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Abstract

Homological algebra is a tool with myriad applications. In particular Hochschild

cohomology is useful when constructing algebraic deformations of an asso-

ciative algebra. The ideas and tools required for computing the Hochschild

cohomology of associative algebras are presented, as well as some worked ex-

amples. Then the theory of algebraic deformations shows how to build new

algebras form existing ones. The Hochschild cohomology of the underlying

algebra determines if the new algebraic operations are associative and gives

a meaningful idea of equivalence between deformations. Some examples of

algebraic deformations are given showing the link to Hochschild cohomology

directly in a very computable way. The theory of algebraic deformations fits

nicely into algebraic geometry, giving some new insights into studying the

moduli spaces of algebras. A recent conjecture due to Deligne even gives

algebraic deformations a link to string theory. In short the theory of alge-

braic deformations is promising field which gives new methods of computing

various useful mathematical quantities.
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Introduction

In the first chapter, a necessary background is developed in order to define

and compute Hochschild cohomology. The definitions are presented following

chapters 1 and 9 from Weibel [5]. The definition of the bar resolution and

the reduced bar definition is taken from Chapter 9 section 6 from Cartan and

Elienberg [2] as well as chapter 10 from MacLane [4]. After the definitions

are in order, meaning is given to the cohomology modules by interpreting

the modules abstractly in some low degrees. The end of the chapter gives

examples of computing the cohomology for some specific algebras. (This is

my own contribution)

The second chapter presents the theory of algebraic deformations and a re-

lation to cohomology is established. The bulk of the definitions and proofs

come from chapter 4 of Witherspoon [6]. Here more details are added to the

proofs and examples are given of various deformations. Motivation to study

algebraic deformations from the perspective of algebraic geometry is shown.

Then the chapter closes with a brief discussion of the Kodaira Spencer map.

The Kodaira Spencer map for algebras is a very new area of study and cannot
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easily be found in literature.
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Chapter 1

Homological Algebra

Homological algebra arose form the following problem in the late 1800s [5,

Section 1.1]. Suppose we have two matrices f and g, such that gf = 0. If

g ∗ v = 0 for some column vector of length n, it is not always possible to

write v = f ∗ u. The failure is measured by the defect

d = n− rank(f)− rank(g).

A modern way of representing this is with linear maps

U
f−→ V

g−→W

where gf = 0. Then the homology module is

H = Ker(g)/f(U).
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Poincaré and others used these ideas to describe n-dimensional holes in sim-

plicial complexes. Homological algebra became a discipline in its own right

around the second world war. Eilenberg and various others found that the

homological methods could be applied to algebraic systems. For example,

such techniques show how two groups can be ‘combined’ into a larger ‘ex-

tended’ group (see [5, Chapter 6]). Since Cartan and Eilenberg’s text [2],

many other authors have written about the subject. In particular Weibel’s

text [5] gives a more modern treatment of the subject.

1.1 Homology of Chain Complexes

Fix an associative ring R with identity and let A, B and C belong to the

category of right R-modules. Given R-module homomorphisms f : A → B

and g : B → C, we obtain a sequence

A
f−→ B

g−→ C

A sequence of this form is exact at B if Ker(g) = Im(f). This implies that

the composite mapping gf : A→ C is zero. An infinite sequence of modules

is also possible:

. . .
dn+2−−−→ Cn+1

dn+1−−−→ Cn
dn−→ Cn−1

dn−1−−−→ . . . (1.1)
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If such a sequence is exact at every module Ci then it is called a long exact

sequence.

Definition 1.1.1. A chain complex (C∗, d∗) of R-modules is a sequence of R-

modules {Cn}n∈Z connected by R-module homomorphisms dn : Cn → Cn−1

such that the composition of any two consecutive mappings dndn+1 : Cn+1 →

Cn−1 is zero. A chain complex is usually written as in Equation 1.1. The

mappings dn are called the differentials of the chain complex. For conve-

nience, d is used to refer to them collectively. When it is not ambiguous

(C∗, d∗) is written simply as C∗. The kernel of dn is denoted Zn(C∗), or Zn

for brevity, and is called the module of n-cycles of C∗. Similarly the image of

dn+1 is denoted Bn(C∗) or just Bn and is called the module of n-boundaries

of C∗. Note that

0 ⊆ Bn ⊆ Zn ⊆ Cn

for all n. The nth homology module of C∗ is defined as the quotient module

Hn(C∗) = Zn/Bn.

If a long exact sequence has zero homology for all n, then it is called acylic.

Dualizing the construction yields a cochain complex (C∗, d∗) with modules

{Cn}n∈Z and differentials dn : Cn → Cn+1. It is thus defined for any sequence

. . .
dn−2

−−−→ Cn−1 dn−1

−−−→ Cn dn−→ Cn+1 dn+1

−−−→ . . .

with dn+1dn = 0. When it is not ambiguous the notation C∗ is used. Then
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Zn(C∗) = Ker(dn) is the module of n-cocycles of C∗ and Bn(C∗) = Im(dn−1)

is the module of n-coboundaries of C∗. The cohomology module is then given

by Hn(C∗) = Zn/Bn.

1.2 Chain Homotopy

A morphism u : C∗ → D∗ between two chain complexes (C∗, d
C
∗ ) and (D∗, d

D
∗ )

is a collection of module homomorphisms with the relation dDn un = un−1d
C
n .

Equivalently the following diagram commutes:

... Cn+1 Cn Cn−1 ...

... Dn+1 Dn Dn−1 ...

ddn+2 dn+1

un+1

dn

un

dn−1

un−1

dn+2 dn+1 dn dn−1

Proposition 1. The condition here forces morphisms to send boundaries to

boundaries and cycles to cycles. This induces maps Hn(C∗) → Hn(D∗), as

described in the following.

Proof. Firstly for cycles let a ∈ Ker(dCn ) then

dDn (u(a)) = u(dCn (a)) = u(0) = 0.

Thus u(a) ∈ Ker(dDn ) so u sends cycles to cycles.

For boundaries let b ∈ Im(DC
n+1), so b = dCn+1(b

′) for some b′ ∈ Cn+1, so

dDn+1(u(b′)) = u(dCn+1(b
′)) = u(b).
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Thus u(b) ∈ Im(dDn+1) so u also sends boundaries to boundaries.

It follows that homology modules are sent to homology modules. Abusing

the notation write u : Hn(C∗)→ Hn(D∗). �

Definition 1.2.1. In the special case that the maps Hn(C∗)→ Hn(D∗) are

all isomorphisms, then u is called a quasi-isomorphism.

Definition 1.2.2. Another mapping f : C∗ → D∗ between two chain com-

plexes can be defined from arbitrary maps sn : Cn → Dn+1 by setting

fn = dn+1sn + sn−1dn.

... Cn+1 Cn Cn−1 ...

... Dn+1 Dn Dn−1 ...

dn+2 dn+1

fn+1

dn

fnsn

dn−1

fn−1sn−1

dn+2 dn+1 dn dn−1

This is indeed a chain map, since

df = d(ds+ sd) = dsd = (ds+ sd)d = fd.

Here the indices are dropped for simplicity and the property dd = 0 is used.

We say f is null homotopic. If the difference between two chain maps f :

C∗ → D∗ and g∗ : C → D is null homotopic then f and g are chain homotopic.

This defines an equivalence relation f ∼ g on chain maps. Lastly a chain map

f : C∗ → D∗ is a chain homotopy equivalence if there is a map g : D∗ → C∗

such that fg and gf are chain homotopic to the identity maps on C∗ and

D∗.
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Lemma 1.2.1. If f : C∗ → D∗ is a null homotopic map then the maps

fn : Hn(C∗)→ Hn(D∗)

are zero for all n.

Proof. Let f : C∗ → D∗ be a null homotopic map and x ∈ Hn(C∗) be some

n-cycle. Thus f(x) = d(s(x)) + s(d(x)) = d(s(x)), since the later term is a

boundary of C∗. But d(s(x)) is a boundary of D∗ so that f(x) = 0. �

An immediate consequence of this is that if f : C∗ → D∗ and g : C∗ → D∗

are chain homotopic then they induce the same map on homology

Hn(C∗)→ Hn(D∗).

All of the ideas in this section apply also to cochains and cohomology, with

little change other than for indices.

1.3 Resolutions of Modules

Definition 1.3.1. Given a module M over a ring R and a chain complex C∗,

we say C∗ is augmented if there is a map ε : C0 →M such that ε ◦ d1 = 0. If

a sequence formed by an augmented chain complex

· · · → C2
d2−→ C1

d1−→ C0
ε−→M → 0

is exact then it is called a left resolution of M .

8



There is a dual construction on a cochain complex C∗. If the sequence

0→M
ε−→ C0 d0−→ C1 d1−→ C2 → · · ·

is exact then it is called a right resolution or coresolution of M . In the

literature, both are sometimes referred to as resolutions.

1.4 Tensor products of modules

We summarize here the construction of tensor products of R-modules [1, pp.

24-31]. Let A and B be two R-modules, and let F be the free module over

their Cartesian product A× B. Thus F is the R-module of formal R-linear

combinations of pairs like (a, b).

Definition 1.4.1. The tensor product of two modules A,B over a commu-

tative ring R is defined to be the quotient module

A⊗R B = F/G.

Here G is the submodule of F generated by all formal linear combinations

(a, b) + (a′, b) − (a + a′, b), (a, b) + (a, b′) − (a, b + b′), r(a, b) − (ra, b) and

r(a, b)− (a, rb), for all a, a′ ∈ A, b, b′ ∈ B and r ∈ R.

The image of (a, b) in F/G is usually denoted a⊗ b, so we get the usual rules

for tensor calculations, such as a⊗ b+a′⊗ b = (a+a′)⊗ b, r(a⊗ b) = a⊗ rb,
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etc. We do not make explicit use of the universal property of the tensor

product found in [1, Proposition 2.12].

When R is not ambiguous ⊗ is written instead of ⊗R. A⊗n denotes the n-fold

tensor product of A with itself.

1.5 Bar Resolution

To build a resolution for algebras, take R to be an associative algebra over

some field k. Define the standard complex or bar resolution,

...
d−→ R⊗R⊗R d−→ R⊗R d−→ R −→ 0

as follows. Here ⊗ denotes the tensor product over k. The differential d for

the bar resolution can be obtained from subsidiary maps

sn : R⊗ · · · ⊗R→ R⊗R⊗ · · · ⊗R

r0 ⊗ · · · ⊗ rn+1 7→ 1⊗ r0 ⊗ · · · ⊗ rn+1.

First define d0 : R⊗R→ R by setting

d0(r0 ⊗ r1) = r0r1.

10



Next impose the relations

(r0 ⊗ · · · ⊗ rn+1) = dn+1sn(r0 ⊗ · · · ⊗ rn+1) + sn−1dn(r0 ⊗ · · · ⊗ rn+1)

for n ≥ 0.

These relations determine dn by induction. In fact, dn can be expressed in a

closed form as

dn(r0 ⊗ · · · ⊗ rn+1) =
∑

0≤i≤n

(−1)ir0 ⊗ · · · ⊗ (riri+1)⊗ · · · ⊗ rn+1.

The property dn−1dn = 0 follows from induction as well. For n = 1, we have

d0(d1(r0 ⊗ r1 ⊗ r2)) = d0(r0r1 ⊗ r2 − r0 ⊗ r1r2)

= (r0r1)r2 − r0(r1r2)

= 0,

which is true by the associativity of R. For n > 1 the defining relations give

dndn+1sn = dn − dnsn−1dn = sn−2dn−1dn = 0.

Since the image of sn generates R⊗n+1 in the chain complex we conclude

dndn+1 = 0.

A computationally useful variant of this complex called the normalized stan-

dard complex. It replaces R⊗R⊗···⊗R with R⊗(R/k)⊗···⊗(R/k). Here R/k

11



is R/(k1R), the cokernal of the k-module map I : k → R defined by k 7→ k1R.

The elements of R/k are the cosets λ+k of R. If r0⊗ ...⊗rn is some element

in the un-normalized standard complex, we denote by r0[r1|...|rn] the corre-

sponding element in the normalized standard complex. The normalization

comes from the fact that [r1|...|rn] = 0 if any ri ∈ k.

The un-normalized and normalized standard complex are equivalent up to

homotopy. A proof of this is found in [4, p. 282].

1.6 Hochschild Homology of Algebras

For computing the homology of algebras suppose R is an associative algebra

over a field k and let M be a R-R-bimodule. To get more algebraic informa-

tion about R, it is useful to first remove the last R in the standard resolution

then apply the functor M ⊗R −. This gives a new chain complex

...
d−→M ⊗R⊗R d−→M ⊗R d−→M −→ 0.

The elements of the chain complex will then be the k-modules

Cn(R,M) := M ⊗R R⊗n

with differentials given by

d =
∑

(−1)i∂i

12



where

∂i(m⊗ r1 ⊗ ...⊗ rn) =


mr1 ⊗ r2 ⊗ ...⊗ rn if i = 0

m⊗ r1 ⊗ ...⊗ riri+1 ⊗ ...⊗ rn if 0 < i < n

rnm⊗ r1 ⊗ ...⊗ rn−1 if i = n

Definition 1.6.1. The homology of this chain complex is called the Hochschild

homology H∗(R,M) of R with coefficients in M . The homology is the set of

k-modules

Hn(R,M) = HnC(M ⊗R⊗∗)

The dualization of this construction gives a cochain complex

0 −→M
∂0−∂1−−−→ Homk(R,M)

d−→ Homk(R⊗R,M)
d−→ ...

The elements are the k-modules of the k-multilinear maps f : Rn →M

Cn(R,M) := Homk(R
⊗n,M).

The differentials are given by

d =
∑

(−1)i∂i

13



where

(∂if)(r0, . . . , rn) =


r0f(r1, . . . , rn) if i = 0

f(r0, . . . , ri−2, ri−1ri, ri+1, . . . rn) if 0 < i < n

f(r0, . . . , rn−1)rn if i = n

Definition 1.6.2. The cohomology of this cochain complex is called the

Hochschild cohomology H∗(R,M) of R with coefficients in M . The cohomol-

ogy is the set of k-modules

Hn(R,M) = HnC(Homk(R
⊗∗,M)).

1.7 Interpretations at Low Degrees

1.7.1 H0(R,M)

From the definition of H0(R,M) = Ker(d1), so elements of m ∈ M in the

kernel of ∂0 − ∂1 satisfy

0 = (∂0 − ∂1)(m)(r) = ∂0m(r)− ∂1m(r) = mr − rm

for all r ∈ R. Thus

H0(R,M) ∼= {m ∈M | rm = mr,∀r ∈ R}

14



In the case M = R this is the centre of R:

H0(R) ∼= Z(R)

1.7.2 H1(R,M)

From the definition H1(R,M) = Ker(d2)/Im(d1). For f ∈ Homk(R,M) to

be in Ker(d2) we need

0 = (∂0 − ∂1 + ∂2)(f)(r0, r1)

= r0f(r1)− f(r0r1) + f(r0)r1

for all r1, r0 ∈ R. So

f(r0r1) = r0f(r1) + f(r0)r1

Functions f of this form are called k-derivations from R to M . The space

of all such functions is denoted Derk(R,M). The image of d1 is given by

functions g ∈ Homk(R,M) where

g(r) = rm−mr.

15



These functions are also k-derivations since

r0g(r1) + g(r0)r1 = r0(r1m−mr1) + (r0m−mr0)r1

= r0r1m− r0mr1 + r0mr1 −mr0r1

= (r0r1)m−m(r0r1)

= g(r0r1),

Such a function is called an inner k-derivation from R to M . The space of

these is denoted InnDerk(R,M). Combining all these notions gives

H1(R,M) ∼= Derk(R,M)/ InnDerk(R,M).

1.7.3 H2(R,M)

From the definition H2(R,M) = Ker(d3)/Im(d2). For f ∈ Homk(R⊗R,M)

to be in Ker(d3) we must have

0 = (∂0 − ∂1 + ∂2 − ∂3)(f)(r0, r1, r2)

= r0f(r1, r2)− f(r0r1, r2) + f(r0, r1r2)− f(r0, r1)r2,

so

r0f(r1, r2) + f(r0, r1r2) = f(r0r1, r2) + f(r0, r1)r2.

16



The image of d2 is given by functions f ∈ Homk(R⊗R,M) where

f(r0, r1) = r0g(r1)− g(r0r1) + g(r0)r1,

for some g ∈ Homk(R,M). The interpretation of H2(R,M) is not obvious.

However, when M = R, the formulas above arise in algebraic deformation

theory, as described in the next chapter.

1.8 Some Worked Examples

1.8.1 H∗(k)

Considering a field as an algebra gives the basic idea of computing cohomol-

ogy.

H0(k)

The centre of any field k is itself so H0(k) ∼= Z(k) ∼= k

H1(k)

The 2-cocycles here are computed by calculating only (df)(1, 1). This is the

case as df is a bilinear map so (df)(a, b) = ab(df)(1, 1).

(df)(1, 1) = 1f(1)− f(1) + f(1)1 = 0

17



The cocycle condition is f(1) = 0 which means all cocycles are trivial and

the coboundary need not be computed, so H1(k) ∼= 0

H2(k)

The 3-cocycles here are computed by calculating (df)(1, 1, 1).

(df)(1, 1, 1) = 1f(1, 1)− f(1, 1) + f(1, 1)− f(1, 1)1 = 0

The cocycle condition is trivial so all mappings are cocycles. In this case

define the general cocycle f(1, 1) = λ for λ ∈ k. The coboundaries are easily

computed. We have

(dg)(1, 1) = 1g(1)− g(1) + g(1)1 = g(1)

so the general coboundary is (dg)(1, 1) = µ for µ ∈ k. The resulting quotient

gives the trivial group again, so H2(k) ∼= 0.

The cohomology groups in higher odd degrees are computationally similar to

H1 and the even like H2, so the full picture is

Hn(k) ∼=


k if i = 0

0 if i > 0

18



1.8.2 H∗(k[x]/x2)

The ring of dual numbers k[x]/x2 as an associative algebra is of dimension 2

over k. This algebra is isomorphic to a subalgebra of the 2 by 2 matrices over

k, generated by 1 = [ 1 0
0 1 ] and x = [ 0 1

0 0 ]. A general element is a + bx = [ a b0 a ]

and multiplication is done in the usual sense. Note the element x is nilpotent

since x2 = 0.

H0(k[x]/x2)

The algebra is commutative so, H0(k[x]/x2) ∼= k[x]/x2.

H1(k[x]/x2)

Suppose f is a 2-cocycle. Then evaluating df = 0 on all pairs of basis elements

1 and x gives all cocycle conditions. Thus

(df)(1, 1) = 1f(1)− f(1) + f(1)1 = 0

which means f(1) = 0. Next we have

(df)(1, x) = 1f(x)− f(x) + f(1)x = 0

giving no new condition. Likewise

(df)(x, 1) = xf(1)− f(x) + f(x)1 = 0

19



does not contribute anything. Lastly

(df)(x, x) = xf(x)− f(0) + f(x)x = 0

meaning 2xf(x) = 0. Thus f(1) = 0 and f(x) ∈ Annk[x](2x) := {a ∈

k[x]|2xa = 0}. This implies f(x) = λx, for some λ ∈ k. The coboundaries

here are functions where g(a) = am−ma, and since the algebra is commu-

tative g(a) = 0 for all a, so the coboundary is trivial. Thus H1(k[x]/x2) ∼= k.

H2(k[x]/x2)

The 3-cocycle conditions are computed in the same fashion as the 2-cocycle

conditions.

(df)(1, 1, 1) = 1f(1, 1)− f(1, 1) + f(1, 1)− f(1, 1)1 = 0

contributes nothing.

(df)(1, 1, x) = 1f(1, x)− f(1, x) + f(1, x)− f(1, 1)x = 0

gives the condition f(1, x) = f(1, 1)x.

(df)(1, x, 1) = 1f(x, 1)− f(x, 1) + f(1, x)− f(1, x)1 = 0

20



also gives no new conditions.

(df)(1, x, x) = 1f(x, x)− f(x, x) + f(1, 0)− f(1, x)x = 0

gives a new condition f(1, x)x = f(1, 1)x2 = 0

(df)(x, 1, 1) = xf(1, 1)− f(x, 1) + f(x, 1)− f(x, 1)1 = 0

gives a final condition xf(1, 1) = f(x, 1). At the same time

(df)(x, 1, x) = xf(1, x)− f(x, x) + f(x, x)− f(x, 1)x = 0

(df)(x, x, 1) = xf(x, 1)− f(0, 1) + f(x, x)− f(x, 1) = 0

(df)(x, x, x) = xf(x, x)− f(0, x) + f(x, 0)− f(x, x)x = 0

all vanish. Combing all this gives the cocycle conditions

f(1, x) = f(1, 1)x

f(1, x) = f(x, 1).
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All the cocycles are of the form

f(1, 1) = λ1 + λ2x

f(1, x) = λ1x

f(x, 1) = λ1x

f(x, x) = λ3 + λ4x

where λi ∈ k. To calculate the coboundaries look at the general functions

g(1) = µ1 + µ2x

g(x) = µ3 + µ4x

where µi ∈ k. Then

(dg)(1, 1) = 1g(1)− g(1) + g(1)1

= µ1 + µ2x

(dg)(1, x) = 1g(x)− g(x) + g(1)x

= µ1x

(dg)(x, 1) = xg(1)− g(x) + g(x)1

= µ1x

(dg)(x, x) = xg(x)− g(0) + g(x)x

= 2xµ3
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the coboundaries then cancel every cocycle except f(x, x) = λ3. Thus

H2(k[x]/x2) ∼= k.

1.8.3 H∗(k[Z/2Z])

The group algebra for a finite multiplicative group W over a field k consists

of all k-linear combinations of group elements, with the algebraic operations

defined in a natural way. The group algebra of Z/2Z is of dimension 2.

Similarly to the previous example, an isomorphic algebra is generated by

the matrices 1 = [ 1 0
0 1 ] and x = [ 1 0

0 −1 ]. A general element is then a + bx =

[ a+b 0
0 a−b ]. This algebra differs from the previous example since it lacks a

nilpotent element.

H0(k[Z/2Z])

Since k[Z/2Z] is a commutative algebra H0(k[Z/2Z]) ∼= k[Z/2Z].

H1(k[Z/2Z])

The cocycle conditions are the same as in the previous example, so f(1) = 0

and f(x) = Ann(2x), where x is the non-identity element in Z/2Z. The dif-

ference is that Ann(2x) contains only 0, so the cocycles and the cohomology

group are trivial. Thus H1(k[Z/2Z]) ∼= 0.
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H2(k[Z/2Z])

The cocycle conditions are also the same as in the previous example. Thus

f(1, x) = f(1, 1)x

f(1, x) = f(x, 1).

The general cocycles differ from those in the previous case, as follows:

f(1, 1) = λ1 + λ2x

f(1, x) = λ2 + λ1x

f(x, 1) = λ2 + λ1x

f(x, x) = λ3 + λ4x.

The coboundaries are again calculated by general functions

g(1) = µ1 + µ2x

g(x) = µ3 + µ4x

24



where µi ∈ k. Then

(dg)(1, 1) = 1g(1)− g(1) + g(1)1

= µ1 + µ2x

(dg)(1, x) = 1g(x)− g(x) + g(1)x

= µ2 + µ1x

(dg)(x, 1) = xg(1)− g(x) + g(x)1

= µ2 + µ1x

(dg)(x, x) = xg(x)− g(1) + g(x)x

= (2µ4 − µ1) + (2µ3 − µ2)x

The coboundaries also differ from the previous example as now they cancel

every cocycle. Then H2(k[x]/x2) ∼= 0.

1.8.4 H∗([ k k
0 k ])

The algebra of upper triangular matrices is of dimension 3, with a basis

e1 = [ 1 0
0 1 ], e2 = [ −1 0

0 1 ] and e3 = [ 0 1
0 0 ].

H0([ k k
0 k ])

This algebra is not commutative since e2e3 6= e3e2. The centre is generated

by only the identity matrix. Thus H0([ k k0 k ]) ∼= k.
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H1([ k k
0 k ])

The cocycle conditions are

f(e1) = 0

e2f(e2) = −f(e2)e2

e3f(e3) = −f(e3)e3

e2f(e3) + e3f(e2) = −(f(e2)e3 + f(e3)e2).

The cocycles satisfy

f(e1) = 0

f(e2) = λ1e3

f(e3) = λ2e3

The coboundaries are the functions where g(a) = am−ma. Since e2 and e3

do not commute. There are non-trivial functions in the coboundary:

g(e1) = 0

g(e2) = e2(µ1e3)− (µ1e3)e2 = −2µ1e3

g(e3) = e3(µ2e2)− (µ2e2)e3 = 2µ2e3

The coboundaries then cancel the cocycles and so H1([ k k0 k ]) ∼= 0.
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H2([ k k
0 k ])

The cocycle conditions are

f(e1, e2) = f(e1, e1)e2

f(e2, e1) = e2f(e1, e1)

f(e1, e3) = f(e1, e1)e3

f(e3, e1) = e3f(e1, e1)

e2f(e2, e2) + f(e2, e1) = f(e1, e2) + f(e2, e2)e2

e3f(e3, e3) = f(e3, e3)e3

(e2 − e1)f(e2, e2) = (f(e1, e1) + f(e2, e2))e3

f(e2, e3)e3 = (e2 + e1)f(e3, e3)

f(e3, e2)(e2 + e1) = e3(f(e1, e1) + f(e2, e2))

e3f(e3, e2) = f(e3, e3)(e2 − e1)

(e2 + e1)f(e3, e2) = f(e2, e3)(e2 − e1)

e3f(e2, e3)− f(e3, e2)e3 = 2f(e3, e3).
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These boil down to

f(e1, e1) = [ λ1 λ20 λ3
] f(e1, e2) = [ −λ1 λ20 λ3

] f(e1, e3) = [ 0 λ10 0 ]

f(e2, e1) = [ −λ1 −λ20 λ3
] f(e2, e2) = [ −λ4 λ20 λ5

] f(e2, e3) = [ 0 −
λ1+λ2

2
0 2λ6+λ7

]

f(e3, e1) = [ 0 λ30 0 ] f(e3, e2) = [ λ7
λ3+λ5

2
0 0

] f(e3, e3) = [ 0 λ60 0 ]

For the coboundaries let

g(e1) = [
µ1 µ2
0 µ3 ] g(e2) = [

µ4 µ5
0 µ6 ] g(e3) = [

µ7 µ8
0 µ9 ]

and thus

g(e1, e1) = [
µ1 µ2
0 µ3 ] g(e1, e2) = [ −µ1 µ20 µ3 ] g(e1, e3) = [ 0 µ10 0 ]

g(e2, e1) = [ −µ1 −µ20 µ3 ] g(e2, e2) = [ −2µ4−µ1 −µ2
0 2µ6+µ3

] g(e2, e3) = [ 0 µ4
0 2µ9

]

g(e3, e1) = [ 0 µ30 0 ] g(e3, e2) = [ −2µ7 µ60 0 ] g(e3, e3) = [ 0 µ7+µ90 0 ]

Again the coboundaries cancel all of the cocycles and so H2([ k k0 k ]) ∼= 0.
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Chapter 2

Deformations of Algebras

Formal deformations of associative algebras will be introduced and some con-

crete examples will be worked out. Of particular interest is that cohomology

gives modern insights into deformations. Throughout this chapter A is an

associative algebra over a field k, and t will be an indeterminate.

2.1 Formal deformations

The goal here is to construct a new algebra from A by using a formal power

series. A formal power series in t with coefficients in A is an infinite poly-

nomial
∑

i≥0 ait
i where ai ∈ A. The space of all such series is denoted A[[t]].

An algebraic structure is formed by defining an addition on A[[t]] by

∑
i≥0

ait
i +
∑
i≥0

bit
i =

∑
i≥0

(ai + bi)t
i.
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Next, multiplication is given by the Cauchy product

∑
i≥0

ait
i
∑
j≥0

bjt
j =

∑
l≥0

(∑
i+j=l

aibj

)
tl.

(This definition is motivated by the way we multiply polynomials in R[t].)

In this way, the formal power series ring A[[t]] is an associative algebra over

A. A new multiplication ∗ on A within the algebra A[[t]] can be defined as

follows:

a ∗ b = ab+ µ1(a, b)t+ µ2(a, b)t
2 + . . .

Here a, b ∈ A, ab is the usual multiplication in A; and µi ∈ Homk(A⊗A,A)

are arbitrary k-linear maps. The maps µi give the coefficients for powers of

t. For convenience define µ0(a, b) = ab. This condenses the previous formula

to

a ∗ b =
∑
i≥0

µi(a, b)t
i.

The multiplication can also be written as a function

µt = µ0 + µ1t+ µ2t
2 + . . .

where µt : A⊗A 7→ A[[t]] maps a⊗ b to a ∗ b. The multiplication is extended

to all of A[[t]] by the Cauchy product

∑
i≥0

ait
i ∗
∑
j≥0

bjt
j =

∑
l≥0

∑
i≥0

∑
j≥0

µl(ai, bj)t
i+j+l.

30



This new multiplication agrees with A in the sense that when t = 0, A is

retrieved. Equivalently, the multiplication µt modulo the ideal generated by

t gives the original action. This follows from

[a ∗ b] ∼= [ab+ µ1(a, b)t+ µ2(a, b)t
2 + . . . ] (mod t)

∼= ab (mod t)

= ab ∈ A.

This multiplication is called a formal deformation of A and is denoted (At, ∗)

or equivalently (At, µt).

The same ideas can be applied to other algebraic structures like k[t] or

k[t]/(tn) to give other types of deformations.

2.2 Associative deformations

In order for the multiplication to be associative we require (a∗b)∗c = a∗(b∗c),

for all a, b, c ∈ A. Now expand both sides to get

(a ∗ b) ∗ c = ab ∗ c+ µ1(a, b) ∗ ct+ µ2(a, b) ∗ ct2 + . . .

= abc+ µ1(ab, c)t+ µ2(ab, c)t
2 + µ1(a, b)ct+ µ1(µ1(a, b), c)t

2 + µ2(a, b)ct
2 + . . .
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Similarly,

a ∗ (b ∗ c) = a ∗ bc+ a ∗ µ1(b, c)t+ a ∗ µ2(b, c)t
2 + . . .

= abc+ µ1(a, bc)t+ µ2(a, bc)t
2 + aµ1(b, c)t+ µ1(a, µ1(b, c))t

2 + aµ2(b, c)t
2 + . . .

Equating the coefficients for only the t1 terms gives

µ1(ab, c) + µ1(a, b)c = µ1(a, bc) + aµ1(b, c) (2.1)

for all a, b, c ∈ A. The connection to cohomology is seen here as, this implies

µ1 is a Hochschild 2-cocycle. This is not the whole picture, however, since

there are infinitely many more terms to balance. Equating the t2 terms gives

µ2(ab, c) + µ1(µ1(a, b), c) + µ2(a, b)c = µ2(a, bc) + µ1(a, µ1(b, c)) + aµ2(b, c).

Rearranging, we get

µ1(µ1(a, b), c)− µ1(a, µ1(b, c)) = aµ2(b, c)− µ2(ab, c) + µ2(a, bc)− µ2(a, b)c.

The right side is expressed nicely using a differential from the bar resolution

µ1(µ1(a, b), c)− µ1(a, µ1(b, c)) = d3(µ2)(a, b, c)

32



This is called the 2nd obstruction. Working out higher powers of t, we obtain

the (i− 1)st obstruction

i−1∑
j=1

µj(µi−j(a, b), c)− µj(a, µi−j(b, c)) = d3(µi)(a, b, c).

2.3 Equivalence of deformations

Two formal deformations (At, µt), (A′t, µ
′
t) are equivalent if there is a k[[t]]-

linear function φt : At 7→ A′t of the form

φt(a) = a+ φ1(a)t+ φ2(a)t2 + . . . ,

where φi : A 7→ A is an algebra automorphism satisfying

φtµt(a, b) = µ′t(φt(a), φt(b)) (2.2)

for all a, b ∈ A. A formal deformation is trivial if it is equivalent to A[[t]].

This means φtµt(a, b) = φ(a)φ(b). The multiplication µt can be pulled back

to the usual multiplication in A[[t]] where µ0(a, b) = ab and µi(a, b) = 0 for

all i > 0. The following lemma gives a further connection to cohomology

by showing that equivalence of formal deformations is related to Hochschild

2-coboundaries.

Lemma 2.3.1. If (At, µt) and (A′t, µ
′
t) are equivalent by a mapping φt, then

µ′1 = µ1 − dφ1. Moreover if (At, µt) is equivalent to a trivial deformation,
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then µ1 is a coboundary.

Proof. The proof follows by expanding Equation 2.2:

φtµt(a, b) = µ′t(φt(a), φt(b))

φt(ab+ µ1(a, b)t+ . . . ) = φt(a)φt(b) + µ′1(φt(a), φt(b))t . . .

φt(ab) + φt(µ1(a, b)t) + . . . = (a+ φ1(a)t+ . . . )(b+ φ1(b)t+ . . . ) + µ′1(a, b)t+ . . .

ab+ φ1(ab)t+ µ1(a, b)t+ . . . = ab+ φ1(a)bt+ aφ1(b)t+ µ′1(a, b)t . . .

Equating the t terms we get

φ1(ab) + µ1(a, b) = φ1(a)b+ aφ1(b) + µ′1(a, b)

µ′1(a, b) = µ1(a, b)− (aφ1(b)− φ1(ab) + φ1(a)b)

µ′1(a, b) = µ1(a, b)− dφ1(a, b).

If (A′t, µ
′
t) is trivial then µ′1 = 0 and µ1 = dφ1. �

Lemma 2.3.2. A non-trivial formal deformation (At, µt) is equivalent to

another formal deformation (A′t, µ
′
t) such that the first non zero cochain µ′n

is a 2-cocycle that is not a coboundary.

Proof. Suppose the contrary. Let (At, µt) be some formal deformation where

the first non-zero cochain is a coboundary. Write out the deformation as

µt(a, b) = ab+ µn(a, b)tn + µn+1(a, b)t
n+1 + . . .
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where µn = dβ for some β ∈ Homk(A,A). Now define a k[[t]]-linear function

φ where

φt(a) = a+ β(a)tn

for all a ∈ A. The inverse of this function can be computed:

φ−1t (φ(a)) = a

φ−1t (a+ β(a)tn) = a

φ−1t (a) = a− φ−1t (β(a)tn)

= a− (β(a)tn − φ−1t (β(β(a))tn)tn)

= a− β(a)tn + φ−1t (β(β(a)))t2n

= a− β(a)tn + β(β(a))t2n − β(β(β(a)))t3n + . . .

Now define a new multiplication µ′t(a, b) = φt(µt(φ
−1
t a, φ−1t b)).

µ′t(a, b) = φt(µt((a− β(a)tn + . . . ), (b− β(b)tn + . . . )))

= φ(ab− aβ(b)tn − bβ(a)tn + µn(a, b)tn + µn+1(a, b)t
n+1 + . . . )

= ab− aβ(b)tn − bβ(a)tn + µn(a, b)tn + β(ab)tn + µn+1(a, b)t
n+1 + . . .

= ab+ (µn(a, b)− (aβ(b)− β(ab) + bβ(a)))tn + µn+1(a, b)t
n+1 + . . .

= ab+ (µn(a, b)− (d∗β)(a, b))tn + µn+1(a, b)t
n+1 + . . .

= ab+ µn+1(a, b)t
n+1 + . . .
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If µ′n+1 is also a coboundary then by the same reasoning (A′t, µ
′
t) is equivalent

to another deformation (A′′t , µ
′′
t ), where

µ′′t (a, b) = ab+ µ′′n+2(a, b)t
n+2 + . . . ,

for another k[[t]]-linear function φ′t such that φ′t(a) = a+β′(a)tn+1. Doing this

as many times as necessary, a function Φt can be defined as the composition

of all . . . φ′′tφ
′
tφt. Such a composition is reasonable since the coefficient for

each power of t is a finite sum of finite compositions of β, β′, β′′. For example,

if n = 1 then

a+ β(a)t+ β′(a)t2 + (β′′(a) + β′(β(a)))t3 + (β′′′(a) + β′′(β(a)))t4 + . . .

Applying Φt to (At, µt) shows that the deformation is indeed trivial. �

The immediate consequence of the lemma is that if H2(A) ∼= 0, then A has

no deformations up to isomorphism. Such an algebra is called rigid.

2.4 First order deformations

A deformation over k[t]/(t2) is called a first order deformation. The associa-

tivity condition is manageable since there are no obstructions other than the

first (given by Equation 2.1). Equivalent deformations can be interpreted

as cocycles that differ by a coboundary. The class of first order deforma-

tions is thus computed by the second Hochschild cohomology group. For an
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example of a first order deformation, consider k[x]/(x2) and define a new

multiplication by

1 ∗ 1 = 1

1 ∗ x = x

x ∗ 1 = x

x ∗ x = t

The usual multiplication has been perturbed only slightly. Setting t to 0

retrieves the original multiplication. The resulting algebra is k[x]/(x2 − t).

In the previous chapter it was shown that H2(k[x]/x2) ∼= k, and the only

cocycle that was not a coboundary was f(x, x) = λ. This means that the

new multiplication is the only associative first order deformation on k[x]/(x2)

up to equivalence.

Now consider k[Z/2Z]. It has been shown H2(k[Z/2Z]) is trivial. Thus any

deformation will be isomorphic to the original multiplication. For example,

consider the deformation

1 ∗ 1 = 1

1 ∗ x = x

x ∗ 1 = x

x ∗ x = 1 + t
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Now define a k[t] linear map φ with values φ(1) = 1 and φ(x) = x + 2−1xt.

This φ transforms the trivial multiplication into ∗. Since the algebra only

has two generators, checking is simple:

φ(1 ∗ 1) = 1

φ(1)φ(1) = 1

φ(1 ∗ x) = φ(x) = x+ 2−1xt

φ(1)φ(x) = x+ 2−1xt

φ(x ∗ x) = φ(1 + t) = φ(1) + φ(1)t = 1 + t

φ(x)φ(x) = (x+ 2−1xt)(x+ 2−1xt) = 1 + t

The cohomology of k[Z/2Z] shows that for any associative deformation there

will be some linear mapping transforming the original multiplication of k[Z/2Z]

into the new multiplication.

2.5 Associative formal deformations

In some cases an associative formal deformation can be built up using the

multiplication from a first order deformation. For example define a de-

formation of A = k[x] with the new multiplication µ = µ0 + µ1t where

µ1(x
n, xm) = nxn−1mxm−1. This deformation is associative modulo t2 but
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not modulo t3. Here is a check:

µ(µ(x2, x), x) = µ(x3 + 2xt, x)

= x4 + 2x2t+ 3x2t+ 2t2

= x4 + 5x2t+ 2t2

µ(x2, µ(x, x)) = µ(x2, x2 + t)

= x4 + x2t+ 4x2t

= x4 + 5x2t

The multiplication can be made associative modulo t3 by extending µ =

µ0 + µ1t+ µ2t
2, where

µ2(x
n, xm) = (n)(n− 1)xn−2(m)(m− 1)xm−2

The previous calculation is now repeated.

µ(µ(x2, x), x) = µ(x3 + 2xt, x)

= x4 + 2x2t+ 3x2t+ 2t2

= x4 + 5x2t+ 2t2

µ(x2, µ(x, x)) = µ(x2, x2 + t)

= x4 + x2t+ 4x2t+
4t2

2

= x4 + 5x2t+ 2t2.
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The new deformation µ is not associative modulo t4. The deformation can

be extended indefinitely to give an associative formal deformation with a

multiplication defined by µ =
∑

i=0 µit
i, where µi(a, b) = DiaDib/i! and

Dxn = nxn−1 [3].

2.6 Algebraic deformations in algebraic ge-

ometry

The theory of algebraic deformations fits nicely into algebraic geometry. For

a motivating example, look at a deformation of the algebraic curve y2 = x3.

We may instead examine its coordinate ring, say k[x, y]/(y2 − x3), but with

a deformed multiplication

xn ∗ xm = xn+m

y ∗ xn = yxn

xn ∗ y = yxn

y ∗ y = x3 + tx2.

This deformation is the algebra k[t][x, y]/(y2 − x3 − tx2), which is the co-

ordinate ring for a family of curves parameterized by t. Geometrically the

curves looked deformed, as seen in the figure bellow. The original curve is

also retrieved when t is localized at 0.
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k[t][x, y]/(y2 − x3 − tx2)

Curves for some values of t

Likewise some other families of plane curves can be thought of as deforma-

tions of the double line k[x, y]/(y2). For simplicity only y ∗ y is given in the

next figure.
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y ∗ y = 0 y ∗ y = t

y ∗ y = xt y ∗ y = x2t

y ∗ y = x3t y ∗ y = (x3 + x2)t
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2.7 Kodaira Spencer map

A modern interest in this area comes from studying the Kodaira Spencer

map. Suppose we have a ring B = k[t1, . . . , tn] and some algebra A over that

with relations depending on ti, so

A = B[x1, . . . , xm]/(f1, . . . , fl)

where the fi depend on ti and xi, and each ti commutes with everything in

the algebra. Now we pick a maximal ideal m ∈ Spec(B). We take k to be

algebraically closed. By Hilbert’s Nullstellensatz m corresponds to a point

(t1 − a1, . . . , tn − an) where ai ∈ k. Let Aa be the algebra A specialized at

ti = ai. In other words

Aa = A/mA.

The Zariski tangent space to Spec(B) at the point a corresponding to m is

defined to be (m/m2)∗ where ∗ is the k-linear dual. The Kodaira Spencer map

takes a from the Zariski tangent space to the second Hochschild Cohomology

module of Aa.

(m/m2)∗ → H2(Aa, Aa).

This says a tangent vector in the Zariski tangent space gives a first order

deformation of A. The map gives insights into the moduli space Md which

parameterize all algebras of dimension d up to isomorphism. If the mapping

is surjective then the family of algebras parameterized by Spec(B) maps
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onto an open dense subset of an irreducible component of Md. Conversely

if it is not surjective, then there are algebras of dimension d which are not

parameterized.
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Conclusion

The theory of algebraic deformations is a relatively new area of study. Con-

tinuing the development this field can lead to new tools in algebraic ge-

ometry and even string theory. The Kodaira Spencer map gives a way to

study the moduli spaceMd aiding in the classification of algebraic varieties.

The Deligne conjecture gives a connection to string theory. The relation to

Hochschild cohomology is enticing as computers can compute the dimension

of modules quickly. In closing the theory of algebraic deformations is a rich

subject that can potentially solve unanswered questions by computation.
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