*) + Bia(M))
= 5 D BoimsA)  5oia(0) = 5 S (o0 + 00
= 5 D ) + Buald) = 5 31 Grol) + 8 (A1)
= 5 S GialM) = Bial¥) = 5 1 (a0 + 1 (01
- —;Z(M) — deg(M) :

deg(M*) =Y (=1)'Bio(M*) =Y (~1)'Bi2(M")

i€Z i€Z

=3 (1)'Boio(M) = (~1)'B_i,—2(M)
iE€Z €L

=Y (=1)'Bio(M) =Y (=1)'Bia(M)
1E€EZL 1€EL

= deg(M).

O

Let G = Dg = (r,s | r* = s> = rsrs = 1) be the dihedral group of order 8. We obtain a faithful
representation of G in GL(2,Z) by setting

() ()

Note that 72 = —I5 is formally a consequence of (2) = Sg corresponding to Sx = —®wx[1] in D*(X), since
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d d
/\2 /\2
1 1
> T > T
2 1 1 2 2 1 1 2
1 -1
o -2
Orbits of (r) = Cy Orbits of (s)

Figure 3.6: Chamber decompositions given by orbits of convex cones.

Figure 3.7: Fundamental domain for Cy.

deg(wx) = 0. Let C4y = (r) C G. Our goal will be to describe the possible S(M) for M indecomposable
with (rk(M),deg(M)) = (r,d) fixed, and it is sufficient to do this on a fundamental domain for either
G or Cy4. The action of an element g € GG preserves convex cones and integrality and induces a chamber
decomposition of Z®2, which simple calculations show can be pictured as in Figure m We will
implicitly ignore (0,0) € Z®? in statements to come as there are no indecomposable sheaves of this type,
and consider only the action on Z®2\ {(0,0)}. From Figure one sees:

Proposition 3.3.18. The following are fundamental domains:

1) The positive quadrant Zgg s a fundamental domain for G.

2) The union of the three regions R1 U Re U R3 below is a fundamental domain for Cy:
Ri={(r,d) | r>0, d>0}

Re=A{(r,d) | r>0, d=0}
Rs={(r,d) | r>0, d < —2r}.

The choice of domain for Cy may appear odd, but note that since r > 0 throughout, each pair (r, d)

is realized by a coherent sheaf and we need not consider complexes. Another reason for this choice is to
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maximize vanishing patterns in the cohomology table

ho(]:) ho(.F@wx)
| P(F@@wx) RO(F(@)
pF) = hY(F @ wx) hY(F)
h' (F(0)) h (F(0) ® wx)

Lemma 3.3.19. Let F be an indecomposable coherent sheaf.
1) For F in region Ry, we have h*(F) = hY(F @ wx) = h*(F(€)) = h (F(&) @ wx) = 0.
2) For F in region Rs, we have h®(F) = h°(F @ wx) = h°(F(¢)) = h°(F(é) @ wx) = 0.

Proof. These follow from Lemma [3.3.4] by slope arguments, using the formula
(F @ L) = p(F) + deg(L)

for a line bundle £ and recalling that deg(wx) = 0 and deg(Ox(¢)) = 2. O

This lemma reduces calculations in regions R, R3 to computing Euler characteristics, and region
Ro can be dealt with by hand. In the upcoming sections we will completely classify the Betti tables
B(M) of indecomposables with Z(M) in the fundamental domain of Cy. The smaller domain ZZZ for
G will play a role in a later section, where we will discuss its role in explicit constructions of n_latrix

factorisations.

3.3.4 Cohomology tables of indecomposable coherent sheaves
Cohomology tables for rank one tubes

We are now in a position to compute the cohomology tables of indecomposable sheaves. We will list
the corresponding possible Betti tables of matrix factorisations in a later section, under a different
normalisation. We begin with indecomposables living in rank one tubes, or equivalently which satisfy
F @wx = F. Recall that we denote by ®, , the Telescopic autoequivalence of D®(X) which restricts to
By 0 i Coo — Cy.

Theorem 3.3.20. Let (r,d) be in the fundamental domain with ¢ = %. Consider F with F @ wx = F

and (rk(F),deg(F)) = (r,d). An indecomposable such F exists if and only if gcd(r,d) is even, in which
lged(r,d)|

case )

gives the length of F in Cq. The cohomology table B(F) is then given as:

r>0,d>0 r>0 d=0 r>0, d< —2r

d d
d d 00 0 0
d d
s+tr s+r ToT 0 0
d d
0 0 0 0 -4 —4
0 0 0 0 4y 2o

Proof. An indecomposable F is in the image of & : Co =N Cq, and this functor acts on (r,d)

by SL(2,Z) transformation and therefore preserves ged(r,d). In Co, the lowest value of ged(r,d) =
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ged(0,d) = d possible for indecomposables in rank one tubes is 2, realised by the ‘ordinary sheaves’ S,
with higher values 2n realised by S;(n). This proves the claim except for the shape of 3(F).

Now, F — F ® wx acts by column change on cohomology tables, and so §(F) is symmetrical. By
Riemann-Roch we have 2 - x(F) = d and 2 - x(F(€)) = d + 2r. Combining this with Lemma
determines tables in region R1, R3, and we now consider the region Ro given by sheaves of degree zero.
Since F lives in a rank one tube, it lives in a disjoint component from Ox. Applying @ io sends them to
torsion sheaves with disjoint supports, and therefore Ext*(Ox, ) = 0. An application of Lemma

and Riemann-Roch as above determines S(F). O

Cohomology tables for rank two tubes

We now study indecomposable sheaves F with F ® wx 2 F. We begin with some generalities, most of

which is well-known.

Proposition 3.3.21. Let (r,d) be in the fundamental domain and q = g, The following hold:
i) For any (r,d), there is an indecomposable F with (rk(F),deg(F)) = (r,d) and F @ wx & F.
i) Any such indecomposable F has length |ged(r,d)| in Cq.

iii) There are finitely many indecomposable sheaves of type (r,d) if and only if ged(r,d) is odd, in which

case there are exactly eight.

iv) There is an exceptional sheaf of type (r,d) if and only if |ged(r,d)| = 1, in which case all such

indecomposables are exceptional.

v) When gcd(r,d) is even and d # 0, B(F) = ﬁ(f) where F is indecomposable of same rank and degree,
and F ® wyx = F.

Proof. The first four points follow from the autoequivalence ®, o as in the proof of Theorem [3.3.20]
For v), similarly reduce to skyscraper sheaves. Let S(2n) be an indecomposable torsion sheaf supported
over the exceptional point x; of degree 2n. Then [S(2n)] has height 2n in its tube of rank two, and
computing Grothendieck classes gives [S(2n)] = n[S; o] + n[S;1]. In particular the “ordinary” torsion

sheaf S, for x = z; has degree 2, and we have [S;] = [S; 0] + [Si,1]. From the presentation
0— Ox(-¢) = O0x — S, =0

we see that [S;] = [Sy] for any ordinary point 2/, and so [S{2n)] = n[S;] = n[Sy| = [Sw (n)] where
Sy (n) is a length n indecomposable sheaf supported at z’.

Applying @, o, we deduce that for any indecomposable F of type (r,d) with ged(r,d) even, there
is another indecomposable F of type (r,d) with [F] = [F] and F ® wx = F. Since [F] = [F], we have
x(]—z ® L) = x(F ® L) for any line bundle £, and outside of the case d = 0, those values determine the
cohomology table, hence S(F) = B(F). O

The remainder of the section will be aimed at proving the next theorem.
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Theorem 3.3.22. Let (r,d) be in the fundamental domain. The S(F) of indecomposables of type (r,d)
satisfying F @ wx 2 F are listed as follows:

(r,d) r>0,d>0 r>0,d< —2r
o 0o
+
d odd G G 0 0
dE1 dF1
0 0 -5 -5
d d+
o0 ), R )
g+1 41 g g 0 0 0
(odd, even) gFl4r gEl4r §+r g4 0 0 0
co d d d d
0 0 0 0 —d 41 ey —d —d
0 0 L\ 0 0/ —dx1-r —d+1-» . -4 4, .
i3 0 0
d d
5 b 0 0
(even, even) 2t 2T P .
0 0 T2 T2
d d
0 0 8 7§7T 7577, 8
r>0,d=0 Tube contains Ox Tube does not contain Ox
1 0 0 1 0 0
id r—1 r+1 r+1 r—1 ror
r 0
1 0 0 1 0 0
0 0 L 0 0 . 0 0 6
1 0 0 1 0 0
ror ror ror
T even
0 1 1 0 0 0
0 0 0 0 0 0
1 1 6

The subscript counts the number of indecomposables satisfying F @ wx 2 F with given cohomology table.

The proof strategy. We will make use of Crawley-Boevey’s generalisation of Kac’s Theorem for
weighted projective lines. By the previous proposition, indecomposables with ged(r, d) odd correspond
to real roots of the associated root system, which are enumerated in a standard basis for Ky. Going
through the list, one tabulates all triples (rk(F),deg(F), x(F)) coming from real roots [F], and this
triple completely determines S(F) in regions Rq,R3. The region Rs is then dealt with by hand. We
first recall the needed notions, following [35, 02].
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Kac’s Theorem, after Schiffmann-Crawley-Boevey

We follow [35, [02] for the material that follows. Let X = P!(p,A) be a general weighted projective
line for now, and let T,y = @GS #< 2Ox(%) be the canonical tilting object with endomorphism algebra
C(p,A) = kQ/I with quiver Q:

1 277 ... (p1 — 1)
%m‘é 235 o (p2 — )25

Z 27, . (pn — 1)

Let Q' be the tree subquiver corresponding to 7" = GBGS #<zOx(%), which we label differently as

1,1 1,2 1,p — 1
2,1 2,2 2,ps — 1

N

n,1 n,2 N, pp — 1

Let g be its associated Kac-Moody algebra with root system I', with simple roots €q, €; ;, and let
Lg = g[t,t™!] its loop algebra with root system [ = Z§& T, with symmetric form extended by (6,—)=0.
The derived equivalence

RHom (Toqn, —) : D?(X) =5 DY(C(p,\))

sends {Ox, S; j }j0 to the simple modules S(0), S(4, j) supported over ¢)'. This identifies the summand
Z[Ox] ® (B, j 20 Z[Si,;]) of Ko(X) with T', sending the symmetrised Euler form with the Weyl-invariant
symmetric bilinear form on I'. As Schiffmann then shows [92], this extends to a full isomorphism
Ky (X) = T sending [Sz] to 8. The induced positive cone given by classes of coherent sheaves on I is

given by nonnegative combinations of
€0, €0 + nd, €i,5> 5—261'7]', n €7
J#0
with [Ox(nc)] — €0 +nd and [S; 0] = 0 —3_; €. A version of Kac’s Theorem then holds for coherent

sheaves on X, which we only state in a weak form:

Proposition 3.3.23 (Crawley-Boevey, [35]). The isomorphism Ko(X) = T induces a bijection between

Grothendieck classes of indecomposable coherent sheaves and the positive roots of Lg.
1) When B is a positive real root, then there is a unique indecomposable F such that [F] — B.

2) When B is a positive imaginary root, then there are infinitely many indecomposables F for which
[F] — 8.

The suspension [1] acts on K, (X) = Ko(D*(X)) by [F[1]] = —[F], and so this extends to a bijection
between all (positive and negative) roots of Lg and orbits of indecomposables in D®(X) under F ~ F|2].
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ao a1 o as oy r d X

2m m+1 m m m 2m 4m+1+2n 2m-+n
2m m m+1 m m 2m 4m-+1+2n 2m-+n
2m m m m+1 m 2m 4m+1+42n 2m+n
2m m m m m+1 2m 4m+1+2n 2m-+n

2m+1 m m m m 2m+1 4m+2n 2m+1+n
2m+1 | m+1 m m m 2m+1 | 4dm+1+2n | 2m+1+n
2m+1 m m—+1 m m 2m+1 | 4m+1+2n | 2m+1+n
2m—+1 m m m+1 m 2m+1 | 4m+1+2n | 2m—+1+n
2m-+1 m m m m+1 2m+1 | 4dm+1+2n | 2m—+1+n

2m+1 | m+1 | m+1 m 2m+1 | 4m+2+2n | 2m—+1+n
2m-+1 m m m+1 | m+1 2m+1 | 4dm+2+2n | 2m—+1+n
2m+1 | m+1 m m+1 m 2m+1 | 4m+2+2n | 2m+1+n
2m—+1 m m+1 m m+1 2m+1 | 4m+2+2n | 2m—+1+n
2m+1 | m+1 m m m+1 2m+1 | 4dm+2+2n | 2m—+1+n
2m+1 m m+1 | m+1 m 2m+1 | 4m+2+2n | 2m+1+n

B

2m-+1 m m+1 | m+1 | m+1 2m+1 | 4m+3+2n | 2m—+1+n
2m+1 | m+1 m m+1 | m+1 2m+1 | 4m+3+2n | 2m+1+n
2m+1 | m+1 | m+1 m m+1 2m+1 | 4m+3+2n | 2m—+1+n
2m—+1 | m+1 | m+1 | m+1 m 2m+1 | 4m+3+2n | 2m—+1+n

2m+1 | m+1 | m+1 | m+1 | m+1 2m+1 | 4m+4+2n | 2m—+1+n

2m+2 m m+1 | m+1 | m+1 2m+2 | 4m+3+2n | 2m+2+n
2m—+2 | m+1 m m+1 | m+1 2m+2 | 4m+3+2n | 2m—+2+n
2m+2 | m+1 | m+1 m m-+1 2m—+2 | 4m+3+2n | 2m-+2+n
2m+2 | m+1 | m+1 | m+1 m 2m+2 | 4m+3+2n | 2m+2+n

Figure 3.8: Positive real roots of E4 and triples (r,d, x), where m > 0, n € Z.

Letting A be the set of roots of g, the roots of Lg are given by {a« +nd | « € A, n € Z}, and the real
roots are those of the form o 4+ nd with v € A™.

Coming back to X = P*(2,2,2,2; ), g is of affine type l~?4 and we write ; for €; ;. The positive real

roots of ﬁ4 are given by solutions o = Z?:o a;e; to
g(@) = (af +af + -+ aj) — (apar + -+ + aga) = 1

with a; € Z>o. Writing ¢(«o) = Z?Zl (i — %QO)Q > 0, one sees that the solutions are as listed in Figure
[3:374] Alternatively, the positive real roots are given by the dimension vectors of indecomposables over
the quiver @Q of type Dy, except for those which are multiples of (g, 1, a3, 4) = (2,1,1,1,1). The
dimension vectors are written down in [96, XIII.3].

The last three columns record (rk(F), deg(F), x(F)) where F is any indecomposable corresponding
to B = a + nd. To see this, note that we must have [F] = ap[Ox] + E?Zl a;[Si1] + n[S;] and that
x(O0x) =1, x(S;;1) = 0 and x(S;) = 1. A general real root then has the form 8 = ta + nd, with « in
the above table and n € Z. Finally, let us record a lemma before moving on to the proof of Theorem
9.0.22)
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Lemma 3.3.24. Let F € D*(X) be an indecomposable complex with [F] — B real, with r > 0, d € Z.
Then the possible values of x(F) only depend on d and are listed below:

d X

d odd (F)ar (54,

d even | (5 =1);, (5)g- (3 1),

The subscript indicates how many times x appears for fized (r,d).

Proof. This follows by inspection of Figure where the case r > 0 corresponds to § = a4+ nd for «

in the table, and r = 0 uses +« for « in the first four rows. O

We can now compute cohomology tables of indecomposables in rank two tubes

hO(F) hO(F & wx)
| P(F@@wx) RO(F(@)
pF) = hY(F @ wx) hY(F)
h' (F(0)) h' (F(6) ® wx)

Proof. Let F be indecomposable with F ® wx 2 F, of type (r,d). First assume that (r,d) is in region
R1, the case R3 being similar. As previously, the bottom half of S(F) vanishes for slope reasons
(Lemma [3.3.19). When ged(r, d) is even then by Proposition [3.3.21] the table 3(F) is symmetrical under
exchanging columns, and therefore is forced to be as in Theorem When ged(r, d) is odd, then by
and Kac’s Theorem the class [F] must correspond to a real root, and so the possible values of x
are listed in Lemma which determines the possible values of h?(F). By Riemann-Roch we have

RO(F)+h(Fowx) =d

RY(F (@) + h°(F(6) @ wx) = d + 2r

Now, keeping in mind that (F) = 8(M) where M is presented by a matrix factorisation, the sum of
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each column must be equal. From this one sees that the tables must be of the form

(r,d) r>0,d>0
1 dx1
2 2
d odd ER A
0 0
0 0 4
d d d d
g+l 7 F1 2 2
J oven %:Fl—i—r %:ﬁ:l—l—r g—i—r %—&—r
0 0 0 0
0 0 0 0
1 6

The same argument determines tables in region Rg3, so we are left with region R, where r > 0, d = 0.

We first note that the base of rank two tubes in Cy consists of line bundles of degree zero, with one

distinguished tube having {Ox,wx} as base. For the other tubes, an appeal to the autoequivalence
D00 : Co =, Coo shows that Ext*(Ox, F) = 0 = Ext*(Ox, F @ wx). The first row and third row of 3(F)

vanishes, and slope considerations show vanishing of the fourth row. The table must then be

hO(F © wy) 0 0
hO(F(2)) I
h(F) 0 0
W (F (&) ® wy) 0 0

We are down to F in the Auslander-Reiten component of {Ox, wx}. Now, F is uniserial with socle either

Ox or wx. Assume the first. From the structure of a rank two tube, the simple top of F is wx when r is

even, and Ox for r odd. This determines the dimensions of Hom(Ox, F), Hom(wx, F), Hom(F, Ox), Hom(F, wx)

as

dimy; Hom(Ox, F) =1
dimj, Hom(wx, F) =0

1 rodd
dimy, Hom(F, Ox) =

0 reven

0 rodd
dimy, Hom(F,wx) =

1 reven

and from Serre duality one deduces the shape of the first and third rows. This is enough to determine
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the tables as

r odd r even
1 0 10
r—1 r+1 ror
1 0 0 1
0 0 0 0
The case of F with socle wx is then given by the mirrored table. O

3.3.5 Betti tables of indecomposables

Finally, we collect and list the Betti tables of indecomposable MCM modules in the standard format

0 1
0] Boo Pt
1| Boax Pi2
2| Po2 B3
3| Bo3z Bia
41 Boa Pis
5| .

One can then obtain the complete Betti table by extending by 2-periodicity via 3; ; = Bit2,j+4.

In the previous sections, we produced the cohomology tables B(Fys) of coherent sheaves with (r, d)
in a chosen appropriate fundamental domain for the action of M — M(1). In what follows, we will
use a slightly different fundamental domain, better adapted to displaying the Betti tables S(M). Call
an indecomposable M of the first kind if it belongs to the same Auslander-Reiten component as some

Q"k5*(m), and of the second kind otherwise.

Corollary 3.3.25. The indecomposables of the first kind are uniquely determined by their Betti table.

Up to translation, these are all tables of the form

0 1 0 1
0| 1 - 0| r+1 1
1| r1 - 1 - r-1  for r > 0 odd,
21 1 r+l1 2 - 1
3| - - 3 - -

- for r > 0 even.

L » ~ D
!
<

L »®» ~ D
!
~
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The indecomposables with the above tables have degree O and rank r.

Proof. Assuming the hypothesis, Q="M (—m—2) is in the same Auslander-Reiten component as k% (—2)
which corresponds to Oy, then apply theorem [3.3.22| and translate the resulting tables in the above

form. O

Most indecomposables are of the second kind.

Corollary 3.3.26. Up to translation, the Betti tables of indecomposables of the second kind are all tables
of type I = V:

110 1 I 0 1 17 0 1 v 0 v 0 1
0| a - 0| a+1 0 0 a 0 0 | a+2 0 0 a 0
11b a 1 b a 1 | b+1 a+1 1 b a 1|b+2 a+2
21 - b 2 0 b+1 2 0 b 2 0 b+2 2 0 b
31 - - 3 0 0 3 0 0 3 0 0 3 0 0

with a,b > 0, where we have b # O for tables of type I and b — a odd for tables of type IV — V. Here the
degree is given by d = Bo o + Bi1,2 = 2a, 2a + 1, 2a + 2 and the rank by r =b — a.

Proof. Let M be indecomposable of the second kind. We claim that, up to translation, 8(M) can be

put in the form

50,0 51,2 « B
Boax B3 B4+r a+r
M) = | 7% SN .
A(M) Bo2 Bia 0 0
Bos Bis 0 0

for some «, 8 and r € Z. Running over possibilities in Thm. this is already the case in
regions R1, Re, where d,r > 0. For (rk(M), deg(M)) belonging to Rgs, applying M — M (2) will put
B(M) in the above form. Note that this sends (r,d) — (—r, —d), and so the above tables coming from
region (3) will have r < 0. This will change our fundamental domain to r > —42, d > 0:

Now, the case & = 8 = 0 corresponds to d = 0, or tables in region (2). The other two regions run over
the same pairs (a, 8), with only difference whether » > 0 or r < 0. Next, set a = a, b = a4 r. Running
over the possible a in Thm. shows that tables must have shapes I — V. In particular in
type I, note that b = 0 implies r = —% which falls outside of our domain. Lastly, fixing the type I — V of
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a table, note that (a,b) and (r, d) uniquely determine each other via r = b—a and d = 2a, 2a+1, 2a+2,

and so the classification is complete. O
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Chapter 4

Fano algebras, higher preprojective
algebras and Artin-Schelter regular

algebras

4.1 Finite dimensional Fano algebras and noncommutative pro-

jective geometry

This part of the thesis concerns an application of singularity categories to the representation theory of
finite dimensional algebras and to noncommutative projective geometry in the sense of Artin-Zhang,
which leads naturally to homological results on Koszul duality for Gorenstein algebras. We begin with
some motivation and by reviewing basic definitions and examples. Let k be a field throughout, which

we assume algebraically closed in the first section for simplicity.

Given a smooth projective k-variety X with tilting complex &, the endomorphism algebra A = End(€)

is finite dimensional of finite global dimension, and one has a derived equivalence
D’(X) = DP(A).

The finer properties of the (anti-)canonical bundle of X exert some control over the representation theory

of A, through the identification of Serre functors
Sx = — ®o, wx[dim X]+ Sy = — @% wagldim A]

for a suitable canonical complex wy = DA[—gldim A] € D?(A®?), where DA = Homy (A, k). For a general
finite dimensional algebra A of finite global dimension, the notion of ampleness of the anti-canonical

complex

wi!' = RHomp (DA, A)[gldim A]

was introduced and studied in depth by Minamoto [75]. This leads to the notion of a Fano algebra A,

105
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as well as a suitable “anticanonical ring”

H(A) = @ HOI’HDb(A)(A,u)Xm)

m>0

_ 1@k o . . . .
where w, " = (w A1)®Am, mimicking the classical anticanonical ring

R(X) = @ H(X,wy™) = €D Homps(x)(Ox, wx™).

m>0 m>0

Now fix A a finite dimensional algebra of finite global dimension gldim A = d < co. Let Pic(A) be the
group of isomorphism classes of invertible complexes of bimodules L € D?(A?) under the derived tensor
product — ®% —, thought of as the group Pic(X) of line bundles £ on a projective variety X. Recall

that the Serre criterion for ampleness states that £ is ample if and only if for all coherent sheaves F
H*(X,F®L™) =0 for s >0 for all m > 0.
Let (D=°,D2°) be the standard t-structure on D?(X), and consider the pair of full subcategories

DSUL = {FeDYX) | H¥(X,F®L™) =0 for s > 0 for all m > 0}
D2%L = {FeDY(X) | H¥(X,F® L™) =0 for s < 0 for all m > 0}

The hypercohomology spectral sequence shows that £ is ample if and only if the above gives rise to the
standard t-structure on D?(X). By analogy, given L € Pic(A), writing L™ := L®im we consider the
pair of full subcategories DL := (D<0:L D=0.L)

DSOL = (M € DU(A) | HS (M @% L™) = 0 for s > 0 for all m > 0}
D=%L = {M € D’(A) | H¥(M ®% L™) = 0 for s < 0 for all m > 0}

obtained by formally substituting Ox for A, since H*(X,F) = Homps(x)(Ox, F[s]) and H*(M) =
Hompeay (A, M[s]). Next, we say that a complex M € DP(A) is pure if it is in the essential image of
mod A — DP(A), or equivalently if H¥(M) = 0 for s # 0.

Definition 4.1.1 (Minamoto [75]). Let L € Pic(A) be an invertible complex of bimodules.
i) We say that L is almost ample (almost very ample) if L™ is pure for all m > 0 (m > 0).

ii) We say that L is ample (very ample) if L is almost ample (almost very ample) and furthermore D

forms a t-structure for D*(A).

Remark 4.1.2. Our terminology differs slightly from [75], where only ii) is used. Our notion of ‘very
ample’ also corresponds to ‘extremely ample’ in [75, Defn. 3.4], since Minamoto reserves the adjective
‘very’ for an intermediate condition. The adjective ‘almost’ also replaces ‘quasi’ in [76]. As we will not

make extended usage of these notions, the change in terminology should not prove confusing.

When L is ample, note that the t-structure D* on D?(A) can be very different than the standard
one, and the heart H% is of considerable interest (see [75, Sect. 5]). The terminology should feel natural

by the following lemma:
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Lemma 4.1.3 ([75, Lemma 3.11]). Let L € Pic(A) be (almost) ample. Then L™ is (almost) very ample
for all m > 0.

Definition 4.1.4 ([75] Def. 4.1]). Let A be a finite dimensional algebra of finite global dimension

gldim A = d < oo, and consider the anti-canonical complex wy ' € Pic(A)
1" = RHomy (DA, A)[d].
We say that A is (almost) Fano if wy * is (almost) ample.

Definition 4.1.5. Let A be an almost Fano algebra. The N-graded algebra

II(A @Home(A) (A wi™ @HO

m>0 m>0

is called the higher preprojective algebra of A.
Consider the d-shifted Serre functor Sy := Sy o [~d] on D?(A) and its inverse

Sa(M) = M ®@% wyr = M @% DA[—d]
Sy M) = M @% wi' = M &% RHomy (DA, A)[d] = RHoma (DA, M)[d).

Then A is almost Fano if and only if S;™(A) is pure for all m >> 0, that is
S;™(A) € mod A € D*(A) for all m > 0.

The stronger condition that le be almost very ample is equivalent to
S;™(A) € mod A C DP(A) for all m > 0.

One can picture this as the infinite sequence of conditions

Ext) (DA, A) =0 for all i < d
Ext’ (DA, Ext (DA, A)) =0 for all i < d
Ext’ (DA, Ext4 (DA, Ext (DA, A))) = 0 for all i < d

Since RHomy (DA, M) =2 M ®% RHomy (DA, A) for all M € D®(A), these can be equivalently phrased

as the Tor-vanishing conditions

ExtiA(DA A) =0 for all i < d
Tord_i(ExtA(DA, A)®A2, ExtA(DA, A) =0 for all i < d
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Example 4.1.6 (d = 1). Let A be a finite dimensional hereditary algebra. Let M be an indecomposable
A-module. Then

Ext} (DA, M) M is not injective

STHM) =771 (M) = RHomy (DA, M)[1] =
Homp (DA, M)[1] M is injective
since Homp (DA, M) = 0 for M with no injective summands. It follows that le is almost very ample

if and only if for every indecomposable projective P, the modules
Pr P r72Pr73P,... .t ™P,...

are never injective. Equivalently, A is of infinite representation type. We will see later that le is

actually very ample in this case [(5, Prop. 5.1]. The algebra

T(A) = @D Homu (A, 77™A)

m>0
is the classical preprojective algebra of Gel'fand-Ponomarev and Baer-Geigle-Lenzing [14].

When A is hereditary of finite representation type the Serre functor S, satisfies the fractionally
Calabi-Yau property S} = [m] for some n,m € Z (see [(5, Thm. 5.1], [59, Ex. 8.3(2)]), and so wyp
behaves like a torsion line bundle.

As part of a larger program to study algebras of higher global dimension with ‘hereditary behavior’,
Herschend, Iyama and Oppermann [47] have introduced the class of ‘d-hereditary* algebras, which break
down into ‘d-representation finite’ and ‘d-representation infinite’ algebras. We will be interested mainly
in the latter.

Definition 4.1.7 (Herschend-Iyama-Oppermann [47]). A finite dimensional algebra A with gldim A =
d < oo is called d-representation infinite if le is almost very ample. We will also call A higher

representation infinite when d is implicit.

These notions are closely related to the study of geometric helices by Bondal-Polishchuk [22] and
Bridgeland-Stern [24].

Example 4.1.8. Let X be a smooth Fano variety with a geometric helix of sheaves (E;);cz of period

n, meaning that for all ¢ € Z:
i) (Ei,...,Eitn—1) is a full exceptional collection;
i) Eipn=E; @wy';
iii) for all ¢ < j we have Hom(FE;, Ej[s]) = 0 whenever s # 0.

That last condition implies that (E;y1,..., Eity) is strong, and let £ = @?:1 E;+; be the tilting sheaf
with A = End(&). If gldim A = dim X, then A is higher representation infinite by condition i) and ).
Its higher preprojective algebra II(A) is the rolled-up helix algebra of [24]. Moreover, letting 7 : ¥ — X
be the total space of the canonical bundle wy, the sheaf 7*& pulls back to a tilting sheaf on Y and we
additionally have II(A) = End(7*&) (see [24]).
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Now let X be a Fano variety. Recall that when w;(l is very ample, the anticanonical ring R(X) is a
Noetherian graded algebra, generated in degree one over R(X )y = H°(X,Ox) and of Krull dimension
dim R(X) = dim X +1. Moreover one recovers X = proj R(X), as well as the category of (quasi-)coherent
sheaves coh X = qgr R(X) (QCoh X = QGr R(X)) as the Serre quotients

~ grmod R(X)
~ grmod, R(X)

Grmod R(X)

agr R(X) ~ GrmodoR(X)

QGrR(X)
where grmod,R(X) and GrmodyR(X) denote the subcategories of right bounded (or Artinian) modules
{M | M>, =0, n>> 0}. The situation is more complicated for the higher preprojective algebra II(A)

of an almost Fano algebra, but some analogous results hold.

Lemma 4.1.9. Assume that wxl s almost very ample. Then

I(A) = P HO(wy™) = €D HO(wy1)®M™ = Ta(Ext{ (DA, A)).

m>0 m>0

Hence TI(A) s finitely generated in degree one over II(A)g = A. Moreover we have gldim II(A) =
gldim A + 1.

Proof. The first statement is a consequence of the Tor-vanishing conditions and the Kiinneth Theorem,

see [75]. For the global dimension claim see [47]. O

In contrast, higher preprojective algebras are rarely Noetherian. In the classical case of an hereditary
algebra of infinite representation type, the preprojective algebra II(A) is Noetherian if and only if A is
of tame representation type, if and only if A is Morita equivalent to kQ with @ a quiver of extended
Dynkin type. This is in keeping with expectations from noncommutative projective geometry where the
graded algebras arising through natural constructions are rarely Noetherian. According to Polishchuk’s
[82], the more natural condition is that of coherence. We follow [82] and [75), Sect. 2.1] from here. Let
B =By® By &®... be alocally finite graded k-algebra, and recall that modules are implicitly taken to
be right modules.

Definition 4.1.10. Let M a graded B-module. We say that M is coherent if:
a) M is a finitely generated graded B-module.

b) Every map f: P — M from a finitely generated projective graded B-module has finitely generated

kernel.
We say that B is graded coherent if B and B/B>; are coherent graded modules.

Remark 4.1.11. There is the analogous notion of coherence for the underlying ungraded algebra of B,
and some authors sometimes denote the above notion by ‘graded coherence’. For us, coherence of a
graded algebra will implicitly refer to the graded notion, and so there should be no ambiguity.

Denote by coh B C grmod B C Grmod B the full subcategory of coherent and finitely presented graded
modules, respectively. The next lemma is originally a result of Serre for coherent sheaves over ringed
spaces [94] Sect. I1.13], whose proof goes through unchanged as pointed out in [82, Prop. 1.1] and [75]
Sect. 2]. Note that one can equivalently recast condition b) in terms of maps from finitely generated

graded free modules.
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Recall that a full subcategory C C Grmod B is called a Serre subcategory if for every short exact
sequence in Grmod B
0=F—-G—->K—=0

if two terms of the sequence are in C, so is the third.

Lemma 4.1.12. The subcategory coh B C Grmod B is a Serre subcategory closed under finitely generated
submodules. In particular coh B C Grmod B is an abelian subcategory closed under extension. Moreover,
when B is coherent we have coh B = grmod B, and the latter then contains all graded modules of finite

length.

The full subcategory Grmodg B C Grmod B of right bounded modules also forms a Serre subcategory,

and we may form the Serre quotient to obtain an abelian category

Grmod B

Bi=———
QGr Grmody B

thought of as the category of quasicoherent sheaves on some noncommutative variety. When B is
coherent, finite length modules are finitely presented and so the full subcategory grmod, C grmod B of

finite length modules is a Serre subcategory with which to form the Serre quotient

__grmod B

B:==—
qer grmod, B

to obtain the corresponding category of coherent sheaves.
The importance of coherence for graded algebras is in the following beautiful result of Minamoto. A
large supply of d-representation infinite algebras arise as endomorphism algebras of (good) tilting object

on a Fano variety X so that
D’(A) = D®(coh X)

and they are in general expected to ‘come from geometry’. In general, let A be a higher representation
infinite algebra A with anticanonical complex wxl, and recall that D¥s" = (D=0wa I,DZO""X 1) denotes

the pair of full subcategories

DSOwit — {M € DP(A) | B*(M @% wy™) = 0 for s > 0 for all m > 0}
D20wi' — {M e Db(A) | HY (M ok wy™) =0 for s < 0 for all m > 0}.

Theorem 4.1.13 ([75, Thm. 3.7, Cor. 3.12]). Let A be a higher representation infinite algebra with
higher preprojective algebra II(A). Then:

1) There are equivalences of derived categories
— @Y TI(A) : D(Mod A) = D(QGrII(A)).

2) The following are equivalent:

i) TI(A) is coherent.

i) D“x' forms a t-structure on DY(A).
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When either of these holds, the above equivalence descends to
D’(A) = D’(qgr II(A))
and D¥x" s the pullback of the standard t-structure on D®(qgr IT(A)).

Remark 4.1.14. A similar statement appears in [82] in the context of a triangulated category containing
a geometric helix, where a certain pair of subcategories form a t-structure if and only if the graded

algebra associated to this helix is coherent.

Example 4.1.15. [75, Prop. 5.1, Cor. 3.6] Let A = k@ be an hereditary algebra of infinite representa-
tion type. Then II(A) = II(Q) is always coherent.

Example 4.1.16. Let X be a smooth Fano variety with a geometric helix {E;};cz of period n as in
Example Assume furthermore that the E; consist of sheaves and we let £ = @;L:l E;+; and
A = End(€). Then by [24, Thm 3.6], II(A) is Noetherian and finite over its centre. Moreover when
£ is a vector bundle it isn’t hard to see that the t-structure D¥s  is the pushforward of the standard

t-structure under the equivalence
RHom(&, —) : D’(X) =s DY(A)

hence we have
coh X = H = qgrII(A).

One may ask whether coherence holds in general [47, Question 4.37]. The following was conjectured
by Minamoto in 2012 in Banff.

Conjecture 4.1.17 (Minamoto). The higher preprojective algebra II(A) of a higher representation in-

finite algebra A is always coherent.

It is an important and difficult task in general to determine when coherence holds for algebras of
interest. A related class of algebras for which this problem is unresolved are the Artin-Schelter regular
algebras. Let A=k® A1 ® As & ... be a graded connected k-algebra, finitely generated in degree one.
We say that A is Artin-Schelter regular if

1) gldim A =d < oo;

2) A satisfies the Gorenstein condition
Exty (k, A) =

for some a € Z.

Note that one sometimes requires additonal finiteness conditions, but we do not do this here. In this

generality, one has:

Conjecture 4.1.18 (Bondal, [81]). Artin-Schelter regular algebras are always coherent.
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We finally arrive at the results of this chapter. Let n denote the global dimension of an Artin-Schelter
regular algebra or of a higher preprojective algebra. Both conjectures have affirmative answers when

n < 2. A main result of this thesis is a negative answer to both conjectures in all dimensions n > 4.

Theorem (Thm. [6.2.2). There are higher preprojective algebras {Il,}n,>4 and Artin-Schelter regular
algebras {Ey }n>a of global dimension n > 4, all of which fail to be coherent.

We conjecture that both conjectures hold for n = 3. We will actually characterise coherence for a
restricted class of algebras. Let A be a Koszul Frobenius algebra, graded connected over k. To A we will

associate a higher representation infinite algebra B along with an equivalence of triangulated categories
DZ,(A) = D*(B).

We then associate to A a higher preprojective algebra IT = II(B) and an Artin-Schelter regular algebra
E = BExt}y (k, k)P, and recast both conjectures in terms of D% (A). We will prove:

Theorem (Thm . For A as above, the following are equivalent:
1) 11 is coherent.

2) E is coherent.

3) A is absolutely Koszul in the sense of Herzog-Iyengar [48).

This last condition has been heavily studied in commutative algebra this last decade, and holds fairly
generally. In spite of this, we will obtain counterexamples by constructing pathological commutative

Frobenius Koszul algebras, building on examples due to J.-E. Roos.

In the above setting, we are lead to study a natural pair of full subcategories D" = (D5(A4),DZ)(A))
of D%, (A), whose intersection
ling 4y — <O >0
H™(A) = D3, (A) N D5, (A)

consists of objects whose minimal graded free resolution is eventually linear. We will study this pair
of subcategories for a general Koszul Gorenstein algebra A. Our principal result, from which all above
stated results will follow, will be the following pair of theorems. These should be considered as sharp

generalisations of the Bernstein-Gel’fand-Gel’fand correspondence for Koszul Gorenstein algebras.
Theorem A. The following are equivalent for a Gorenstein Koszul algebra A:

i) D" forms a bounded t-structure on ng(A).

it) A is absolutely Koszul in the sense of Herzog-Iyengar.

When either of these equivalent conditions hold, the natural realisation functor

realy, : DY (1™ (A)) = DZ (A).

sg

is an equivalence of triangulated categories.



CHAPTER 4. FANO, HIGHER PREPROJECTIVE AND ARTIN-SCHELTER REGULAR ALGEBRAS 113

Theorem B. Let A be an absolutely Koszul Gorenstein algebra. Then E = (A')°P = Ext® (k, k)°P is

coherent, and we have a contravariant equivalence of abelian categories
’H,""(A)"” =N qer B
sending M to Ext’y (M, k).

The converse holds in the Artinian case: if A is Artinian Koszul Gorenstein with Ext’ (k, k)°P coherent,

then A is absolutely Koszul.
Combining them, we obtain:

Theorem C. Let A be an absolutely Koszul Gorenstein algebra, with E = (A")°P = Ext’ (k, k)°P. Then

we have equivalences of triangulated categories
D7, (4) = D’(qgr E)
such that the t-structure D'™ is the pullback of the standard t-structure on the right hand side.

We will prove Theorems A, B and C in Chapter 5 and give the aforementioned applications in Chapter
6.

4.2 Fano algebras from Koszul Frobenius algebras

We now set conventions for the remaining of the chapter. In order to encompass natural examples coming
from quiver path algebras we will work in slightly greater generality than the previous section, but the
reader will not lose out on any of the essential ideas by taking all algebras to be graded connected over
a field.

Let k be a field throughout and k a finite dimensional semisimple k-algebra. A graded algebra
A=kd A ® A @ ... will mean a locally finite graded k-algebra, finitely generated by A; over Ag = k.
By k-algebra we mean that the product A ®, A — A is bilinear over k, e.g. A = kQ/I is a graded path
algebra over k = kQg. Recall that we write D = Homy(—, k) for k-duality.

Definition 4.2.1. A graded Frobenius k-algebra A is a finite k-algebra such that D(A) = A(a) inde-
pendently both as left and right A-modules, for some a € Z. A graded symmetric algebra is a graded
Frobenius algebra such that 4 D(A)4 = 4A(a)a as bimodules.

The a-invariant is then the socle degree of A, and we will always assume that a > 1 since a = 0 gives
A = k. By [76, Lemma 2.9], there is a graded k-algebra automorphism v : A — A, uniquely defined
up to inner automorphisms, such that 4D(A)4 = 1A(a), as bimodules, using subscripts to denote the
v-twisted module structure on the right. This is the Nakayama automorphism v = v, and graded
symmetric algebras are those for which we can take v = id. Note that pulling back through v gives an
isomorphism of bimodules 1 A(a), = ,-1A(a);. Moreover, since v preserves grading, it descends to an
automorphism of k and similarly 1k, = ,-1k; as A-bimodules. In particular k, = k as right A-modules,

but note that v typically permutes the simple summands.
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Since k is semisimple, it is itself symmetric as a k-algebra [97, Cor. 5.17] and we have natural

isomorphisms between the various duality functors
D = Homk(f, k’) = Homk(f,Homk(]k, k)) = Homk(f,]k).

Assume for now that A is a graded Frobenius k-algebra. Then A is self-injective and so we have a

natural equivalence D% (A) = mod”A. We will need the following.

Proposition 4.2.2 (Auslander-Reiten Duality [7]). Let A be graded Frobenius. Writing wa = D(A) =
1A(a),, the category mod”A has a Serre functor given by Sy = — @4 wa[—1].

Next, note that every module is vacuously MCM over a self-injective algebra, and in particular every
M € mod”A admits a complete resolution. The minimal graded projective resolution P, ~ k = AJAsq
of k dualises to a minimal projective coresolution k = D(P,), and so the minimal complete resolution
C(k) of k looks like

e A=A A A A(a)) —> - Ala+ )T —

\k/

from which we can read the dimension of Mzm(k, k(—j)) and so we have Exty, 4 (k,k) = 0 for n # 0,
and Hom,, 4(k,k) is a quotient algebra of k and therefore semisimple. A basic set of non-projective
indecomposable summands of k are then orthogonal W—exceptiona objects in mod”A, and thick(k) is a

semisimple subcategory.

We call an triangulated subcategory generated by finitely many orthogonal exceptional (or w-exceptional)
objects a block, so that thick(k) forms a block in mod”A. Note that when k = k, we have thick(k) =
add(k) = {k®" |n > 0} as k is exceptional. One extends the usual notions of exceptional sequences
and geometric helices to blocks in the natural way. Recall that A is Koszul if the minimal projective
resolution P, = k is linear, that is P; is generated in degree 4, and that we denote by S,, = S o [-n]

the desuspended Serre functor. The following is well-known, but we will give a complete proof.

Proposition 4.2.3. Let A be a Koszul Frobenius k-algebra of largest degree a and let E; = k(—1)[d].
Then the sequence (E;);cz forms a block heliz for mod” A of period a. That is:

i) There is a full block exceptional collection modZA = (Ei,Eiy1,-- Eiva-1).
i) We have E;yo =S, E;.

i11) (E;)iez forms a block geometric heliz: for every pair (i,j) with i < j, we have Exty, 4(FE;, Ej) =
0 for all s # 0.

Proof. i). The conditions Ext?

s ea(Er, By) = Exts T (k, k(k—1)) =0 for i <l <k <it+a—1landall s €
Z and
. 0 s#0
Exty, 4 (Ek, Ex) = o
semisimple s=10

1 Meaning weakly exceptional, in that we allow for division rings as endomorphism algebras instead of k.
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follow from the structure of the minimal complete resolution C(k), hence the above forms a block

~

exceptional decomposition. To see that it is full, note that soc(A) = k(—a) gives a short exact sequence
£:0—>k(—a) > A— A/soc(A) =0

which shows that k(—a) & A/soc(A)[—1] in mod”A. Taking a Jordan-Hélder filtration of A/soc(A)
shows that k(—a) = A/soc(A)[—1] € thick(k,k(—1),...,k(—a + 1)), and iteratively grade shifting & by
(—1) shows that k(—a — j) € thick(k,k(—1),...,k(—a + 1)) for all j > 0. Dualising £ and applying the
same argument shows that k(—j) € thick(k,k(—1),...,k(—a + 1)) for all j < 0, and applying Jordan-
Holder filtrations to a general finite dimensional module shows that (k(—i),k(—i—1),...,k(—i—a+1))
is full for any i € Z.

1) This follows since
S22 (K(—i)[i]) = k(~i)[i] ®4 w3 [a] = k1 (=i — a)[i + ] 2 k(—i — a)[i + a].

Lastly, Exty, 4(E;, Ej) = Mzm_i(k,k(i — 7)) = 0 for s # 0 whenever i — j < 0 is a condition
which only involves the nonnegative part Cso(k) of the complete resolution C'(k), where it reduces to
Ext;ﬁx(k,k(fl)) =0 for s # 0 and all [ > 0 which is the definition of Koszul. O

When A is Koszul Frobenius, it is immediate that the opposite category (modZA)Op inherits a block
geometric helix by setting EJ = E_;. Let T; = @?;& E;yj (vesp. TP = @;:é EY;) be the associated
tilting objects in mod”A (resp. (mod”A)°P). Let A = End,, 4(7}), which is independent of choice of

i € Z, and note that A°” = End,. A(T7P). From the geometric helix condition, we obtain:

Proposition 4.2.4. Let A be a Koszul Frobenius k-algebra, and let d = a — 1. The algebras A, A°P are
both d-representation infinite algebras, and the tilting objects T;, T;" induce equivalences of triangulated

categories
F; : mod”A =5 D°(A)
F° : (mod”A)? =, D(AP)
sending T; to A (resp. T:¥ to A°P).

Proof. That A and A° are d-representation infinite is a rephrasing of condition i) and b) in Prop. [4.2.3

The equivalence of triangulated categories is standard for any tilting object. O

Let us look at some example applications of the above proposition.

Example 4.2.5. The exterior algebra A = A} (yo, ..., yn) is Koszul Frobenius of socle degree a = n+1.
The algebra A = kQ/I is the Beilinson algebra, with quiver given by

{zi} {z:} {z:} {z:i} {zi}

with n + 1 vertices and relations I = (x;z; — z;x;).
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Example 4.2.6. Let V be a vector space over k of dimension n > 2 and V x V — k a perfect pairing,
extended to a graded algebra structure on A = Ay A1 @ As =k ®V @ k. Then A is Frobenius of socle
degree 2, and Koszuﬂ by [70]. The algebra A = k@ is the path algebra of the n-Kronecker quiver

where {x;} is a basis for V. O

Example 4.2.7. More generally, let B =k @ B & --- be a Koszul k-algebra of finite global dimension
n. Then A = B' = Ext}(k, k) is a Koszul Frobenius k-algebra if and only if B is an Artin-Schelter
regular k-algebra [08, Thm. 5.10]. The socle degree of A is then a = n. Picking a basis {y;} for
B; = EXt;rA(k, k(—1)), we have A = kQ/I for the quiver @

{yi} {vi} {vi} {vi} {vi}

with n vertices, and quadratic relations amongst {y;} inherited from the quadratic algebra B. O

Interestingly, this construction attaches an (n — 1)-representation infinite algebra A, and therefore a

n-preprojective algebra IT = II(A), to any Koszul Artin-Schelter regular algebra B with gldim B = n.

Next, let us see an example over a semisimple base k which is not a field.

Example 4.2.8. Let A = kQ/(Q2) be the radical square zero algebra over k = kQo with quiver @ an
oriented cycle

o/.%.\o
|
N

Computing the indecomposable projectives P (i) and injectives I(i), one sees that A is a basic graded
self-injective algebra, and so is graded Frobenius, with socle degree is a = 1. Moreover, radical square
zero algebras are always Koszul, and so the previous proposition applies. The algebra A = kQq is

semisimple. It follows that mod”A is a semisimple category. O

Next, for the rest of this subsection, we fix a Koszul Frobenius algebra A of largest degree a, with
associated d-representation infinite algebra A with d = a — 1. For our purposes we will single out
the equivalence G := F | and spell out its properties. The tilting object is given by T , =

@‘;;& EP 1= @?;S E,1_;= @?;3 E;. Let us write for the record:

Corollary 4.2.9. There is a contravariant equivalence of categories

G : (modZA)? =5 DY(AP)

2This reference covers the case when A is commutative, or equivalently when the pairing is symmetric, but the general
case follows from Prop. [4.2.3
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. -1 -1 N
sending T—q11 = @)=y Ej = @)= k(—j)[j] to A°.
Our aim for the remainder of this subsection is to characterise coherence of the higher preprojective

algebra II(A°P) in terms of A.

Let us write 8; ; = 3;,;(M) = dimy, ExthA(M k(—j7)) for the graded Betti numbers of M. Of course
when k decomposes we can refine the numbers 3; ; further, but we will not do this. Note that 3; ;(M,) =
dlmk EthrA(MVvk(ij)) = dlmk szV'A(Mv ]kllfl( )) dlmk EthrA(Mak(fj)) = ﬂlyj(M)

Lemma 4.2.10. Let M € mod”A. Then:

a—1

Z) dimy, HS(G(M)) = Z Bs+l,l
=0
a—1
Zl) dlmk H* (G(M) ®%op UJX;Z) = Z Bma+s+l,ma+l-
=0

Proof. We have

H? (GM) = Hompiaen) (A7, G(M)]5))
= Homps (aery (G(T25,41), G(M)]s])
= Homps (rer) (G(T2, 1), G(M[~3]))
= HomgTA<M T% 1ls])

= Q}Ext;j;z (=10)).
This proves i). For i), note that (GM) ®% w™ = S;™ (GM) = G(S™" M) = G(M,(ma)[—mal),
then apply 7). O

We can picture these cohomology groups using the Betti table 5(M) whose entries are given by 3; ;4
in the i-th column and j-th row for i, j € Z:

0 1 S a-2 a-1 a
-2 o 60,—2 Bl,—l te /Ba—2,a—4 ﬂa—l,a—S 6{1,(1—2
Ll Bo—1 Pro o Ba—2a-3 Ba—1,a-2 Baa—1
0 o 50,0 Bl,l T /8a72,a72 Bafl,afl ﬂa,a
1 ﬂO,l Bl,Q e 6(1—2,(1—1 ﬂa—l,a ﬂa,a+1

The sum of the zeroth row highlights represent the dimension H°(GM), and the (—1)-th row highlights
the dimension H'(GM). More generally the dimension vector of H* ((GM) @%.p wysy) represents a-
many consecutive entries on row —s and these entries move to the right as m increases. This is because

the operation

B(M) = B(Sa—1M) = (M, (a)[—a]) = B(M(a)[—a])

translates the table to the left by a-many columns.
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Now let us focus on the equivalence G : (mod” A)°? =N DP(A°P). By Minamoto’s Theorem, coherence
of TI(A°P) is equivalent to the pair of full subcategories D¥ " = (DS0@xor DZ0wxor )

D<0%xer = (X € DP(AP) | HY(X @%.p wii) = 0 for s > 0 for all m > 0}
D20%ror = {X € DP(A%) | H* (X ®%op wis?) = 0 for s < 0 for all m > 0}

forming a t-structure on D(A°P), which is then bounded. We can translate this into a statement about

mod”A. Before moving further, let us first recall basic notions concerning t-structures (see [51, Chp.

8]).

Let 7 be a triangulated category with a pair of full subcategories t = (7=°,72%), and denote
T<n =T<00[-n] and TZ" = T2%0[-n]. The pair ¢ forms a t-structure if and only if these satisfy the
three defining properties:

T1. 70 C 7= and 72! C 720,
T2. Hom7(7=0,721) =0.

T3. For all X in T there is a distinguished triangle X< — X — X=! — X=9[1] with X=0 in 7=0 and
XZlin 721,

When this holds, the embedding i,, : T<" < T and j, : T=" < T admit right and left adjoints

in: TSP ST 75"

=TS TE .

The unit and counit maps of the adjunctions gives rise to maps X — 72"X and 7="X — X, which fit

into distinguished triangles
TSNX = X o "X s (X[

Letting C = 7=°N 720 stand for the heart of this t-structure, which is naturally an abelian category,
one defines the t-cohomology objects H°X = 7297=0X and H"X = HO(X[n]) = (r=2"7="X)[n] living
in C C 7. The functor H° : T — C is then a cohomological functor. A t-structure is bounded if every
object X € T has finitely many non-zero cohomology objects H"™ X .

The axioms T1, T2, T3 are self-dual, and so a t-structure ¢ = (7=°,72%) on T induces an opposite
t-structure P = (T°P<0 ToP:20) on TOP by setting

Top,SO _ (7—20)01)
Top,ZO _ (TSO)OP.

Note that the suspension on TP is given by [—1], and so we have

Top,gn _ (TZ—")OP
'TOPaZ" _ (TS—n)op.
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Now consider the pair (DSO’WXOIP7 DZO’“XC}P) on DP(A°). We define the pair (mod="A, mod="A) on
mod” A by pulling back the above pair through the contravariant equivalence GG, so that for every n € Z

we have

mod="A =G~! (Dz—"vw,(alp)

mod”"A = G (D ).

Proposition 4.2.11. The subcategories mod="A, mod="A, and mod<"A N mod="A of mod”A are

given by

mod=<"A = {M € mod”A | H* ((GM) ®%op wyer) = 0 for s < —n whenever m > 0}
={M € mod” A | Bi,j(M) =0 for j —i>n whenever j > 0}
= {M € mod”A | B ;(M) =0 for j —i > n whenever i > 0}

mod="A = {M € mod“A | H* ((GM) ®%op wyer) = 0 for s > —n whenever m > 0}
={M € mod”A | B; ;(M
= {M € mod”A | B; ;(M

) =0 for j — i < n whenever j > 0}
)

=0 for j —i < n whenever i > 0}

mod="A N mod="A = {M € mod”A | B;;(M) = 0 for i # j whenever j > 0}
= {M € mod”A | B ;(M) = 0 for i # j whenever i > 0}.

Proof. By Lemma [4.2.10| we have dim;, H¥(G(M) ®%., Whep) = Z;:Ol Bma+s+i,ma+i- The first equality
follows by setting s = i — j, and the second by noting that the indices ¢, j in {(4,7) | 8;; # 0} go to +oo
together. O

Remark 4.2.12. We can picture these categories in terms of the shape of the Betti table 5(M). The
category mod="A consists of modules whose Betti table is eventually supported on the n-th row or above

(resp. mod=" A consists of modules with Betti table eventually supported on the n-th row or below).

Putting Prop. {.2.11], Prop. and Minamoto’s Theorem together, we obtain:

Proposition 4.2.13. The following are equivalent.

i) The higher preprojective algebra II(A°P) is coherent.

i) The pair D*~ = (DS0«"" D20 forms a t-structure on DY(A°P), which is then bounded.
i11) The pair (MS()A,MZ()A) forms a t-structure on mod” A, which is then bounded.

In the next section we will investigate when a natural generalisation of the above forms a t-structure

for the graded singularity category over an arbitrary Koszul Gorenstein k-algebra.



Chapter 5

Absolutely Koszul algebras and

t-structures of Koszul type

Throughout this chapter, A will denote more generally a Koszul Gorenstein algebra satisfying some mild
finiteness hypotheses to be set-out shortly; certainly two-sided Noetherian and graded connected over a
field suffices, and the arguments in the general case will not differ substantially. Over such an algebra
A, define the following full subcategories of MCM”(A):

MCM="(A) = {M € MCM”*(A) | B;;(M) = 0 for j — i > n whenever i > 0}

MCM="(A) = {M € MCM?*(A) | B ;(M) =0 for j —i < n whenever i > 0}.

Moreover, we will consider the pair t'" = (MCM="(4), MCM="(A)) as a candidate pair for a t-structure,

with intersection

H"(A) := MCM=°(4) N MCM=°(A)

the category of eventually linear stable MCM modules. The goal of this chapter is to give a proof of the

following theorems.

Theorem A. Let A be a Koszul Gorenstein algebra. The following are equivalent:
i) A is absolutely Koszul.
i) t" forms a bounded t-structure.

When either of these equivalent conditions hold, the natural realisation functor

real : DY (1" (A)) = MCMZ(A)

is an equivalence of triangulated categories.

Theorem B. Let A be an absolutely Koszul Gorenstein algebra. Then E = (A")P = Ext’ (k, k)P is

coherent and we have a contravariant equivalence of abelian categories

’H""(A)o” =N qer £

120
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sending M to Ext’y (M,k).

Conversely, if A is Artinian Koszul Gorenstein with E = (AP = Ext’ (k,k)°P coherent, then A is
absolutely Koszul.

Putting the two theorems together, we then obtain:

Theorem C. Let A be absolutely Koszul Gorenstein, and let E = (A")°P = Ext® (k,k)°P. Then there

exists an equivalence of triangulated categories
MCMZ#(A)°? = D*(qgr E)

such that '™ arises as the pullback of the standard t-structure on the right hand side.

5.1 Linearity defect and Theorem A

Standing hypotheses

We now impose hypotheses for the remainder of this chapter, which are slightly more permissive than
those used in Chapter 4. As before k denotes a fixed field and k will denote a fixed finite-dimensional
semisimple k-algebra. A graded k-algebra will always mean a graded algebra S = k& S1 S, @ ...,
with multiplication S ® S — S bilinear over k, and we further assume that dimg S; < oo for all ¢ > 0.

The weakened assumptions are meant to capture the following natural examples:
a) S = k[xo,...,x,]/I is a commutative graded k-algebra of finite type over k = k;

b) S = kQ/I is a graded path algebra for a finite bound quiver (@, I) with path-length homogeneous

relations I, thought of as an algebra over k := kQy;

c) skew group algebras S+ G over k = kG, with underlying graded vector space (S*G); := (S®xkG); =
S; ®k kG and twisted multiplication

(5,9) % (s',9") = (s9(5), 99)

where S = k@ A1 ®- -+ astandard graded algebra and G < Autg(.S) a finite subgroup of homogeneous
automorphisms of S, over k of characteristic not dividing the order of the group;

d) more generally the Koszul duals S' = Ext%(k, k) of Koszul algebras of the above form.

Additionally, working over a semisimple base k instead of the field k, starting in Section 5.2 we will
need to assume that our algebras are homologically homogeneous, meaning that the simple summands
of k have the same projective dimension. The relevance is only to the proof of Theorem B and we will

impose it from Section 5.2 onwards.
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Basic properties

Recall that modules over a graded algebra S will by default refer to graded right S-modules. Under the
assumption that S is (right) coherent, the category of finitely presented modules grmod S C Grmod S
is an abelian subcategory closed under extensions and under taking finitely generated submodules, and

contains all finite length modules. Moreover, each M € grmod S admits a projective resolution
o= PP =P —-M—=0

by finitely generated projectives. Recall that a complex of projectives P, = (P, d) is minimal if P, @gk
has trivial differential. Writing mg = S>1, this is equivalently to the statement 9(P,+1) C P,mg for all

n.

The ideal mg equals the homogeneous Jacobson radical J(S) of S. Recall that a general graded
algebra T is semiperfect if T/ J(T') is semisimple and the idempotents of T'/J(T') lift to T. This holds
in our setting as S/mg = S/S>1 = k is semisimple, and idempotent lifting holds for degree reasons. By
[64], each M € grmod S admits a projective cover w : P — M, meaning that P is finite projective with
ker(m) C Pmg, and so each M € grmod S admits a minimal projective resolution P, = M, unique up to

(non-canonical) isomorphism. Moreover, by [64] the category grmod S has the Krull-Schmidt property.

The map S — S/mg = k for S semiperfect always induces a bijection on indecomposable finitely
generated (graded) projectives [64], with k considered as a graded algebra sitting in degree zero. Since

we have a splitting S < k, here this bijection takes the form
Ps=P— P®gk
Vi=V = VS

In particular every finitely generated projective S-module can be written as P = V ®y S for some unique
graded k-module V.

Throughout this chapter, A will always denote a graded Gorenstein k-algebra, which is assumed
two-sided coherent and of Gorenstein dimension d = idim (4 A) = idim (A4) < co. Given M € grmod A
with finite presentation

Pr—->FP—M—0

the dual (left) module M* = Homy4 (M, A) is the kernel of a map between finitely generated projectives
over A°P
0— M*— Py — Pf

and so must be finitely presented by two-sided coherence of A. Taking dual modules then restricts to a

functor between finitely presented modules
(=)* : grmod A — grmod A°P.

By [32, Lemma 5.3], whose proof in the Noetherian case applies in the coherent setting (see also [106],
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Prop. 3.5]), this extends to a duality on the bounded derived category
(=)Y := RHom(—, A) : D’(grmod A)°P =N D’ (grmod A°P)

in that (—)¥V ~ id. We form in the usual ways the categories MCMZ%(A) C mod”A and D%, (A). The

proofs of Buchweitz’s theorems [28] apply verbatim in our situation to give equivalences
Kac(proj”(4)) 2 MCM*(A4) 2 D, (4)

with the middle category inheriting the structure of a triangulated category through either equivalence.
The stable category MCM?(A) also inherits the Krull-Schmidt property from MCM?(A) since endo-
morphism algebras of graded modules have finite length over k and are then Artinian, and so have the

idempotent lifting property (see [64] for more details).

Given N € grmod A, by the Krull-Schmidt property we have an essentially unique decomposition
N = [N] @ F with F the largest projective summand of N. Note that N and N’ are stably isomorphic if
and only if [N] and [N’] are isomorphic. We will need the following lemma, which was used previously

in Chapter 3 but which is worth spelling out in full here.
Lemma 5.1.1. Let N € grmod A. Then Hom,, 4 (N,k(j)) = Homg, 4 ([N],k(j)) for all j € Z.

Proof. We have Hom,, 4 (N, k(7)) = Hom,, 4 ([N],k(j)) and so it is sufficient to check that any morphism
f: [N] = k(j) factoring through a projective

f

~

[V] k(7)

must be zero. Assume it is not. Since k(j) is semisimple, the image im(f) = im(3) is a semisimple
summand supported in degree —j and without loss of generality we can assume that f and (8 are

surjective. The map (3 then further factors through the projective cover 7 : A(j) — k(j) as depicted

(V] = k(i)
§P7
@ v ™
A5)

That f is onto is implies that & is also onto for degree reasons, in which case [IN] contains a projective

summand, a contradiction. O

Linearity defect and t-structures

We are finally ready to investigate when the pair of full subcategories t" = (MCM=%(A4), MCM=°(A))
forms a t-structure. Recall that we define the (stable graded Betti numbers of M € MCM*(A) as the

11t would be more appropriate to call these the stable graded Betti numbers as these differ slightly from the usual
definition, in that ours satisfy 8o «(P) = 0 for any finite projective P. Since we will only use the notation j3; ; as defined
here, the author hopes that there will be no ambiguity.
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dimensions
Bij (M) = dimy Ext}, 4 (M, k(—j))

and that for ¢ > 0 we have agreements

Big(M) = Bij([M]) = dimy Extg, 4 ([M], k(7)) = dimy, Tor{ ([M], k);.

We have defined full subcategories MCM="(A), MCM="(A) by

MCM="(A) = {M € MCM”*(A) | B;;(M) =0 for j — i > n whenever i > 0}
CM="(A) = {M € MCM?*(A) | B ;(M) =0 for j —i < n whenever i > 0}.

Note that MCM="(A)[-n] = MCM="(A) and MCM="(A)[-n] = MCM="(A). We say that M is

n-linear if Tor? M,k); =0 for j — i # n, and that M is linear if it is O-linear. The intersection
[ J
’H""(A) = MCMSO(A) N MCMZO(A)

is the subcategory of eventually linear stable MCM modules. The above pair typically occurs as the
t-structure dual to the standard t-structure under (contravariant) Koszul duality equivalences. Let us

begin with a classical example.

Example 5.1.2 (BGG correspondence for exterior and symmetric algebras). Let A = Ay (vo, " ,Yn)
be an exterior algebra over k with Koszul dual symmetric algebra B := Ext}(k, k) = k[zg, -, zn].

Following [43], there are natural functors L, R giving rise to an equivalence of triangulated categories
L : D’(grmod A) = Db(grmod B) : R

We have a natural isomorphism of complexes L(M) ~ RHomy (k, M) up to a natural regrading, which
gives [43 Prop. 2.3]

HY (L(M)); = Bxt) ) (k, M(—i))

Consider the duality
D : D®(grmod A)°P = D’(grmod A)

given by D = RHom4(—,w4), where wq = A(a) = A(n + 1), and A°? = A naturally identified via
the antipode map. Then D satisfies D? ~ id and D(k) = k. Combining with the above, we obtain a
contravariant equivalence

LD : D’(grmod A)°P = D’(grmod B)

with a natural isomorphism LD ~ RHoma(k, D(—)) ~ RHom 4(—, k) up to regrading, and we have the
more natural

H/(LD(M)); = Exty, (M, k(—i)).

The functor LD sends perfect complexes to complexes with Artinian (or torsion) cohomology, and so
descends to an equivalence
LD : (mod”A)% = DY(coh P™).

From the above cohomology calculations, one sees that mod=°A = LD~*(D=°) and mod="A = LD~ (D=9),
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where (D=9 D29) is the standard t-structure on D?(coh P™). O

The above example generalises easily, and one can streamline the proof using Morita theory (see
Appendix A.2). The next example is well-known (see [45, Ex. 3.2, Ex. 11.1] where this example was

treated in the ungraded situation). The author has learned this proof from G. Stevenson.

Example 5.1.3 (BGG correspondence for Artinian-Coherent pairs). Let (A, B) be a pair of Koszul
dual algebras, with A an Artinian Gorenstein Koszul algebra and B = (A')°P = Ext’ (k, k)°? coherent.
Consider the full subcategory S C D®(grmod A) defined by

S = {k(=i)[i] | i € Z).

One can think of the small subcategory S as abstractly equivalent to a category with object set given
by Z, and morphisms
Hom(ivj) = EX‘B;:{%(]C, k(l - ]))

and morphism by composition in the Ext algebra. The subcategory S is a tilting subcategory, in the

sense that:

a) S classically generate D’(grmod A), i.e. thick(S) = D®(grmod A),

b) S has no non-trivial extensions, meaning that Exty, 4(s,s") = 0 for n # 0 for any objects s,s" € S.

The first fact holds since A is Artinian and the second since A is Koszul. Moreover, S° is a tilting
subcategory for the opposite category D’(grmod A)°P. By Keller’s Tilting theorem |A.2.2} we have an

equivalence of triangulated categories
RHom(—, S) : D’(grmod A)?? =5 DP*f(Mod $°7)

onto the subcategory of perfect DG-modules DP*f(Mod ) € D(Mod S). This is simply the multi-object
version of Keller’s Theorem which we have repeatedly used throughout this thesis, but let us unpack the

notation further.

Let S C Dgg(grmod A) be the small DG category obtained from S with same objects as S but with
morphisms computed in a fixed DG enhancement D := Dgg (grmod A) of D¥(grmod A). Since S is tilting,
there is a quasi-isomorphism of DG categories S ~ H°(S) = S inducing an equivalence of (perfect)

derived categories
DPf(Mod S) = DP*f(Mod S)

and similarly for opposite categories S°P, S°P. Next, note that any object M € D induces a left S-module
by restricting Homp (M, —) to S € D. The equivalence RHom(—, S) is then obtained by composing

Homp(—,S) : D*(grmod A) =» DP**(Mod S°7)

with DPef(Mod S°P) = DPef(Mod S°P). Now, a DG module over S° is nothing but a complex of graded
modules over B = Ext’ (k, k)°?, so that DP*f(Mod S°?) = DP*(Grmod B°P). Since BP is coherent

and gldim B°? < oo, the latter is DP*f(Grmod B°?) = D?(grmod B°P), and so one obtains an equivalence

RHom(—, S) : D®(grmod A)°P =N D’(grmod B°P)
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sending perfect complexes onto complexes with Artinian cohomology, and so descends to
MCM?(A)? =5 D?(qgr B°").

Finally, by construction of S the category grmod B°? C D’(grmod B°P) corresponds to complexes with
linear minimal projective resolution under RHom(—, S), and so the pair ¢ on MCM?(A) arises as the
pullback of the standard t-structure on D(qgr B°P). O

One advantage of the Morita theory proof is that it makes clear the formal nature of the argument,
so long as A is Artinian and B is coherent. However, equivalences of this type hold more generally than

this type of argument would initially lead one to believe.

Example 5.1.4 (BGG correspondence after Buchweitz [30, Appendix]). Let R = k[z]/(g) be a complete
intersection of quadrics, as studied in Chapter 2. Let C = R' = Extj(k, k) be its Koszul dual, a
homogeneous Clifford algebra over a polynomial subalgebra k[n] with basis {1} dual to {g}. Then both
(R, C) is a pair of Koszul dual Noetherian Koszul Gorenstein algebras. Letting A be either R or C, and
modifying slightly the approach in [30][Appendix], we have seen that there is an equivalence

D’(grmod A)°P = Db (grmod A')

exchanging perfect complexes and complexes with Artinian cohomology, and so descending to equiva-

lences

MCM#(A)°P = D(qgr A')

and such that t'" arises on MCM?(A) via the pullback of the standard t-structure under this equivalence.
O

Remark 5.1.5. Explicit use is made in [30, Appendix] of the Noetherianity of Exty(k, k), and complete
intersections of quadrics are the only commutative Koszul algebras with Noetherian Ext algebra. The
proof does not immediately extend to the case of Ext}(k, k) coherent, although an extension beyond the

Noetherian case may be possible by involving new ideas, see the discussion in Sect. 6.3.

Now, instead of imposing finiteness conditions on our algebras A or their Koszul dual Ext’ (k, k),
we will instead make use of criteria more internal to the stable category MCMZ(A). We begin with

reviewing a parallel story.

As part of their study of graded modules over the exterior algebra A = A (yo,...,yn) through the
BGG correspondence, Eisenbud, Schreyer and Floystad proved the following result.

Theorem 5.1.6 (Eisenbud-Floystad-Schreyer [43]). Let A = Ay (yo," -+ ,Yn) and let M € D®(grmod A)
with minimal free resolution F, = (F,,0) — M. Then the linear part of the differential on F dominates;
that is, expressing O as matrices with entries in A and removing the entries of degree > 2 yields a complex

1inA(F*) with at most bounded cohomology.

This notion was further analysed by Herzog-Iyengar [48] and Romer [90], who introduced the notions
below for (graded-)commutative algebras and whose results form the basis of this chapter. Note that

closely related notions were studied by Martinez-Villa and Zacharia in [73], and see also [71].
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Let S be a coherent graded k-algebra, and let M € D?(grmod S) with minimal projective resolution
F, = (F.,0) = M.
i Py 5 F, S F

The minimal complex F satisfies 9(F,+1) C F,mg, and we define a filtration by subcomplexes F =
{FFF.}i>0 by setting (FFF,), = F,mk ", where by convention m% = S for k < 0.

Definition 5.1.7 (Herzog-Iyengar [48]). The associated graded complex lin®(F,) := grxz(F,) is called
the linear part of F.

The definition in terms of the filtration F works in fair generality (e.g. local Noetherian rings),
but this complex takes a simpler form in our setting. Each projective module has a canonical form
Foi1 = Viyqq ® S for a unique graded k-module V,, 41, and so the differential 0 : F,, 11 — F,, is uniquely
determined by its restriction

0:Vyp1 =V, Qg S.

Expand 9 = 0y + 02 + ..., where 0;(V,,41) € V,, @k S;. Then 9% = 0 implies 9? = 0 for degree reasons,
and one has
lin®(F,) = (F., )

similar to the statement of Thm. B.1.6

Definition 5.1.8 (Herzog-Iyengar [48]). The linearity defect of M is defined as
ldg(M) = sup{n | H,(lin®(F,)) # 0}.
Definition 5.1.9 (Herzog-Iyengar [48]). We say that a graded module M is Koszul if 1dg(M) = 0.

Example 5.1.10. Any module M for which F, has linear differential 9 = 0, is Koszul.

Example 5.1.11 (Herzog-Iyengar [48]). Let S = k[z,y] and M have minimal resolution F of length

%]

0——S5(-1) —=Sa® S(1)——=0.

two

Then lin® (F,) is given by

[v]

0——S5(-1) —=S&S1)——0.
and so H,(lin®(F,)) = 0 for n > 0 and M is Koszul.

Finiteness of linearity defect is a useful property with strong consequences. The following proposition
was proved in the commutative case by Herzog-Iyengar. Recall that the Hilbert function Hg(t) =

ano dimy.S,, t" of a standard graded, commutative k-algebra S is rational, of the form

hs(t)

Hs(t) = A= pdms:

Proposition 5.1.12 (Herzog-lyengar, [48, Prop. 1.8]). Let S be a commutative, graded connected
k-algebra, and let M be a graded S-module with 1ds(M) < oco. Then the Poincaré series P (t) :=
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> dimy, Ext's (M, k)t € Z][[t]] is rational of the form
n>0

_ Q4 (t)
hs(—t)

Pg'(t)

for some polynomial QM (t) € Z[t].

In other words, modules with finite linearity defect have rational Poincaré series with uniform de-
nominator depending only on the structure of S. Returning to a general coherent graded k-algebra S,

we make the following definition.
Definition 5.1.13. The k-algebra S is absolutely Koszul if
i) S is Koszul;
ii) 1dg(M) < oo for all finitely presented modules M. Equivalently, every such M has a Koszul syzygy.

Herzog and Iyengar introduced this notion for commutative graded k-algebras S (and more generally
for Noetherian local rings); they actually showed that ¢) follows from i) by using the Avramov-Eisenbud-
Peeva [10, [13] characterisation of commutative Koszul algebras as graded algebras S such that the

Castlenuovo-Mumford regularity
regg(M) = sup{r | Tor (M,k),+, # 0, n € N}

is finite for each M € grmod S. It is not known to the author whether the finiteness of regg(M) for all
M € grmod S implies (or even follows from) Koszulity of S in our generality, and we will simply impose

condition 7) for now. Let us at least record a lemma.
Lemma 5.1.14. Let M, N € grmod S.

a) Assume that M is Koszul, with generator degrees in the interval [n,n']. Then Torf (M,k); = 0 for
j—i¢lnn].
b) Assume that N has finite linearity defect. Then N has finite regularity.

Proof. To see a), let F, be the minimal resolution of M. Since M is Koszul, note that it has the
same graded Betti numbers as Ho(lins (Fy)), which breaks down as a direct sum of k-linear modules for

n < k < n'. Part b) then follows since N has a Koszul syzygy, which has finite regularity by a). O

The prototypical examples of absolutely Koszul algebras are as follows.

Example 5.1.15 (Eisenbud-Floystad-Schreyer). The exterior algebra A (yo, - - - , y») is absolutely Koszul
by Thm.

Example 5.1.16 (Herzog-Iyengar, [48, Cor. 5.10]). Complete intersections of quadrics are absolutely

Koszul. The cited result concerns the local case but applies equally to the graded setting.

In general, we have a proper containment

{Absolutely Koszul algebras} C {Koszul algebras}
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even when restricted to commutative k-algebras. The matter of comparing the relative sizes of each class
has a long history in commutative algebra, and is closely connected to rationality problems for Poincaré
series. Given a local Noetherian commutative ring (R, m, k), the Serre-Kaplansky Conjecture asked for

a proof of the rationality of the Poincaré series

Ph(t) =" dimy Exth(k, k)t".

n>0

Anick gave the first counterexample in his 1982 thesis [2], and his constructions have since found many
applications and refinements. When S is a commutative Koszul k-algebra, the Poincaré series P%(t) =
Hg: (t) is always rational by the standard identity

1 (1 + t) dim S

He ) = F20 = hs(-0)

but Jacobsson [57] gave an example of a module M over such a ring for which P () is transcendental.
The construction methods of Anick and Jacobsson were later taken up by Roos [90], who introduced the

following definition in general:

Definition 5.1.17. A Koszul k-algebra S is good in the sense of Roos if all finitely presented modules
M have rational Poincaré series

M
Pt = Qdi(i?

with Q4% (t),ds(t) € Z[t] and denominator dg(t) independent of M.

By Prop. [5.1.12] absolutely Koszul commutative k-algebras are good. Roos gave examples of bad

(i.e. not good) Koszul algebras. For instance:

Theorem 5.1.18 (Roos, [90, Thm 2.4b(A)]). Let S’ = k[x1,z2]/(z1,72)%. Then S := S5 ®; S is a bad
Koszul algebra in the sense of Roos. More specifically, there is a sequence of finitely generated graded

S-modules { My} aen with PS> (t) rational, expressed in reduced form as

Q)
R0)

P (1)

with limsup(deg dq(t)) = 00 as a runs over N. One then has ldg(M,,) = oo for infinitely many o € N
by Prop. [5.1.19

One can relate these rationality questions to coherence of the Koszul dual S' = Ext¥(k, k). By [90,
Cor. 3.2], commutative Koszul k-algebras S with S' coherent are good in the sense of Roos. In the above
example, the tensor algebra (S’)I = Tk (y1, y2) is graded coherent, but (S’(X);.CS’)I = Ti(y1,y2) Rk Tk (Y1, y2)
is not. We will reuse the bad Koszul algebra S’ ®; S’ in our construction of a counterexample to the

conjectures of Minamoto and Bondal in the next chapter.

We are now almost in position to prove part of Theorem A. Recall that Gorenstein algebras are
implicitly taken to be two-sided coherent, but the remaining notions refer to right modules. We also
denoted t'" = (MCM=°(A), MCM=°(A)). We first prove the following.

Proposition 5.1.19. Let A be a Koszul Gorenstein algebra. The following are equivalent:
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i) A is absolutely Koszul.
i) t"™ forms a bounded t-structure.

The main tool will be an elegant characterisation of Koszul modules due to Rémer. Recall that M
is n-linear if Torz-S(M, k); = 0 for j —i # n, and M is linear if it is O-linear. Let M,y € M be the
submodule generated by M,, for fixed n € Z. We say that M is componentwise linear if M, is n-linear
for each n € Z. We also denote the initial degree of M by

indeg(M) = inf{n | M,, # 0}.

Theorem 5.1.20 (Rémer, [90, Lemma 3.2.2, Thm. 3.2.8], [56 Sect. 5]). Let S be a coherent Koszul
k-algebra and M € grmod S a module with finite regularity, with indeg(M) = n. The following are

equivalent:

1) M is componentwise linear;

ii) My is n-linear and M /M, is componentwise linear;
i11) M is Koszul.

This was proved in Rémer’s thesis where he took S a commutative or graded-commutative Noetherian
graded k-algebra; a proof is also given in [56 Sect. 5] with a streamlined exposition. The proof follows
almost verbatim in our generality, but for completeness we will reproduce the arguments, with at most

superficial changes to cover our situation.

Lemma 5.1.21 (|56, Lemma 5.4]). Let S be a coherent Koszul k-algebra and let M € grmod S. If M is

n-linear, then Mmg is (n + 1)-linear.

Proof. The module M/Mmg =
short exact sequence

;cr k(—n) has an n-linear resolution since S is Koszul. Consider the

0— Mmg — M — M/Mmg — 0.

The long exact sequence of Tor” (—, k) preserves internal degrees, and one deduces that Torf (Mmg,k); =
0 for j > i+ n+ 1. Since Mmg is generated in degree n + 1, Torf(MmS,]k)j =0forj<i+n+1by

properties of minimal resolutions, and it follows that Mmg is (n + 1)-linear. O

Lemma 5.1.22 ([56, Lemma 5.5]). . Let S be a coherent Koszul k-algebra and let M € grmod S, with
indeg(M) = n. The following are equivalent:

1) M is componentwise linear;
ii) My is n-linear and M /M, is componentwise linear.

Proof. Without loss of generality we may assume that n = 0. For ¢ > 0, we have M ;) = M<0>mis, and
so the sequence
0— M(O)(i} — M(i) — (M/M<0>)<i> —0

is exact. Under both hypotheses, the module M is linear and so by Lemma [5.1.21f Mgy ; is ¢-linear.
The equivalence of the two statements then follows from the long exact sequence of Tor, similarly to the

previous lemma. O
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Now let S be a coherent graded k-algebra, and M € grmod S of finite regularity with indeg(M) =n

We will show the following to be equivalent:
i) M is componentwise linear;

ii) My is n-linear and M /M, is componentwise linear;

ili) M is Koszul.
Proof of Romer’s Theorem. The equivalence of i) and 4i) is given by Lemmal(5.1.22] and we will establish

the equivalence of i) and 4i7) by induction on regg(M) — indeg(M) > 0. Without loss of generality we
may assume that n = indeg(M) = 0. We first set forth some generalities before proceeding to the
induction.

The minimal resolution F, has terms of the form

F,=V,®Sforn>0

with V,, = @j>n Vin,; & graded k-module with V;, ; sitting in degree j. Set

Fn: n,n®kSan

and note that 8(ﬁn) C F,_; and that 3(ﬁn) =0 (ﬁn) for degree reasons, giving a (linear) subcomplex

F, CF,. Set M = Ho(ﬁk)7 and by construction we have

M = Ho(F.) 0y = Ho(F.) () = M)

We have a short exact sequence of complexes

0 F, - F,—F/F, >0 (5.1)

which is split as a sequence of bigraded S-modules. Moreover, taking linear parts we obtain a short
exact sequence of complexes

0 — lin®(F,) — lin® (F,) — lin®(F, /F,) = 0

which is naturally split by inspecting the differential, and so
(5.2)

lin®(F,) = lin® (F,) @ lin®(F, /F,)
(5.3)

= F, ®lin®(F,/F,)

We now proceed by induction on regg(M). First assume that regg(M) = 0. Then M is linear and
so componentwise linear by Lemma|5.1.22) and M is also Koszul since F, = lin® (F). Hence all notions

coincide and we next assume that regg(M) > 0.

(lin®(F., /F,)) for i > 0

When M is Koszul, H;(lin®(F,)) = 0 for i > 0 implies H;(F,) = 0 = H;
F, = M gy. Hence the first two

by 1) In particular M = Mgy is linear with minimal resolution Fi
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complexes in the short exact sequence (5.1]) have homology supported in degree zero, and the long exact

sequence of homology gives H;(F,/ ﬁ*) =0 for ¢ > 1 as well as the exact sequence in low degrees

0 —— H, (F,./F,) — Hy(F.) — Ho(F,) — Hy(F./F.) —>0

0——=Hy(F./F,) Mgy ——=M M /Mgy —0

Since ¢ is the natural inclusion, Hy (F, /F,) = 0 and so F, /F, = M /M gy is the minimal free resolution.
Since we have observed that H;(lin®(F,/F,)) = 0 for i > 0, the module M /My is Koszul and so
componentwise linear by induction on regg(M /M) — indeg(M /My ) < regg(M) — indeg(M). Lemma
then applies and so M is componentwise linear.

Conversely, assume that M is componentwise linear; in particular M, is linear. We would like to
know that F, C F, was the minimal resolution of Mgy € M, so as to run the above argument in reverse,

but this isn’t a priori obvious and proving this necessitates a small detour.
Let B, = M (0y be the minimal projective resolution. The inclusion My < M lifts to a comparison
map « : E, — F,. Let G, = cone(a), giving a distinguished triangle
E,— F, - G, — E.[1] (5.4)

The homology long exact sequence gives the vanishing H;(G.) = 0 for ¢ < 0 and ¢ > 1 and moreover
that Ho(G«) = M/M gy, which fits into an exact sequence

00— Hy(G,) —= Ho(E,) — Ho(F,) —= Ho(G,) —=0

L

00— Hy(G.) My, M M/M gy —0

Similarly to above, this shows H; (G.) = 0 and so G, = M /M g, is a (non-minimal) projective resolution.
We must then have Torf (G, ,k); = Torf(M/M@ ,k); = 0 for j < i+ 1. Taking the long exact
sequence of Tors(— k) associated to the distinguished triangle (5.4)), the boundary map Tor (G, k); —

Tor;—1(Ey, k); vanishes for all j € Z for degree reasons since F, is linear, and so the long exact sequence

breaks down into short exact sequences of totalised Tor groups

O*>Tor (Ey, k) *>Tor (Fy, k) *>T0r G, k) ——=0

0— =B, sk ——+ F, ®s k —— Tor%(G,, k) — 0.

)
a®sk

The second line holds since F, and F, are minimal. By the Nakayama lemma, « : F, — F, must then
be injective and for degree reasons we must have a(FE,) = ﬁ* C F.. Hence ﬁ* is a minimal resolution of

Moy as we wanted.
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Finally, arguing as above from the short exact sequence
0—>E—>F*—>F*/15*—>0

shows that F,/ E, S5 M /Mgy is a minimal projective resolution. From the decomposition of linear
parts, we obtain H;(lin®(F,)) = H;(lin®(F./F,)) for i > 0, and so lds(M) = 1ds(M/My,). Since M is
componentwise linear, so is M /M gy, which is Koszul by induction. Hence ldg(M) = Ids(M/Myy) = 0
and M is Koszul. O

We can now prove Prop. [5.1.19] To alleviate notation, we will use the standard Q™M := M[—m)|
for m € Z to denote (co)syzygies in MCM?%(A). Recall that the Betti table 3(M) has entry in the i-th

column and j-th row given by 3;,1; as below:

0 1 e i-1 i i+1
20 Bo—2 Bi-1 - Bicii-z Bii—2 Bigi,i-1
L Bo—1 Pro o Bicii—2 Bii-1 o Biti
0 -+ Boo P11 - Bicti-1  Bii  Birii+
1 Boai Pz o Bicii Biir Bigiite

and that subcategories MCM="(A) and MCM="(A) consists of modules whose Betti table is eventually
supported at or above the n-th row (resp. at or below the n-th row) for ¢ > 0. Recall that in the
presence of a t-structure, so that cohomology objects H™(M) are defined, the amplitude of M is defined
by

sup{|i — '] | H'(M) # 0 and H" (M) # 0}.

For A Koszul Gorenstein, we now prove the equivalence of the following statements:
i) A is absolutely Koszul.

ii) ¢ forms a bounded t-structure.

Proof of Prop. [5.1.19 To make use of Rémer’s Theorem, we first point out that every M € MCMZ (A)
has finite regularity under each of the above hypotheses. For i) this follows from Lemma and
for ii), note that the cohomology objects H!(M)[—i] are eventually i-linear and so have finite regularity,
and if n = inf{i | H*(M) # 0} then we have a distinguished triangle

TS'M = M — 77" — =" M

and the t-cohomology long exact sequence shows that H!(7<"M) = H'M for i < n and H(r=""1 M) =
H'M for i > n-+1. We then have 75" M =2 H"(M)[—n] and 72" M of smaller amplitude, and finiteness
of regularity follows by induction and using half-exactness of Mgr A(—, k(=i — j)). We can therefore

assume that regularity is finite throughout and apply Romer’s Theorem.

We begin with the implication i) = 4i). Assume that A is absolutely Koszul. Recall the axioms

of a t-structure:



CHAPTER 5. ABSOLUTELY KOSZUL ALGEBRAS AND T-STRUCTURES OF KOSZUL TYPE 134

T1. MCM=%(A) C MCM='(A) and MCM='(A4) C MCM="(A);

T2. Hom,, ,(MCM="(A), MCM>'(4)) = 0;

T3. For all M in MCM”(A) there is a distinguished triangle M<® — M — M=' — M=°[1] with M =°
in MCM=%(A) and M=" in MCM='(A).

Axioms T1, T2 are easily verified, and we consider T3. Let M in MCM” (A) and take m > 0 so that
M = Q™(M)(m) is Koszul. For each n € Z, let M<§n> C M be the submodule generated by Mgm and

consider the distinguished triangle

We claim that M, (<0y is Koszul and that this follows from Romer’s Theorem. We show this by induction
on the distance of the initial degree indeg(M ) to 0, and assume that indeg(M ) < 0, otherwise the claim
is vacuous.

When indeg(N) =0, then ]/\\4/< <0y = ]/\\4/<0> is linear since M is Koszul. Next assume that indeg(M) < 0.
Define the module N := M/M (indeg(37))» Which is also Koszul, but with indeg(M) < indeg(N) < 0. The
module N(<q is then Koszul by induction, but note that N<<0> M<<0 /M )(indeg)» Where we write
mdeg = |ndeg(M<<0>) = indeg(M ) for short. Since the module M<<0><mdeg> = M<,ndeg> is indeg-linear as

M is Koszul, M, (<0y must be Koszul by Romer’s Theorem. This concludes the induction.

Since M<§O> is Koszul and generated in degrees < 0, by Corthe module ]\A/[/<So> is in MCM=0(A),
while M/M<go) is automatically in MCM="(A). Returning to M by applying Q=™ (—)(—m), we get a
distinguished triangle

M=0 5 M — M=' — M=[1]

with M=% in MCM=%(A4) and M=! in MCM="(A), and so our pair forms a t-structure. In particular
we have M= = 7=00f and MZ' = 721 M, with the general truncation functors 7=, 72"*! defined
analogously. To show that the t-structure is bounded, we can as before pass to a Koszul syzygy M =
QO™(M)(m) for m > 0 with n = indeg(]/\\j). Note that n-linear modules have amplitude zero, and
stripping the n-linear part

Mny = M = M/Mny = Mpy[1]

we obtain by induction on regA(M/M<n> ) findeg(]T/[//MQw) < regA(M) - indeg(M) that M, and therefore

M, has finite amplitude. Thus we have shown 7).

Next, we show the implication 7i) == i). Assume that t™ = (MCM="(4), MCM=°(A)) forms
a bounded t-structure. We will show 1d4(M) < oo for each M in MCM%(A). Since the t-structure is
bounded, we work by induction on the amplitude of M. When the amplitude is zero, using the truncation
sequences one sees that M = H"M[—n] for some n € Z, and so M has an eventually n-linear minimal
resolution and so 1d4 (M) < co. When M has positive amplitude, there is a smallest interval [n,n’] for
which H'M =0 for i ¢ [n,n’]. We have a distinguished triangle

TSPM — M — 12" TIM — 7S M1
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Then 7" M = (H" M )[—n] has an eventually n-linear minimal free resolution and 72" M has a Koszul

syzygy module by induction. We may apply the functor Q™ (—)(m) for m > 0 to obtain
Q™ (7S M) (m) — Q™M (m) — Q™ (2" M) (m) — Q™ (r="M)(m)[1]

with the first module n-linear and the third module Koszul. By Romer’s Theorem, Q™ (72" M) (m) is
componentwise linear, and we want to show that condition (i) in Theorem [5.1.20| holds for Q™M (m).

Let M = Q™M (m). Possibly increasing m by a finite amount, we will show that M<n = 0 and

Mn # 0, and that there is an isomorphism of distinguished triangles

Q7 (<1 M) (m) —> M —— Q" (12" M) (m) ——> Q™ (77 M) (m)[1]

; |

My M M /My ————— M[1].

The table (M) is supported between rows n,n’ as i > 0 and [n,n/] is the smallest interval with that
property. Take m large enough so that this holds at ¢ > 0. Then MQL =0 and ]\7<n> # 0. Now, up to
killing projective summands, the module Q™ (7<"M)(m) is n-linear, and so generated in degree n. The
map ¢ therefore factors through some 7 as above, and a suitable ¢ exists by the axioms of triangulated

categories. We claim that ¢ and ¢ are isomorphisms.

Applying the functor Hom,, 4(—,k(—n)) to the map of distinguished triangles above and chasing
along the long exact sequences shows that Hom, 4(¢;k(—n)) is an isomorphism. By Lemma we

have

7H0mA(N7 k) = @mgrA(N7 k(]))
JEL
= @HomqrA([NLk(j))
JEZ

= Hom([N], k)

for all N in MCM?%(A) where [N] is the unique module representative of N without projective sum-

mand. Since the map 7 : Q™ (7<"M)(m) — My is a map between n-generated modules, it induces

isomorphisms
— Hom , (k) e
Hom 4 (M, k) ~ Hom 4 (Q™(7="M)(m), k)
I [
— Hom 4 ([7].k)
Homa([M], k) ————=——= Homy ([ (r=<"M)(m)], k)

—~ Homy ([¢],k
Homy([M )] @ k, k) s Hom, ([0 (r<7M)(m)] @4 k, k)

By the Nakayama Lemma, the map
(@] : [ (=" M) (m)] = (M)

induced from 7'is an isomorphism and thus 7 is an isomorphism in MCM?%(A), and by the 5-Lemma so is
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. This shows that M, (ny and M / M, (ny are both stably isomorphic to componentwise linear modules, and
so are componentwise linear modules themselves by the Krull-Schmidt property. By Romer’s theorem,

M itself is componentwise linear and thus Koszul. This establishes the implication i) = ). O

Remark 5.1.23. When A is commutative, since finiteness of regularity for M € MCM*(A) follows from
Koszulity of A, condition 7i) can be replaced by the weaker conditition that #'" forms a t-structure,

which will then necessarily be bounded.

This proposition provides a categorical interpretation of absolute Koszulity. In particular, this shows
that ' fails to form a t-structure for sufficiently pathological Gorenstein Koszul algebras, notably if
the algebra is bad in the sense of Roos. We will construct Koszul Gorenstein algebras which fail to be

absolutely Koszul in Chapter 6.

Properties of the t-structure
Let A be absolutely Koszul Gorenstein. We have shown that ¢ forms a t-structure in the proof of Prop.

5.1.19] and we lay out for the record some of its properties, which were implicit in the above proof.

For any M € MCMZ(A), the truncation functors 7", 72" are defined by passing to a Koszul syzygy
M= Q™(M)(m), and applying Q2™ (—)(—m) to the distinguished triangle

Mi<py = M — M/M<py — My 1]

to obtain
="M — M — 77" M — 7= M1
This is independent of the choice of Koszul syzygy, since 7=" and 72" compute the right and left adjoints

to the corresponding inclusions of full subcategories (see [51l, Prop. 8.1.4]).

Let T be a triangulated category with a t-structure ¢t = (7=°,72%) and a triangulated functor F :
T — T. We say that F is t-exact (or exact when ¢ is understood) if F(7=%) C 7<0 and F(7=°) C 72°.
It follows that F restricts to an exact functor on the abelian heart 7= N 72° and commutes with

taking cohomology (see [51l Sect. 8.1])
FH"(X) 2 H"F(X).

Next, for any M € MCM?%(A) let F, =» M denote its minimal resolution. The linear part naturally

decomposes into its linear strands lin” (Fy) = B,er Ffi), defined termwise by
Fél) - Vn,nJri Rk A,

i.e. F\V is an i-linear complex. Note that since ld 4 (M) < oo each linear strand has bounded cohomology.

The next proposition follows readily from what we have shown.
Proposition 5.1.24. Let A be absolutely Koszul Gorenstein. The following properties hold for t = "

i) The autoequivalence Q*(—)(1) is t-ezact;
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i) Let M be a Koszul module. Then Ho(lin?(F,)) = H*(M) = D, H"(M)[—n];

i) Let M be a general MCM module. Then we have H(M)[—i] = (F*(i))s’f, the MCM approximation
of the i-th linear strand. In particular H*(M) = lin” (F,)"'.

The realisation functor

Now assume that A is an absolutely Koszul Gorenstein k-algebra, so that H'"(A) C MCMZ(A) is the
heart of a bounded t-structure. The category H'™(A) is then an abelian category and it is natural to

expect the existence of a realisation functor between triangulated categories
real : D°(H'™(A)) — MCM*(A)

restricting to the inclusion on H'""(A4). Given a triangulated category D with a t-structure t = (D<°, D2°),
the construction of such a realisation functor was given by Beilinson in terms of a choice of filtered tri-
angulated category (DF,0) over D, generalising the notion of the filtered derived category of an abelian
category. We review this construction and show that it applies to the case at hand. Once shown to
exist, standard criteria will then apply to show that real is fully faithful and essentially surjective, and
therefore an equivalence of triangulated categories. We follow the exposition of [83 Sect. 3], based
on results of Beilinson [19, Appendix] and Beilinson-Bernstein-Deligne [20]. We write D for a general

triangulated category throughout.

Definition 5.1.25 (Beilinson). A filtered triangulated category DF (f-category for short) is a trian-
gulated category equipped with two full triangulated subcategories DF(< 0) and DF (> 0), an exact
automorphism s : DF — DF (called f-shift) and a natural transformation « : id — s such that
DF(< n) :=s"DF(<0) and DF (> n) := s"DF (> 0) satisfy the following axioms:

i) DF(>1) C DF(>0), DF(< 1) 2 DF(< 0) and {J,,c;, DF(> 1) = U, o, DF(< n) = DF.

nez
ii) For X € DF, we have ax = s(as;-1x).

ili) For X € DF(> 1) and Y € DF(< 0), we have Hom(X,Y) = 0 and bijections Hom(Y, X) =
Hom(Y, s~ 1X) = Hom(sY, X) induced by «a.

iv) For any X € DF, there is a distinguished triangle Y —» X — Z — Y[1] with Y € DF(> 1) and
Z € DF(<0).

Definition 5.1.26. Let D be a triangulated category. An f-category (DF,8) over D is the data of an
f-category DF along with an equivalence of triangulated categories 6 : D — DF (0)NDF(>0).

Example 5.1.27 (Filtered derived category [I8, Ex. A.2]). Let A be an abelian category. Define
CF(A) to be the category of complexes X = (X, F') in A equipped with a finite decreasing filtration by

subcomplexes
F: X=FPXDFPIXD...DFI'XDFIX =0, pqecZwithp<q.

The morphisms in CF(A) are the chain-maps respecting the filtration. Define gri.(X) = FIX/F+1X
and grp(X) = @,z 8r%(X). A morphism f : X — Y is a filtered quasi-isomorphism if the morphism
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on associated graded complexes gr(f) : gr(X) — gr(Y) is a quasi-isomorphism. The filtered derived
category DF(A) is the localisation of CF(A) at the filtered quasi-isomorphism.

The category DF(A) is an f-category over D(A): we have s(X, F) = (X, sF) where (sF)'X = Fi~1X,
and oy : X — sX is induced by F*X C Fi=1X. One then takes

DF(A)(<n) ={(X,F) | gr'(X) =0 for i >n}

DF(A)(>n) ={(X,F) | gr’=(X) =0 for i <n}

and the equivalence 6 : D(A) — DF(A)(< 0) N DF(A)(> 0) sends a complex X € D(A) to (X,Tr)
equipped with the trivial filtration

Tr: X=FRXDFRKX=0
The verifications that ¢) — 4i¢) hold is straightforward. For iv), we have truncation functors

G<n : DF(A) — DF(A)(
05n : DF(A) = DF(A)(

IN

n)

n)

Y

defined by

o<nX = X/F"T X
osnX = F"X

with the induced filtrations. We then have a triangle
0’21X — X = O‘S()X — UZIX[l]

verifying iv). O

Note that since filtered quasi-isomorphisms are quasi-isomorphisms ([I04, Thm. 5.5.11]), we obtain
a forgetful functor w : DF(A) — D(A).

Example 5.1.28 (Filtered homotopy category). One can analogously define the filtered triangulated
category ICF(A) over LA consisting of complexes equipped with finite decreasing filtrations, and filtered
chain-maps up to filtration-preserving homotopies. The remaining data is as above, and KF(A) is a

filtered triangulated category over K(A). O

For the question at hand, we will make use of the following. Take A = grmod R for a two-sided
coherent graded Gorenstein k-algebra R, and let pron(R) C grmod R be the usual subcategory of

finitely generated projectives.

Example 5.1.29 (Filtered singularity category). Define KF,.(proj“(R)) C KF(grmod R) as the full
subcategory of acyclic complexes C' = (C, F') of finite projectives equipped with finite decreasing filtra-

tions such that the associated graded grr(C) complex is also acyclic.

Then K F,.(proj”(R)) is an f-category over Kq.(proj”(R)), with same data as above. The verifications
are the same as above, with only difference the question of whether 0<,,C = C/F"*'C and ¢>,C = F"C
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are acyclic. But this holds since both complexes are equipped with finite filtrations whose associated

graded is acyclic. O

~

Note that by transport of structure under the equivalence MCMZ(R) 2 K. (projZ(R)), we obtain an
f-category over MCMZ(R).

The usefulness of f-categories is summarised by the following proposition. Recall from [51], Sect. 8.1]
that an exact functor F' : D — D’ between triangulated categories equipped with ¢-structures (D<°, D=9)
and (D'S0,D'2%) is t-exact if F(D<") C D'S" and F(D=") C D'Z" for each n € Z.

Proposition 5.1.30 (|83 Prop. 3.3]). Let (DF,6) be an f-category over D.

i) There is an exact functor w : DF — D such that woax : wX =5 wsX is an isomorphism (Forgetful

functor).

i) Given a t-structure t = (D=0, D20), there is a unique t-structure t = (DF<0, DFZ°) for which 6 is
a t-exact functor and sDF<0 C DF<~1,

Moreover, if C = DS N'D20 is the heart of this t-structure, then there is a canonical equivalence of the
new heart DFS° N DFZ0 = C*(C) with the category of bounded complexes over C.

See [83, Rem. 3.4] for an explicit construction of this t-structure and the corresponding equivalence.

We can then construct the realisation functor of a t-structure t = (D=9 D=%) on D. Let (DF,0) be
an f-category over D, and let G : C*(C) = DF<°NDEFZ% C DF be the embedding induced from the
equivalence of the previous proposition. Let @Q : C*(C) — D®(C) be the localisation functor.

Theorem 5.1.31 ([83] Thm 3.11]). Given the above data, there is a unique functor realpp fitting into

a commutative diagram

cb(c) —2~Dpb(C)

|

DF

|

D

realpr

Moreover, realpp : D?(C) — D is an ezact functor satisfying the following properties:

i) realpp restricts to the identity on C and is t-exact with respect to the standard t-structure on D°(C)
and t = (D=°,D=%) on D.

i) realpr induces isomorphisms Hompe ey (X, Y [n]) = Homp (X, Y [n]) for any X,Y € C andn < 1.
i11) The following are equivalent:

a) realpp is fully faithful;

b) realpr induces isomorphisms Homps ¢y (X, Y[n]) = Homp(X,Y[n]) for any X,Y € C and all
n > 2.
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¢) (Effaceability criterion) For any X,Y € C CD, n > 2 and morphism f : X — Y[n|, there is an
object W € C and epimorphism g : W — X such that fg: W — Y[n] is zero.

d) (Coeffaceability criterion) For any X,Y € C C D, n > 2 and morphism f : X — Yn|, there is
an object Z € C and monomorphism e :Y — Z such that e[n]f : X — W{n] is zero.

i) The essential image of realpr is contained in the bounded part

D' = J Dl = | D= nD="
a<b a<b

with agreement whenever realpp is fully faithful.

We now apply these results to the absolutely Koszul Gorenstein k-algebra A. By Ex. the

t-structure t'" admits a realisation functor
real : D°(H'"(A)) — MCM”(A)

where we hide the dependence on the f-category over MCM?% (A) in the notation. We will prove:
Proposition 5.1.32. The functor real is an equivalence of triangulated categories.

Since the t-structure t'" is bounded, we see by Thm iv) that it suffices to prove that real is fully
faithful. In order to use one of the (co)effaceability criteria, we begin by studying the monomorphisms
and epimorphisms in H'"(A). We first recall the abelian category structure on H'"(A) (see [51, Thm.
8.1.9] for details).

Let f : X — Y be a morphism in H'"(A) and set Z = Cone(f). It follows from the long exact
sequence of t-cohomology that Z € MCMI=1%(4) = MCM=(A) N MCM="1(A). The abelian category
structure on H'"(A) is given by

coker(f) = H*(Z) =122
ker(f) = H'(Z) = r=°(Z[-1]).
In any abelian category, we of course have that f is a monomorphism if and only if ker(f) = 0, and f is

an epimorphism if and only if coker(f) = 0. We now record a general characterisation of monomorphisms

and epimorphisms in H'""(A). Some of these characterisations will be mainly of use in the next section.
Lemma 5.1.33. Let f: X — Y be a morphism in H'™(A).
i) The following are equivalent:

a) f is a monomorphism, that is fg = 0 implies g = 0 in H'"(A);

b) Z = Cone(f) is eventually linear;

¢) The induced map fr, : Exty 4 (Y, k* (—=m)) — Exty) 4 (X, k¥ (—m)) is surjective for all m > 0;
d) The induced map fp, : [Q"X(m)]o — [Q™Y (m)]o is injective for all m > 0.

it) The following are equivalent:
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a) f is an epimorphism, that is gf = 0 implies g = 0 in H'""(A);
b) Z = Cone(f) is eventually (—1)-linear;

¢) The induced map fr, : Exty 4 (Y, k* (=m)) — Exty) 4 (X, k% (—m)) is injective for all m > 0;

=H&VgrA

d) The induced map fp, : [Q"X(m)]o — [Q™Y (m)]o is surjective for all m > 0.

Proof. The equivalence of a) and b) simply rephrases vanishing of the kernel or cokernel of f. To see

that b) is equivalent to ¢), consider the distinguished triangle
X—-Y—Z—-X[].

For any m € N, taking Tate cohomology with coefficients in k(—m) gives rise to a long exact sequence

- = Ext™t" (X, k(—m)) — Ext™ " (Z,k(—m)) — Ext™ " (Y, k(—m)) Lo Ext™ 5" (X, k(—m)) — - --

grA grA grA grA

Since X and Y are eventually linear, there is an ng € N such that for all m > ng, we have
Ext/"{(X @ Y, k(—m)) = 0 for all i # 0.

Assuming m > ng, then for n ¢ {—1,0}, we have Extm“”l(Z k(—m)) = 0 by vanishing of the outer

terms. For n = —1,0 the long exact sequence breaks down into a four-term exact sequence

0 = Ext? 4 (Z,k(—m)) — Ext? (V. k(—m)) L2 Ext , (X, k(—m)) — Ext 5" (Z, k(=m)) = 0.

=22grA
We obtain that Z is eventually linear if and only if f, is surjective for all m > 0, and dually Z is

eventually (—1)-linear if and only if f is injective for all m > 0.

Next, we show that ¢) is equivalent to d). By Lemma we have commutative diagrams

Ext?" 4 (¥, k(~m)) —"—> Bxt!" (X, k(~m))

i

Hom, 4 (Q™(Y)(m), k) —— Hom,, , (2™ (X)(m), k)

grA

Homgy 4 (127 (V) (m)], k) —2> Hom gy ([ (X) ()], k)

*

Homy ([0 (V') (m)]o, k) — Homy, ([07 (X ) (m)]o, k)

and as Homg(—, k) is a duality on finite length k-modules we are done. O

We now introduce a special monomorphism attached to any M € H'"(A). Let C(M) be the minimal

complete resolution of M, which in degree n is given by

Cn(M) =V, A
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where V,, is some finite length graded k-module. Since M is eventually linear, V,, is concentrated in
degree n for all n > 0. Since the complex is minimal, the quotient map C, (M) = V,,®@xA — V,, @k =2V,
factors through the (reduced) n-th syzygy

Cy (M) Va
\ /
[ (M)]

and, applying degree shift by n, restricts to an isomorphism on degree zero components
[Q"(M)(n)]o = Va(n)o

Note that by definition V,,(n) is concentrated in degree zero for any n >> 0 such that Q" (M)(n) is linear,
and in this case we simply write V,,(n) = V,(n)o. Taking MCM approximation, we obtain a map in
MCM”(A)

Q™(M) > Vst

S

Va

such that composing with 7 induces Hom,, 4 (2"(M), V;?*) = Hom,, , (" (M), V;,). We will write

grA
by s M — Q7 ™(VEY) = Vot n)

for the corresponding morphism. Note that when k = k is a field, for n > 0 we have V5t[n] =
(k*t(=n)[n])Pn» M) In general we have V;, € add(k(—n)) and V,5* € add(k*!(—n)), where add(X) is the
full subcategory whose objects are summands of finite direct sums of X. Note also that V,¥* depends on
M, although this is not reflected in the notation.

Proposition 5.1.34. The morphism 1, : M — V,*t[n] is a monomorphism in H'"(A) for each n > 0.

Proof. The proof will proceed directly from the definition of monomorphism. Fix n > 0 such that
Q" (M)(n) is linear. Since Q"(—)(n) is an autoequivalence of H'"(A), the map ¢, : M — V5'[n] is a
monomorphism if and only if Q"(,,)(n) : Q*(M)(n) — V,**(n) is a monomorphism. For simplicity, we
may replace M by Q"(M)(n) to reduce to the case of M linear, so that we may set n = 0 and simply
write ¢ : M — V.

Replacing M by [M] if necessary, we may assume that M has no projective summands and simply
write M = [M]. By abuse of notation, we write ¢ : M — V§' for any representative morphism in

grmod A. Then by construction, since M is linear, the composite map
7L M — V5t =V
becomes an isomorphism upon passing to degree zero
iy : My =, .

Now let g : N — M be a morphism in H'"(A) such that tg: N — Vit is zero, interpreted as vanishing
in the stable category H'"(A) C grmod A. Since we have Vg! € add(k*!) and V; € add(k), by Lemma
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BT we have
mgrA(Nv ‘/OSt) = I—:[07IngrA(‘N'? VO) = HomgTA([N]a VO)

with first isomorphism given by composing with 7. Again, possibly after removing projective summands
from N we may assume that N = [N]. Since tg = 0 in grmod A, it follows that g = 0 in grmod A.
Now, since N is eventually linear, it must be generated in degree < 0 and we let N..qy € N be the

submodule generated by N.g. Since M is generated in degree zero, we have factorisations

N 9 M L Vbst
\ / x J{”
Vo.

N/N <o)

Then 71g = 0 implies 7. = 0. Since N/N ¢y is generated in degree zero, g is determined by its degree
zero component. But g is an isomorphism, hence (7¢g)o = (7¢)og, = 0 implies g, = 0, and so g = 0.

This shows that ¢ is a monomorphism. O
We can now prove that real gives an equivalence of triangulated categories.

Proof of Prop. [5.1.33. We will apply the coeffaceability criterion in Thm. [5.1.31fiii). Let X,Y € H'"(A)
and n > 2, and let f : X — Y[n] be a morphism in MCM”(A). Since X is eventually linear, there is an
ng € N such that for all m > ng, we have

Ext/" " (X, (~m)) = Ext/" (X, k(~m)) = 0 for all n # 0.

Consider the morphism ¢, : Y — V;5t[m] of Prop. |5.1.34] Taking m > ng large enough so that ¢, is a
monomorphism, we may take e = t,,,. Then the composite morphism e[n]f : X — Y[n] — V,5{[m +n] is

zero by our assumption that m > ng, since V5! € add(k*'(—m)).

It follows that real is fully faithful, and by Thm. [5.1.31]iv) it must be essentially surjective since "
is bounded. O

Putting everything together, we obtain the proof of Theorem [A]
Theorem 5.1.35 (Theorem . Let A be a Koszul Gorenstein k-algebra. The following are equivalent:
i) A is absolutely Koszul;
ii) t"™ forms a bounded t-structure.

When either of these equivalent conditions hold, the natural realisation functor

real : DP(H'™(A)) = MCM?(A)

is an equivalence of triangulated categories.

Proof. Combine Prop. [5.1.19] and Prop. [5.1.32 O
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5.2 The Artin-Zhang-Polishchuk noncommutative section ring
and Theorem B

Given an absolutely Koszul Gorenstein algebra A, the abelian category H'™(A) is an interesting k-linear,

Hom-finite abelian category, and it is of interest to find multiple descriptions of this category.

We will show that the opposite abelian category H'"(A)° contains an ample sequence in a suitable
sense; from this we will deduce that the (opposite) Koszul dual (A')°? = Ext* (k,k)°P is coherent as a

graded algebra, and obtain a description of H'"(A)° in terms of (A')°P.

Noncommutative projective schemes after Artin-Zhang

In the foundational paper [4], Artin and Zhang introducing the noncommutative projective scheme
associated to a Noetherian N-graded noncommutative k-algebra B, and established a useful recognition
theorem for its category of coherent sheaves amongst abelian categories.

Let us begin with the classical setting. Let X be a k-scheme, and let O(1) be an ample line bundle on
X, where we write O(m) := O(1)®™ for its tensor powers and F(m) = F ® O(m). By classical results

of Serre, the sequence {O(m)}mez detects various properties of the category coh X of coherent sheaves:

a) (Global generation) For every F € coh X and m > 0, the coherent sheaf F(m) is globally generated;
that is, the natural morphism
L(X, F(m)) @ O = F(m)

is an epimorphism.

b) (Detecting epimorphisms). For every epimorphism f : F — G, the induced map on sections
L(fm) : T(X, F(m)) = T'(X,G(m))

is surjective for all m > 0.

Property a) is taken as the definition of ampleness in Hartshorne, and b) follows from Serre’s am-
pleness criterion by setting K = ker(f), as we have vanishing of sheaf cohomology H*(X,K(m)) = 0
for i > 0 for all m > 0. Moreover, the section ring S = @, -, I'(X,O(n)) is a Noetherian N-graded

k-algebra and the truncated sections

Do (X, F) = @ T(X, F(n)

n>m

form finitely generated modules over S. When O(1) is very ample so that S is generated by S; over Sy,
the above properties are instrumental in the proof of Serre’s Theorem, which recovers the category of

coherent sheaves via the Serre quotient coh X = qgr S.

Now consider a triple (C, O, s), with C a Noetherian, k-linear, Hom-finite abelian category, where
Noetherian means that every object X € C is Noetherian; O is a distinguished object of C; and s : C =N
is an autoequivalence of C, which we think of formally as — ® O(1). We may formally write O(m) =
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s™(0), and we can mimic taking global sections of any M € C by defining I'(M (m)) := Hom(O(—m), M).

As before, we obtain a section ring

S = @F((’)(n)) = @Hom((’)(—n),(’))

n>0 n>0

= @Hom((’), O(n))

n>0

with graded algebra structure given by composing g € Hom(O, O(m)) and f € Hom(O, O(n)) as

frg=5"(f)eg

Similarly we obtain homogeneous and truncated section functors I'y,I'>, : C — Grmod S by setting

I.(M)= @F(M(n)) = @Hom(@(—n), M)

neZ neZ

I>pn(M) = 5 T(M(n) = @ Hom(O(—n), M)

n>m n>m

with S operating on the right by composition.

Definition 5.2.1 ([4, 4.2.1]). The autoequivalence s is ample if the following conditions are satisfied in

C:

a) (Global generation) For every M € C and m € Z, there exists indices i1, ...,is > m for which there

exists an epimorphism
@ O(—ij) — M.
j=1
b) (Detecting epimorphisms) For every epimorphism f: M — N in C, the induced map
['(M(m)) — (N (m))

is surjective for all m > 0.

Artin and Zhang proved the following extension of Serre’s Theorem. We refer to [4] for the definition

of the y; condition.

Theorem 5.2.2 ([4, Thm 4.5]). Let (C,O,s) be a triple as above, and assume that s is ample. Then
the section ring S = ®n20 ['(O(n)) is a Noetherian N-graded algebra (satisfying the x1 condition), and

there is an equivalence of abelian categories
cs qgr S
given by sending M + T'>p, (M) for any m € Z.

Conversely, if B is a Noetherian N-graded algebra (satisfying the x1 condition), then (qgr B, 7B, (1))

forms a triple as above, meaning that qgr B is a Noetherian abelian category with distinguished object
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wB the image of B, and autoequivalence s = (1) descencending from the degree shift functor. Moreover,
(1) is ample, and the natural morphism of graded algebras B — I'so(wB) is an isomorphism in large

enough degrees.

Remark 5.2.3. The Artin-Zhang Theorem extends Serre’s Theorem not only to the noncommutative
setting but also improves on the commutative case. Set (C, 0, s) = (coh X, Ox,—® L) for X a k-scheme
and £ an ample, but not very ample, line bundle. Then s = —® L is ample in the sense of Def. and
its section ring S = @, ['(X, LZ™) is finitely generated but not necessarily in degree 0 and 1. Serre’s
Theorem requires S to be generated by S1 over Sy, but by the above theorem, the functor I'> (X, —) still
induces an equivalence coh X = qgrS. In other words, Serre’s Theorem still holds for finitely generated
graded k-algebras arising as the section ring of an ample line bundle on some projective variety. This

was verified directly in the case of line bundle of degree 1 and 2 on an elliptic curve in [80, Chp. 7].

Note that the general statement coh proj S = qgr S fails to hold for arbitrary finitely generated

commutative k-algebras S, see [(8, Prop. 2.17] for correct behavior there.

Noncommutative projective schemes after Polishchuk

Many natural examples of noncommutative projective schemes occur in mathematics beyond those cov-
ered by the Artin-Zhang schemes. The crux of the matter is that many abelian categories C which ought
to be realised as categories of coherent sheaves fail to be Noetherian (see [82] for natural examples).
This was remedied in [82] by systematically working with coherent algebras instead, and we present the

relevant results here.

We have seen previously that attached to an N-graded locally finite coherent k-algebra B = By® By @
..., we obtain an abelian category qgr B = grmod B/grmod, B. We now look to establish a recognition

theorem for such categories, following Polishchuk [82].

Let C be a Hom-finite k-linear abelian category, not necessarily Noetherian. As previously, we
consider a triple (C, O, s) where O is a distinguished object and s an autoequivalence of C, and define
O(n) := s"(0).

Polishchuk works in the setting of connected graded k-algebras, and so one introduces the connected
section ring S = k@ S>1 = k ®I'>1(0), where for any M € C the sections I's,, (M) are defined as
previously; the latter inherits as before the structure of a graded S-module. The notion of ampleness of

s then takes a different form:
Definition 5.2.4 ([82] Sect. 2]). The autoequivalence s is ample if the following properties hold:
i) (Detecting epimorphisms) For every epimorphism f : M — N in C, the induced map
L(M(m)) = D(N(m))
is surjective for all m > 0.

ii) (Finite generation) For every M € C and m € Z, the module I's,, (M) is finitely generated over S.
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iii) (Global generation) For every M € C and m € Z, there exists indices 41, ...,is > m for which there

exists an epimorphism

P o(-ij) —» M.
Jj=1

Remark 5.2.5. The terminology is a minor departure from Polishchuk’s [82], and it is good to highlight
the discrepancy. Polishchuk works more generally with a sequence of objects £ = (F;);ez, to which
he associates a Z-algebra A = A(E), defined as a bigraded k-algebra A = EBigj A;; with Ay = k and
A;; = Home (E;, Ej) for i < j, and with multiplication having sole component A, ® A;; — Ajx given by
composition in C, where Ay = k — End¢(F;) is identified with scalar multiples of the identity. Global
sections are defined by I'.(M) = @,., Home(E;, M), which form graded modules over A. Setting
E; = O(—i), one obtains the Z-algebra A = A(€) from S via A = P, Aij = B,<; Sj—i- The notions

readily translate from there, see [82, Rem. 2.1].
Polishchuk then extends the Artin-Zhang Theorem to non-Noetherian abelian categories.
Proposition 5.2.6 ([82] Prop. 2.3]). Let (C,O,s) be a triple as above with s ample. Then:
i) For every M € C and m € Z, the graded module I'>,,, (M) is a coherent S-module.

it) The section ring S is a coherent graded algebra.

Theorem 5.2.7 ([82) Thm. 2.4]). Let (C,0,s) be a triple as above with s ample. If S denotes the

section ring, then there is an equivalence of abelian categories
cs qgr S

given by sending M + T'>p, (M) for any m € Z.

When s is ample, we will more generally call {O(n)},ez an ample sequence.

Ample sequences in the category H'"(A)P

Fix an absolutely Koszul Gorenstein k-algebra A, and consider the triple (C, O, s) := (H"(A)°P k¢, Q1 (—)(1)).
We aim to show that s = Q'(—)(1) = (=)(1)[~1] is ample, and then compare the section ring with

Ext’ (k,k)°P. We first need a minor observation, only relevant to the case where k # k.

The definition of the section ring S = k®S>; = k®T'>1(O) can be changed to allow any intermediate
subalgebra k C go C Sy in degree zero, since Sy = End¢(O) is finite dimensional over k. This was noted
by Minamoto, whose work on coherence of higher preprojective algebras as discussed in Chapter 4 led

him to consider section rings of the form S = II(A)
So@S1@---=AdI(A)D ...

for A a Fano finite dimensional algebra (see [75], Sect. 3]). He notes that Polishchuk’s results go through

with the same proof in this more general case, and we will use this implicitly.
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In our case, note that the stabilisation functor st : D’(grmod A) — MCMZ%(A) induces an algebra
morphism ¢ : k = Endg (k) — End,, 4 (k*!). By our assumption of homological homogeneity, assuming
that gldim A = oo, no summand of k is perfect over A and so the summands of k survive stabilisation.
Since k is semisimple, the kernel of ¢ is generated by idempotents, but since non-zero idempotents are

sent to non-zero idempotents the map ¢ must be injective, giving a sequence of intermediate algebras
k Ck CEnd,, ,(k*)
Working in the opposite abelian category H'™(A)°P, we shall set §0 = k°P, we will use the section ring

S = kop EB @ HOmHIin(A)OP (k8t7 Qn (]kSt)(n))

n>1

=k & () Homygin ) (k*, Q7" (k) (—n))*”
n>1

=k & (D Ext?, 5 (k*, k(—n))
n>1

and denote it by m@;(k“, kst)oP. Of course, this agrees with Polishchuk’s definition when k = k. The
truncated global sections of M € H'"(A)°P can be described

Do (M) = @D Exty, o (M, k* (—n))

n>m

with its natural right S-module structure by post-composition in MCM? (A). To help analyse its struc-

ture, we have the following well-known lemma:

Lemma 5.2.8 ([08, Thm. 6.3 (4)]). Let N € grmod A be a linear module. Then Ext’ (N,k) is a linear
module over Ext(k,k)°P. Therefore it is generated by Ext%(N,k), and in particular Ext* (N,k) is
finitely generated.

Remark 5.2.9. The paper [98] works over a field k instead of the more general semisimple base k, but
the proof of [98, Thm. 6.3 (4)] goes through without change.
We finally get to the main point.

Proposition 5.2.10. Consider the triple (H'"(A)°P, k*t, Q' (—)(1)). Then Q*(=)(1) is an ample autoe-

quivalence.
Proof. We need to verify three conditions:

i) (Detecting epimorphisms) For every epimorphism f : M — N in H'""(A)°P, the induced map on
sections

L (fm) « Exctgy 4 (M k™ (=m)) — Exty, 4 (N, k* (—m))

is surjective for all m > 0.

ii) (Finite generation) For every M € H'""(A)°? and m € Z, the truncated global sections I's,, (M) =
D, > m Exty, 4 (M,k**(—n)) is finitely generated over S.
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iii) (Global generation) For every M € H'"(A)°P and m € Z, there exists indices i1,...,is > m for

which one has an epimorphism

P (k) (—ij) > M.
j=1

To see i), note that epimorphisms f : M — N in H'""(A)°P are simply monomorphisms f : N < M
in #'"(A), in which case the result follows from the characterisation of monomorphisms (Lemma [5.1.33))

. For ii), note that we have monomorphisms
tm i M =V, [m]=Q" ™V,

for all m > 0. Since Q™ ™V, € add(Q " (k*")(—m)), we have a split monomorphism Q~"V,, <
Q= (k%) (—m)®N for some N > 0. Passing to the opposite category, we obtain an epimorphism by
composition

Q&) (—m)EY - QY - M

and #i7) follows.

It remains to prove finite generation of I's.,, (M) = @

o Bt™ 4 (M, k*(—n)) over § = Ext’y* (k*, k*/)°P.
Since I's;(M)/T'>;+1(M) has finite length over k, it suffices to prove finite generation of I's,, (M) for

M fixed and m > 0. There exists an ny € N such that for any m > ng, the syzygy Q™(M)(m) is linear.
Since we have I's,,, (M) = I'so(Q™(M)(m)), it is sufficient to prove that I'> (M) is finitely generated

for every linear MCM module M.

By Lemma for M linear Ext’ (M,k) is finitely generated over Ext%(k,k). After possibly
removing projective summands from M (which does not affect the result), the stabilisation functor
induces a bijection

Ext’y (M, k) = Ext3°(M, k)

and the induced right Ext’ (k, k)°P-module structure on the latter factors through the map Ext’ (k, k)% —
Ext’y* (k*, k)P = §. Tt follows that

[>0(M) = @ Exty, 4 (M, k™ (—n)) = Ext3° (M, k*)
n>0

is finitely generated over S, as we wanted. O

The proposition shows that S = MQ

*(kst, k*t)°P is coherent as a graded k-algebra, and we want to
compare it with the classical Ext algebra. Recall that for any graded algebra B and n € N, we denote
by B = D,z Bni be the n-th Veronese subalgebra of B, and likewise for any graded B module N we
write N(®) = P,z Nni-

Fixing such an n € N and replacing Q'(—)(1) by Q"(—)(n), note that the corresponding section ring

is replaced by (") = (Mf’ (k*t, k*t)°P) (") We will also need:
Lemma 5.2.11. For any n € N, the autoequivalence Q"(—)(n) of H'"(A)P is also ample.

Proof. The verifications of 7) and #ii) are immediate from the previous proposition, with the only subtle

point the finite generation of T's,, (M)™ = @,,;>,, Ext!’ , (M, k*(—ni)) over S™. We may similarly

reduce to the case of M linear.
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By Lemma the module Ext% (M, k) is generated by Ext’(M,k) over Ext% (k,k)°?. Since
Ext’ (k, k)°P is generated by Ext, (k, k) as a k-algebra, this survives passage to Veroneses and Ext’ (M, k)™
is generated by Ext’ (M, k) over (Ext% (k,k)°P)(™). The rest of the argument is the same. O

Remark 5.2.12. Given a triple (C, O, s) with s ample and n € N, it isn’t a priori clear if s™ is also ample.
It is easy to see that this holds for arbitrary n if the section ring S of s is generated by Sy over Sy. The

above proof is a workaround for our situation.

It follows that for any n € N, the Veronese S = (Mff (k*t,k*t)°P)(") is also coherent. This is
useful in light of the following:

Proposition 5.2.13 (Polishchuk). Let B be a graded k-algebra, generated by By over k and with finitely
many relations. Let n € N. Then B is coherent if and only if B™ is coherent. When both conditions

hold, we have an equivalence of abelian categories
qgr B = qgr B™

sending M € qgr B to M(™) = Dicz M.

Proof. This is [82, Prop. 2.6]. Again, Polishchuk works over k but the argument goes through unchanged
over k. O

Combining everything, we obtain a proof of Theorem [B]

Theorem 5.2.14 (Theorem . Let A be absolutely Koszul Gorenstein. Then (A')°P = Ext’ (k,k)°P is

coherent, and we have a contravariant equivalence of abelian categories
Hlin( )op ~ qgr (A)
sending M to Ext’y (M,k).

The converse holds in the Artinian case: if A is an Artinian Koszul Gorenstein algebra with (A')°P

coherent, then A is absolutely Koszul.

Proof. Assume that A is absolutely Koszul. Since A is Koszul, Ext’ (k,k)°? is generated in degree one
over k with finitely many (quadratic) relations. By Prop. [5.2.13] Ext’ (k,k)°? is coherent if and only if
one of its n-th Veronese (Ext’ (k,k)°?)("™) is coherent. Taking n >> idim (A), we have an isomorphism of

Veroneses subalgebras

(Exty (k, k)P) ™ =k & (D Ext)) 4 (k™ k* (—ni)))” = 5

i>1

since k*¢ is eventually linear and Tate cohomology eventually agrees with Ext. We have noted that this
last algebra is coherent by Lemma [5.2.11} and therefore so is (A')°P = Ext’ (k, k)P.

Next, consider the composition

) <t (— _y(m)
Hin(4)r ZAED, qgr (4)r L2 qgr s,
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Note that Ext3"(M,k) < Ext’(M,k) is an isomorphism in qgr (A') for any m > 0, and that
Exti1 (—, k) is well-defined on the stable category H'"(4) € MCM?(A), hence we may compute Ext* (—, k)
as Ext5"™ (—, k) for any choice of m > 1. For any M € H'"(A), there is an ng > idim A such that for any

m > ng, we have

Ext3™ (M, k) = @D Ext!, (M, k(i) = @D Ext!, (M, k* (—i))

i>m i>m

as (A")P = Ext’ (k,k)°P-modules. Composing with (—)(™) sends M to

|- = P Ext}i (M k*(—ni))

ni>m

with the notation from Lemma [5.2.11] We obtain a commutative diagram

. Ext* (—.k
Hin( ) AT g (atyer
= ~ _\(n)
Lo ()0 _l( :
qgr S

and so the top row is an equivalence. This proves the main claim.

For the converse, let A be Artinian Koszul Gorenstein and assume that E = (A')°P = Ext’ (k, k) is

coherent. We have seen that the BGG correspondence already holds in this case (Ex. [5.1.3]), meaning
that we have an equivalence of triangulated categories

MCM?(4)° = D*(qgr E)
such that pulling back the standard bounded t-structure on the right hand side gives rise to ", which
is therefore also a bounded t-structure. Therefore A is absolutely Koszul by Theorem [A] O

As corollary, we obtain Theorem [C]

Theorem 5.2.15 (Theorem [C). Let A be absolutely Koszul Gorenstein. Then there is an equivalence
of triangulated categories
MCM®(A)° = D*(qgr (A4)°)

such that '™ arises as the pullback of the standard t-structure on the right hand side.

5.3 The virtual dimension of a Koszul Gorenstein algebra

In this subsection, unless otherwise stated, A will denote an absolutely Koszul Gorenstein k-algebra, of
Gorenstein dimension d. It is often the case that the triangulated category MCM? (A) admits a Serre
functor S of standard form

Sa(=) = —®awald —1]

for some invertible A-bimodule w4 = 14,(a), where o an automorphism of A of degree zero. This holds

for instance when A is Frobenius, or when A is commutative with isolated singularities. From now on,



CHAPTER 5. ABSOLUTELY KOSZUL ALGEBRAS AND T-STRUCTURES OF KOSZUL TYPE 152

we will assume that A admits a Serre functor Sy of standard form.

Define wy; := wa[—a] so that the category H := H'"(A) of eventually linear modules is stable under
M — M ®4 wy = M(a)[—a]. Setting v := d — 1+ a, we write

Su(=) = - @wnlV]

for the induced autoequivalence on D®(H). The following is an immediate consequence of Theorem A.

Proposition 5.3.1. The autoequivalence Sy, is a Serre functor for DP(H). In particular for any X,Y €

H we have
Ext}, (X,Y) =2 Exty, " (V, X @ wy)*

and so gldimH = v.

Remark 5.3.2. Since the category HP = H'"(A)°P = qgr (A')°P sometimes arises as the category of
coherent sheaves on some projective variety, it fails in general to contain enough projectives or injectives,

and so we interpret Ext through the derived category.

Definition 5.3.3. For A a Koszul Gorenstein k-algebra, we call v = d — 1 + a the virtual dimension of
A.

Note that when A is absolutely Koszul Gorenstein (and gldim A = co) we have an immediate in-
equality v = gldimH > 0. When A is commutative, the invariant v is easily computed from numerical

data attached to A, and this inequality holds more generally.

Proposition 5.3.4. Assume that A is commutative Gorenstein graded connected over k, so that its

Hilbert series is rational of the form
hA(t)

HA(t):i(l—t)d.

Then degha(t) = v+ 1. In particular v > 0 unless A is a polynomial algebra.

We will use a well-known lemma, which follows from a prime avoidance argument.

Lemma 5.3.5. Let R = (R, m, k) be a local or graded local Noetherian commutative ring. If m contains

a non-zerodivisor r, then there is a non-zerodivisor ' € m \ m2.

Proof of Prop. [5.3.4 Since depth A = dim A for A in the proposition, the lemma guarantees that

a regular sequence x = (x1,...,x4) of linear forms x; € A; exists, and both sides of the equality
degha(t) = v+1 are stable under the reduction A — A/(x). The proof of Prop. then immediately
reduces to the case d = 0 where it holds since both sides equal the socle degree. Note that v = —1

corresponds to h4(t) constant, in which case A/(x) = k and A is regular, hence a polynomial algebra. [

Next, again in the commutative case, we have v = dimA — 1+ a = dim X + a for X = proj 4, in

which case the possible inequalities

v <dimX
v=dimX

v>dimX
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correspond to the three cases of Orlov’s semiorthogonal decomposition theorem, and dictate the direction
of the embedding.

Now, from Prop. we immediately obtain:

Corollary 5.3.6. Let A be an absolutely Koszul Gorenstein k-algebra with a Serre functor of standard
form. The following holds:

1) When v =0, the category MCMZ%(A) is semisimple.
2) When v < 1, every indecomposable M € MCMZ(A) is eventually n-linear for some n € 7.

Proof. Indeed gldim H = 0 implies that D°(H) = MCMZ%(A) is semisimple, while for gldim # < 1
every complex X € DY(H) is formal by [I, Sect. 5.2.5] (see also [I, Sect. 6, Thm. 3.1]), and so each
indecomposable M € MCM?(A) has the form M 2 H"(M)[—n] for some unique n € Z. O

Example 5.3.7. Let A = k[xo,...,z4]/(Q) be a quadric hypersurface with isolated singularities at the

origin. Then H4(t) = (11_%4 and so v = 0, and MCM?%(A) is semisimple as first shown in [30].




Chapter 6

Applications of absolute Koszulity

6.1 Application: BGG correspondence beyond complete inter-

sections

In this subsection we collect known constructions and examples from the literature to which we can apply
our results. These will be mostly pulled from commutative algebra, and so from now on we let R, S stand
for commutative graded k-algebras, always finitely generated in degree one over k. All such examples
and the methods leading to them follow either explicitly or implicitly by work of Conca-Iyengar-Nguyen-
Romer [33].

We have already encountered the important example of short Gorenstein rings. The next propo-
sition follows from the literature [70, I1]. Moreover, a complete understanding of the Betti tables of
indecomposable stable modules has been achieved by Avramov-Gibbons-Wiegand in [§].

We will give a separate proof of the following proposition, distinct from the existing literature, as to

exemplify the results and methods of chapter 4 and 5.

Proposition 6.1.1 (Short Gorenstein rings). Let R be an Artinian Gorenstein algebra of embedding

dimension e > 2 withm? = 0, hence of socle degree a = 2. Then R is absolutely Koszul withv = a—1 = 1.

Proof. R is absolutely Koszul by [I1], where it is shown that the only indecomposable non-free graded
R-module which are not Koszul are the cosyzygies of the residue field &, and so every module has an
eventually Koszul syzygy. Note that for a = 2, e > 2 is necessary since e = 1 gives R = k[z]/(2?), which

is not Koszul.

We can also give a direct representation theoretic proof via tilting theory. Since a = 2, there is a full
exceptional collection mod” R = (k,k(—1)[1]), which can be verified directly as in the proof of Prop.
or alternatively follows from Orlov’s Theorem. It is immediate that this collection is strong, and

we have

End,, 5 (k) Em;mw(m)(k Ri‘)

Emgmw@k(l)m“( 0 End,pk(-1)1)) \o &
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which is isomorphic to the path algebra kQ. of the e-Kronecker quiver

In particular k£Q). is representation infinite for e > 2 and representation finite otherwise. Making use of

the opposite tilting object T°7 = k @ k(—1)[1] € (mod” R)°”, we have a contravariant equivalence
G : (mod? R)” =5 D’(mod kQ%)

sending R-modules to complexes of left kQ.-modules, or covariant Q.-representations, and we have
G(k) = P(0) and G(k(—1)[1]) = P(1). Next, writing 7p = Sg o [-1] = (2)[—2] for the Auslander-Reiten
translate of R and 7, = Siq, © [-1] = D(kQ.) ®]II5Q€ (=)[-1] for that of kQ., these are related by

GoTRgréeloG.

We also have 7661 = RHomyq, (D(kQ.), —)[1]. If X is a kQ%-module, we write X = (X, X7) for the

corresponding quiver representation. For any R-module M, we then have

Ext ! (M, k(~2n)) = Hom,, (M, 77" ki)
o Home(ngP)(G(Tﬁ%k[i])a G(M))
= Hompy pqer) (18" G (k)[—i], G(M))
2 Homps rqery (P(0), 7o 2" G(M)]i])
= H' (75" G(M))o

Ext2rt ' (M, k(—2n — 1)) = Hom,, (M, 75> k(= 1)[1][i])
2 Hompy (qer) (G(5 " k(=1 [1][)), G(M))
= Homps (rger) (15 G (k(=1)[1])[~1], G(M))
& Home(ngP)(P(l)’Tq_;fnG(M)[i])
=~ H'(752"G(M)):.

Setting M = k so that G(M) = P(0), we conclude that R is Koszul if and only if the complex TQ_S"P(O)
is supported in cohomological degree zero (i.e. is quasi-isomorphic to a module) for all n > 0. This is
well-known to characterise representation infinite quivers (see Appendix A.1l), and so holds if and only
if e > 2.

More generally this shows that M has a linear resolution if and only if G(M) € mod kQ% C
D®(kQ°P) is a module, and remains a module under the iteration of 763 Assuming e > 2, the only
indecomposable kQ.-modules without this property are the preinjective modules {7"1(0),7"I(1)}n>0,
since regular modules are closed under TC:Q‘E:' Define an R-module M to be completely linear if 5; ;(M) =0

whenever i # j for all ¢, j € Z. Then G restricts to a bijection on the following classes, up to isomorphism:

{Completely linear indecomposable stable R-modules} <> {Regular indecomposable kQ.-modules}.



CHAPTER 6. APPLICATIONS OF ABSOLUTE KOSZULITY 156

Since kQ. is hereditary, complexes in D?(kQ°P) are formal, and translating through G one sees that all
indecomposable R-modules are n-linear except for the cosyzygies of k, which are sent onto the preinjective

modules (up to suspension). It follows that R is absolutely Koszul. O

Remark 6.1.2. Applying Theorem C and Minamoto’s Theorem, we obtain equivalences of triangulated

categories
D" (qgr ((R')*")) = D*(H"™(R))® = (mod” R)* = D (kQZ) = D"(qgr IL(Q"))
which are compatible with the t-structures, and which induce equivalence of abelian categories

agr (R)™) = H™(R)* = 1= (kQ2) = agr TI(Q2").

!

The two presentations by qgr ((R)°P) and qgrII(Q2%) correspond to picking different choices of ample

sequences in H'"(R)P.

The absolute Koszulity of short Gorenstein rings allows us to produce many more interesting examples

of absolutely Koszul Gorenstein algebras, using a theorem of Conca-Iyengar-Nguyen-Romer:

Theorem 6.1.3 ([33, Thm. 2.4)). Let ¢ : R — S be a k-algebra morphism of finite flat dimension. If
S is absolutely Koszul, then so is R.

When R is Gorenstein, we can apply this to the zero-dimensional reduction R — R := R/(x) by a

regular sequence of linear forms x = (x1,...,2q).

Corollary 6.1.4. Let R be Gorenstein of codimension > 2 withv =d—1+4a = 1. Then R is absolutely

Koszul (and in particular Koszul).

Proof. The codimension and v invariant are preserved under passing to R, in which case R is an Artinian
Gorenstein algebra of embedding dimension e > 2 and socle degree ¢ = v+ 1 = 2, and so R is absolutely
Koszul. O

Using this proposition, we can provide a great deal of interesting examples.

Corollary 6.1.5. Let k be an algebraically closed field. The following algebras are absolutely Koszul

Gorenstein with v = 1:
a) The coordinate ring R q of an elliptic curve E C PI=1 of degree d > 4.

b) The coordinate ring Rx, of an anticanonically embedded smooth del Pezzo surface X4 C P? of degree
d>4.

¢) More generally, the coordinate ring Rx, of a smooth variety Xq C P4T"=2 of dimension n > 2 and
degree d > 4. These include:
i) The coordinate ring of a smooth complete intersection of two quadrics X4 = V(Q1,Q2) C P2,
ii) The Pliicker coordinate ring of the Grassmannian Xs = Gr(2,5) C P9,
iii) The coordinate ring of the Segre variety X¢ = P2 x P2 C P8,
iv) The coordinate ring of the Segre variety X = P! x P! x P! C P7,
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v) The coordinate ring of the degree T threefold X7 C P8,
vi) The coordinate ring of the 2nd Veronese embedding Xg = P? C P14,

d) R/(x) where R is one of the above and x = (x1,...,2.) is a reqular sequence of linear forms x; € Ry
of length 1 < ¢ < d.

Let us put those examples in context before giving the proof. Given an smooth Fano variety X of
dimension n > 2, we define the index of X by ind(X) = sup{ r | — Kx ~ rH for some H € Div(X)}.
We call H a fundamental divisor if ind(X)H ~ —Kx, and define the degree d = deg X = H"™ via
intersection theory. There is an upper bound ind(X) < dim X + 1, and so we define the coindex

coind(X) =dim X + 1 — ind(X).

The cases coind(X) = 0,1 characterise projective space and quadric hypersurfaces, respectively, and
the next case is more interesting. We say that X = (X, H) is a (polarised) del Pezzo variety if H is a

fundamental divisor, coind(X) = 2 and H satisfies
H"(X,0x(mH)) =0 for all 0 < n < dim X and m € Z.

The smooth polarised del Pezzo varieties were classified by Fujita in characteristic zero [95, Thm. 3.3.1],
and the divisor H is very ample as soon as d > 3. The corresponding embedding gives cubic hypersurfaces
for d = 3, and the examples b), ¢) are the sole examples of degree d > 4 up to taking linear sections, at

least in characteristic zero.

When R is a graded Gorenstein algebra with X = proj R a smooth Fano variety, then polarised by
Ox (1) = R(1), the coindex and the invariant v are related. We have wx = wr = Ox(a) for a < 0,
so that —a < ind(X), and so coind(X) < v + 1, with equality when Ox (1) comes from a fundamental

divisor. Setting v = 1 then naturally leads to del Pezzo varieties.

Proof. Case a): It is well-known that Rg 4 is Gorenstein, and one can show this as follows. By [42], Cor.
6.18], the ring Rg 4 is a normal Cohen-Macaulay domain, and the so natural morphism to the section
ring Rp.q = @,,50 HY(E,Og(n)) is bijective, where Op(1) is the restriction to £ of Opa-1(1). That
REgq is Gorenstein follows from Stanley’s numerical criterion [99, Thm. 4.4] which says that a graded

Cohen-Macaulay domain R is Gorenstein if and only if its Hilbert series Hg(t) is symmetric, in that
Hp(t™!) = (=1)"™ F Hp(1)

for some p € Z. The Hilbert series Hg,, ,(¢) can be computed as that of the section ring using standard
methods, using that Og(1) has degree d, and symmetry is easy to check. Hence Rg 4 is Gorenstein, and
we have v =dim £ +a =1+ 0= 1, and the requirement codim Rg 4 > 2 to use Cor. forces d > 4,

with d = 3 corresponding to plane cubic curves.

Case b): We can prove that Rx, is Gorenstein by reducing to the previous case. A generic linear section
Xazt of Xgq C P9 is a smooth irreducible curve, which has trivial canonical bundle by the adjunction
formula (using that w;(i = Ox,(1)) and so X4, is an elliptic curve in P4~!. We then have Rx,/l = Rx,,

for the corresponding regular linear form [ € Rx, ; and so Rx, must be Gorenstein by the previous case.
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We have v = dim Xg+a = 2—1 =1, and again codim R(X) > 2 forces d > 4, with d = 3 corresponding

to a cubic surface.

Case ¢): Let Xy C P72 he a smooth variety of degree d > 4 and dimension n > 2. By Bertini’s
Theorem, a generic linear section X/, = X4 N P4+"=3 C P4t"=3 is smooth and irreducible so long as
dim X4 > 2, and X/, C P4+7=3 is another smooth variety of degree d and dimension n — 1. Iterating, we
construct a smooth del Pezzo surface )Z'd C X, of the same degree, with coordinate ring R;(d = Rx,/(x)
a quotient by a regular sequence of linear forms x = (x1,...,2Z,_2). Since Rg = Rx,/(x) is Gorenstein,
so is Rx,, and since Rg  is absolutely Koszul, so is Rx, by Thm.

Case e): finally, the property of R being Gorenstein with ¥ = dim R — 1 + a = 1 and codimension > 2
is unchanged under reduction modulo x, and Cor. shows that R/(x) is absolutely Koszul. O

There also are a few interesting examples with v = 2. For the next proof, recall that the multiplicity
e(R) of R in dimension d > 0 is given in terms of the Hilbert polynomial of R by the coefficient e in
the expansion [25] Defn. 4.1.5]

and that the Hilbert polynomial of R can be computed from X = proj R as Pgr(n) = x(Ox(n)). The

following examples are due to Conca-Iyengar-Nguyen-Romer.

Proposition 6.1.6 (Conca-Iyengar-Nguyen-Romer, [33, Thm. 5.1]). Let k be an algebraically closed

field of characteristic zero. The following algebras are absolutely Koszul Gorenstein algebras with v = 2:

a) The coordinate ring Rc of the canonical embedding of a mon-hyperelliptic smooth projective curve

C C P9I~ of genus g > 3, which is neither trigonal nor isomorphic to a plane quintic.

b) The coordinate ring Rx of a smooth projective variety X C PIT"=2 of dimension n > 2 whose section

by a generic linear subspace X NPI~1 is a canonical curve of the above form.

Proof. The ring R¢ is a Gorenstein domain with isolated singularity, with v = dimC +a=1+1=2
since C' is canonically embedded. In [33] Thm. 5.1], it is showrﬂ that any graded Gorenstein domain
with isolated singularity in characteristic zero with 2e(R) = 2codim R + 2 is absolutely Koszul, as soon
as it has quadratic relations. We can compute the Hilbert polynomial of Rs via Riemann-Roch as
Pr.(n) = x(0Oc(n)) = x(wE™) = (29 — 2)n + 1 — g, which we write

Pro(n) = -2-29)(n+1)+g -1

to obtain e(R¢) = eg = g — 1. Since codim Rc = g — 2, the equality holds, while the condition of having
quadratic relations is equivalent to the stated conditions by Petri’s Theorem. The second case follows

from Bertini’s Theorem as before. O

Next, we collect various classes of absolutely Koszul algebras from the literature. Note that some
references work in the setting of local Noetherian rings, but the arguments immediately adapt to the

graded case.

1Qur presentation is somewhat out of order, since they show Thm. 5.1 by reducing to the case of the coordinate ring of
a canonical curve. However we point out that the curves arising this way are precisely those covered by Petri’s Theorem.



CHAPTER 6. APPLICATIONS OF ABSOLUTE KOSZULITY 159

We say that an algebra R has the Backelin-Roos property if there is a Golod map ¢ : Q - R with @
a complete intersection, see [33, Sect. 3] for the definition of Golod maps. Such algebras are widespread

and were originally introduced in connections with rationality questions for Poincaré series.
Example 6.1.7. The following graded k-algebras are absolutely Koszul.

a) Koszul algebras with the Backelin-Roos property [48, Thm. 5.9], [33, Prop. 3.4];

b) Retracts of absolutely Koszul algebras [33 Prop. 2.3(3)].

¢) Artinian Gorenstein algebras of embedding dimension e > 3 and socle degree a = 3 with an exact
pair of linear zero divisors; in particular a generic Artinian Gorenstein algebras with e > 3 and a = 3
21, Prop. 4.1, Thm. 4.2].

d) Koszul algebras S of small embedding codepth, that is edim S — depth S < 3, or Koszul Gorenstein
algebras R of codimension < 4 [I2, Thm. 6.4, Prop. 6.3].

e) Algebras of the form S/(I+L) with S = k[z1,...,z,], I, L quadratic monomial ideals with I generated

by a regular sequence and L having a 2-linear resolution over S [33] Thm. 4.1].

f) The c-th Veronese subalgebra S of § = k[x1,...,2,] in characteristic zero, for n,c taking values
33, Cor. 5.4]):
i) n < 3 and all ¢
ii) n <4 and ¢ < 4;
iii) n <6 and ¢ = 2.
g) The Segre product Sy, ,, of k[z1,...,%y] with k[z1,...,z,] in characteristic zero, with m < n taking
values [33, Prop 5.9]:
i) m<2;
ii) m =3 and n <5;
iii) m=n=4.
Note that most of ¢) — g) are special cases of a), as shown in the respective references. We make a
special mention of the Koszul Gorenstein algebras of codimension < 4, which should give rise to a large

class of interesting examples by the Buchsbaum-Eisenbud structure theorem in codimension < 3 [26]
(see also [80]).

We now take a more detailed look at some of the previous examples.

The cone over an elliptic curve of degree d > 4

Let Rp. 4 be the coordinate ring of E C P4~! from Cor. Applying Orlov’s Theore and Theorem

A, we obtain equivalences of triangulated categories.

D’(coh E) = MCM*(Rp 4) 22 D*(H™(Rg.q)).

2We fix a choice of cut-off i = 0 throughout this subsection.
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In his thesis [80], Pavlov characterised the images of indecomposable linear MCM modules in D?(coh E)
under Orlov’s equivalence [80, Chp. 6, Sect. 6.2]. His method leads more generally to a description of
the induced t-structure with hereditary heart H'"(Rg 4) C D®(coh E). We recall a few results and facts
from [80].

Recall that any spherical object F € D?(coh E) gives rise to an autoequivalence T € Aut(D’(coh E)),
the associated spherical twist, also called Thomas-Seidel twist (see [80], [52] for definitions). Given any
point x € E, the skyscraper sheaf k(x) is a spherical object, and O is spherical since E is Calabi-Yau.

This defines two autoequivalences of D?(coh E) which we denote

A:=Tp,
B:.= Tk(m)

We have B = Tj(,) = — ®0, Op(z) (B0, Lemma 2.4.3]), but A = To,, has no such simple description.
Moreover, A and B satisfy the braid relations ABA ~ BAB, see [93, Prop. 2.13].

Next, consider the degree shift autoequivalence M — M (1) of MCMZ(RECO7 and write o for the
corresponding autoequivalence of D?(coh E) under Orlov’s equivalence D?(coh E) = MCMZ(RE’d).

Proposition 6.1.8 (Pavlov, [80, Thm. 4.1.2, Lemma 2.4.4]). We have the following identifications:

1) The suspended sheaf Op[1] € D¥(coh E) corresponds to k*t € MCM?(Rp 4) under Orlov’s equivalence.

2) The autoequivalence o € D¥(coh E) is given by 0 = B% o A.

For any M € MCM? (R 4), write Fy; for the corresponding complex of sheaves in D?(coh E). We

have wg = O, and so Serre duality gives
Hompy (g (F, Op[l]) = Hompe () (Op, F)*
for any F € Db(coh E). In particular, the Betti numbers of M can be computed as ([80, Thm. 4.1.2])
Bi;j(M) = dimy, Ext’

M, k**(—j)) = dimj, Hom M, k5t (—3)[i])

M (j)[—il, k*")

=H22grRE, d( 222229 RE 4 (

= dimy Hom, . 4
= dimy, Home(E)(UJ}—M[ i], Og(1])
= dimy, Hompy () (O, o Fr[—i])

= dimy H°(E, 07 Far[—i]).
Define a new autoequivalence y = o[—1] = B% o A o [~1]. This last quantity can be rewritten

Bi;(M) = dimy, HY(E, 07 Far[—i]) = dimy H°(E, v/ Far[j — 1))
= dimy Hj_i(E,'Yj]:]V[).
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Finally, recall that the bounded t-structure t'" is defined as

MCM=%(Rp,q) = {M | B; ;(M)
={M | Bi;(M)
MCM="(Rg.q) = {M | B ;(M)
={M | Bi;(M)

for j —i > 0 whenever i > 0}

for j — i < 0 whenever i > 0}

0
0 for j —i > 0 whenever j > 0}
0
0

for j —i < 0 whenever j > 0}.
We see that this gives rise to a bounded t-structure ¢¥ = (D=%Y D=%Y) on D®(coh E) defined by

DS0Y = (F | HY(E,y’F) = 0 for n > 0 whenever j > 0}
D2%Y = {F | HY(E,y’F) = 0 for n < 0 whenever j > 0}.

The hereditary heart HY (E) := D=YND=%Y C D’(coh E) then consists of complexes eventually without

non-zero sheaf cohomology
HY(E) = {F € D’(coh E) | H(E,y?F) = 0 for i # 0 for all j > 0}.

This category can likely be described further using Pavlov’s work, see in particular [80, Sect. 6.2] for a
description of the indecomposables Fj; corresponding to indecomposable linear MCM modules M under
HY(E) 2 H'™(RE.q).

Lastly, our work shows that D®(HY(E)) = D%(coh E), and so for each indecomposable sheaf F €
coh E, there is a unique n = ny € Z for which F[n] € HY(E). It would be interesting to have a

description of nx in terms of F.

Cones over smooth del Pezzo varieties of degree d > 4

The hereditary heart H'"(Ry,) for X4 a smooth del Pezzo variety of degree d > 4 are examples of
hereditary Ext-finite abelian categories with Serre duality, and such categories tend to be rather special.
Along this line, let us recall a famous structure theorem of Happel. Recall that an abelian category C is

connected if it is not of the form C = C; x Cs for two non-zero orthogonal full subcategories Cq,Cs.

Theorem 6.1.9 (Happel). Let k be an algebraically closed field and A an hereditary, Ext-finite, con-
nected k-linear abelian category. Assume that D(A) admits a tilting object. Then, up to derived equiv-

alence A is of the form

D (A) = Db(mod kQ)  with Q a finite acyclic quiver;
D?(coh X) with X = PY(py,...,p;) a weighted projective line.

Note that A itself need not be equivalent to mod £Q or coh X, as it can fail to be Noetherian. As

immediate special case, we obtain

Corollary 6.1.10. Let k be algebraically closed and R an absolutely Koszul Gorenstein k-algebra with
isolated singularities and v = 1. Assume that H'"™(R) is connected and that MCM*(R) = D*(H'"(R))
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admits a tilting object. Then, up to derived equivalence H'"(R) has one of two forms:

DY(mod kQ)  with Q a finite acyclic quiver;

1

Db(H“n (R))
D?(coh X) with X = PY(py,...,p:) a weighted projective line.

Note that a priori the connectedness assumption can fail to holdEL however Happel’s Theorem will

describe the connected summands.

Happel’s Theorem applies to the coordinate rings Rx, of smooth del Pezzo surfaces X; C P? of degree
d > 4 of Cor. To see this, we will show that MCM?%(Rx,) contains a tilting object (essentially the
same argument was already used in Chapter 2 for the cubic surface in P3). Recall that a = a(Rx,) = —1

since Xy is anticanonically embedded, and so Orlov’s Theorem yields
DP(coh X4) = (Ox,, ®o(MCM”(Rx,)))

Recall that X, is abstractly isomorphic either to the blowup 7 : Bl,,P? — P? of m = 9 — d points on P?
in general position, or additionally to the variety Xg = P! x P! — P2 in degree 8.

In the first case Xy = Bl,,,P?2 — P2, let E; = wil(pj) denote the exceptional divisors. Then by
Orlov’s blow-up formula [52] Sect. 11.2] (see also references in [5]), the derived pullback provides a fully
faithful embedding L7* : D?(coh P2) < D?(coh Bl,,,P?) with semiorthogonal decomposition

D(coh X4) = (L7*D(coh P?), O, , -+ ,O,,)
<7T*OIP’27 ﬂ-*(OPQ (1))a W*(OIP"" (2))a OEI? o aOEm>
<0Xd,’/T*(OPZ(l)),’/T*(O]pz(2)),OEl,‘" ,OEm>.

By [5, Thm. 2.5], the latter forms a full strong exceptional collection of sheaves in D®(coh X4). One can

perform calculations directly: by adjunction and using that 7 has rational fibres, we have

Home(Xd)(ﬂ*(O(n)), Og,) = Home(pz)(O(n),Rm((’)Ej))
= Home(Hm)(O(n),Opj)

and one sees that its endomorphism algebra A =2 k:@ /I is given by the quiver @ = @%) below

with {z;} a basis of sections for H*(P?, Op2(1)) and with relations x;z; = zyxz; and g;lj(xo, 1, 22) =

0 = g;l(zo,z1,22), where the j-th point p; = V(I;,1}) € P2 is cutout by said linear forms lj, 1. By

3In the case v = 0, consider R = k[z,y]/(xy). It is easy to see that H'"(R) & mod k x mod k, with two simple objects
corresponding to R/(z) and R/(y).
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Orlov’s Theorem MCMZ(RX ,) inherits a full strong exceptional collection with endomorphism algebra

kQ/I with Q = Q'Y

with the same relations[]

Next let Xg = P! x P1 C P8, Let & = Op1 @ Opi(1), and define O(i, j) := Op1 (i) K Op:1(5). It is
well-known that £ X € is a tilting bundle on P! x P!, whose summands form a full strong exceptional

collection of line bundles
DP(coh X3) = (0, 0(0,1),0(1,0), O(1,1)).

with corresponding quiver path algebra k@ /I given by @ = @(2)

with commuting square relations I = (ux — xu, vz — xv,uy — yu, vy — yv). Similarly, Orlov’s Theorem
gives
D’(coh X4) = (Ox,, o(MCM”(Rx,)))

and again MCMZ(RXB) inherits a full strong exceptional sequence, with endomorphism algebra kQ where
Q=0 is
[ ]
)

-
[ ey J
u

In particular the path algebra kQ® has no relations.

Because the quiver path algebras kQ(l)/I and kQ® are connected, H'™" (Rx,) is a connected category,
and we have just shown that D®(#H'"(R)) contains a tilting complex. Happel’s Theorem then implies an

equivalence

DY (I (Ry)) = D’(mod k@) with Q a finite acyclic quiver;
! D?(coh X) with X = PY(py,...,p;) a weighted projective line.

It would be very interesting to know which of these occur. The following table contains the extent of

4There is a strong similarity with the Squid algebra of Chapter 3.
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the author’s knowledge (recall that m =9 — d):

d d=4 d=5|d=6]d=7]d=8 d=28 d=9
X, BI;P? BLP? | BisP? | BI,P? | BI,P? P! x P! P2
DY(H'(Rx,)) | D¥(cohP1(2,2,2,2,2)) | 27 ?? ?? 27 | DP(mod kQ®@) | DP(mod Q)

The case d = 4 corresponds to a complete intersection of two quadrics BlsP? = X4 = V(Q1,Q2) C P4,
and we have already given an exposition of this case in chapter 2, using methods of Buchweitz and
Kuznetsov. In particular cohP*(2,2,2,2,2) 22 coh O for the hereditary order O on P! associated to the

pencil of quadrics. The second case d = 8 follows since the quiver Q) above had no relation.

The quiver ngl) for d = 9 is the 3-Kronecker quiver, and this case was studied by Iyama-Yoshino
53] (see also [62]) who classified the rigid indecomposables MCM modules over the third Veroneseﬂ
of S = k[zg,x1, 2] by use of Kac’s Theorem. Since the result of Kac’s Theorem has been extended
to hereditary categories of the form coh X by Crawley-Boevey [35], one could contemplate looking for
similar classifications for all rings Rx,, d > 4, at least once the above table has been filled. This will be

investigated in later work.

6.2 Application: The Coherence Conjectures of Minamoto and
Bondal

We finally return after a long digression to the original motivation for the study of the t-structure ¢
on MCMZ%(A). In this section we take A to be a Koszul Frobenius k-algebra of socle degree a, and for

simplicity work over k = k, where k is our fixed ground field.

We have seen in chapter 4 that one can attach a finite dimensional k-algebra A to A by the construc-

tion
a—1

A =Bud,, (@ 2'k())

i=0
such that both A and A°P are d-representation infinite algebras, of global dimension d = a — 1. As these
are endomorphism algebras of tilting objects, these come equipped with equivalence of triangulated

categories

~

mod” A — D°(A)
(mod” A)? =5 DY(A%P).

and we inherit a pair of (d + 1)-preprojective algebras II(A) and TI(A°P), both of global dimension
d+ 1 = a. Moreover, since A is Frobenius, its Koszul dual A' = Ext* (k, k) is an Artin-Schelter regular
algebra [98, Thm. 5.10] of global dimension a. Now, the Koszul and Frobenius properties are left-right
symmetric and it isn’t hard to see that (A°P)" = (A")P, and so (A')°P is also Artin-Schelter regular of
global dimension a. The next theorem summarises what we have shown in the previous two chapters.
Recall that all notions refer to right modules. We set II = II(A°P) and E = (A")P.

5Technically they worked with the invariant ring of the natural p3 action by cube roots of unity, which agrees with the
third Veronese algebra in characteristic # 3.
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Theorem 6.2.1. The following are equivalent:
i) A is absolutely Koszul.

it) II is coherent.

i1t) E is coherent.

Moreover, when these conditions hold, we have equivalences of triangulated categories
D’(qgr E) = (mod” A4)°” 2 D*(A°?) 2 D" (qgr I1)
preserving the relevant t-structures, so that this descends to an equivalence of abelian categories
qer B = H'"(A)oP = ne (A°P) = qgr 1.

Proof. The equivalence i) <= ii) follows from Prop. |4.2.13| and Thm. A. That of i) <= 7iii)
follows from Thm. [B] and the last statement is a combination of Thm. [C} Prop. [£:2.11] and Minamoto’s
Theorem .1.13 O

We now construct counterexamples to coherence.

Theorem 6.2.2. For each n > 4, there is a (commutative) Koszul Frobenius k-algebra R, of socle

degree n which is not absolutely Koszul.

The associated higher preprojective algebra II,, = II(A% ) and AS-regular algebra E,, = (R!)°P are then
counterexamples to Conjectures [f.1.17] and [£.1.18]in all global dimension n > 4.

We first need a lemma, which was briefly stated in the last section. From now on, all algebras will

be commutative and graded over k.

Lemma 6.2.3 ([33] Prop. 2.3(3)]). Let ¢ : R — S be a retract of k-algebras with section o : S — R,
wo =1idg. If R is absolutely Koszul, then so is S.

Construction 6.2.4. We begin by taking a bad Koszul algebra in the sense of Roos. Let S =
k[z,y]/(x,y)?, and consider S,, = S®™. Then Sy is the bad Koszul algebra of Roos from Thm. [5.1.18
in particular it cannot be absolutely Koszul by Prop. [5.1.12} Moreover, S,, retracts onto Sy for all

m > 2 and so these are never absolutely Koszul. However the S,,, are not Frobenius.

Let R = 5% (S(2))* be the trivial algebra extension by the symmetric S-bimodule (S(2))* = 5*(—2),

with multiplication
(rp) - (', ") = (', v +1'0).

Then R is commutative graded Frobenius (equivalently, Gorenstein) with Hilbert function Hg(t) =
1 + 4t + t?. In particular R satisfies R>3 = 0 and so R is Koszul by Prop. (in fact, absolutely
Koszul). In fact, setting V' = span, {z, y}, the algebra R is simply the algebra

R=kao(VaoV)ok

with multiplication induced from the self duality pairing on V @ V*. The Koszul Frobenius algebra
R =5 x(5(2))* retracts onto S by construction, with ¢ : R — S the projection and section o : S — R
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the natural inclusion. Define
RO™ n=2m

R®™ @ kle] n=2m+1

R, =

where kle] = k[z]/(2?). Then R, is a commutative Koszul Frobenius algebra of socle degree n. For all

m > 2, we have k-algebra retractions induced from ¢, o
Sy 5 S, S RO™ S RO™ @ ke

and so R,, retracts onto Sy for all n > 4, and cannot be absolutely Koszul then by the previous lemma.
This establishes Thm. [6.2.2]

Remark 6.2.5. Since R, is a commutative k-algebra, we have that R}, = Ext}, (k,k) = Ur*(R,) is
the universal enveloping algebra of a graded Lie algebra 7*(R,,) supported in degrees > 1 called the
Homotopy Lie algebra of R, [9, Chp 10]. In particular, Extp (k,k) is a Hopf algebra, and so there is
anti-isomorphism o : Exty (k, k) = Exty (k,k)°P given by the antipode map. This shows more clearly

that coherence fails on both sides simultaneously.

6.3 Discussion and conjectures

The structure of complete resolutions

Let A=k® A1 @ ... be a Koszul Noetherian Gorenstein k-algebra, and recall that dim A refers to the
Gorenstein dimension of A. We define the width of M € grmod A and the global width of A by

width(M) = sup{ |1 — ol | (M @4 k), #0, b =1,2}.
gl.width(A) = sup{ width(M) | M € MCM?(A) indecomposable}.

In other words, the width of M is the largest difference between degrees of generators. When A is
absolutely Koszul, referring to ¢"-cohomology recall that we define the amplitude of M € MCM%(A)
(and analogously the global amplitude of A) by

amp(M) = sup{ |j1 —jo| | H/*(M) #0, k=1,2}.
gl.amp(A) = sup{ amp(M) | M € MCM?(A) indecomposable}.

These notions are closely related to the regularity, since
amp(K) = width(K) = reg 4 (K)
for any Koszul module K satisfying K = K> and K # 0. We have an immediate inequality
gl.amp(A4) < gl.width(A)

Corresponding to the notion of Koszul module, we say that a module N is coKoszul if N* is Koszul.
This lets us define the ‘middle part’ of complete resolutions over an absolutely Koszul Gorenstein algebras
A. Let M € MCM?(A), with complete resolution C.
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Definition 6.3.1. The middle part of C consists of the terms {C),} for which
coker(Cp—1 — C,) = Q"M

is neither Koszul nor coKoszul.

Since Q"M is Koszul for any n > 0 and coKoszul for any n < 0, the middle part of C' consists of
a finite number of terms in the complete resolution. The global width of A attempts to measure the
complexity of the middle parts of all indecomposable complete resolutions, while the global amplitude

measures that of the tails.

The complexity of the Betti tables of complete resolutions appears to be sensitive to the invariant

v =dim A — 1 + a. More precisely, there is some evidence for the following dichotomies.

Conjecture 6.3.2 (Dichotomy for width). Let A be a Koszul Gorenstein k-algebra, and let v = dim A —
1+ a be the singular dimension of A. Then:

1) If v <1, then gl.width(A) < N < oo. That is, there is a uniform bound N such that every indecom-
posable M € MCM?(A) in generated in at most N degrees.

2) If v > 2, then gl.width(A) = co. That is, for every N € N there is an indecomposable M € MCMZ(A)
such that width(M) > N.

Conjecture 6.3.3 (Dichotomy for amplitude). Let A be an absolutely Koszul Gorenstein k-algebra, and
let v=dim A — 1+ a be the singular global dimension of A. Then:

1) If v < 1, then gl.amp(A) < 1. That is, every indecomposable M € MCM?%(A) is eventually n-linear

for somen € Z.

2) If v > 2, then glamp(A) = co. That is, for every N € N there is an indecomposable M € MCM?*(A)
such that amp(M) > N.

We have shown some partial cases already, such as Conj. 1). The general case will be studied

in further work.
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Appendix

A.1 Representation theory of quivers and finite dimensional

algebras

Finite dimensional algebras and quivers

Throughout this section k will stand for an algebraically closed field, and A will refer to a finite dimen-
sional k-algebra. Since A is finite dimensional and thus Artinian, A/radA is semisimple and so isomorphic
to a product of matrix algebras M., (k) x -+ x M, _(k) by the Artin-Wedderburn theorem.

Definition A.1.1. A finite-dimensional algebra A is basic if A/radA = k x --- X k. Equivalently, the
decomposition of Ay = @]_, P(i) into indecomposable projectives P(i) is multiplicity free, i.e. the P(i)

are pairwise non-isomorphic.

Every finite dimensional algebra is Morita equivalent to a basic algebra, and two Morita equivalent

basic algebras are isomorphic.

A quiver Q = (Qo, Q1) is a directed graph, with vertex set Qg and arrow set Q1. Given an arrow
a € @1, we let s(a),t(a) denote its source and target vertices.

168
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Let kQq be the k-span of Qg for d = 0,1, and assume for simplicity that both sets are finite. Then
kQo = Hier k is a semisimple k-algebra with standard basis of idempotents {e;} and kQ; is a kQo-
bimodule for which e;kQe; is the k-span of arrows {a : i — j}. We define the path algebra

kQ = Trq, (kQ1) = €D kQu

d>0

as the tensor algebra of kQ1 over kQo, with kQq = (kQ1)®? the k-space of paths of length d for all d € N.
Equivalently, kQ is the k-span of the graded set {Qq} of paths of length d € N, with multiplication given

by “function composition” for a,b € ;1 whenever possible:

(a,b) = ab  s(a) = t(b)
0 else.

Note that kQ is an augmented kQp-algebra, and is the free kQp-algebra on the bimodule kQ;. The
Jacobson radical is given by the arrow ideal radk@ = (kQ1) = kQ>1.

Given A basic, write 1 = e; +- - + e, for a full set of primitive idempotents {e;}, so that P(i) = e;A.
We construct the ordinary quiver Q = Qn as follows. Take Qo = {e;}. Next, let Q1 be a set of arrows
{a:i— j} in bijection with a k-basis e;(radA /rad®A)e;.

Proposition A.1.2 (Gabriel’s theorem). Let A be basic with ordinary quiver Q = Qx. Then there
is a surjective homomorphism k@Q — A whose kernel I consists of decomposable elements, meaning
I CEkQ>2 = rad’kQ, so that kQ/I = A. The quiver Q is uniquely determined by this property so long
as I C rad’kQ.

A generating set for I = (p1, ..., p.) can always be taken as linear combinations of paths with same
source and target. When I is in this form, we call the pair (@, I) a bound quiver. Note that kQ/I is
finite dimensional if and only if kQ>q C I for d > 0.

A representation of a bound quiver (Q,I) consists of a set of vector spaces {V;},cq, and operators
q : Vi = Vj forevery a : i — j, such that {¢, }acq, satisfy the relations I. Morphisms of representations
are simply natural transformations. We denote the category of representations of (Q,I) by Rep(Q,I)

(resp. rep(Q, I) for the subcategory of representations with finite dimensional V).

Given a quiver representation ({V;},{pa}), the path algebra kQ/I operates on the left of V =
Dico, Vi via the ¢, giving a functor to left £Q/I-modules.

Proposition A.1.3. This functor gives rise to an equivalence of categories
Rep(Q. I) = Mod (kQ/I°7),
The inverse sends V — {V;} with V; = e;V.. When kQ/I is finite dimensional, this restricts to

rep(Q. I) = mod (kQ/I°).
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Trichotomy

Fix a finite dimensional algebra A and restrict attention to finitely generated modules. For an algebra
A, we say that a k-linear functor
F:modA — modA

is a representation embedding if it sends indecomposables to indecomposables and reflects isomorphisms,
that is F'(M) = F(N) implies M = N. Given A, the classification problem for indecomposable A-
modules can be a various complexity. We say that the representation theory of A is of

e finite type, if there are finitely many indecomposable A-modules;

e tame type, if there are infinitely many indecomposables and, for any dimension d, there are finitely
many k[T — A-bimodules Fi, ..., F,q) such that F; are free of finite rank as k[T]-modules and all
but finitely many indecomposable A-modules of dimension d are of the form M; y = F; /(T — \)F;,
for some ¢ =1,...,u(d) and X € k;

e wild type, if for any finitely generated k-algebra A there is a representation embedding F' : mod A —
mod A.

By Drozd’s Theorem, the representation type of a finite dimensional algebra A must be either finite,

tame or wild.

Grothendieck groups and Euler forms

Let A = kQ/I be a finite dimensional algebra, presented as in Gabriel’s theorem. Given a finite
dimensional quiver representation V' = {V;}, we define the dimension vector dim V' := (dimV;);eq,-

Letting Ko(A) = Ko(mod A), we have an isomorphism of abelian groups
dim : Ky(A) =, 7/l

Letting S(i) be the simple top of the indecomposable projective P(i), S(i) can be represented by the
unique quiver representation with dimV; = §;;, and so [S(7)] forms a finite Z-basis of Ko(A). The
dimension vector dim V' gives the Jordan-Hélder multiplicity of each S(i) in V. When gldim A < oo, the
Euler form
(X,Y) =) dimExt}(X,Y)
i€Z

is defined and descends to a pairing (—, —) : Ko(A) ® Ko(A) — Z. One can show that this pairing is
perfect.

Hereditary algebras

An algebra A is hereditary if gldim A = 1. The finite dimensional hereditary algebras have historically

been the best studied finite dimensional algebras, and their module category exhibits a rich structure.

Proposition A.1.4. A finite dimensional basic hereditary algebra A is isomorphic to kQ for some

acyclic quiver Q, and any such path algebra is hereditary.

Proposition A.1.5. Let Q be an acyclic quiver. The representation type of kQ is determined as follows:
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i) kQ is of finite type if and only if the underlying graph of Q is a simply-laced (ADE) Dynkin diagram.
it) kQ is of tame type if and only if the underlying graph of Q is of affine ADE type.
i11) kQ is wild otherwise.

Define a bilinear form (—, —)q on Z!@! by

(dd)g = did;— Y did}.

1€Qo a:i—j

Proposition A.1.6. The isomorphism dim : Ko (kQ) Z, 7@l sends the Euler form to the above. That
18
(X,Y) = (dimX, dimY ).

The underlying graph of () determines a symmetrizable Cartan matrix, to which we attach a Kac-
Moody algebra g = gg. Recall that g is graded by a finite free abelian group I' called the root lattice,
with Z-basis of simple roots {e;}. We let A = {& € T' | g # 0} be the sets of roots of g. Now denote

by (—, —)¢ the symmetrization of the above pairing, meaning
(d.d)g={d,d)q + (d,d)q.

We can identify the lattice ZIQ0l = T with the root lattice of g, sending the dimension vector of the simple
representation S(i) to the simple root €;. This identifies (—, —)g with the Weyl-invariant symmetric

bilinear form on I'.

Proposition A.1.7 (Kac’s theorem). The above identification induces a bijection between the dimension

vectors of indecomposable representations of Q and the positive roots AT of g. Furthermore:
i) There is a unique indecomposable X with dimX — « for each positive real root .
it) There are infinitely many indecomposables Y with dimY +— [ for each positive imaginary root (.

Define the quadratic form ¢(d) on ZI!?°! =T by

g(d) = (d,d)yg =Y d; = Y did;.

1€Qo ai—j

Proposition A.1.8. Let Q be of Dynkin or affine Dynkin type. Then the positive real roots A}, and

positive imaginary roots A;;n are given by
+ _ |Qol _
Are ={de 2.y | q(d) =1}
AF, ={d ez | q(d) = 0}.
Auslander-Reiten theory
Let A be a finite dimensional algebra, and let

E0-X—->Y—-2Z—-0
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be a short exact sequence in mod A.

Definition A.1.9. A short exact sequence ¢ is almost-split if 0 # ¢ € Ext}(Z, X), X, Z are indecom-

posable and for every non-isomorphism ¢ : W — Z with W indecomposable factors as

0 X Y 0.

Almost-split sequences were introduced by Auslander-Reiten and their existence is fundamental to
the representation theory of finite dimensional algebras. Every indecomposable object sits inside an

almost-split sequence. Let X be indecomposable, and pick a minimal projective presentation
P— Py— X —0.
Writing (—)Y = Homp (—, A), we define the transpose Tr(X) € mod A°? by the dual presentation
Py — P/ — Tr(X) — 0.

Define the functors
7 =DTr(—) : mod A — mod A

771 = TrD(—) : mod A — mod A.

Define the projectively stable (resp. injectively stable) categories mod A (resp. mod A) with homomor-
phism space
Hom(X,Y) = Homy (X,Y)/P(X,Y)

and
Hom(X,Y) = Homy (X,Y)/Z(X,Y)

where P(X,Y) (resp. Z(X,Y)) is the ideal of morphisms factoring through a projective object (resp.
injective object).

Proposition A.1.10. The functors Tr, 7,7~ descend to equivalences of stable categories

Tr :mod A = mod A°? : Tr

7 :mod A S mod AP ; 71

Theorem A.1.11 (Auslander-Reiten). Let A be a finite dimensional k-algebra. Then every non-injective

indecomposable X sits in a unique almost-split sequence
0=+X =Y —=7'X =0
and every non-projective indecomposable Z sits in a unique almost-split sequence
0—=-717Z2—=2Y —=Z—=0.

Definition A.1.12. Let P(i) = e;A and I(i) = D(Ae;) = ¢;D(A) be the indecomposable projective and
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injective A modules, as {e;} runs through a full set of primitive idempotents.
i) Indecomposables of the form 77" P(i) for n > 0 are called preprojective.
ii) Indecomposables of the form 771(i) for n > 0 are called preinjective.

We can encode the structure of almost-split sequences in a combinatorial structure called the Auslander-
Reiten (AR) quiver I' = I'mod A. The quiver I' = (T'y,I';) is defined by

a) T'o = {X indecomposable }/ .

b) T'; has a set of arrows {a : [X] — [Y]} in bijection with a k-basis of the space of irreducible maps
Irr(X,Y).

The space Irr(X,Y) is defined as follows: let rad(X,Y) C Homy(X,Y) to be the subspa(:(ﬂ of non-
isomorphisms, and rad? (X,Y) Crad(X,Y) the subspace of morphisms factoring as two non-isomorphisms
throgh another indecomposable. We then set Irr(X,Y) = rad(X,Y)/rad*(X,Y).

Proposition A.1.13. The AR quiver is related to almost-split sequences as follows. Let
c0o-xLy%zoo

be an almost-split sequence, and decompose Y = @;_, Yfeei into indecomposables.

i) The classes of the components f; : X —'Y; give a full set of arrows coming out of X in T, and we
have dimIrr(X,Y;) = e;.

it) The classes of the components g; : Y; — Z give a full set of arrows coming into Z in T, and we have
dimTIrr(V;, Z) = e;.

We can picture the above in I' as

writing e; for the multiplicity of arrows.

Now let A be hereditary, say basic so that A = kQ for some ) acyclic. Denote by P and Z the
subcategories of preprojective and preinjective modules. We say that an indecomposable is regular if it
is neither in P nor Z, and denote by R the subcategory of regular indecomposables. The categories P, T
each form a component in the AR quiver I', called the preprojective and preinjective components. The

category R breaks down into connected components, each closed under 7+, called regular components.

Proposition A.1.14. The following are equivalent:

1This is a subspace since the endomorphism ring of any indecomposable is local.
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i) kQ is of finite representation type (i.e. Q is Dynkin).
ii) R =10.
iii) P =1.

When k@ is representation infinite, the quiver I is directed in that the nonzero morphisms in mod k@)
go from left to right in (P, R, 7).

Proposition A.1.15. When kQ is representation infinite, we have:
i) Homp (R, P) = 0.
it) Homp (Z,R) = 0.
iii) Homp (Z,P) = 0.
Proposition A.1.16. Let kQ be representation infinite. The following are equivalent:
i) kQ is of tame representation type (i.e Q is affine Dynkin).
it) The functor T has finite order on R.

The regular components in the tame case are tubes {7} ept parameterized by P!. The category of
modules whose indecomposable summands belong to 7y is a serial category, with finitely many simple
objects forming the base of the tube. We call the number of simples the rank of the tube. All but finitely

many tubes have rank one.

Proposition A.1.17. We have rk Ko(A) =24 >, (tk(7x) — 1).

Derived categories of finite-dimensional algebras

We let DY(A) := D’(mod A) = Db _, ,(Mod A), and DP*f(A) C D?(A) for the subcategory of perfect

complexes, meaning those quasi-isomorphic to bounded complexes of projectives.

Given a finite dimensional algebra A, we are primarily interested in the bounded derived category

DP(A) and the perfect derived category DP*f(A). We recall some of their properties.
Proposition A.1.18 (Happel). The following hold.
i) D®(A) is an Hom-finite Krull-Schmidt category.
i) DY(A) admits a Serre functor if and only if gldim A < co. In this case it is given by
Sa(—) = — ®% DA
with inverse given by the right adjoint

Sy'(—) = — ®% RHomy (DA, A) ~ RHom(DA, —).

iii) DPF(A) admits a Serre functor if and only if A is Gorenstein, whence it is also given by the above.
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By [88], existence of a Serre functor S for the triangulated category 7 = DP’(A) is equivalent to
the existence of almost-split triangles, with Auslander-Reiten translate 7 = S o [—1]. Since the module
category mod A admits almost-split short exact ssequence and a translate 7 = DTr, one may ask how
whether these are compatible. Let us temporarily write 7a = S o [—1] for the translate in D*(A) and 7

for the translate in mod A.
Proposition A.1.19. Let A be hereditary. Consider a short exact sequence in mod A
E0->X—->Y—-2Z2-0
with associated triangle in D°(A)
X =Y = Z - X[1].
Then & is almost-split in mod A if and only if €2 is almost-split in DP(A). Furthermore, we have:
i) TAZ =77 = Torllx(Z7 DA) for each indecomposable non-projective module Z.
i) TA'X = 771X = Exty (DA, X) for each indecomposable non-injective module X .
iii) TAP(i) = I(1)[—1].

Remark A.1.20. The reader is warned that this result is special to the hereditary case; the translates
7 and 7a usually differ in nature for gldim A > 2. We will primarily work with Serre functors on

triangulated categories, and so 7 will always refer to 7 if any ambiguity arises.

Happel has worked out the structure of the Auslander-Reiten quiver of D?(kQ). First, a standard
fact.

Proposition A.1.21. Let H be an abelian category with Ext3,(—,—) = 0. Then all objects in DP(H)

are formal. That is, for each X we have an isomorphism X = @, ., H"(X)[—n] in D*(H), and so each

object is the shifted sum of its cohomology objects.
Theorem A.1.22 (Happel [46]). The AR components of D*(kQ) look as follows.

i) The preprojective component P and shifted preinjective components Z|—1] form one connected com-

ponent in DY(kQ), called the transjective component PZ. We have

PI = {r"P(i) | P(i) indecomposable projective n € Z}.

it) The connected components are either shifts of reqular components in mod kQ or shifts of PI.

A.2 Derived Morita theory and Tilting theory

We briefly review and give references for the general Morita theorem of Keller in the context of algebraic
triangulated categories, based on the articles [60, [61]. The reader is referred to these articles for more
details.

Let k£ be a commutative ring. A k-linear triangulated category 7T is called algebraic if it arises as the
stable category £ of a Frobenius category, see [60, Sect. 3.6] for definitions. We note that all triangulated

categories appearing in this thesis are algebraic.
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Closely related is the notion of dg category.

Definition A.2.1. We say that an additive k-linear category C is a differential graded (dg) category if
C has the following properties:

1) The Hom objects Home (X, Y') are complexes for any X, Y.
2) The identity 1x is closed for each X, i.e. d(1x) = 0.

3) Composition of morphisms
Home (Y, Z) @ Home(X,Y) — Home (X, Z)

is a chain-map of complexes.

To any dg category C we can attach a k-linear category H°C with the same objects as C and morphism
space Hompoe(X,Y) = H'Home(X,Y). To any algebraic triangulated category T, one can find a dg
category C along with an equivalence 7 = H%(7). We will set the notation

RHom7(X,Y) := Hom¢ (X,Y).

Note that RHomy (X, X) is naturally a dg algebra over k for any object X € T.

Define an object X € T to be compact if Hom (X, —) commutes with arbitrary direct sums in 7.
Let 7€ be the subcategory of compact objects. Given a set of objects S C T, we define thick(S) C T
(respectively loc(S) C T) to be the smallest triangulated subcategory of T closed under finite sums and

summands (respectively arbitrary sums and summands). Next, we say that a set of objects § C 7 is:
i) A set of classical generators, if thick(S) = T.
ii) A set of compact generators, if S C T¢ consists of compact objects and loc(S) = 7.

We can now state Keller’s derived Morita theorem. We refer to [60] for the module and derived category

of a small DG category.

Theorem A.2.2 (Keller [60, Thm. 3.8]). Let T be an algebraic triangulated category. Assume that T
is idempotent closed. Let C be the associated dg category such that HO(C) = T. Let S C T be a small full
subcategory and S the DG category obtained from S, with same objects as S but with morphisms given
by Home(s, s) for any s,s" € S. The following holds:

i) If S C T is a set of classical generators, then we have an exact equivalence of categories

RHom(S, —) : T = DP*f(Mod S).

it) If T is closed under arbitrary direct sums and S C T is a set of compact generators, then we have

an exact equivalence of categories
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This theorem further specialises. We say that S C 7 is tilting if
i) S is a set of classical generators;
ii) Homy(s,s'[n]) =0for n # 0 and all 5,5’ € S.

We note the special case when S consists of a single object S = {T'}. The module T is then called a

tilting module.

When S is a tilting subcategory, letting 70 be the left truncation functor for standard t-structure

on D®(k), we have quasi-isomorphisms of Hom complexes
Home (s, s') <= 7<"Home (s, ') = Hom (s, s')
Writing 7<°S for the DG category with morphism complexes as above, we obtain quasi-isomorphisms
S =08 S HIS = 8.

Lastly, we note that quasi-isomorphic dg categories S ~ H%(S) = S have equivalent derived categories
D(Mod S) = D(Mod S) (and perfect derived categories (DP*f(Mod S) = D(Mod S)). Keller’s Tilting

theorem then specialises to

Corollary A.2.3 (Keller). Assume that S C T is a tilting subcategory. Then there is an equivalence of
triangulated categories
T =5 DP*f(Mod S).

As a special case, when S = {T} consists of a single tilting module T, we have an equivalence of
triangulated categories
T =5 DP* (Mod End (7).

This last statement is [61, Thm. 8.7].

A.3 Semiorthogonal decompositions and Orlov’s Theorem

In this section we review Orlov’s semiorthogonal decomposition theorem and standard background no-
tions leading up to it. Everything in here is in [78], except for the description of a certain left adjoint

which is due to Buchweitz.

Let 7 be a k-linear triangulated category over some field k, and A C T a full triangulated subcategory.

Definition A.3.1. We say that A is right admissible (resp. left admissible) if the embedding ¢ : A < T
has a right adjoint @ : T — A (resp. left adjoint). We say that A is admissible, if it is both left and
right admissible.

Define the right orthogonal category

At ={X € T | Homy(A,X) =0 for all A e A}
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and similarly define the left orthogonal category +.A. Applying the counit map of the adjunction and
the long exact sequence of Hom spaces, one sees that A C T is right admissible if and only if for all

X € T, there is a distinguished triangle
Xa—X = X 0 — Xal1]

with X4 € A and X 4. € A'. Analogously, A C T is left admissible if and only if for all X € T, there
is a distinguished triangle
Xig—=>X—>X40—- X1yl

with X 1 4 € * A and X4 in A.

Definition A.3.2. Let A,B C T be full triangulated subcategories. We say that 7 has a (weak)
semiorthogonal decomposition 7 = (A, B) if Homy(5,.4) = 0 and for all X € T, there is a distinguished
triangle

XB—>X—>X_A—>XB[1].

with X4 € A and X in B. Equivalently, A is left admissible (and then B = +.A). Again equivalently,
B is right admissible (and then A = B+). We say that T = (A, B) is a semiorthogonal decomposition if
A (equivalently, B) are admissible.

Given a weak semiorthogonal decomposition, we can refine it by decomposing A or B further.

Definition A.3.3. A sequence of full triangulated subcategories (A1, ...,A,) in T is a weak semiorthog-

onal decomposition 7 = (A, ...,.A,) if there is a sequence of left admissible subcategories T; = A; C
To C --- C T, =T such that A is the left orthogonal of Ag_1 in T}, for all k = 2,...,n. If all Ay are
admissible, then 7 = (A1,...,A;) is a semiorthogonal decomposition.

Semiorthogonal decompositions occur often in algebraic geometry and representation theory. At one
extreme, the derived category D?(X) of a smooth projective Calabi-Yau variety X does not admit any
semiorthogonal decomposition. At the other extreme, some varieties (e.g. X = P™) admit semiorthogonal

decompositions D?(X) = (Ay,. .., A,) with A; = D®(pt), so that the pieces A; are as simple as possible.

Definition A.3.4. An object E € T is exceptional if

E n=0
Homy (B, E[n]) =
0 n#0.
A sequence o = (Ey, ..., E,) is an exceptional sequence if the F; are exceptional objects, and Hom(E;, Ej[n]) =

0 for all n € Z whenever j > ¢. The sequence o is strong if furthermore Homy (E;, E;[n]) = 0 for all
n # 0 and any i, j, and is full if thick(Ey,...,E,) =T.

Given o = (E1,..., E,) a full strong exceptional sequence, the sum 7' = @, E; is a tilting object
for 7 in the sense of Appendix

Example A.3.5. Let A = kQ/I be a finite dimensional algebra with I C rad’kQ with Q a finite acyclic
quiver. Order Qp = {1,...,n} in which the arrow directions a : i — j are increasing, and let e; be the

idempotent path at the i-th vertex. Then the indecomposable right projective modules P(i) = e; A form
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a full strong exceptional collection

Mutations of exceptional collections

Assume that 7 is Ext-finite. Given objects A, B, C'in T, denote by Hom® (A, B) = @,,., Hom7 (A, Bln])[—n]
the object in D?(k), and define

Hom®(A4,B) ®, C = @ Homy (A, Bln]) ®k C[—n].

Interpret the dual Hom® (A4, B)* in D®(k) accordingly. Following Gorodentsev, we have canonical distin-
guished triangles in T
L(B)[~1] = Hom®*(A,B) @ A % B — La(B)

Ra(B) - A 2% Hom®(A, B)* ® B — Ra(B)[1]

which uniquely define L4(B), Ra(B). Now, an exceptional collection (E, F') of length two is called an

exceptional pair. We have the standard result.

Proposition A.3.6 (Gorodentsev [91]). Let (E,F) be an exceptional pair in T. The operations L, R

descend to an action on the set of exceptional pairs

R: (E,F) — (F,Rp(F))
L: (E,F)w— (Lg(F),E)

called right and left mutations. Moreover, R, L are inverses in that we have isomorphisms of pairs
LoR(E,F)=(E,F) and RoL(E,F) = (E,F).

We can extend these to mutations on isomorphism classes of exceptional collections of any lengths.

Orlov’s semiorthogonal decomposition theorem

Let A= @izo A; be a two-sided Noetherian, graded connected k-algebra throughout. We say that A is
Artin-Schelter Gorenstein if A is Gorenstein of dimension d (meaning idim (4 4) = idim (A4) = d < c0)

and A satisfies the additional Gorenstein condition

0 i#d
k(—a) i=d.

ExtY (k, A) =

interpreted as isomorphism of graded modules. This latter condition follows for free in the commutative
case [25], but has to be imposed otherwise. The integer a is the a-invariant (and —a is the Gorenstein

parameteIEI). Since A is Noetherian, we can define the abelian category

gegr A := grmod A/grmod,, A

2The reader is warned that ‘a’ is often used to denote the Gorenstein parameter in the literature, notably in [78].
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as the Serre quotient category of finitely generated graded A-modules by the Serre subcategory of finite

length modules. The significance of this construction is due to a classical theorem of Serre.

Theorem A.3.7 (Serre). Let R = @,,~,Rn be a commutative graded connected k-algebra, finitely
generated in degree one. Let X = proj R be its projective scheme. Then the sheafification functor

(=) : grmod R — coh X descends to an exact equivalence of abelian categories

— ~

(=) : qgr R — coh X.
Its inverse sends F to the class of the finitely generated graded R-module

(X, F) = @PTr(X, F(n)

n>i
foranyi e Z.

Note that the image of the homogeneous section functor I'x(X, F) = @,, ., '(X, F(n)) may fail to

be finitely generated as an R-module, e.g. for F a skyscraper sheaf.

Now in general, for any choice of cut-off i € Z, denote by grmod; A the full abelian subcategory of
graded A-modules with M; = 0 for j < ¢. The quotient functor 7 : grmod A — qgr A restricts to an

essentially surjective exact functor 7; : grmod.; A — qgr A.

Assume from this point on that A is Artin-Schelter Gorenstein. Then Orlov observes [78, Sect. 2]
that m; admits a right adjoint w; : qgr A — grmod-,; A given by

wi(M) = @) Homgg, 4(wA, M(n)).

n>4

Moreover, we have m;w; = id and so w; is fully faithful. This extends to an adjoint pair on derived
categories
i Db(grmodZi A) = D’(qgr A) : Rw;

with Rw; fully faithful and 7; essentially surjective.

Since A is Gorenstein, we have another Verdier quotient st : D*(grmod A) — D% (A) given by stabilisa-
tion. Using semiorthogonal decomposition techniques, Orlov observes that st restricted to D?(grmod >iA)

stays essentially surjective and gains a left adjoint which we shall denote by X — X[
()= Dgz,g(A) = Db(grmodZi A) st

Moreover, we have st o (—)>; = id, and so (—)[>; is fully faithful. We may then compose both adjoints
as shown below:
D (grmod-,; A)
(=i Ruw;
st ™

DZ (4) R DP(qgr A)
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This yields an adjoint pair (®;, ¥;) with ®; = 7o (=);>; and ¥; = st o Rw;. Note that while the
categories D’(qgr A) and D%, (A) do not depend on the resulting cutoff ¢, both functors (®;, ¥;) do and
will generally differ as 4 varies.

The following is Orlov’s semiorthogonal decomposition theorem.

Theorem A.3.8 ([(8, Thm. 2.5]). Let A be an Artin-Schelter Gorenstein k-algebra with a-invariant

a € Z. The above functors and triangulated categories are related as follows:

i) (Fano case) if a < 0, there is a semiorthogonal decomposition
Ruw; (D’(qgr A)) = (A(—i+a+1),A(—i+a+2),...,A(=i), D5 (A)=q)-
Applying m;, this descends to a semiorthogonal decomposition
D’(qgr A) = (rA(—i+a+1),7A(—i+a+2),...,mA(—i), ®;D% (A))).
ii) (Calabi-Yau case) if a =0, the essential images of both embeddings in Db(grmodZi A) are equal
D?g(A)[Zi] = Rw;D’(qgr A)
hence (®;,¥;) give inverse equivalences
®; : D (A) = D’(qer A) : ;.
iii) (General type case) if a > 0, there is a semiorthogonal decomposition
D2, (A) > = (k(=i), k(=i = 1),..., k(=i — a + 1), Rw;+D"(qgr A)).
Applying stabilisation st, this descends to a semiorthogonal decomposition
DI (A) = (k' (=), k* (=i = 1),...,k* (=i — a + 1), ¥;;,D"(qgr A)).

Remark A.3.9. The above theorem is usually just stated in terms of ¥; and ®; and the resulting
semiorthogonal decompositions in D?(qgr A) and DZ,(A). However the above statement is what Orlov

shows as part of the proof, and this stronger version has many uses.

The existence of the left adjoint (—)>; : D%, (A) — DP(grmods; A) follows by abstract nonsense
arguments involving admissible subcategories, and it is important in applications to have a concrete
description. The following is due to Buchweitz.

First apply the equivalence D% (A) = MCM?%(A). By abuse of notation we write
(_)[Zi] : MZ(A) = Db(grmodZi A) : st

for the induced adjoint pair. Let M be a graded MCM A-module with complete resolution C. Let
Cl<i) € C be the graded submodule whose terms are graded free A-modules generated in degree < i.
The short exact sequence

§£:0=Cleyy = C = C/Cleyy =0



APPENDIX A. APPENDIX 182

is split as a sequence of A-modules and we have Homg, 4(Cl<;, C/Cl<;) = 0. Since the differential
d: Cy — Cy_1 is A-linear and homogeneous of degree zero, we see that C|; is a subcomplex, and we
interpret § as a short exact sequence of complexes. Applying the same idea shows that C' — C|.; and
C/Ci<y is natural in C' and preserves homotopy equivalences.

The quotient complex Cj>; = C/C|; has terms in grmod-,; A. Since A is graded connected, up to
homotopy one can replace C, and thus C[>, by a minimal complex, which shows that C'>; has bounded
cohomology as the degrees of generators of C), strictly increase as n — oo (and respectively decrease as
n — —oc0). Hence we obtain a functor MCM%(A) — D(grmods; A) given by

M — C[Zi]'
Proposition A.3.10 (Buchweitz). The above functor is left adjoint to MCM approximation st : Db(grmodZiA) —
MCMZ(A).

Proof. Let K = IC(P(A)). Then ¢ gives a triangle in K
C[<i] - C = C[Zi] — C[<i} [1]

natural in C. Let F' € Db(grmodZi A) with projective resolution P, — F, taken so that all terms P,
have generators in degree > i. Then Homy (C|<;, Px) = 0 and so

Homy (C>4), Pe) = Homg (C, Ps).

Next, writing P! = Ps,, as the tail truncation and P"* = P<,_; for the head for n > 0, we have a
distinguished triangle
PM P, - P — PM1]

with the head PP a perfect complex and the tail P! a shifted resolution of an MCM module. Since we

* *

have Homy (C, P") = 0, this yields
Homy (C, P,) = Homg (C, PY).

Since P! is a shifted resolution of an MCM module, it extends to a complete resolution D of the MCM
approximation F*¢. Since each morphism C — P! has a unique lift to D up to homotopy, the map

D — P! induces an isomorphism

Homy (C, D) = Homy (C, PL).
Combining the above, we obtain natural isomorphisms

Home(g,modZiA) (Cr>q), F) = Homyc (Cr>q), Ps)
=~ Homy (C, Py)
=~ Homy (C, D)
=~ Hom,, , (M, F*).

=g
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By uniqueness of adjoints, it follows that Orlov’s left adjoint is given on MCM modules by M>; =

Cl>i- This has some immediately interesting consequences:

Corollary A.3.11. Let A be Artin-Schelter Gorenstein with a > 0. Let C be a complete resolution of the

MCM module k%t. Then Cl>0) is a projective resolution of k. In other words, kst can be “unstabilised”.

We note that this typically fails for a < 0.
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