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Abstract

In this thesis we describe a method for computing the global dimensions of endomorphism
rings of finitely generated maximal Cohen-Macaulay modules over complete local Cohen-
Macaulay rings. (Note that where rings and modules are discussed in this thesis, the
reference is to Cohen-Macaulay rings and finitely generated maximal Cohen-Macaulay
modules, unless otherwise noted). The global dimension of a ring R is defined to be the
supremum of the lengths of minimal projective resolutions of modules over R. Modules
whose endomorphism rings have finite global dimension have applications in algebraic
geometry, as every module over a singularity of finite type and dimension less than or
equal to 2 whose endomorphism ring has finite global dimension provides a different non-
commutative resolution of the singularity, as discussed in [8]. As such, it is of interest
to determine the global spectra of such singularities (the set of finite global dimensions
which endomorphism rings of MCM modules over a given ring can have), as well as
the total number of MCM modules with each global dimension over a given ring, up to
Morita-equivalence.

To perform these computations, we made use of an algorithm developed by Iyama
and Wemyss, which we have implemented in the software package Sage. We present the
results obtained from using this program, and the underlying algorithm, to compute the
global dimensions of endomorphism rings of all finitely generated MCM modules over
various curve and surface singularities. We also use the algorithm to prove a theorem
which guarantees the existence of finitely generated MCM modules over a ring whose
endomorphism rings have particular global dimensions, based on certain conditions which
the ring’s Auslander-Reiten quiver must satisfy.
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1 Background

We will begin by explaining some background material.

1.1 Cohen-Macaulay Rings and Modules

The following definitions and results are well-known. For further discussion, such sources
as [1], [3], [5], [11], and [19] may be consulted.

Definition 1.1. A commutative ring A is said to be local if it contains exactly one
maximal ideal; that is, there exists exactly one ideal I 6= A such that, if J is an ideal
such that I ⊆ J ⊆ A, then I = J or J = A.

Definition 1.2. A simple module is one which has no submodules other than the
zero module and itself.

Definition 1.3. The Jacobson radical JA of a ring A is the intersection of all
maximal left ideals of A (or equivalently, all maximal right ideals of A).

Definition 1.4. A prime ideal of a commutative ring A is a proper ideal I such that
ab ∈ I implies a ∈ I or b ∈ I.

Definition 1.5. A complete local ring is a local ring A with maximal ideal m such
that every Cauchy sequence in A has a limit in A, under the m-adic metric. (See [17,
Chapter 5] for a description of this metric). An example of a complete local ring is the
ring k[[x, y]] consisting of formal power series in x and y over a field k.

Definition 1.6. A ring A is said to be Noetherian if it satisfies the ascending chain
condition; that is, any ascending chain of ideals I1 ⊂ I2 ⊂ ... ⊂ Ik ⊂ ... eventually
terminates.

Definition 1.7. The Krull dimension (or simply dimension) of a ring is the supre-
mum of the lengths of ascending chains of prime ideals in the ring.

Definition 1.8. The dimension of a nonzero module M over a ring R is the Krull
dimension of R/ann(M), where ann(M) is the annihilator of M , the ideal consisting of
elements a in R such that am = 0 for all m in M . The dimension of the zero module is
defined to be -1.

Definition 1.9. Let A be a local, Noetherian ring, and M a finitely generated
module over A. Let a = a1, ..., an be a sequence in A. Then a is called an M -sequence
(or M -regular sequence) if:

• a1x 6= 0 for all nonzero x ∈M (that is, a1 is not a zerodivisor of M).

• ai is not a zerodivisor of M/(a1, ..., ai−1)M for all i such that 2 ≤ i ≤ n

• (a1, ..., an)M 6= M

Proposition 1.1. If x is an M -sequence, then (x1) ⊂ (x1, x2) ⊂ ... ⊂ (x1, x2, ..., xn)
is an ascending chain of ideals in A. Because A is Noetherian, any such chain must
eventually terminate, so any M -sequence can be extended to a maximal M -sequence.
The assumption that M is finitely generated guarantees that all such maximal sequences
have the same length; see [3, 7.4] for a proof. This length is called the depth of M .
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Definition 1.10. If the depth of M is equal to its dimension, then M is called a
Cohen-Macaulay module, or CM module. If the dimension ofM is equal to the dimension
of R, then M is called a maximal Cohen-Macaulay (MCM) module. A ring which is
an MCM module over itself is called a Cohen-Macaulay ring. All Cohen-Macaulay
modules discussed in this thesis should be assumed to be maximal Cohen-Macaulay
unless otherwise specified.

Definition 1.11: If there are only finitely many indecomposable MCM modules over
a ring R (up to isomorphism), then R is said to be of finite Cohen-Macaulay type. See
[13] for further discussion of finite Cohen-Macaulay type.

1.2 Morita-equivalence

The following category-theoretic concepts are described in [4, 1.5 and Chapter 7].
Definition 1.12. Let f : A → B be a morphism in a category C. f is said to be

an isomorphism if it has an inverse; that is, there exists a morphism f−1 : B → A such
that f ◦ f−1 = idB, f

−1 ◦ f = idA.
Definition 1.13. Given two functors F and G from category C to category D, a

natural transformation from F to G is a family of arrows aI : F (I)→ G(I) in D (indexed
by the objects of C), such that for any arrow f : A→ B in C, aB ◦ F (f) = G(f) ◦ aA.

Essentially, the arrows aI transform the image of F to the image of G. We can
visualize this using the following commutative diagram:

F (A)
aA //

F (f)
��

G(A)

G(f)
��

F (B)
aB // G(B)

The arrow aA of a natural transformation N is referred to as the component of N at
A.

Definition 1.14. A natural isomorphism is a natural transformation whose compo-
nents are all isomorphisms.

Definition 1.15. Two categories C and D are said to be equivalent if there exist
functors F : C → D, G : D → C such that F ◦G is naturally isomorphic to the identity
functor on D, and G ◦ F is naturally isomorphic to the identity functor on C.

Definition 1.16.The category of modules over a commutative ring R is the cate-
gory whose objects are modules over R and whose arrows are homomorphisms of those
modules. Two rings are said to be Morita-equivalent if their categories of modules are
equivalent. See [1, Chapter 6] for further discussion of Morita-equivalence.

Definition 1.17. Where M is a module over R, HomR(M,−) is a functor from the
category of modules over R to the category of modules over EndR(M). Where N is
a module over R, HomR(M,N) is the module over EndR(M) consisting of homomor-
phisms from M to N . Where α is a homomorphism from X to Y , HomR(M,α) is a
homomorphism from HomR(M,X) to HomR(M,Y ), which takes a mapping x : M → X
to α ◦ x : M → Y . For more general discussion of Hom functors, see [15, 2.2]
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1.3 Global dimensions

In this and the following section, many concepts from Auslander-Reiten theory are de-
fined; further discussion of these can be found in [2], [3, Chapter 7], [10], and [20].

Definition 1.18. An exact sequence is a sequence of modules and homomorphisms

...
φn−1−−−→ Mn−1 → Mn

φn−→ Mn+1
φn+1−−−→ ... such that Im(φi) = Ker(φi+1) for all homo-

morphisms φi in the sequence. A short exact sequence is an exact sequence of the form
0→ A→ B → C → 0.

We will now prove a well-known result concerning exact sequences:

Proposition 1.2. Given two exact sequences 0 → A
α−→ B

β−→ C → 0 and 0 →

C ⊕D

(
γ δ

)
−−−−−−−→ E

ε−→ F → 0, we can splice the two sequences together to obtain:

0→ A
α−→ B ⊕D

(
γ ◦ β δ

)
−−−−−−−−−→ E

ε−→ F → 0

Proof : To show that 0→ A
α−→ B⊕D

(
γ ◦ β δ

)
−−−−−−−−−→ D

ε−→ E → 0 is indeed an exact
sequence, it suffices to show that Im(α) = Ker(

(
γ ◦ β δ

)
) and Im(

(
γ ◦ β δ

)
) =

Ker(ε). First, note that Ker(α) = Im(0) = 0, so α is injective (as are γ and δ).
Similarly, note that Im(β) = Ker(0) = C, so β is surjective (as is ε).

Thus γ(x) = 0 if and only if x = 0, and so (γ ◦ β)(x) = 0 if and only if β(x) = 0, i.e.
x ∈ Ker(β). By exactness, Ker(β) = Im(α). Thus we see that

Ker(
(
γ ◦ β δ

)
) = Ker(γ ◦ β)⊕Ker(δ) = Ker(γ ◦ β)⊕ 0 = Ker(β) = Im(α)

Similarly, note that by the surjectivity of β,

Im(
(
γ ◦ β δ

)
) = Im(

(
γ δ

)
) = Ker(ε)

Thus the sequence is exact.
In a similar fashion, we can splice together exact sequences of any length, provided

there are zeros at both ends.
Definition 1.19. Given a module B, a split monomorphism is an injective homo-

morphism (i.e., a monomorphism) f : A→ B for which there exists r : B → A such that
r ◦ f = IdA.

Definition 1.20. Given a module B, a split epimorphism is a surjective homomor-
phism (i.e., an epimorphism) g : A → B for which there exists s : B → A such that g
◦s = IdB.

Definition 1.21. If every surjective homomorphism g : X → B is split, where X is
any module, then B is said to be a projective module.

Definition 1.22. A submodule S of a module M is said to be superfluous if, for
any submodule X of M , X + S = M implies X = M .

Definition 1.23. Given a module M , a homomorphism f : P → M is said to be a
projective cover of M if P is projective and the kernel of f is a superfluous submodule
of P .
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Definition 1.24. A semi-perfect ring is a ring R such that every finitely generated
module over R has a projective cover.

Definition 1.25. A projective resolution of a module M is an exact sequence

...→ Pn → ...→ P1 → P0 →M → 0

where all the Pi terms are projective.
Definition 1.26. The projective dimension of a module is the minimum length of

a projective resolution of that module. The global dimension of a ring is the maximum
projective dimension of all modules over that ring.

Proposition 1.3. If two rings are Morita-equivalent, then their global dimensions
are equal. See [16, 3.5] for a proof.

1.4 Almost-split sequences and Auslander-Reiten quivers

Definition 1.27. A homomorphism of modules f : A → B is called right almost split
if the following conditions are satisfied:

• f is not a split epimorphism

• for any homomorphism h from some module X into B which is not a split epi-
morphsim, there is a homomorphism k : X → A such that f ◦ k = h

Dually, such a homomorphism is called left almost split if the following conditions
are satisfied:

• f is not a split monomorphism

• For any homomorphsim h from A into some module X which is not a split
monomorphism, there is a homomorphism k : X → B such that k ◦ f = h.

Definition 1.28. A short exact sequence 0→ A
f−→ B

g−→ C → 0 is called an almost-
split sequence or Auslander-Reiten (AR) sequence if f is left almost split and g is right
almost split.

Proposition 1.4. For every indecomposable Cohen-Macaulay module C over a
ring R, there exists an AR sequence 0 → A → B → C → 0, which is unique up to
isomorphism. (For a proof, see [20, Chapter 2]). We will call this the Auslander-Reiten
sequence of C. If a Cohen-Macaulay module M is not indecomposable, we can obtain the
AR sequence of M by taking the direct sum of the AR sequences of its indecomposable
direct summands.

Definition 1.29. An irreducible homomorphsim is a homomorphism of modules
f : A→ B which satisfies the following properties:

• f is not a split monomorphism or epimorphism.

• If there exist homomorphisms α : A → X,β : X → B such that β ◦ α = f , then
either α is a split monomorphism or β is a split epimorphism.
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Definition 1.30. A right-minimal homomorphism is a homomorphism f such that,
if there is a homomorphism α such that f ◦ α = f , then α is an isomorphism.

Definition 1.31. A right τ -sequence for a module X over a ring R is a sequence

τX
α−→ θX

β−→ X such that:

• α and β are right minimal.

• For any moduleM over R, the following sequences are exact, where A = EndR(M):

HomR(M, τX)
HomR(M,α)−−−−−−−−→ HomR(M, θX)

HomR(M,β)−−−−−−−−→ JA ∩ HomR(M,X)→ 0

HomR(θX,M)
HomR(M,α)−−−−−−−−→ JA ∩ HomR(τX,M)→ 0

Proposition 1.5. The Auslander-Reiten sequence of an indecomposable CM module
over an isolated singularity of dimension less than or equal to 2 is a τ -sequence. This
result can be found in [10, Example 3.3].

Definition 1.31. The Auslander-Reiten Quiver of a ring R is a directed graph
whose vertices correspond to isomorphism classes of finitely generated indecomposable
Cohen-Macaulay modules over R, with an arrow from M to N for each irreducible
homomorphism from M to N . This quiver has a partially defined relation τ , known as
the Auslander-Reiten translate, which has the following properties:

• τ is an automorphism on the non-projective modules of the quiver.

• For each arrow M → N there is an arrow τN →M .

• The sequence τM → θM →M , where θM designates the direct sum of all prede-
cessors of M , is a right τ -sequence.

• If R is an isolated singularity of dimension less than or equal to 2, the sequence
0→ τM → θM →M → 0 is the AR sequence of M .
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2 The Ladder Method

We will now discuss the theory involved in computing global dimensions via the method
of ladders, covered in more detail in [10] and [12].

2.1 Projective resolutions of simple modules

The material in this section can be found in [10, section 2], in which much of it is phrased
in more general category-theoretic terms.

Proposition 2.1. For a finitely generated semi-perfect algebra A over a Noetherian
ring, the global dimension of A is the supremum of projective dimensions of simple
modules over A; see [8, Section 5].

Proposition 2.2. If R is a complete local ring and M is a module over R, then
EndR(M) is semi-perfect, thus the condition above is satisfied.

Proposition 2.3. For an endomorphism ring A = EndR(M), the simple modules
are of the form Si = Pi/(JA ∩ Pi), where the Pi are projective and JA is the Jacobson
radical of A, and there is one such simple for each projective module. Furthermore,
the indecomposable projective modules over A are all of the form Pi = HomR(M,Mi),
where the Mi are the indecomposable summands of M .

Proposition 2.4. EndR(
⊕
Mai
i ), where ai ≥ 1, is Morita-equivalent to EndR(

⊕
Mi),

and so their global dimensions are equal. Thus we need only consider the case where
the multiplicity of each indecomposable summand of M is 1.

Thus, by finding a projective resolution of each simple module over A, we can com-
pute their projective dimensions, and therefore, the global dimension of A.

Definition 2.1. The category add (M) is the category of finite direct sums of inde-
composable summands of M .

Definition 2.2. If B is a module over R, then a right add (M)-approximation of
B is a homomorphism f : Y → B, where Y ∈ add (M), such that any homomorphism
g : X → B, where X ∈ add (M), factors through f . In other words, f is a right add (M)-
approximation of B if, for any X ∈ add (M), g : X → B, there exists h : X → Y such
that the following diagram commutes:

Y
f // B

X

g
>>

h

``

We can write this approximation in the form of a short exact sequence, as follows:

0→ K → Y
f−→ B

where K is the kernel of f . This sequence has the property that

0→ HomR(M,K)→ HomR(M,Y )
HomR(M,f)−−−−−−−−→ HomR(M,B)→ 0
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is exact. For reasons of brevity, we will often refer to right add (M)-approximations as
simply add (M)-approximations.

Definition 2.3. If B is a module in add (M), then a right add (M)-almost split
map is a homomorphism f : Y → B with kernel K, where Y ∈ add (M), such that the
sequence

0→ HomR(M,K)→ HomR(M,Y )
HomR(M,f)−−−−−−−−→ JA ∩ HomR(M,Mi)→ 0

where A = EndR(M), is exact. As in the case of right add (M)-approximations, we often

represent these maps by the exact sequence 0→ K → Y
f−→ B (a right add (M)-almost

split sequence).
Consider a right add (M)-almost split map f0 for the indecomposable summand Mi:

0→ X →
⊕

Ma
f0−→Mi

By the definition of a right add (M)-almost split map, the sequence

0→ HomR(M,X)→
⊕

HomR(M,Ma)
HomR(M,f0)−−−−−−−−→ JA ∩ HomR(M,Mi)→ 0

is exact. Since Si = HomR(M,Mi)/(JA ∩ HomR(M,Mi)), the sequence

0→ JA ∩ HomR(M,Mi)→ HomR(M,Mi)→ Si → 0

is exact as well. Splicing these two sequences together yields the beginning of a minimal
projective resolution of Si:

0→ HomR(M,X)→
⊕

HomR(M,Ma)
HomR(M,f0)−−−−−−−−→ HomR(M,Mi)→ Si → 0

Now consider a right add (M)-approximation f1 of the kernel X:

0→ Y →
⊕

Mb
f1−→ X

Applying the Hom functor to this sequence gives:

0→ HomR(M,Y )→
⊕

HomR(M,Mb)
f1−→ HomR(M,X)→ 0

This sequence can be spliced together with the one above to continue constructing the
minimal projective resolution of Si:

0→ HomR(M,Y )→
⊕

HomR(M,Mb)→
⊕

HomR(M,Ma)→ HomR(M,Mi)→ Si → 0

By repeating this process of approximating the kernels of sequences, applying the
Hom functor, and then splicing the sequences together, we can obtain a minimal pro-
jective resolution of Si, which may be infinite:

...→
⊕

HomR(M,Mb)→
⊕

HomR(M,Ma)→ HomR(M,Mi)→ Si → 0
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For convenience, we often write this sequence as a “pre-resolution”, without the Hom
functor applied:

...→
⊕

Mb →
⊕

Ma →Mi

So by finding add (M)-almost split maps for the indecomposable summands of M and
add (M)-approximations for the other finitely generated indecomposable MCM modules
over R, we can compute the global dimension of EndR(M).

2.2 Ladders

To construct these resolutions using the method of ladders, as explained by Iyama and
Wemyss [12], we must define for each indecomposable module a right τ -sequence. For
modules M for which τM is defined, the AR sequence can be used. For the case where
R is an isolated singularity of dimension less than or equal to 2, R is an indecomposable
projective module over itself. Thus it has no AR sequence, because any surjective ho-
momorphism into R is split, thus there can be none which is almost split. However, we
are able to define τR in the following ways:

• When R is a simple curve singularity, we have the fundamental sequence 0→ 0→
m → R → k → 0, from which we can derive the τ -sequence 0 → m → R, so that
τR = 0. We thus add a zero module to the AR quiver to serve as τR.

• When R is an isolated surface singularity, there exists a finitely generated inde-
composable MCM module ωR such that ωR → θR→ R is a right τ -sequence; thus
we can define τR = ωR without adding extra modules to the quiver.

To compute the global dimension of EndR(M), where M =
⊕
Mi, we must com-

pute right add (M)-almost split maps for all indecomposable summands Mi, and right
add (M)-approximations of the kernels of the sequences we obtain. To compute the right
add (M)-almost split sequence for a summand Mi, we will construct a right ladder for
Mi, a diagram:

...
g3 // Z3

g2 //

a3
��

Z2
g1 //

a2
��

Z1
g0 //

a1
��

Z0 = 0

a0
��

...
f3 // Y3

f2 // Y2
f1 // Y1

f0 // Y0 = Mi

such that each square commutes, and for each m there exist modules Um+1 and mor-
phisms hm such that

Zm+1 ⊕ Um+1

 −gm hm
am+1 0


−−−−−−−−−−−−→ Zm ⊕ Ym+1

(
am fm

)
−−−−−−−−−→ Ym

is a right τ -sequence.
A ladder is said to terminate if there is some n such that Yn = 0.
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To construct the ladder, we begin with the τ -sequence of Mi: τMi → θMi → Mi.
Let Z1 = τMi, Y1 = θMi. Now we construct the rest of the ladder according to the
following recursion formula: decompose Ym into Ym = Am ⊕Bm, where Am is a sum of
modules in add (M) and Bm is a sum of modules not in add (M). Decompose Zm into
Zm = Cm⊕Um, where Cm is a direct summand of θBm and Um has no indecomposable
direct summand in common with θBm. Now let Zm+1 = τBm, and choose Ym+1 such
that Ym+1⊕Cm = θBm. That is, we obtain Ym+1 from θBm by removing all of its direct
summands which it has in common with Cm.

Eventually we obtain some Yn such that Yn = An, that is, Bn = 0. Therefore, θBn
will also be zero, and so Yn = 0, thus the ladder terminates. We can then obtain the
exact sequence:

0→ Zn ⊕
n⊕
i=1

Ui → Yn ⊕
n⊕
i=1

Bi →Mi

which is a right add (M)-almost split sequence. The method can also be applied to
modules not in add (M), in which case it will produce an add (M)-approximation rather
than a right τ -sequence. The sequences thus produced can then be spliced together to
obtain an add (M)-resolution of Mi, which then gives a projective resolution of Si, as
outlined in the previous section.

For further discussion of this method, and a proof that the sequences it produces
have the desired properties, see [10, Section 3].
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3 The Iyama-Wemyss Algorithm

In order to compute these approximations efficiently using a computer, we have an
algorithm, explained by Iyama and Wemyss in [12, Section 4], which uses a numbering
scheme on the vertices of the universal cover of a ring’s AR quiver to compute a ladder
in add (M) for a finitely generated indecomposable CM module over R. This algorithm
reduces the problem to one of combinatorics and graph theory.

3.1 The universal cover

First we must construct the universal cover of the AR quiver of R. Note that this
does not refer to the universal cover in the usual graph-theoretic sense, but rather to
the universal cover of the AR quiver as a translation quiver - a graph which preserves
the AR translate τ , and covers every cover of the quiver which preserves this relation.
In practice, we construct only a finite part of the universal cover when executing the
algorithm. We construct it according to the following process:

• Begin with one starting vertex, which we may call v, identified with some module
A in the AR quiver. We may group the vertices of the graph into levels based on
their distance from v; v itself is at level 0.

• Add a vertex w, with an arrow from w to v, for each predecessor of A in the AR
quiver. These vertices are at level 1.

• For each vertex w at level a identified with module M , add a vertex x at level
a+ 1, with an arrow from x to w, corresponding to each predecessor of M . If the
modules corresponding to two or more vertices at the same level have a predecessor
in common, only one vertex corresponding to this predecessor is added, with arrows
to the vertices corresponding to all its successors (this is where this construction
differs from the construction of a purely graph-theoretic universal cover). This
process may be continued until the graph is as large as is necessary.

In this way, we construct a segment of the universal cover containing only vertices
from which there is a path to our starting vertex. To construct the full universal cover,
we would add vertices corresponding to successors of those already added, as well as
their predecessors; however, this is not necessary for the purpose of this algorithm. The
AR translate is defined as follows: where vertex w, at level a, is identified with module
M , we define τw to be the vertex at level a+ 2 identified with τM .

Example 3.1. For example, here is the AR quiver of the ring R = k[[x, y]]/(x3+y4),
where k is an algebraically closed field of characteristic zero. Here, and elsewhere, the
AR translate is indicated by a dashed line. This is a simple curve singularity, known as
the E6 singularity. (The diagram below is adapted from [20, Chapter 9]).
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(Note that a zero module is included, to serve as τR, so that τ will be defined for every
module in the quiver). A finite part of the universal cover of this quiver, constructed
with B as the starting vertex, is:

N1

B

X M2 X

A B

M1 N1

0

3.2 Vertex numbering

To compute the global dimension of EndR(M), where M =
⊕
Mi, we must find pre-

resolutions of the indecomposable summands Mi. We will do this by numbering the
vertices of the universal cover according to the following scheme.

To compute a right add (M)-almost split sequence for Mi, we first select a starting
vertex, v, which is identified with Mi (in the implementation of this algorithm in Sage,
this is the same starting vertex which is used to construct the finite part of the graph
that we work with, but there is no theoretical reason why this must be so). We assign to
this vertex the number 1, and to all vertices from which there is no path to v, we assign
the number 0 (note that this means all vertices not in the part of the graph which we
explicitly construct will be numbered 0). We then circle all vertices which are identified
with summands of M , or with the zero module. Next, we assign numbers to the rest of
the vertices in the graph, working backwards from v, as follows: the number of vertex
w is equal to the sum of the numbers of all successors of w, minus the number of τ−1w.
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For the purpose of this numbering, all vertices which are circled, as well as those with
negative numbers, are treated as if their numbers were zero. When we reach a point
where all vertices at two consecutive levels of the graph are numbered zero, or satisfy
one of the conditions to have their numbers treated as zero, we stop numbering vertices.
The reason for this is as follows:

Suppose that all vertices at levels a and a + 1 are either circled, or have numbers
less than or equal to zero, and consider a vertex w at level a + 2. By the construction
of the graph and the definition of τ , all successors of w are at level a + 1, and τ−1w is
at level a. Therefore, all of these vertices will have their numbers treated as zero, and
so the number assigned to w will be 0 − 0 = 0. Thus all vertices at level a + 2 will be
numbered 0; by induction, we can see that the same will be true for all levels greater
than a + 2. Thus we know what numbers will be assigned to all vertices in the graph,
so we can terminate the numbering process.

Now we must use the numbered graph to construct a right add (M)-almost split
sequence for Mi. The sequence constructed is 0→ K0 → P0 →Mi, where the terms K0

and P0 are determined as follows:

• K0 is the direct sum of the modules corresponding to all negative-numbered ver-
tices, with multiplicities given by the vertices’ numbers. For instance, if there are
two vertices numbered -1 identified with module A and one vertex numbered -2
identified with module B, then K0 = A⊕A⊕B2 = A2 ⊕B2.

• P0 is the direct sum of the modules corresponding to circled vertices (i.e., either
indecomposable summands of M or the zero module) with positive numbers, with
multiplicities again given by the numbers of the vertices. For instance, if there
are two vertices numbered 1 identified with module A and one vertex numbered 2
identified with module B, where both A and B are circled, then K0 = A⊕A⊕B2 =
A2 ⊕B2.

Of course, we can apply this algorithm in the same way to construct an add (M)-
approximation of a finitely generated indecomposable MCM module which is not a sum-
mand of M , since it is equivalent to the ladder method described in the previous section.

3.3 Example

Example 3.2. Let R be the A5 singularity: R = k[[x, y]]/(x6 + y2). The AR quiver of
this ring, with the zero module included, is shown below. (Once again, the diagram is
adapted from [20, Chapter 9]).
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We will calculate the global dimension of M = M1 ⊕ N−. A finite portion of the
universal cover of the AR quiver of R is shown below. Note that arrowheads have
been omitted for clarity, but arrows are understood to run from left to right, and the
AR translate of a vertex w can be seen directly across from w, two stages to the left.
The initial vertex has been boxed, and other vertices identified with modules in the
set {M1, N−, 0}, the indecomposable summands of M and the zero module, have been
circled.

N− N+

M2 N+ M2 N−

0 M1 R M1

R 0

We will replace the vertex labels with bullets:

• •

• • • •

• • • •

• •

We will begin by computing the right add (M)-almost split sequence for N−. We
begin numbering the vertices, according to the algorithm described in the previous sub-
section. First, the starting vertex, identified with N−, is numbered 1, and all vertices
from which there is no path to the initial vertex (including those outside the portion of
the graph shown below) are numbered 0:
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• 0

• • • 1

• • 0 0

• 0

Now we number the predecessor of the initial vertex. As its only successor is num-
bered 1, and its inverse AR translate is numbered 0, it is numbered 1 - 0 = 1:

• 0

• • 1 1

• • 0 0

• 0

Next we number the predecessors of this predecessor, according to the same formula:

1 0

• 0 1 1

• 1 0 0

• 0

Now we number the vertices at the next level of the graph, treating the two circled
vertices as if they were numbered zero:
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1 0

−1 0 1 1

0 1 0 0

0 0

Now we have two consecutive levels of the graph at which every vertex is either
numbered zero, circled, or has a negative number; thus we can now read off the right
add (M)-almost split sequence from this graph. We see that the vertex numbered -1 is
identified with module M2, while the two circled vertices numbered 1 are identified with
modules N− and M1. So the right add (M)-almost split sequence is:

0→M2 → N− ⊕M1 → N−

Now we must approximate M2, the kernel of the approximation. Using the same
method, we obtain:

0→ N− → N− ⊕M1 →M2

Splicing the two sequences together, we get:

0→ N− → N− ⊕M1 → N− ⊕M1 → N−

By the same method, we obtain the following add (M)-resolution for M1:

0→ N− → N− ⊕M1 →M1

So we can see, by examining the lengths of the sequences, that the global dimension
of EndR(M) is 3, as this will be length of the longest projective resolution of a simple
module obtained from the sequences above.
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4 Implementation of the algorithm in Sage

Note that the description in this section also appears in [10, 4.3.1].

4.1 Computing approximations

We will now give a brief description of the Sage program which we have written, which
uses this algorithm to compute global dimensions of endomorphism rings. First we will
describe the routine used to compute a ladder for an indecomposable module. The
program takes as input:

• The graph of the AR quiver, including a zero module which is treated as the AR
translate of the ring R as a module over itself. When the “number” of a module
is referred to, the reference is to the number of the corresponding vertex in this
graph.

• An adjacency matrix identifying the AR translate of each module.

• The number of the module whose right add (M)-approximation or almost split
sequence is to be computed (we will refer to either of these simply as the module’s
“sequence” for brevity).

• A set containing the numbers of the indecomposable summands of M , called S.

We define the following variables:

• Various lists to keep track of data concerning the vertices of the graph, such as
their associated numbers and the level of the graph at which they are found.

• A number to keep track of the current level of the graph (the level whose vertices
are being numbered).

• A vector representing the kernel of the module’s sequence, with the multiplicity in
the kernel of the module numbered n in the nth position (initially these are all set
to zero).

• A vector representing the middle term of the module’s sequence, similar to the
above.

The program associates numbers to the vertices of the universal cover by the following
process. To start with, a graph UC is constructed, containing only the initial vertex
v, which is numbered 1 (i.e., the number in the first position of the appropriate list is
set to 1). A new level is then added to the graph, consisting of the predecessors of v,
according to the construction described in the previous section.

Whenever a new level is added, it becomes the “current” level, and all vertices at that
level are numbered. The number of a vertex w is calculated according to the formula in
the previous section, by adding up the numbers of the successors of w in the universal
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cover, and subtracting the number of τ−1w. If any of these vertices are not in the finite
portion of the graph which is constructed by the program, their numbers are assumed
to be zero, since the only vertices that can have nonzero numbers are those from which
there exists a path to the initial vertex, and these are also the only vertices that can be
included in the finite graph. For the purpose of this computation, vertices corresponding
to modules in the set S or the zero module (i.e., vertices which would be circled when
carrying out the algorithm by hand) and vertices whose numbers are negative are treated
as if their numbers were zero.

After a vertex is assigned the number n, we first check to see if n is negative; if so,
the multiplicity of the corresponding module in the kernel is increased by −n (i.e., the
entry in the corresponding position of the vector representing the kernel is increased by
−n). If n is non-negative, we then check to see if w corresponds to a module in S; if so,
the multiplicity of the corresponding module in the middle term is increased by n.

After all vertices at the current level are numbered, the program checks whether all
vertices at both the current and previous levels are either numbered zero, or satisfy the
criteria to have their numbers treated as zero when numbering other vertices. If this is
the case, the algorithm is finished (since any further vertices would always be numbered
zero) and the program returns a list consisting of the vector representing the kernel,
followed by the vector representing the middle term. If not, a new level is added to the
graph, consisting of all predecessors of vertices at the current level. This new level then
becomes the current level, and we begin the numbering process again.

4.2 Computing global dimensions

After a sequence is computed, the kernel is examined. The algorithm may terminate
under two circumstances:

• If all of its summands are in S, then the pre-resolution of Mi is complete, and a
list of vectors representing all terms in the pre-resolution is returned.

• If the set of its summands not in S is identical to that of the kernel of a previously-
computed sequence (up to multiplicity), then it is clear that the resolution is
infinite, since computing further approximations will eventually return the same
kernel again, leading to an infinite loop. In this case, a null value is returned.

Otherwise, the following procedure is applied: each summand of the kernel which
is not in S is removed from the kernel (i.e. has its multiplicity changed to zero) and
approximated. These approximations are then added together, with the same multi-
plicities as the corresponding modules had in the kernel, to produce an approximation
for the part of the kernel which is not in S (i.e., the vectors representing the kernels of
the individual approximations are added, and likewise for the middle terms). We then
splice this approximation sequence together with the partially-complete pre-resolution
which was obtained by splicing together all the previous approximations. This is done
by appending its kernel to the front of the list representing the partially complete pre-
resolution, and adding its middle term to the kernel of that sequence (which has had
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all its modules not in S removed). This increases the length of the list representing
the partially complete pre-resolution by one. We then examine the kernel of this new
approximation, and repeat the procedure until one of the two stopping conditions listed
above is satisfied.

To compute the global dimension of the endomorphism ring of a module, we simply
compute pre-resolutions for each of the module’s summands, with S being the set of its
summands. The global dimension of the endomorphism ring is equal to the length of
the longest such sequence (which may be infinite). By applying this procedure to all
modules over a ring whose indecomposable summands have multiplicity 1 (i.e., letting
S run through all subsets of modules in the ring’s AR quiver), we can obtain the ring’s
global spectrum.
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5 Results for simple curve singularities

In [20, Chapters 5 and 9], Yoshino describes the following types of simple curve singu-
larities:

• An : xn+1 + y2 = 0, n ≥ 1

• Dn : x2y + yn−1 = 0, n ≥ 4

• E6 : x4 + y3 = 0

• E7 : x3y + y3 = 0

• E8 : x5 + y3 = 0

We applied the implementation of the Iyama-Wemyss algorithm described above to
rings of the form R = k[[x, y]]/(p), where k is an algebraically closed field and p is a
polynomial defining one of the singularities above. The AR quivers for these rings can
be found in [20, Chapters 5 and 9]. Our goal was to determine the set of finite global
dimensions which MCM modules over each ring can have; that is, we wished to determine
each ring’s global spectrum. By computing the global dimensions of endomorphism
rings of all finitely generated indecomposable MCM modules (up to multiplicities of
indecomposable summands) over the An, En, and Dn, n ≤ 13 singularities, we obtained
the following global spectra:

• An, n even: {1, 2}

• An, n odd: {1, 2, 3} (This and the previous result were previously computed using
other methods, in [7].)

• E6, D4, D5 : {1, 2, 3, 4}

• Dn, 6 ≤ n ≤ 13 : {1, 2, 3, 4, 5}

• E7, E8 : {1, 2, 3, 4, 5, 6}

The exact numbers of modules with endomorphism rings of each global dimension
over each ring we examined are shown in the following table, taken from [10, 4.3.1]:
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Singularity # of subsets with GLDIM Finite GLDIM Infinite GLDIM Total

1 2 3 4 5 6
E6 1 13 34 4 0 0 52 75 27 − 1
E7 3 80 7, 638 6, 933 486 8 15, 148 17, 619 215 − 1
E8 1 94 24, 614 26, 479 2, 500 48 53, 736 77, 335 217 − 1

Dn, n even
D4 7 28 207 90 0 0 332 179 29 − 1
D6 7 73 2, 416 1, 713 66 0 4, 275 3, 916 213 − 1
D8 7 146 25, 601 26, 743 1, 458 0 53, 955 77, 116 217 − 1
D10 7 253 265, 602 389, 942 23, 422 0 679, 226 1, 417, 925 221 − 1
D12 7 400 2, 745, 634 5, 449, 152 353, 644 0 8, 548, 837 25, 005, 594 225 − 1

Dn, n odd
D5 3 20 95 26 0 0 144 111 28 − 1
D7 3 58 1, 164 555 16 0 1, 796 2, 299 212 − 1
D9 3 122 12, 541 9, 527 382 0 22, 575 42, 960 216 − 1
D11 3 218 130, 672 146, 418 6, 778 0 284, 089 764, 486 220 − 1
D13 3 352 1, 352, 109 2, 113, 324 109, 690 0 3, 575, 478 13, 201, 737 224 − 1
A2k+1 3 k + 1 k2 + 3k + 2 0 0 0 k2 + 4k + 6 2k+3 − 1
A2k 1 k 0 0 0 0 k + 1 2k+1 − 1

Based on these results, we have conjectured that the global spectrum of Dn is
{1, 2, 3, 4, 5} for all n ≥ 6; however, this has not been proven.
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6 Results for isolated surface singularities

The following background information can be found in [20, Chapter 10].
Theorem 6.1. Let G ⊆ GL(V ) be a finite matrix group and ρ a representation of G.

The McKay graph McK(G, ρ) is a directed graph whose vertices correspond to the inde-
composable representations of G, with n arrows from A to B whenever Hom kG(B, ρ⊗A),
the set of homomorphisms from B to ρ⊗A is an n-dimensional vector space over k, the
underlying field of the vector space V .

Definition 6.2. A pseudoreflection is an element of GL(V ), where V is an n-
dimensional vector space, which fixes a subset of V of dimension n− 1.

Theorem 6.2. If the group G contains no pseudoreflections, then McK(G, ρ), where
ρ is the representation of G given by its inclusion in GL(V ), is isomorphic to the AR
quiver of k[V ]G, the invariant ring of G over a field of characteristic zero. The AR
translate is given by: τN = N ⊗ Det, where Det is the determinant representation of
G, and is defined for all modules in the AR quiver (as described in section 2.2). In these
cases, these invariant rings correspond to isolated surface singularities.

We used a program in the GAP software package to compute the McKay graphs for
four finite matrix groups, and thus obtain the AR quivers for their invariant rings and
the corresponding curve singularities. The singularities in question, using the notation
of Riemenschneider (see [18]), are given below, along with the global spectra obtained:

Singularity Generators of matirx group Generators of invariant ring Global spectrum

C8,5

[
ζ8 0
0 −ζ8

]
x8, x3y, xy3, y8 {2, 3, 4, 5}

C16,9

[
ζ16 0
0 −ζ16

]
x16, x7y, x5y3, x3y5, xy7, y16 {2, 3, 4, 5, 6, 7, 8, 9}

D5,3

[
ζ23 0
0 ζ3

]
,

[
0 ζ8
ζ8 0

]
x4y4, x12 − y12, x7y + xy7, x9y3 − x3y9 {2, 3, 4, 5}

D7,5

[
ζ5 0
0 ζ−1

5

]
,

[
0 ζ8
ζ8 0

]
x4y4, x20 − y20, x11y − xy11, x13y3 + x3y13 {2, 3, 4, 5}

More detailed results are found in the table below, taken from [10, 4.4]:

Singularity # of subsets with gl. dim Finite (total) Infinite Total

1 2 3 4 5 6 7 8 9
C8,5 0 1 72 8 8 0 0 0 0 89 166 28 − 1
C16,9 0 1 10,488 23,032 10,144 2,304 336 16 16 46,337 19,198 216 − 1
D5,3 0 1 732 340 280 0 0 0 0 1,353 2,742 212 − 1
D7,5 0 1 7,568 5,968 3,548 0 0 0 0 17,085 48,450 216 − 1
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7 Orbit theorems

7.1 Zero-predecessor case

Theorem 7.1. Let R be a complete local Cohen-Macaulay ring of formal power se-
ries over an isolated singularity of dimension less than or equal to 2 and finite Cohen-
Macaulay type (i.e., a ring of the kind studied in the previous sections) and let Q be its
AR quiver. Suppose there is an orbit J of the AR translate τ having cardinality n, such
that no module in J has a predecessor in J ; then there exists a finitely generated MCM
module over R having global dimension k for all 2 ≤ k ≤ n+ 1.

Proof : The method used in this proof is adapted from that used by Dlab and Ringel
in [9, Proposition 2]. Let C be the direct sum of all modules in Q which are not in J ,
and let N be any module in J . Let M = C ⊕ N ; so all modules not in J , and N , are
summands of M . We will show that the global dimension of EndR(M) is n+ 1.

First, we will use the Iyama-Wemyss algorithm to compute the pre-resolution of N .
Following the usual numbering scheme, N and its predecessors in the universal cover of
Q will all be numbered 1. By assumption, all predecessors of N are outside the orbit J ,
so they will all be summands of M , and therefore circled. Thus they will be counted as
zero in future numbering computations. So τN will be numbered 0− 1 = −1, while any
other vertices at its level will be numbered 0− 0 = 0.

1

−1 1

1
Let Pi designate the direct sum of all predecessors of τ iN . By the result above, we

see that the first sequence obtained is the AR sequence of N :

0→ τN → P0 → N → 0

Now we must approximate τN (assuming τN 6= N). Again, by assumption, all of its
predecessors will be outside J , and so we obtain its AR sequence as an approximation:

0→ τ2N → P1 → τN → 0

This pattern continues until we obtain the sequence:

0→ τnN → Pn−1 → τn−1N → 0

Since τnN = N , the kernel of this sequence is an indecomposable summand of M , and
so we have obtained our final approximation. Splicing all these approximations together,
we get the pre-resolution:

0→ N → Pn−1 → ...→ P1 → P0 → N → 0
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We can see that the length of the projective resolution of a simple module which this
will provide is n+ 1.

Now consider the add (M)-almost split sequence for some module A which is not in
J :

0→ K → Q→ A

For simplicity, assume that K is indecomposable; if not, we can simply apply the follow-
ing argument to each of its indecomposable summands. First, suppose that K = N , or
that K is not in J . Then K is a summand of M , so the sequence above, with length 2,
is the pre-resolution of A.

Alternatively, suppose that K = τaN for some 1 ≤ a ≤ n−1. Then, by the argument
used in constructing the resolution of N , the pre-resolution of A will be:

0→ N → Pn−1 → ...→ Pa → Q→ A

We can see that this sequence has length n+ 2− a ≤ n+ 1.
So the maximum length of a pre-projective resolution of an indecomposable summand

of M is n+ 1; thus the global dimension of EndR(M) is n+ 1.
We will now generalize this to prove the theorem as stated. Let 2 ≤ k ≤ n+ 1, and

let N be some module in J , as before. Now let M be the direct sum of all modules not

in the orbit J , plus
n+1−k⊕
i=0

τ iN .

As before, the add (M)-almost split sequence for any module τ iN ∈ J is its AR
sequence:

0→ τ i+1N → Pi → τ iN → 0

For 0 ≤ i ≤ n − k, τ i+1N is a summand of M , so this is the pre-resolution, of length
2. For i = n + 1 − k, we approximate τ i+1N , obtaining its AR sequence, and proceed
as before until we obtain a sequence having N as its kernel. So the pre-resolution of
τn−k+1N is:

0→ N → Pn−1 → ...→ Pn−k+1 → τn−k+1N → 0

We can see that this sequence has length k. As in the previous case, a pre-resolution of
a module not in J must have length less than or equal to k, thus the maximum length
of these pre-resolutions, and therefore the global dimension of EndR(M), is k.

7.2 One-predecessor case

7.2.1 Background

Next we will present a partial result which extends this theorem to the case where each
module in J has exactly one predecessor in J . To begin with, we will provide some
background information which is used in the proof of the theorem; see [6, 0.6] for further
discussion of these concepts.

Definition 7.1. The rank of a module M over an integral domain R is the dimension
of the tensor product k ⊗M as a vector space over k, where k is a skew field in which
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R can be embedded. If R is not an integral domain, then it must instead be embedded
in a product of skew fields, k1 × k2 × ... × kn, in which case the rank of M is a vector
(r1, ..., rn), where ri is the dimension of M ⊗ ki.

Lemma 7.1. If 0 → X → Y → Z → 0 is a short exact sequence, then rank(Y ) =
rank(X) + rank(Z); this result can be found in [6, 0.6].

Definition 7.2. The torsion submodule of a module M over a ring A is the sub-
module tM consisting of elements m in M such that am = 0 for some a in A which in
not a zerodivisor of A.

Definition 7.3. If tM = M , then M is called a torsion module.
Definition 7.4. If tM = 0, then M is called a torsion free module.
Proposition 7.1. If M is an MCM module of rank 0 over a CM ring, then M = 0.
Proof. As described in [6, 0.6], any module of rank 0 is a torsion module. As

described in [14, Chapter 4], any MCM module over a CM ring is torsion free. So M
must be both torsion and torsion free; from Definitions 7.3 and 7.4 we can see that this
implies M = 0.

7.2.2 Orbit theorem in the one-predecessor case

Theorem 7.2. As before, let R be a complete local Cohen-Macaulay ring of formal
power series over an isolated singularity of dimension less than or equal to 2 and finite
Cohen-Macaulay type, and let Q be its AR quiver. Suppose there is an orbit J of the AR
translate τ having cardinality n, such that each module in J has exactly one predecessor
in J (note that by this, we also mean there are no multiple arrows, so each module A
in J has one predecessor B in J , with a single arrow from B to A. The reason for this
restriction is that the Iyama-Wemyss algorithm as described in section 3 would need to
be modified to account for multiple arrows). Let M be the direct sum of all finitely
generated indecomposable MCM modules over R (up to isomorphism) which are not in
J , plus one module N ∈ J . Then the global dimension of M is:

• Infinite, if n = 0 mod 3.

• 2(n+2
3 ), if n = 1 mod 3.

• Infinite, if n = 2 mod 3.

Proof : Say there is an arrow from τkN to N for each N in J . Because all predeces-
sors of N have τN as a predecessor, there is an arrow from τN to τkN . By assumption,
the only predecessor in J of τkN is τ2kN , so τ2kN = τN . Thus 2k = 1 mod n. From
this we can see that n must be odd, and we can solve this equation to get k = n+1

2 . Note
that gcd(n, k) = 1.

Now we will determine the global dimension of a module M . For simplicity, we will
show only those vertices which are in J , since those outside of it will all be circled, and
thus will always be treated as zero, so they will not affect which vertex is the kernel of
any sequence.
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Let N be the one circled vertex in J . We will write τaN as a. Suppose we compute
a sequence for some a, not having N as a predecessor; then the universal cover of Q is
numbered as follows:

−1 0 1 1

a+ 3k a+ 2k a+ k a
So the sequence is 0→ a+ 3k → P → a. Note that when a module identified as P ,

Q, L, or Pi or Qi for some i appears from here on, it is simply the middle term of some
approximation, whatever that should happen to be.

If we approximate the succesor of N in J , that is −k, then we get:

−1 1 1

k 0 −k
So the sequence is 0→ k → P → − k.
Let µ = τk. We can reorganize J into a µ-orbit, and we will now write a for µaN (all

modules in J are in the same µ-orbit since gcd(n, k) = 1). We can see that the kernel of
the sequence for a is a+ 3 mod n, unless a = n− 1, in which case it is 1. We can think
of this as “jumping forward” by three positions in the µ-orbit to reach the next kernel,
unless this would cause us to pass over N , in which case we land at 1 regardless of where
we began; using this rule we can identify the kernels of right add (M)-approximations
and almost split sequences, and thus find the lengths of pre-resolutions of summands of
M .

7.2.3 Example: n = 7
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zz
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In computing the pre-resolution of N in the µ-orbit shown above, we get the following
sequences (the zero modules are omitted for clarity; 0 here means µ0N , that is, N):

3→ P1 → 0
6→ P2 → 3
1→ P3 → 6
4→ P4 → 1
0→ P5 → 4.
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The dashed arrows run from each module we approximate to the kernel of its ap-
proximation. From this we can see that the resolution of N is

0→ N → P5 → P4 → P3 → P2 → P1 → N → 0

Using this method, we can determine the global dimension of EndR(M). We will
begin by demonstrating that J cannot be the entire quiver, or an isolated component of
the quiver.

Lemma 7.2. J must be a proper subgraph of G, connected to the rest of the quiver;
that is, there must be some modules A ∈ J , B ∈ G \ J with an arrow from A to B.

First, suppose J forms an isolated component of the AR quiver (i.e. no module not
in J has a predecessor in J), and let A be a module in J . Then the AR sequence of A
is:

0→ τA→ µA→ A→ 0

By Lemma 7.1, we see that rank(τA) + rank(A) = rank(µA).
Now consider the AR sequence of µ−1A, the successor of A. Since A is a predecessor

of µ−1A, τµ−1A must be a predecessor of A. Since A has only one predecessor, it must
therefore be the case that τµ−1A = µA. So the AR sequence of µ−1A is:

µA→ A→ µ−1A

Thus rank(µA) + rank(µ−1A) = rank(A). Substituting this into the previously
obtained rank equation, we see that

rank(τA) + rank(µA) + rank(µ−1A) = rank(µA)

Simplifying and rearranging this, we get:

rank(τA) = −rank(µ−1A)

Since the rank of a module cannot be negative, this implies that the ranks of both τA
and µ−1A are zero. Thus we see that every module in J has rank zero; by Proposition 7.1,
this implies that they are all equal to zero. This, however, contradicts the requirement
that distinct modules in an AR quiver cannot be isomorphic, except in the trivial case
where the cardinality of J is 1.

Therefore, it must be the case that there for some module A in J , there exists some
module B not in J with an arrow from B to A.

7.3 Procedure for determining the global dimension of End R(M)

Lemma 7.3. Now suppose there is an arrow from some arbitrary vertex τ bN to A ∈
G/J . Then for all 0 ≤ a ≤ n−1; then there is an arrow from τ b+aN to τaN . So because
at least one module in J has a successor outside J , so does every module in J . Likewise,
if τ bN has a predecessor A outside J , then A is a successor of τ b−1N , so once again,
each module in J will have a successor outside J .
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Lemma 7.4. When we compute a sequence for a module A outside J having τaN as
a predecessor, τaN gets numbered 1. Its predecessors will then be numbered the same
as they would be when computing the sequence for τaN , since all their predecessors not
in J will be circled. Thus the kernel of the sequence for A will be the sum of the kernels
of the sequences for all its predecessors in J . For instance:

−1 0 1 1

1

−1 0 1 1

A couple of technical notes:

• The exception to this is when N is a predecessor of A, since it is circled, so its
predecessors will all just be numbered zero.

• The “lines” corresponding to different predecessors of A will remain separate, be-
cause if B 6= C, then µB 6= µC, etc., thus the predecessors at each level of the
graph of each of the predecessors of A in J will remain distinct.

So to compute the global dimension of EndR(M), we must compute resolutions of
all modules in J . We will now break the problem into three distinct cases.

7.3.1 Case 1: n = 0 mod 3

Consider the pre-resolution of µN = 1. Because n = 0 mod 3, n − 2 = 1 mod 3. So
when we begin at 1 and jump forward by three steps in the µ-orbit, we eventually get
to n − 2, and then back to 1. Thus the pre-resolution never terminates, so the global
dimension of EndR(M) is infinite.

Illustration, for n = 9:
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7.3.2 Case 2: n = 1 mod 3

As in the zero-predecessor case, we begin by computing the pre-resolution of N . Since
n = 1 mod 3, 0 = n − 1 mod 3. So adding 3 to the kernels eventually gives a sequence
with n−1 as its kernel. The kernel of the next sequence will then be 1. We then continue
to add 3 until we finally get a sequence with the kernel n = N . So the sequences we get
are:

3→ P1 → N
6→ P2 → 3
...
n− 1→ Pn−1

3
→ n− 4

1→ L→ n− 1
4→ Q1 → 1
...
n = N → Qn−1

3
→ n− 3

So the pre-resolution will be

N → Qn−1
3
→ ...→ Q1 → L→ Pn−1

3
→ ...→ P1 → N

having length 2(n−1
3 ) + 2 = 2(n+2

3 ).
Illustration, for n = 7:
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It is relatively easy to see that no pre-resolution can be longer than this: In the
process of moving around the µ-orbit, we must eventually either land on n, or pass over
it and land on n− 1, then jump to 1 and continue until we get to n. In approximating
N = 0, we start as far away from n− 1 as possible, so we land on the greatest possible
number of modules on the way to n − 1. Thus the global dimension of EndR(M) is
2(n+2

3 ).

7.3.3 Case 3: n = 2 mod 3

Consider the pre-resolution of N . Since n = 2 mod 3, n− 2 = 0 mod 3, so we eventually
get n− 2 as a kernel, then add 3 to get 1. We see that n− 1 = 1 mod 3, so we continue
to add 3 until we get n − 1 as a kernel. Following the usual procedure, we then jump
to 1, and so we are stuck in an infinite loop. Thus the global dimension of EndR(M) is
infinite.
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Illustration, for n = 11:
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Thus the theorem is proven.
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