Rationality of Brauer-Severi Varieties of Sklyanin Algebras

C. Ingalls

April 12, 2014, Lubbock AMS meeting

Rationality of some generic \mathbb{P}^n fibrations over \mathbb{P}^1

Sklyanin Algebra A is determined by (E, \mathcal{L}, σ) with

Rationality of some generic \mathbb{P}^n fibrations over \mathbb{P}^1

문 🛌 문

Sklyanin Algebra A is determined by (E, \mathcal{L}, σ) with E elliptic curve

æ

Sklyanin Algebra A is determined by (E, \mathcal{L}, σ) with

E elliptic curve

 $\mathcal{L}\in\mathsf{Pic}\, E$

문 🛌 문

Sklyanin Algebra A is determined by (E, \mathcal{L}, σ) with

- E elliptic curve
- $\mathcal{L} \in \mathsf{Pic}\, E$
- $\sigma\in\operatorname{Aut} E$

포 씨는 포

Sklyanin Algebra A is determined by (E, \mathcal{L}, σ) with

- E elliptic curve
- $\mathcal{L} \in \mathsf{Pic}\, E$

 $\sigma\in\operatorname{Aut} E$

$$A \simeq k \langle x, y, z \rangle$$

axy + byx + cz² = 0
ayz + bzy + cx² = 0
azx + bxz + cy² = 0

æ

Sklyanin Algebra A is determined by (E, \mathcal{L}, σ) with

E elliptic curve

 $\mathcal{L}\in\mathsf{Pic}\, E$

 $\sigma\in\operatorname{Aut} E$

 $A \simeq k \langle x, y, z \rangle$ $axy + byx + cz^{2} = 0$ $ayz + bzy + cx^{2} = 0$ $azx + bxz + cy^{2} = 0$ $\sigma^{n} = 1 \Leftrightarrow A \text{ is a f.g. module over } Z(A)$

3

Sklyanin Algebra A is determined by (E, \mathcal{L}, σ) with

E elliptic curve

 $\mathcal{L}\in\mathsf{Pic}\, E$

 $\sigma\in\operatorname{Aut} E$

 $A \simeq k \langle x, y, z \rangle$ $axy + byx + cz^{2} = 0$ $ayz + bzy + cx^{2} = 0$ $azx + bxz + cy^{2} = 0$ $\sigma^{n} = 1 \Leftrightarrow A \text{ is a f.g. module over } Z(A)$ $\mathcal{A} \text{ is a sheaf of algebras over } \mathbb{P}^{2}$

э

Sklyanin Algebra A is determined by (E, \mathcal{L}, σ) with

E elliptic curve

 $\mathcal{L}\in\mathsf{Pic}\, E$

 $\sigma\in\operatorname{Aut} E$

 $\begin{aligned} A &\simeq k \langle x, y, z \rangle \\ axy + byx + cz^2 &= 0 \\ ayz + bzy + cx^2 &= 0 \\ azx + bxz + cy^2 &= 0 \end{aligned}$ $\sigma^n &= 1 \Leftrightarrow A \text{ is a f.g. module over } Z(A) \\ \mathcal{A} \text{ is a sheaf of algebras over } \mathbb{P}^2 \\ \text{Azumaya on } \mathbb{P}^2 - E/\langle \sigma \rangle. \end{aligned}$

- 4 同 6 4 日 6 4 日 6

3

 $\begin{array}{l} \left\{ \text{Central simple } k\text{-algebras of rank } n^2 \right\} / \simeq \\ & \updownarrow \\ \left\{ \text{varieties } X \text{ over } k \text{ such that } \overline{X} := X \times_{\operatorname{Spec} k} \operatorname{Spec} \overline{k} \simeq \mathbb{P}^{n-1}_{\overline{k}} \right\} / \simeq \\ & = H^1(k, \operatorname{PGL}_n) \to \operatorname{Br} k \end{array}$

$$\begin{array}{l} \left\{ \text{Central simple } k\text{-algebras of rank } n^2 \right\} / \simeq \\ & \updownarrow \\ \left\{ \text{varieties } X \text{ over } k \text{ such that } \overline{X} := X \times_{\operatorname{Spec} k} \operatorname{Spec} \overline{k} \simeq \mathbb{P}_{\overline{k}}^{n-1} \right\} / \simeq \\ & = H^1(k, \operatorname{PGL}_n) \to \operatorname{Br} k \\ \operatorname{PGL}_n k = \operatorname{Aut} \mathbb{P}^{n-1} = \operatorname{Aut} k^{n \times n} \end{array}$$

◆□ > ◆□ > ◆ □ > ◆ □ > ● ● ● ● ●

$$\begin{array}{l} \left\{ \text{Central simple } k\text{-algebras of rank } n^2 \right\} / \simeq \\ & \updownarrow \\ \left\{ \text{varieties } X \text{ over } k \text{ such that } \overline{X} := X \times_{\operatorname{Spec} k} \operatorname{Spec} \overline{k} \simeq \mathbb{P}_{\overline{k}}^{n-1} \right\} / \simeq \\ & = H^1(k, \operatorname{PGL}_n) \to \operatorname{Br} k \\ & \operatorname{PGL}_n k = \operatorname{Aut} \mathbb{P}^{n-1} = \operatorname{Aut} k^{n \times n} \\ & A \mapsto \operatorname{BSV}(A) \end{array}$$

◆□ > ◆□ > ◆ □ > ◆ □ > ● ● ● ● ●

$$\begin{array}{l} \left\{ \text{Central simple } k\text{-algebras of rank } n^2 \right\} / \simeq \\ & \updownarrow \\ \left\{ \text{varieties } X \text{ over } k \text{ such that } \overline{X} := X \times_{\operatorname{Spec} k} \operatorname{Spec} \overline{k} \simeq \mathbb{P}_{\overline{k}}^{n-1} \right\} / \simeq \\ & = H^1(k, \operatorname{PGL}_n) \to \operatorname{Br} k \\ & \operatorname{PGL}_n k = \operatorname{Aut} \mathbb{P}^{n-1} = \operatorname{Aut} k^{n \times n} \\ & A \mapsto \operatorname{BSV}(A) \\ & \operatorname{BSV}(A)(L) = \left\{ A_L A_L \twoheadrightarrow A_L L^n \right\} \subset \operatorname{Gr}(A, n) \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

$$\begin{array}{l} \left\{ \text{Central simple } k\text{-algebras of rank } n^2 \right\} / \simeq \\ & \updownarrow \\ \left\{ \text{varieties } X \text{ over } k \text{ such that } \overline{X} := X \times_{\operatorname{Spec} k} \operatorname{Spec} \overline{k} \simeq \mathbb{P}_{\overline{k}}^{n-1} \right\} / \simeq \\ & = H^1(k, \operatorname{PGL}_n) \to \operatorname{Br} k \\ \operatorname{PGL}_n k = \operatorname{Aut} \mathbb{P}^{n-1} = \operatorname{Aut} k^{n \times n} \\ A \mapsto \operatorname{BSV}(A) \\ \operatorname{BSV}(A)(L) = \left\{ {}_{A_L}A_L \twoheadrightarrow_{A_L}L^n \right\} \subset \mathbb{G}r(A, n) \\ \operatorname{BSV}(A) = \left\{ {}_{A}A \twoheadrightarrow_{\mathcal{A}} k^n \right\} (\operatorname{Van den Bergh}) \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Example

Rationality of some generic \mathbb{P}^n fibrations over \mathbb{P}^1

500

Example

•
$$\mathsf{BSV}(k^{n \times n}) = \mathbb{P}^{n-1}$$

Rationality of some generic \mathbb{P}^n fibrations over \mathbb{P}^1

JAG.

Example

•
$$\mathsf{BSV}(k^{n \times n}) = \mathbb{P}^{n-1}$$

•
$$\mathbb{H} = \mathbb{R} \oplus \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}k$$

JAG.

$$\begin{array}{l} \left\{ \text{Central simple } k\text{-algebras of rank } n^2 \right\} / \simeq \\ & \updownarrow \\ \left\{ \text{varieties } X \text{ over } k \text{ such that } \overline{X} := X \times_{\text{Spec } k} \text{Spec } \overline{k} \simeq \mathbb{P}_{\overline{k}}^{n-1} \right\} / \simeq \\ & = H^1(k, \text{PGL}_n) \to \text{Br } k \\ & \text{PGL}_n \, k = \text{Aut } \mathbb{P}^{n-1} = \text{Aut } k^{n \times n} \\ & A \mapsto \text{BSV}(A) \\ & \text{BSV}(A)(L) = \left\{ {}_{A_L}A_L \twoheadrightarrow_{A_L}L^n \right\} \subset \mathbb{G}r(A, n) \\ & \text{BSV}(\mathcal{A}) = \left\{ {}_{\mathcal{A}}\mathcal{A} \twoheadrightarrow_{\mathcal{A}}k^n \right\} \text{ (Van den Bergh)} \end{array}$$

Example

- BSV $(k^{n \times n}) = \mathbb{P}^{n-1}$
- $\mathbb{H} = \mathbb{R} \oplus \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}k$
- $\mathsf{BSV}(\mathbb{H}) = V(x^2 + y^2 + z^2 = 0) \subset \mathbb{P}^2_{\mathbb{R}}$

If $k = \overline{k}$ and char k = 0 then BSV(A) is rational over k.

□ ▶ ★ 臣 ▶ ★ 臣 ▶ ─ 臣

If $k = \overline{k}$ and char k = 0 then BSV(A) is rational over k.

Definition

k is a C_1 field if any form f of degree d < n variables has k rational point in \mathbb{P}^{n-1} .

3

If $k = \overline{k}$ and char k = 0 then BSV(A) is rational over k.

Definition

k is a C_1 field if any form f of degree d < n variables has k rational point in \mathbb{P}^{n-1} .

Example

I ≡ → I

If $k = \overline{k}$ and char k = 0 then BSV(A) is rational over k.

Definition

k is a C_1 field if any form f of degree d < n variables has k rational point in \mathbb{P}^{n-1} .

Example

```
Chevalley k is finite \Rightarrow k is C<sub>1</sub>
```

If $k = \overline{k}$ and char k = 0 then BSV(A) is rational over k.

Definition

k is a C_1 field if any form f of degree d < n variables has k rational point in \mathbb{P}^{n-1} .

Example

Chevalley k is finite \Rightarrow k is C_1 Tsen $k = \overline{k}$ and C curve then k(C) is C_1

If $k = \overline{k}$ and char k = 0 then BSV(A) is rational over k.

Definition

k is a C_1 field if any form f of degree d < n variables has k rational point in \mathbb{P}^{n-1} .

Example

Chevalley k is finite $\Rightarrow k$ is C_1 Tsen $k = \overline{k}$ and C curve then k(C) is C_1 \mathbb{R} is not C_1 since $X = V(x^2 + y^2 + z^2 = 0)$ has no real points.

If $k = \overline{k}$ and char k = 0 then BSV(A) is rational over k.

Definition

k is a C_1 field if any form f of degree d < n variables has k rational point in \mathbb{P}^{n-1} .

Example

Chevalley k is finite $\Rightarrow k$ is C_1 Tsen $k = \overline{k}$ and C curve then k(C) is C_1 \mathbb{R} is not C_1 since $X = V(x^2 + y^2 + z^2 = 0)$ has no real points. If k is C_1 then Br k = 0

$\pi:X ightarrow\mathbb{P}^1_k$ and

- $\pi: X \to \mathbb{P}^1_k$ and
 - k perfect C_1 field

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

- $\pi:X
 ightarrow\mathbb{P}^1_k$ and
 - k perfect C_1 field
 - Geometric general fibre is \mathbb{P}^n i.e. $\overline{X}_\eta \simeq \mathbb{P}^n$

副 と く ヨ と く ヨ と

æ

- $\pi: X \to \mathbb{P}^1_k$ and
 - k perfect C_1 field
 - Geometric general fibre is \mathbb{P}^n i.e. $\overline{X}_\eta \simeq \mathbb{P}^n$
 - deg Sing $\pi \leq 2 = s$ i.e. at most 2 singular fibres

3

- $\pi: X \to \mathbb{P}^1_k$ and
 - k perfect C_1 field
 - Geometric general fibre is \mathbb{P}^n i.e. $\overline{X}_\eta \simeq \mathbb{P}^n$
 - deg Sing $\pi \leq 2 = s$ i.e. at most 2 singular fibres
 - then X is rational over k.

э

- $\pi: X \to \mathbb{P}^1_k$ and
 - k perfect C_1 field
 - Geometric general fibre is \mathbb{P}^n i.e. $\overline{X}_\eta \simeq \mathbb{P}^n$
 - deg Sing $\pi \leq 2 = s$ i.e. at most 2 singular fibres
 - then X is rational over k.

Remark

- $\pi:X
 ightarrow\mathbb{P}^1_k$ and
 - k perfect C_1 field
 - Geometric general fibre is \mathbb{P}^n i.e. $\overline{X}_\eta \simeq \mathbb{P}^n$
 - deg Sing $\pi \leq 2 = s$ i.e. at most 2 singular fibres
 - then X is rational over k.

Remark

• X not rational over \mathbb{P}^1_k in general

- $\pi: X \to \mathbb{P}^1_k$ and
 - k perfect C_1 field
 - Geometric general fibre is \mathbb{P}^n i.e. $\overline{X}_\eta \simeq \mathbb{P}^n$
 - deg Sing $\pi \leq 2 = s$ i.e. at most 2 singular fibres
 - then X is rational over k.

Remark

- X not rational over \mathbb{P}^1_k in general
- Iskovskih (1970) proved the case n=1 and $s\leq 3$

- $\pi: X \to \mathbb{P}^1_k$ and
 - k perfect C₁ field
 - Geometric general fibre is \mathbb{P}^n i.e. $\overline{X}_\eta \simeq \mathbb{P}^n$
 - deg Sing $\pi \leq 2 = s$ i.e. at most 2 singular fibres
 - then X is rational over k.

Remark

- X not rational over \mathbb{P}^1_k in general
- Iskovskih (1970) proved the case n=1 and $s\leq 3$

Conjecture (Iskovskih)

If π is minimal and s > 3, n = 1 then X is not rational

- $\pi: X \to \mathbb{P}^1_k$ and
 - k perfect C₁ field
 - Geometric general fibre is \mathbb{P}^n i.e. $\overline{X}_\eta \simeq \mathbb{P}^n$
 - deg Sing $\pi \leq 2 = s$ i.e. at most 2 singular fibres
 - then X is rational over k.

Remark

- X not rational over \mathbb{P}^1_k in general
- Iskovskih (1970) proved the case n=1 and $s\leq 3$

Conjecture (Iskovskih)

If π is minimal and s > 3, n = 1 then X is not rational

Conjecture (I)

If π is minimal and s > 2, n > 1 then X is not rational

Rationality of some generic \mathbb{P}^n fibrations over \mathbb{P}^1
${\cal A}$ is a maximal order in ${\cal A}_\eta$ if

æ

(★ 문 ► ★ 문 ►

 ${\mathcal A}$ is a maximal order in ${\mathcal A}_\eta$ if

• \mathcal{A} is coherent sheaf of \mathcal{O}_X algebras

∃ → < ∃ →</p>

 ${\mathcal A}$ is a maximal order in ${\mathcal A}_\eta$ if

• \mathcal{A} is coherent sheaf of \mathcal{O}_X algebras

•
$$\mathcal{A} \subset \mathcal{A}_\eta$$

▲ 문 ▶ . ▲ 문 ▶

æ

 ${\mathcal A}$ is a maximal order in ${\mathcal A}_\eta$ if

- \mathcal{A} is coherent sheaf of \mathcal{O}_X algebras
- $\mathcal{A} \subset \mathcal{A}_{\eta}$
- $\mathcal{A}\otimes \mathcal{K}(\mathbb{P}^1)\simeq \mathcal{A}_\eta$

(종종) 종종) 등

 ${\mathcal A}$ is a maximal order in ${\mathcal A}_\eta$ if

- \mathcal{A} is coherent sheaf of \mathcal{O}_X algebras
- $\mathcal{A} \subset \mathcal{A}_{\eta}$
- $\mathcal{A}\otimes\mathcal{K}(\mathbb{P}^1)\simeq\mathcal{A}_\eta$
- $\bullet\,$ maximal with respect to $\subseteq\,$

▲ 문 ▶ . ▲ 문 ▶

 ${\mathcal A}$ is a maximal order in ${\mathcal A}_\eta$ if

- \mathcal{A} is coherent sheaf of \mathcal{O}_X algebras
- $\mathcal{A} \subset \mathcal{A}_{\eta}$
- ullet $\mathcal{A}\otimes \mathcal{K}(\mathbb{P}^1)\simeq \mathcal{A}_\eta$

 $\bullet\,$ maximal with respect to $\subseteq\,$

Proof.

▶ 《 문 ▶ 《 문 ▶

 ${\mathcal A}$ is a maximal order in ${\mathcal A}_\eta$ if

- \mathcal{A} is coherent sheaf of \mathcal{O}_X algebras
- $\mathcal{A} \subset \mathcal{A}_{\eta}$
- $\mathcal{A}\otimes \mathcal{K}(\mathbb{P}^1)\simeq \mathcal{A}_\eta$

• maximal with respect to \subseteq

Proof.

• $[X] \leftrightarrow [\mathcal{A}_{\eta}]$ division algebra in Br k(t)

• • = • • = •

 ${\mathcal A}$ is a maximal order in ${\mathcal A}_\eta$ if

- \mathcal{A} is coherent sheaf of \mathcal{O}_X algebras
- $\mathcal{A} \subset \mathcal{A}_{\eta}$
- $\mathcal{A}\otimes \mathcal{K}(\mathbb{P}^1)\simeq \mathcal{A}_\eta$

• maximal with respect to \subseteq

Proof.

- $[X] \leftrightarrow [\mathcal{A}_{\eta}]$ division algebra in Br k(t)
- Choose $\mathcal{A} \subset \mathcal{A}_\eta$ maximal order over \mathbb{P}^1_k

 ${\cal A}$ is a maximal order in ${\cal A}_\eta$ if

- \mathcal{A} is coherent sheaf of \mathcal{O}_X algebras
- $\mathcal{A} \subset \mathcal{A}_{\eta}$
- $\mathcal{A}\otimes \mathcal{K}(\mathbb{P}^1)\simeq \mathcal{A}_\eta$

• maximal with respect to \subseteq

Proof.

- $[X] \leftrightarrow [\mathcal{A}_{\eta}]$ division algebra in Br k(t)
- Choose $\mathcal{A} \subset \mathcal{A}_\eta$ maximal order over \mathbb{P}^1_k
- Replace X with BSV(A)

 $k(X) \simeq k(\mathsf{BSV}(\mathcal{A}))(t_1,\ldots,t_d).$

$k(X) \simeq k(\mathsf{BSV}(\mathcal{A}))(t_1,\ldots,t_d).$

Properties

Rationality of some generic \mathbb{P}^n fibrations over \mathbb{P}^1

<ロ> <部> < 部> < き> < き> < き</p>

 $k(X) \simeq k(\mathsf{BSV}(\mathcal{A}))(t_1,\ldots,t_d).$

Properties

• X is smooth

<ロ> <部> < 部> < き> < き> < き</p>

 $k(X) \simeq k(\mathsf{BSV}(\mathcal{A}))(t_1,\ldots,t_d).$

Properties

- X is smooth
- $X_\eta
 earrow Y_\eta$ with $\overline{X_\eta} \simeq \mathbb{P}^{n-1} \supset \mathbb{P}^k \simeq \overline{Y_\eta}$ twisted linear subspace

通 とう きょう うちょう しょう

 $k(X) \simeq k(\mathsf{BSV}(\mathcal{A}))(t_1,\ldots,t_d).$

Properties

- X is smooth
- $X_\eta
 to Y_\eta$ with $\overline{X_\eta} \simeq \mathbb{P}^{n-1} \supset \mathbb{P}^k \simeq \overline{Y_\eta}$ twisted linear subspace
- s = 2 since $x = 0 \Rightarrow X$ is rational and $s \neq 1$.

 $k(X) \simeq k(\mathsf{BSV}(\mathcal{A}))(t_1,\ldots,t_d).$

Properties

- X is smooth
- $X_\eta
 to Y_\eta$ with $\overline{X_\eta} \simeq \mathbb{P}^{n-1} \supset \mathbb{P}^k \simeq \overline{Y_\eta}$ twisted linear subspace
- s = 2 since $x = 0 \Rightarrow X$ is rational and $s \neq 1$.
- $p \in \operatorname{Sing} \pi$ then $R = \mathcal{O}_{\mathbb{P}^1, p}^{sh} \simeq \overline{k} \llbracket t \rrbracket$

$$\mathcal{A} \otimes R \simeq \overline{k} (n\text{-cycle})^h \simeq \overline{k} \llbracket x \rrbracket \rtimes \mathbb{Z} / \mathbb{Z} n$$

Interlude on Toric Varieties

Interlude on Toric Varieties

Varieties	Lattice
$X, \mathcal{O}(H)$	convex lattice polytope
$H^0(\mathcal{O}(H))$	lattice points in polytope
$\mathbb{P}^2, \mathcal{O}(1)$	triangle
$\mathbb{P}^2, \mathcal{O}(2)$	bigger triangle
toric subvarieties	faces
toric divisors	facets
changing $\mathcal{O}(H)$	sliding facets in and out
Blowing up	Cutting off subvariety
$Bl_{p}\mathbb{P}^{2}$	trapezoid
$\mathbb{P}^1 imes \mathbb{P}^1$	square

□ > 《注 > 《注 > □ 注

<ロ> <部> < 部> < き> < き> < き</p>

• $\Delta = \operatorname{Spec} R$ strictly hensel

Rationality of some generic \mathbb{P}^n fibrations over \mathbb{P}^1

回 と く ヨ と く ヨ と

æ

- $\Delta = \operatorname{Spec} R$ strictly hensel
- $F = (0 \subset F_1 \subset \cdots \in F_n = \mathbb{P}^n)$ is a complete flag

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

- $\Delta = \operatorname{Spec} R$ strictly hensel
- $F = (0 \subset F_1 \subset \cdots F_n = \mathbb{P}^n)$ is a complete flag

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

- $\Delta = \operatorname{Spec} R$ strictly hensel
- $F = (0 \subset F_1 \subset \cdots F_n = \mathbb{P}^n)$ is a complete flag
- X_Δ = Bl_F Pⁿ_Δ = BSV(n-cycle) = toric quiver variety of wagon wheel
- Picture

A B + A B +

- $\Delta = \operatorname{Spec} R$ strictly hensel
- $F = (0 \subset F_1 \subset \cdots F_n = \mathbb{P}^n)$ is a complete flag
- X_Δ = Bl_F Pⁿ_Δ = BSV(n-cycle) = toric quiver variety of wagon wheel
- Picture
- Puzzle

• • = • • = •

- $\Delta = \operatorname{Spec} R$ strictly hensel
- $F = (0 \subset F_1 \subset \cdots F_n = \mathbb{P}^n)$ is a complete flag
- X_Δ = Bl_F Pⁿ_Δ = BSV(n-cycle) = toric quiver variety of wagon wheel
- Picture
- Puzzle

•
$$\overline{X} = \mathsf{Bl}_{F,G} \mathbb{P}_{\mathbb{P}^1}(\mathcal{E})$$
 where

• • = • • = •

- $\Delta = \operatorname{Spec} R$ strictly hensel
- $F = (0 \subset F_1 \subset \cdots F_n = \mathbb{P}^n)$ is a complete flag
- X_Δ = Bl_F Pⁿ_Δ = BSV(n-cycle) = toric quiver variety of wagon wheel
- Picture
- Puzzle
- $\overline{X} = \mathsf{Bl}_{F,G} \mathbb{P}_{\mathbb{P}^1}(\mathcal{E})$ where
- \mathcal{E} is a vector bundle over \mathbb{P}^1

- $\Delta = \operatorname{Spec} R$ strictly hensel
- $F = (0 \subset F_1 \subset \cdots F_n = \mathbb{P}^n)$ is a complete flag
- X_Δ = Bl_F Pⁿ_Δ = BSV(n-cycle) = toric quiver variety of wagon wheel
- Picture
- Puzzle
- $\overline{X} = \mathsf{Bl}_{F,G} \, \mathbb{P}_{\mathbb{P}^1}(\mathcal{E})$ where
- \mathcal{E} is a vector bundle over \mathbb{P}^1
- F, G are complete flags in fibres over $0, \infty$

- $\Delta = \operatorname{Spec} R$ strictly hensel
- $F = (0 \subset F_1 \subset \cdots F_n = \mathbb{P}^n)$ is a complete flag
- X_Δ = Bl_F Pⁿ_Δ = BSV(n-cycle) = toric quiver variety of wagon wheel
- Picture
- Puzzle
- $\overline{X} = \mathsf{Bl}_{F,G} \, \mathbb{P}_{\mathbb{P}^1}(\mathcal{E})$ where
- \mathcal{E} is a vector bundle over \mathbb{P}^1
- F, G are complete flags in fibres over $0, \infty$

Proposition

 $\overline{X} \to \mathbb{P}^1$ is toric and F, G are toric invaraiant flags.

There exists $s : \mathbb{P}^1 \to \overline{X}$ such that $H^0(N_{X/s}) = 0$.

<ロ> <部> < 部> < き> < き> < き</p>

There exists
$$s : \mathbb{P}^1 \to \overline{X}$$
 such that $H^0(N_{X/s}) = 0$.

• The section *s* is torus invariant.

▲口▶ ▲御▶ ▲注▶ ▲注▶ ― 注

There exists
$$s : \mathbb{P}^1 \to \overline{X}$$
 such that $H^0(N_{X/s}) = 0$.

- The section *s* is torus invariant.
- There are only finitely many such sections.

э

There exists
$$s : \mathbb{P}^1 \to \overline{X}$$
 such that $H^0(N_{X/s}) = 0$.

- The section *s* is torus invariant.
- There are only finitely many such sections.
- The $\langle {\rm Gal}(\overline{k}/k)s \rangle$ in \overline{X}_η is twisted linear subspace

There exists
$$s : \mathbb{P}^1 \to \overline{X}$$
 such that $H^0(N_{X/s}) = 0$.

- The section *s* is torus invariant.
- There are only finitely many such sections.
- The $\langle Gal(\overline{k}/k)s \rangle$ in \overline{X}_{η} is twisted linear subspace
- So Galois orbit of *s* is all torus invariant sections.

There exists
$$s : \mathbb{P}^1 \to \overline{X}$$
 such that $H^0(N_{X/s}) = 0$.

- The section *s* is torus invariant.
- There are only finitely many such sections.
- The $\langle {\rm Gal}(\overline{k}/k)s \rangle$ in \overline{X}_η is twisted linear subspace
- So Galois orbit of s is all torus invariant sections.
- and $N_{X/s} \simeq N_{X/s'}$ for all torus invariant sections s, s'.

There exists
$$s : \mathbb{P}^1 \to \overline{X}$$
 such that $H^0(N_{X/s}) = 0$.

- The section *s* is torus invariant.
- There are only finitely many such sections.
- The $\langle {\rm Gal}(\overline{k}/k)s \rangle$ in \overline{X}_η is twisted linear subspace
- So Galois orbit of s is all torus invariant sections.
- and $N_{X/s} \simeq N_{X/s'}$ for all torus invariant sections s, s'.

Proposition

X has a Galois invariant section or $\overline{X} \simeq Bl_{F,G}(\mathbb{P}^n \times P^1)$ with F, G complementary flags.

• \overline{X} has Galois invariant divisors $K_{\overline{X}}$ and $F = \pi^{-1}(p)$ for $p \in \mathbb{P}^1$.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 日 ● の Q ()

- \overline{X} has Galois invariant divisors $K_{\overline{X}}$ and $F = \pi^{-1}(p)$ for $p \in \mathbb{P}^1$.
- Effective cone spanned by $-K_{\pi} = -K 2F$ and F.

- \overline{X} has Galois invariant divisors $K_{\overline{X}}$ and $F = \pi^{-1}(p)$ for $p \in \mathbb{P}^1$.
- Effective cone spanned by $-K_{\pi} = -K 2F$ and F.
- $X \xrightarrow{-K-F} Y$ where $\overline{Y} \simeq (\mathbb{P}^1)^{n+1}$
- \overline{X} has Galois invariant divisors $K_{\overline{X}}$ and $F = \pi^{-1}(p)$ for $p \in \mathbb{P}^1$.
- Effective cone spanned by $-K_{\pi} = -K 2F$ and F.

•
$$X \xrightarrow{-K-F} Y$$
 where $\overline{Y} \simeq (\mathbb{P}^1)^{n+1}$

Theorem (Springer)

Any form of a homogenous space of a connected linear algebraic group over perfect C_1 field has a k rational point.

- \overline{X} has Galois invariant divisors $K_{\overline{X}}$ and $F = \pi^{-1}(p)$ for $p \in \mathbb{P}^1$.
- Effective cone spanned by $-K_{\pi} = -K 2F$ and F.

•
$$X \xrightarrow{-K-F} Y$$
 where $\overline{Y} \simeq (\mathbb{P}^1)^{n+1}$

Theorem (Springer)

Any form of a homogenous space of a connected linear algebraic group over perfect C_1 field has a k rational point.

•
$$\operatorname{Bl}_{p} Y \xrightarrow{|H-nE_{p}|} \mathbb{P}^{n+1}$$

Polytopes over the effective cone

- 《圖》 《문》 《문》

æ