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Abstract

In algebraic geometry, a variety is a set of zeroes of a set of polynomial equations in

an arbitrary finite number of variables. The order reversing correspondence between

varieties and ideals establishes a bridge between the algebraic nature of polynomial

rings and the geometry of affine varieties. For algebraically closed fields, Hilbert’s

Nullstellensatz states that this order reversing correspondence restricts to a one-to-

one correspondence between varieties and radical ideals, between irreducible varieties

and prime ideals, and between points and maximal ideals.

In this work, we shall discuss affine varieties, the Zariski topology (the topology where

the closed sets are the affine varieties), coordinate rings, and morphisms between

varieties.
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Chapter 1

Rings and Ideals

We start with reviewing the definition and elementary properties of rings. After this

we will be examining ideals. Ideals are algebraic objects which were first defined

by Richard Dedekind in 1876. Later, the concept was expanded by David Hilbert.

After Hilbert, Emmy Noether pushed the limit and expanded our understanding of

ideals even further in her paper [3].

1.1 Rings

A commutative ring is an algebraic structure that satisfies the most commonly used

properties of the integers or the polynomials considered with the operations of addi-

tion and multiplication. It is remarkable how much can be understood without the

existence of multiplicative inverses.

Definition 1.1.1. A ring is a triplet (R,+, ·) with properties

1. (R,+) is an abelian group (that is, (R,+) is closed, associative, it has a zero
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element denoted by 0, every element x of R has an (additive) inverse which is

denoted by −x, for all x ∈ R)

2. (R, ·) is associative, that is

(a · b) · c = a · (b · c) for any a, b, c in R.

Note: From now on “·” will be dropped when multiplying.

3. Multiplication is distributive over addition:

a(b+ c) = ab+ ac for any a, b, c in R

(a+ b)c = ac+ bc for any a, b, c in R.

If multiplication is commutative: ab = ba for any a,b in R, we say that R is a com-

mutative ring.

If there exists an element 1 ∈ R such that a · 1 = 1 · a = a for any a in R. We say

that R is a ring with identity, It is not difficult to see that if R is a ring with

identity, then the identity is unique.

A Field is a commutative ring with identity, in which all non-zero elements have

multiplicative inverses.

We will consider only commutative rings.

Example 1.1.1. The set of all integers Z, under the usual addition and multiplica-

tion operations forms a commutative ring with identity.
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Example 1.1.2. (R[X],+, ·) the set of all polynomials with coefficients in R under

the usual addition and multiplication operations forms a commutative ring with iden-

tity.

Example 1.1.3. (Rn,n,+, ·) the set of all n×n amtrices with coefficients in R under

the usual addition and multiplication operations forms a non commutative ring with

identity.

1.2 Ideals

Definition 1.2.1. Let R be a commutative ring. A subset I ⊆ R is said to be an

ideal of R if I satisfies

1. If f, g ∈ I, then f + g ∈ I.

2. If f ∈ I and h ∈ R, then hf ∈ I.

Note 1.2.1. In a ring R, the set R itself forms an ideal of R. Also, the subset

containing only the additive identity 0R forms an ideal. These two ideals are usually

referred to as the trivial ideals of R.

Example 1.2.2. The set

2Z = {. . . ,−4,−2, 0, 2, 4, . . .}

is an ideal of Z, the ring of integers.
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In fact ideals of Z are exactly of the form nZ = {nk | k ∈ Z}, where n ∈ Z. One

can consider ideals as a generalization of the notion of subgroups. Those who are

familiar with group theory may notice that in many ways ideals are analogous to

normal subgroups; for instance, both can be utilized to form quotients.

Let R be a ring, I an ideal of R. Define the equivalence relation ∼ on R as

a ∼ b ⇔ a − b ∈ I. One can check this is indeed an equivalence relation and

its equivalence classes of (R,∼) would be of the form r + I = {r + a | a ∈ I}. This

leads us to following definition. We will denote by R/I := (R,∼).

In R/I we define:

1. (r + I) + (r′ + I) = (r + r′) + I

2. (r + I) · (r′ + I) = (rr′) + I

Note that since the operations in the preceding definition are defined on classes, we

should make sure that the definition of operations is independent of choice of the

class representative which means the above introduced operations are well-defined.

More precisely we should show that if r1 + I = s1 + I and r2 + I = s2 + I then

1. (r1 + I) + (r2 + I) = (s1 + I) + (s2 + I)

2. (r1 + I) · (r2 + I) = (s1 + I) · (s2 + I)

or

1. (r1 + r2) + I = (s1 + s2) + I

2. (r1 · r2) + I = (s1 · s2) + I
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which is easily achievable if we use the definition of the relation ∼ given above and

the fact that I is an ideal of R.

The above tells us that R/I is a ring, called the quotient ring of R modulo I.

Example 1.2.3. As a prototypical example of the integers, consider the quotient

ring Z
2Z . Then, Z

2Z = {[0], [1]}, and with the quotient ring operations, Z
2Z forms a

ring. In fact Z
2Z is a finite field of order 2.

Definition 1.2.2. A domain is a ring (assumed nonzero) in which ab = 0 =⇒ a =

0 or b = 0. Commutative domains are called integral domains.

Example 1.2.4. All fields are integral domains.

Definition 1.2.3. Let R be a ring. An ideal I ⊆ R is prime if xy ∈ I ⇒ x ∈ I or

y ∈ I.

Proposition 1.2.5. Let R be a ring and I ⊆ R be an ideal. Then,

I is prime ⇐⇒ R
I

is a domain.

Definition 1.2.4. Let R be a ring. An ideal generated by x1, . . . , xn is defined as

〈x1, . . . , xn〉 :=

{
n∑
i=1

rixisi | ri, si ∈ R

}
.
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If R is commutative, then

〈x1, . . . , xn〉 =

{
n∑
i=1

rixi | ri ∈ R

}
.

Example 1.2.6. Any ideal of Z generated by a prime number p ∈ Z, is a prime

ideal. Indeed

If ab ∈ 〈p〉 then ∃k ∈ Z such that ab = pk.

Since p | ab and p is prime, therefore p | a or p | b. Thus a = pk′ or b = pk′′

respectively for some k′, k′′ ∈ Z.

Thus, a ∈ 〈p〉 or b ∈ 〈p〉. It means I = 〈p〉 is a prime ideal.

The above example tells us that every ideal of Z generated by a prime number is a

prime ideal. In fact the notion of prime ideal is a natural generalization of prime

numbers.

Definition 1.2.5. A monomial in x1, · · · , xn is a product of the form

xα1
1 · xα2

2 · · ·x
αn−1

n−1 · xαn
n

where all exponents α1, · · · , αn are non-negative integers. The total degree of this
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monomial is the sum α1 + · · ·+ αn.

Definition 1.2.6. A polynomial f in x1, · · · , xn with coefficients in R is a finite

linear combination of monomials. We can write a polynomial f in the form

f =
∑
α

aαX
α aα ∈ R

where the sum is over a finite number of n-tuples α = (α1, . . . , αn) and by Xα we

mean xα1
1 · xα2

2 · · ·xαn
n . The set of all possible polynomials in x1, · · · , xn with coeffi-

cients in R form a commutative ring denoted R [x1, · · · , xn] .

Definition 1.2.7. A principal ideal is an ideal I in a ring R that is generated by

a single element a of R through multiplication by every element of R.

Example 1.2.7. Let R = C[x], the single variable complex polynomial ring. Then

〈x− λ〉 is a prime ideal for all λ ∈ C.

Proof. Consider the polynomial R = C[x]. To prove that I = 〈x − λ〉 is a prime

ideal of R, we prove that if f(x)g(x) ∈ I, then either f(x) ∈ I or g(x) ∈ I.

Now we have I = 〈x − λ〉 = {(x − λ)h(x) : h(x) ∈ R}. Let f(x)g(x) ∈ I, then by

definition

f(x)g(x) = (x− λ)h(x) for some h(x) ∈ R.

For x = λ, f(λ) · g(λ) = (λ− λ)h(λ) = 0.
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⇒ f(λ) = 0 or g(λ) = 0. If f(λ) = 0,

then f(x) = (x− λ)h1(x) for some h1(x) ∈ R⇒ f(x) ∈ I.

If g(λ) = 0, then g(x) = (x− λ)h2(x) for some h2(x) ∈ R⇒ g(x) ∈ I.

Therefore, f(x)g(x) ∈ I implies f(x) ∈ I or g(x) ∈ I,

so by the definition of prime ideal, I = 〈x− λ〉 is a prime ideal of R = C[x].

Definition 1.2.8. An ideal I $ R in a ring R is maximal if it is maximal among

the proper ideals of R with respect to inclusion, i.e., For any ideal J with I ⊆ J ,

either J = I or J = R.

Thus I is maximal if and only if R/I is nonzero and has no proper nonzero ideals.

We can observe that I is maximal if and only if R/I is a field.

Example 1.2.8. Let F be a field. Then the only maximal ideal of F is 0.

Proposition 1.2.9. Let A be a ring in which every element x satisfies xn = x for

some n > 1 (depending on x). Then every prime ideal in A is maximal.

Proof. Let P be a prime ideal of A. Therefore A/P is an integral domain. Given

any non-zero x+P ∈ A/P , there will be a suitable n ∈ N−{1}, such that xn = x or

equivalently x(xn−1 − 1) = 0 ∈ P . Since P is prime and x+ P is non-zero therefore
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xn−1 − 1 ∈ P . This implies that xn−1 + P = 1 + P . Since n > 1, xn−1 + P = 1 + P

we have (x+P )(xn−2 +P ) = 1 +P . Hence that x+P is invertible. Therefore, A/P

is a field and P is a maximal ideal.

Let R be a commutative ring with identity, and S ⊂ R a subset. We say that S is

multiplicative if

1. s1, s2 ∈ S ⇒ s1s2 ∈ S .

2. 0 /∈ S, 1 ∈ S

We define the localization of R with respect to S and denoted RS, as follows.

Its elements are formal expressions of the form a
s
, a ∈ R, s ∈ S , where a1

s1
= a2

s2
, if

and only if, there exist s ∈ S , such that s(a1s2 − a2s1) = 0.

If we endow RS with the usual operations of addition and multiplication of fractions,

then RS is a ring. The unit in RS is 1
1

, and the zero is 0
1

.

Example 1.2.10. If a ∈ R, let S = {an : n ∈ N} . Then S is multiplicatively closed.

In this case localization of R with respect to S is denoted by Ra, and is called the

localization of R at a.

Example 1.2.11. If P ⊂ R is a prime ideal, let S = R−P . Then S is multiplica-

tively closed. In this case localization of R with respect to S is denoted by RP , and

is called the localization of R at P .
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Definition 1.2.9. The spectrum of a commutative ring R, denoted by Spec(R), is

the set of all prime ideals of R. We also define maxSpec(A) to be the set of all

maximal ideals of A.[4, page 84].

Definition 1.2.10. Given some algebraically closed field K, algebraic sets are the

subsets of Kn defined as common zeroes of S ⊂ K [x1, ..., xn].

If A is such an algebraic set, then we consider the commutative ring R consisting of

those polynomials of which A is the algebraic set.

The maximal ideals of R correspond to the points of A, while the prime ideals of R

correspond to the varieties in A (varieties are irreducible algebraic sets). Therefore,

Spec(R) consists of the points and varieties in A.

1.3 Noetherian Rings

Definition 1.3.1. A ring R is Noetherian (or it is called a Noetherian ring) if for

all ascending chains of proper ideals-embedding, say:

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

(For all j in the natural numbers, Ij are all ideals of R.) there is a positive integer

n such that In = I(n+1); in other words, every ascending chain has a maximal el-

ement. This condition is sometimes called the A.C.C. (Ascending Chain Condition).

Proposition 1.3.1. Suppose we have a ring R. Then, the following statements about

R are equivalent:
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1. R is Noetherian.

2. Any nonempty set of ideals in R contains a maximal element.

Proof. 1⇒ 2) Suppose that we have a nonempty set of ideals M without a maximal

element. For each ideal In ∈ M there exists an In+1 ∈ M such that In  In+1.

Therefore, one can construct a chain of ideals that is not stationary. But this con-

tradicts our assumption.

2⇒ 1) Applying the maximal condition to the set of ideals in our chain of ideals, 1

follows.

In a Noetherian ring all ideals are finitely generated. Indeed, suppose there is an

ideal I of R that is not finitely generated. For ri ∈ I, i = 1, . . . ,m by assumption

〈r1, r2, · · · , rm〉 6= I for every m ∈ N. Hence, there is rm+1 ∈ I such that rm+1 /∈

〈r1, r2, · · · , rm〉. This would let us construct a chain of ideals 〈r1〉 ⊂ 〈r1, r2〉 ⊂ · · ·

which never becomes stationary.

Note 1.3.2. Every ring R with unity element 1R is finitely generated as an ideal

over itself. So every ring is finitely generated as an ideal, while it could have an ideal

which is not finitely generated.

1.4 Hilbert’s Basis Theorem

Theorem 1.4.1. Hilbert’s Basis Theorem
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If R is a Noetherian ring, then R[X] is a Noetherian ring.

Proof. This is a proof due to Heidrun Sarges [11], who proves that if R[X] is not

Noetherian, then R is not Noetherian. Let I be an ideal of R[X] that is not finitely

generated (of course I will be a non-zero ideal).

Using the ideal I, we will construct a sequence of ideals in R inductively, which can

not become stationary. This contradicts the assumption of R being Noetherian.

Let f1 ∈ I be a polynomial of the least degree (we note that such f1 exists since the

set of degrees of polynomials in I is a subset of N0 = N∪{0} and so it’s well-ordered

therefore it has a least element.)

Let k ≥ 1 and assume fk is chosen. Then let fk+1 be a polynomial of least degree in

I \ 〈f1, · · · , fk〉.

Let ak ∈ R be the leading coefficient of fk and the non-negative integer dk be the

degree of fk, for k ≥ 1. Consider the ideal J ⊆ R defined by J = 〈ak | k ∈ N〉. By

the choice of fk we have d1 ≤ d2 ≤ · · · and

〈a1〉 ⊆ 〈a1, a2〉 ⊆ 〈a1, a2, a3〉 ⊆ .... (1.1)

Since R is Noetherian, the chain equation 1.1 will come to be stationary. Therefore,

there is n ∈ N such that

〈a1, ...., an〉 = 〈a1, ...., an+i〉, for i ≥ 1. (1.2)
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Therefore J = 〈ai | i ∈ N〉 =
⋃
i≥1〈a1, a2, . . . , ai〉 = 〈a1, a2, . . . , an〉.

Now let I0 = 〈f1, f2, . . . , fn〉. Then, by the choice of fn+1, we have fn+1 /∈ I0. Since

J = 〈ai | i ∈ N〉 = 〈a1, a2, . . . , an〉, so an+1 ∈ 〈a1, a2, . . . , an〉.

Therefore, there are bi ∈ R, i = 1, 2, . . . , n such that:

an+1 =
n∑
i=1

biai (1.3)

Now let g = fn+1 −Xdn+1−d1b1f1 . . . −Xdn+1−dnbnfn. Then using the fact that I is

an ideal and f1, . . . , fn+1 ∈ I we have g ∈ I.

By the way we defined g and using equation 1.3, we have deg(g) < deg(fn+1).

Since fn+1 /∈ I0 and fi ∈ Ii for i = 1, . . . n, we have g 6∈ I0 which contradicts the

minimality of deg(fn+1)! (because fn+1 ∈ J\I0 is chosen in such a way that it has

the lowest degree but g ∈ J\I0 and deg(g) < deg(fn+1) which is contradiction).

so the assumption of R [X] not being Noetherian is false.

An important geometric consequence of the Hilbert Basis Theorem is that every al-

gebraic set is the zero set of a finite set of polynomials.

Corollary 1.4.2. If R is Noetherian, then so is the polynomial ring R[x1, . . . , xn].

Proof. Complete the proof by induction on n using Hilbert’s Basis Theorem.
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Definition 1.4.1. An element u ∈ R for which there exists v ∈ R such that

uv = vu = 1 is called a unit.

The set R∗ := {units of R} forms a group under multiplication.

We note that using Zorn’s lemma, on can show every non-unit element of a ring is

contained in a maximal ideal.

Definition 1.4.2. A ring R is said to be local if it has exactly one maximal ideal

M .

Note 1.4.3. For a local ring the set of unit elements of R is equal to R∗ = R\M .

A ring homomorphism is a generalization of group homomorphism, which is a func-

tion between two rings that respects the algebraic structure.

Definition 1.4.3. Let R and S be rings. A function f : R → S is a ring homo-

morphism if for all x, y ∈ R

1. f(x+ y) = f(x) + f(y)

2. f(xy) = f(x)f(y)

3. f(1R) = 1S

see [6,page 49].
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Note 1.4.4. Using f(x+ y) = f(x) + f(y) for x = y = 0R gives f(0R) = 0S. There-

fore, f(0R) = 0S automatically holds in all ring homomorphisms.

Let R be a ring. n ∈ N is called the characteristic of R and it is denoted by

char(R), if n is the smallest positive integer such that na = a+ · · ·+ a︸ ︷︷ ︸
n−many

= 0 for all

a ∈ R. If such n ∈ N does not exist we say that the ring R has characteristic 0.

Example 1.4.5. Let R be a commutative ring with char(R) = 2. Define f : R −→ R

by f(x) = x2, for all x ∈ R. Then f is a ring homomorphism.

Proof. Let a, b ∈ R. Remember that 2x = 0 for all x ∈ R, since char(R) = 2. Then

f(a + b) = (a + b)2 = a2 + 2ab + b2 = a2 + b2 = f(a) + f(b), and f(ab) = (ab)2 =

a2b2 = f(a)f(b), so f respects addition and multiplication. Finally, f(1) = 12 = 1

Proposition 1.4.6. There is no ring homomorphism C −→ R.

Proof. Suppose that there exists a ring homomorphism f : C −→ R.

Recall that, by definition of a ring homomorphism, we have f(1R) = 1S. Hence

f(−1C) = −1R. Since f : C −→ R is a also group homomorphism between the

additive abelian groups of C and R. Let r = f(i) ∈ R. Since i2 = −1 in C and f is

a ring homomorphism, we have

−1R = f(−1C) = f(i2) = f(i)2 = r2.
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Thus r ∈ R is a real number such that r2 = −1. This is a contradiction since for

every r ∈ R we have r2 > 0. Hence there is no ring homomorphism f : C −→ R.
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Chapter 2

Algebraic Varieties

The goal of algebraic geometry is to study solutions of polynomial equations in sev-

eral variables over a fixed ground field. In this chapter we will exploring algebraic

varieties, their definitions and basic properties.

Varieties are the fundamental objects used in the study of algebraic geometry. A

variety is the set of common solutions of a set of polynomials. While a simple notion,

it is also very powerful.

Algebraic varieties are at the very center of algebraic geometry. Algebraic vari-

eties are the sets of solutions to a system of polynomial equations over the real or

complex numbers. For those familiar with the idea of an analytic manifold, the idea

of an algebraic variety is very similar, with the big difference being in that a variety

can have singular points, while a manifold cannot.
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2.1 Affine Spaces

Definition 2.1.1. Let K be a field. An affine space of dimension n, Kn is the set

of all n-tuples of elements in the field K. In particular, K1 is called the affine line,

and K2 is called the affine plane. The elements of Kn are called points which we

denoted by capital leters.

Example 2.1.1. Consider the case K = R. Here we get the familiar space Rn from

calculus and linear algebra.

Let f ∈ K[x1, x2, ..., xn] where K is a field. If P = (a1, a2, ..., an) ∈ Kn, then, we

define f(P ) = f(a1, a2, ..., an).

Definition 2.1.2. Let there be a subset V ⊆ Kn. V is called an affine algebraic

set if there is a set S ⊆ K[x1, x2, ...xn] such that

V = Z(S) = {P ∈ Kn : f(P ) = 0,∀f ∈ S}.

In words, one could say an algebraic set is the zero locus of a set of polynomials.

Understanding it this way can be very helpful when speaking about algebraic sets

and their uses. This definition is very similar to the definition of algebraic varieties,

with good reason. An algebraic set is a “reducible” algebraic variety. The notion of

reducibility of varieties is intertwined with the idea of the “Zariski” topology, which

lets us say a variety is “irreducible” when it is not the union of two smaller closed

subsets in the topology.
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Example 2.1.2. 1. For any a, b ∈ K, {(a, b)} is an algebraic set in K2 since

{(a, b)} = Z(x− a, y − b).

2. Any single point in Kn is an algebraic set:

Z(a1, ..., an) = Z(x1 − a1, ..., xn − an).

Proposition 2.1.3. 1. The union of two algebraic sets is an algebraic set.

2. The intersection of any family of algebraic sets is an algebraic set.

3. The empty set and the whole space are algebraic sets.

Proof. 1. Let V1 = Z(S1) and V2 = Z(S2). If P ∈ V1 ∪ V2 , then either P ∈ V1 or

P ∈ V2.

Thus, P is a zero of every polynomial in S1 ·S2 = {fg|f ∈ S1 and g ∈ S2} and

V1 ∪ V2 ⊆ Z(S1 · S2).

Conversely, if P ∈ Z(S1 ·S2), and P /∈ V1, then there exist an f ∈ S1 such that

f(P ) 6= 0. Since for any g ∈ S2, (f · g)(P ) = 0 we have that g(P ) = 0, so that

P ∈ V2.

2. If Vi = Z(Si) is any family of algebraic sets, then
⋂
Vi = Z(∪Si)

Thus,
⋂
Vi is also an algebraic set.

3. Finally, the empty set ∅ = Z(1), and the whole space Kn = Z(0).

The above proposition tells us that algebraic sets meet the conditions of the closed

sets of a topology in Kn. This topology is called the Zariski topology on Kn.
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Definition 2.1.3. We say that a field K is algebraically closed if every non-

constant polynomial f ∈ K[X] has a root in K. i.e., there exists a ∈ K such that

f(a) = 0.

Example 2.1.4. Let us consider the affine line C1. Every ideal in C[x] is principal,

so every algebraic set is the set of zeros of a single polynomial.

Since C is algebraically closed, every nonzero polynomial f(x) can be written f(x) =

c(x− a1) · · · (x− an) with c, a1, . . . , an ∈ C.

Then Z(f) = {a1, . . . , an}. Thus the algebraic sets in C1 are the finite subsets, the

empty set and the whole space. Thus the Zariski topology on C1 is the topology whose

open sets are the empty set, C1 and the complements of finite subsets.

2.2 Affine Varieties

Definition 2.2.1. A nonempty subset Y of a topological space X is irreducible if

it cannot be expressed as the union Y = Y1 ∪ Y2 of two proper subsets, each one of

which is closed in Y . The empty set is not considered to be irreducible.

Example 2.2.1. C1 with its Zarisky topology is irreducible, because its only proper

closed subsets are finite.

Definition 2.2.2. Given any subset A ⊆ Kn we define the ideal of A, I(A) in
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K[x1, x2, ..., xn] by

I(A) = {f ∈ K[x1, ..., xn] : f(P ) = 0}

for all P ∈ A.

Ideals I(A) satisfy the following properties:

(a) If A1, A2 are subsets of Kn and A1 ⊆ A2, then I(A2) ⊆ I(A1).

(b) For any two subsets A1, A2 of Kn, we have I(A1 ∪ A2) = I(A1) ∩ I(A2).

(c) If A is irreducible, then I(A) is prime. Indeed, if fg ∈ I(A), then

A ⊆ Z(fg) = Z(f) ∪ Z(g).

Thus

A = (A ∩ Z(f)) ∪ (A ∩ Z(g)),

both closed subsets of A. Since A is irreducible, we have either A = (A∩Z(f)),

in which case A ⊆ Z(f), or A = (A ∩ Z(g)), in which case A ⊆ Z(g). Hence

either f ∈ I(A) or g ∈ I(A).

The converse of (c) is true too, and is a consequence of the Hilbert’s Nullstellensatz

(one of the most significant results of algebraic geometry, which translated from the

original German, means “Hilbert’s theorem of zeros.’’ that we state below.

Theorem 2.2.2. Hilbert’s Nullstellensatz: Let K be an algebraically closed field.

Then all maximal ideals of the polynomial ring K[x1, ..., xn] are of the form

21



I(a) = (x1 − a1, ..., xn − an)

for some a = (a1, ..., an) ∈ Kn.

See Algebraic Geometry, Andreas Gathmann [9] for a proof of the Hilbert’s Nullstel-

lensatz.

Definition 2.2.3. An affine variety W is an irreducible closed subset of Kn.

More technically, an affine variety over some algebraically closed field K is the zero-

locus of a set of polynomials S in K[x1, ..., xn].

In the affine n-space Kn. This is the set of solutions to a polynomial in n variables

with coefficients defined in our field K that generates a prime ideal. This lets us

discuss shapes in space in a much more abstract sense.

Example 2.2.3. Here are some examples of affine varieties:

1. Affine n-space itself is an affine variety, since An = Z(0). Similarly, the empty

set ∅ = Z(1) is an affine variety.

2. Any single point in An is an affine variety: because we have (c1, ..., cn) =

Z(x1 − c1, ..., xn − cn).
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3. Every linear functional f on V , where V is a n-dimensional vector space over

K, can be seen as an element of K[x1, · · · , xn], and we know that every subspace

W of V of dimension m is the intersection of n-m kernels of linear functionals,

i.e., W = {P ∈ V |fi(P ) = 0}, where fi are functionals on V and i=1,2,..,n-m.

Thus, all linear subspaces are affine varieties.

The idea of a subvariety is similar to the familiar idea of a subgroup.

Definition 2.2.4. A subvariety is a subset of a variety that is itself also a variety.

2.3 Projective Spaces

Definition 2.3.1. For any vector space V of dimension n over a field K, the projec-

tive space of V is denoted by P(V ) (sometimes the field K replaces V or subscript

notation is used instead) which is the set of all 1-dimensional subspaces of V . For

details see [7,page 84]

We will say that the projective space P(V ) has dimesion n-1. A projective space of

dimension 1 or 2 we will call a projective line or a projective plane respectively. If

V = Kn+1 we write Pn instead of P(V ).

Remark Observe that the projective n− 1-dimensional space can be written as

Pn = {(a0, . . . , an) ∈ Kn+1 | ai ∈ K not all ai = 0}/ ∼,

23



where the equivalence relation ∼ is defined by

(a0, . . . , an) ∼ (b0, . . . , bn),

if and only if there is λ ∈ K such that ai = λbi for all i. We write

Pn = {(a0 : . . . : an) | ai ∈ K},

and we call (a0 : . . . : an) homogeneous coordinates of a point in Pn.

Definition 2.3.2. An affine non-empty algebraic set X ⊆ Kn is called a cone if

for all (a0, . . . , an) ∈ X and all λ ∈ K we have (λa0, . . . , λan) ∈ X. If X ⊆ Pn is a

projective algebraic set then

C(X) = {(a0, . . . , an) ∈ Kn | (a0 : . . . : an) ∈ X} ∪ {0}

is a cone and it is called the cone over X [based on 9, page 39].

Example 2.3.1. If X is a hyperbola contained in the projective plane P (R3) iden-

tified with the plane Z = 1 which contains (0, 0, 1) then the cone C(X) is the union

of all lines in R3 which contain 0 and meet this hyperbola. This set is exactly what

we intuitively call a cone.

Homogenous polynomials are polynomials where all terms have the same degree.

Definition 2.3.3. An ideal I in a ring K[x1, ..., xn] is said to be homogeneous if

for each f ∈ I, the homogeneous components fi of f are in I as well.
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If f =
∑

i fi ∈ I ⊂ K[x1, x2, ...xn] where fi are the homogeneous polynomials, then

we said that fi are the homogeneous components of f .

This property is not true in most ideals. For instance, let I = 〈y − x2〉 ⊂ K[x, y].

The homogeneous components of f = y − x2 are f1 = y and f2 = −x2. Neither

of these polynomials is in I since neither is a multiple of y − x2. Hence, I is not a

homogeneous ideal.

Example 2.3.2. P(R2): one usually thinks of this by fixing a reference line, for

instance the line y = 1. Then P(R2) is every 1-dimensional subspace that intersects

the reference line plus the one line that is parallel to the reference line.

Equivalently, P(R2) = R ∪ {∞}. Also we can see P(R2) as a semicircle centered in

(0,0) without one extreme point, because every 1-dimensional subspace that intersects

this semicircle in a point.

The above example shows that P(R2) can be identified with a subset of R2. In gen-

eral P(V ) can be identified with a subset of V .

2.4 Projective Varieties

Definition 2.4.1. A subset X ⊆ Pn is an algebraic subset of the projective space.

if X as subset of Kn is the zero locus of a homogeneous ideal in I ⊆ K[x0, ..., xn],

and X is irreducible if X is algebraic and the corresponding ideal I is prime.
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Definition 2.4.2. A subset X ⊆ Pn is a projective algebraic variety, if X is an

irreducible algebraic subset of the projective space.

Take an algebraically closed field K, and define a projective n-space Pn over it. Then,

the projective variety is a subset of Pn that is the zero-locus of some finite family

of homogenous polynomials.

Example 2.4.1. An important area of modern mathematical research deals largely

with objects called elliptic curves, which are non-singular plane curves of the form

y2 = x3 + ax+ b. While the image below is necessarily in affine space, the projective

curve corresponding to the curve in the graph below is an elliptic curve in P2.

−2 0 2 4
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0

5

10

Elliptic Curve y2 = x3 + 17

Definition 2.4.3. A subset Y of a topological space Xis said to be locally closed

if it is the intersection of an open and a closed subset.
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The following result provides some equivalent definitions:

Proposition 2.4.2. The following are equivalent:

1. Y is locally closed in X.

2. Each point in Y has an open neighborhood U ⊆ X such that U ∩ Y is closed

in U (with the subspace topology).

3. Y is open in its closure Y (with the subspace topology).

Definition 2.4.4. A quasi-projective variety is a locally closed subset of projec-

tive n-space Pn.

As the name implies, a quasi-projective variety is almost a projective variety. A

quasi-projective variety is a locally closed subset of a projective variety. While we

said affine varieties might be the simplest, they are not the most general. This is

because affine varieties are quasi-projective, while there exist locally closed subsets

of projective varieties that are not affine, but are quasi-projective.

In classical algebraic geometry all varieties were quasi-projective. Due to Andre Weil

though, we now have a concrete definition of varieties that are not quasi-projective.

Example 2.4.3. 1. Every projective algebraic set X is a quasi-projective variety.

2. Every affine algebraic set X ⊆ Kn ≡ U0 is a quasi-projective variety.

X = X ∩ U0.
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3. Every open subset of a quasi-projective variety is a quasi projective variety.

4. Every closed subset of a quasi-projective variety is a quasi-projective variety.

If X ⊂ Kn and Y ⊂ Km are closed subvarieties, then X × Y is a closed subvariety

of Kn+m = Kn ×Km.

Proposition 2.4.4. A product X × Y of irreducible varieties is irreducible.

Proof. Suppose that X × Y = Q1 ∪Q2, with each Qi a closed subset of X × Y .

For each x ∈ X, the closed set x×Y is isomorphic to Y, and is therefore irreducible.

Since x×Y = ((x×Y )∩Q1)∪ ((x×Y )∩Q2) either x×Y ⊂ Q1 or else x×Y ⊂ Q2.

The subset X1 ⊂ X consisting of those x ∈ X with x × Y ⊂ Q1 is a closed sub-

set. We have X1 =
⋂
y∈Y Xy, where Xy is the collection of points x ∈ X : x× y ∈ Q1.

Since Xy × y = (X × y) ∩Q1, Xy and hence X1 is closed.

Similarly define the closed subset X2. Since X = X1 ∪X2 and X is irreducible, we

either have X = X1 or X = X2. But X = Xi implies X × Y = Qi, which proves

X × Y is irreducible. This proof is from [12,page 211].

Definition 2.4.5. Let R be a ring containing a subring A. An element b ∈ R is

integral over A if it is root in a monic polynomial with coefficients in A. The set

of elements integral over A is a subring called the integral closure.
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Chapter 3

Zariski Topology

Here we will begin our discussion of a very important mathematical structure that

is very prevalent in algebraic geometry. Certain special cases of varieties and ideals

rely on ideas presented in this chapter, and thus did not appear earlier. Instead,

they will appear here, so make sure that there is a firm grasp of the ideas presented

in the two previous chapters.

3.1 Zariski Topology

Zariski topology took particular importance around 1950. It is named after Oscar

Zariski. The Zariski topology is especially good for studying polynomial equations in

algebraic geometry. It provides tools of topology for the study of algebraic varieties.

In the previous chapter we defined affine space Kn, and affine algebraic sets as those

for which there exists a set S ⊆ K[x1, x2, · · · , xn] such that

V = Z(S) = {P ∈ Kn|f(P ) = 0,∀f ∈ S}.
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We see that Kn = Z(0) and the empty set ∅ = Z(1) are affine algabraic sets. Also we

show that, finite unions and arbitrary intersections of affine algebraic sets are affine

algebraic sets too.

Proposition 3.1.1. Let K1 be a 1-dimensional vector space over K equipped with

the Zariski topology. Then the following hold:

1. The closed subsets of K1 are finite subsets and K1 itself.

2. If f ∈ K[x1, · · · , xn], then f : Kn −→ K is continuous.

Proof. 1. Of course K1 = Z(0) and ∅ = Z(1) are closed. A non-empty finite sub-

set {α1, · · · , αm} of K1 is the zero locus of the polynomial (x−α1) · · · (x−αm),

so it is closed.

Conversely, if S is a subset of K[x] and I = 〈S〉 is the ideal generated by S in

K[x], then Z(S) = Z(I), its zero locus is the finite subset of K1 consisting of

the zeros of f . Where f is the generator of I.

2. To show f is continuous, we must show that the inverse image of every closed

subset of K is closed. The inverse image of K is Kn, which is closed.

And f−1(∅) = ∅ is closed. Since the only other closed subsets of K are the non-

empty finite subsets, it suffices to check that f−1(x) is closed for each x ∈ K.

But f−1(x) is precisely the zero locus of f − f(x)
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3.2 Zariski Topology on Affine and Projective

spaces

Definition 3.2.1. The Zariski topology on Spec(R) is has closed sets defined by:

V (S) = {I ∈ Spec(R) : S ⊂ I}

where S is an ideal in R.

Example 3.2.1. Every point P = (a1, ..., an) in Kn is closed. Because if f =

(x1 − a1, ..., xn − an), then P = Z(f).

Definition 3.2.2. If S is a set of homogeneous polynomials in K[X0, ..., Xn], we

define its zero set Z(S) ⊂ Pn−1 by

Z(S) =
{
P ∈ Pn−1 | f(P ) = 0,∀f ∈ S

}
.

If I is a homogeneous ideal of K[X0, · · · , Xn], we define its zero set Z(I) ⊂ Pn−1 to

be the zero set of the set of all homogeneous polynomials in I.

Lemma 3.2.1. Zariski’s Lemma: Let k be a field and k = K[x1, · · · , xn]. Then

every xi must be algebraic over K.

Proof. Suppose x1 is not algebraic over K, but (x2, ..., xn) are algebraic over K[x1].

Since each xi is algebraic over K[x1] there are polynomials fj(x1) (where j goes from

2 to n) such that each xj is integral over the domain (see definition 2.4.6).
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A = K[x1]

[
1

f2(x1)
, . . . ,

1

fn(x1)

]

Since k = K[x1][x2, · · · , xn]. Then k is integral over A. Thus, A is a field, which

means A = K[x1] which is impossible. This concludes the proof.[14]

Definition 3.2.3. The Zariski topology on Pn is the topology for which the closed

sets are the subsets of the form Z(I) for some homogeneous ideal I ⊂ K[x0, · · · , xn].

Definition 3.2.4. The Zariski topology of an algebraic variety is the topology whose

closed sets are the algebraic subsets of the variety.

3.3 Coordinate Rings

In algebraic geometry, our objects are varieties, and because varieties are defined by

polynomials, it will be appropriate to consider polynomial functions on them. Now

we will have further facts on varieties. A coordinate ring which is also called ring of

polynomial functions, is known as coordinate ring because it is defined on coordinate

functions.

Definition 3.3.1. Let K be an algebraically closed field. The coordinate ring of
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an affine variety V ∈ Kn is defined by

K[V ] = K[x1, x2, · · · , xn]�I(V ),

where I(V ) is the ideal formed by the set of polynomials f(x1, · · · , xn) with coeffi-

cients in the field K which equal zero for all points in the variety V . [13,page 47]

Example 3.3.1. Consider a variety V = {(x, y)|x2 = y3} as a subset of the real

plane R2.

The ring of real-valued polynomial functions defined on V can be identified with the

quotient ring R[x, y]�(x2 − y3), and this is the coordinate ring of V .

Proposition 3.3.2. Given an affine algebraic set V ⊆ Kn. If V is irreducible then

K(V ) ⊆ K[x1, . . . , xn] is prime and K[V ] is a domain.

Proof. Since K[V ] ∼= K[x1, . . . , xn]�I(V ), to prove primality, assume that V is

reducible. Then V = V1 ∪ V2 for some Vi  V . Then Z(Vi) ! Z(V ) and

Z(V ) = Z(V1) ∩ Z(V2).

If fi ∈ Z(Vi)− Z(V ) for i = 1, 2, then f1f2 ∈ Z(V ) =⇒ Z(V ) is not prime.

That K [V ] is a domain, it is a consequence that if R is a ring and I is a prime ideal

of R, then R/I is a domain.
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Example 3.3.3. The variety Z(x2 − y2) ⊂ R2 is reducible, because it is the union

of Z(x+ y) and Z(x− y).

In relation to the quasi projective varieties views in chapter 2 we have:

Definition 3.3.2. The dimension of an irreducible quasi-projective variety V is the

transcendence degree of K(V ) over K. [8,page 15]

Example 3.3.4. K3 ⊃ Z(xz, xy) = Z(x) ∪ Z(y, z) and so K[y, z] ∼= K[x, y, z]�(x)

has transcendence degree 2 and K[x, y, z]�(y, z) ∼= K[x] has transcendence degree 1.

34



Bibliography

[1] M. Atiyah, I. Macdonald, Introduction to Commutative Algebra, Addison-

Wesley (1969).

[2] Reid, Miles, Undergraduate Commutative Algebra, Cambridge Univ. Press, 1996.

[3] Daniel Berlyne, translation of the paper “Idealtheorie in Ringbereichen” by

Emmy Noether, Submitted on 11 Jan 2014.

[4] Dilip P. Patil, Uwe Storch Introduction to Algebraic Geometry and Commutative

Algebra, word scientific, 2010.

[5] Bhubaneswar Mishra, Algorithmic Algebra, Springer-Verlag Incorporated,1993.

[6] Larry C. Grove, Algebra, Dover Publications, 2004.

[7] Johannes Ueberberg, Basic Algebraic Geometry 1, Springer-Verlag, 1999.

[8] Johannes Ueberberg, Foundations of Incidence Geometry: Projective and Polar

Spaces, Springer-Verlag, 2011.

[9] Andreas Gathmann, Algebraic Geometry , University of Kaiserslautern, 2014.

[10] R. Y. Sharp, Basic Algebraic Geometry 1, Cambridge University Press, 2000.

[11] Sarges, H., Ein Beweis des Hilbertschen Basissatzes. J. reine angew. Math.

283/284 (1976), 436-437.

35



[12] V.I. Danilov, V.V. Shokurov, Algebraic Curves, Algebraic Manifolds and

Schemes , Mar 17, 1998.

[13] James Milney, algebraic geometry , March 19, 2008.

[14] http://arxiv.org/abs/1506.08376, math.AC, Jun 28, 2015.

36



Vita

Rasha Sulaiman Almohammadi
Taibah University, B.SC., Math, (27 Jun 2005 )
Publications: N/A
Conference Presentations: N/A


