The Krustal-Wallis test can only be used for a single factor analysis. The ANOVA F-test can be extended to studies with several factors, RCBD, etc.

These tests assume only:

- (1) Independent obsus on the factor levels
- (2) The factor level populations have approx. the same shape and same spread

(3) the response variable data is at least ordinal (ranked)

ANOVA TEST ON Ranks

I. Rank all the n_{7} Yij from smallest to largest (using average rank for ties)

2. Find $SSTO = \frac{2}{2} \frac{2}{i=1} \frac{R_{ij} - R_{ii}}{2} \frac{2}{i=1} \frac{R_{ij} - R_{ii}}{2}$ where $R_{ij} = rank of obsn Y_{ij}$

$$55TR = \frac{2}{2} \frac{R_{i.}^{2}}{\frac{1}{2}} \left(R_{i.} - R_{i.} \right)^{2} = \frac{2}{2} \frac{R_{i.}^{2}}{R_{i.}} - \frac{R_{i.}^{2}}{R_{T}}$$

Carry out Hypothesis Test

Ho:
$$M_1 = \dots = M\alpha$$
 vs H_A : not all M : areequal test stat.; $F_R^* = \frac{MSTR}{MSE}$ for the RANKS of the Y_{ij} $\frac{R\cdot R\cdot !}{R}$: $F_R^* = \frac{F_{A-1} \cdot n_T - \alpha_{1,1} - \lambda_{2,1}}{NT}$

Hruskal-Wallis Test

Test statistic is

$$H = \frac{12}{n_T(n_T+1)} \frac{2}{i=1} \frac{R_i}{n_i} - 3(n_T+1)$$

R.R.: Reject Ho if H7 Xa-1, 1-1

N.B H has an approx. χ^2 distribute (a-1) dif. provided the niare large enough $(n_i \ 25)$

BACK TO SOME PROOFS

$$\frac{\sum_{j=1}^{n_x} e_{ij}}{\sum_{j=1}^{n_x} e_{ij}} = 0 \quad \text{for } \underbrace{\frac{e_{ach}}{n_x}}_{1=1, \dots, a} = 1, \dots, a$$

$$\frac{\sum_{j=1}^{n_x} e_{ij}}{\sum_{j=1}^{n_x} e_{ij}} = \sum_{j=1}^{n_x} (y_{ij} - \overline{y}_{i,j}) = \sum_{j=1}^{n_x} y_{i,j} - n_i y_{i,j}$$

$$=\frac{2}{j}Y_{ij}-n_{i}\left(\frac{2}{j}Y_{ij}\right)=\frac{n_{i}}{j}Y_{ij}=0$$

proof Under our model assumptions

$$E\{MSE\} = E\left\{\frac{2}{\sum_{i=1}^{n} |Y_{ij} - Y_{ii}|^{2}}\right\}$$

$$= E \left\{ \frac{2}{2} \left(n_{i} - 1 \right) 5_{i}^{2} \right\}$$

$$= \frac{1}{n_{T}-\alpha} \sum_{i=1}^{\alpha} (n_{i}-1) E\{S_{i}^{2}\}$$

$$= \frac{6^{2}}{n_{t}-a} = \frac{9}{1=1} (n_{i}-1)$$

$$=\frac{6^2}{n_T-a}\left(n_T-a\right)$$

$$= 6^2 \qquad q.e.d.$$

$$E\{MSTR\} = 6^{2} + \frac{2}{4} \frac{n_{i} \left(M_{i} - M_{i}\right)^{2}}{a-1}, M_{i} = \frac{2}{n_{i} M_{i}}$$

where
$$S_i = \frac{\sum_{j=1}^{n_i} (Y_{ij} - \overline{Y}_{i,j})}{n_i - 1}$$

= ordinary sample variance for factor level i

since by assumptions of independence q common variance, each S_{1}^{2} is an unbiased estimator of 6^{2}

Note the following equivalences that will be needed.

1.
$$E[Y_{i}] = M_{i}$$
 $Var(Y_{i}) = \frac{6^{2}}{n_{i}}$
2. $E[Y_{i}] = E\{\underbrace{\xi}_{i=1}, \underbrace{Y_{i}}_{j=1}\} = \frac{1}{n_{r}} \underbrace{\xi}_{i=1}^{2} E\{Y_{i,j}\}$
 $= \underbrace{1}_{n_{r}} \underbrace{\xi}_{i=1}^{2} \underbrace{M_{i}}_{j=1} = \underbrace{1}_{n_{r}} \underbrace{\xi}_{i=1}^{n_{r}} \underbrace{M_{i}}_{i=1} = \underbrace{M_{i}}_{above}$

3.
$$Var(Y_{i,j}) = Var(\frac{2}{5}, \frac{2}{5}, \frac{1}{1})$$

$$= \frac{1}{n_{\tau}^{2}} \sum_{i=1}^{4} \frac{2}{j=1} Var(Y_{i,j}) \qquad \text{since all } Y_{i,j} \text{ are independent } r.v. \Delta$$

$$= \frac{1}{n_{\tau}^{2}} \sum_{i=1}^{4} \frac{2}{j=1} G^{2} \qquad \text{independent } r.v. \Delta$$

$$= \frac{1}{n_{\tau}^{2}} \sum_{i=1}^{4} \frac{2}{j=1} R_{i} G^{2} \qquad \frac{2}{n_{\tau}^{2}} \sum_{i=1}^{4} \frac{2}{n_{\tau}^{2}} R_{i}^{2} = \frac{6}{n_{\tau}^{2}} \frac{2}{n_{\tau}^{2}} R_{i}^{2}$$

= E { \(\frac{1}{2} \) ni \(\frac{1}{2} \) - \(\frac{1}{2} \) \} = E \(\frac{5}{2} \) ni \(\frac{1}{2} \) - 2\(\frac{1}{2} \) \\
= E \(\frac{5}{2} \) ni \(\frac{1}{2} \) - 2\(\frac{1}{2} \) \\
= E \(\frac{5}{2} \) ni \(\frac{1}{2} \) - 2\(\frac{1}{2} \) \\
= E \(\frac{5}{2} \) ni \(\frac{1}{2} \) - 2\(\frac{1}{2} \) \\
= E \(\frac{5}{2} \) ni \(\frac{1}{2} \) - 2\(\frac{1}{2} \) \\
= E \(\frac{5}{2} \) ni \(\frac{1}{2} \) - 2\(\frac{1}{2} \) \\
= E \(\frac{5}{2} \) ni \(\frac{1}{2} \) - 2\(\frac{1}{2} \) \\
= E \(\frac{5}{2} \) ni \(\frac{1}{2} \) - 2\(\frac{1}{2} \) ni \(\frac{1}{2} \) ni \(\frac{1}{2} \) \\
= E \(\frac{5}{2} \) ni \(\frac{1}{2} \) ni \(\fr = E (& n; Yi. - 2 Y., & n; Yi. + Y. & n;) = E { & n, Y, 2 - 2 Y, . Y, . + n, Y, 2 } [= y, .] $= E \left\{ \sum_{i=1}^{q} n_{i} \overline{Y_{i}}^{2} - 2 \overline{Y_{i}} n_{T} \overline{Y_{ii}} + n_{T} \overline{Y_{ii}}^{2} \right\}$ = E(\(\frac{\partial}{\partial}\) n, \(\frac{\gamma_1^2}{12}\) - \(\frac{\gamma_1^2}{12}\) \(\frac{\gamma_1^2}{12}\) - \(\frac{\gamma_1^2}{12}\) \(\f $= \underbrace{\sum_{i=1}^{n} \left[Var \left(\overline{Y}_{i.} \right) + \left(E \left(\overline{Y}_{i.} \right) \right)^{2} \right]}_{-n_{T} \left[Var \left(\overline{Y}_{i.} \right) + \left(E \left(\overline{Y}_{i.} \right) \right)^{2} \right]} \right) \text{ using}$ $= \underbrace{5}_{i=1} n_i \left[\underbrace{6^2}_{n_i} + u_i^2 \right] - n_t \left[\underbrace{6^2}_{n_t} + u_i^2 \right]$ = a62 + Enilli2 - 62 - nr ll.2 $=(a-1)6^{2}+\frac{a}{5}n_{i}M_{i}^{2}-n_{\tau}M_{i}^{2}$ $=(a-1)6^{2}+\frac{a}{2}n_{i}(M_{i}-M_{i})^{2}$.. E [MSTR] = E [SSTR] = 6 + $\frac{2}{1}$ [M.-M.)

Comparing Factor Level Means

Once it has been determined that the treatment means do differ, you generally want to look at how they differ. That is, you want to make comparisons between them.

For example:

You might want to see whether the mean yield of a chemical increases with the amount of catalyst; or compare several drugs to a standard drug; oar compare high fibre diets to low fibre diets; etc

Thus you will want to do hypothesis tests and find confidence intervals for treatment means and comparisons of treatment means.

Contrasts

Definition

A linear combination of the treatment means $L = \sum_{i=1}^{a} c_i \mu_i$, where the c_i are constants, is a contrast

if
$$\sum_{i=1}^{a} c_i = 0$$

Eg 1

Suppose an experiment was run to test the lifetimes of: alkaline brand name batteries (1), alkaline store brand (2), heavy duty name brand (3), and heavy duty store brand (4). The null hypothesis that the mean lifetimes were equal for all 4 brands was rejected. It is now desired to compare the average lifetimes of alkaline vs heavy duty batteries. The contrast

$$L = \mu_1 + \mu_2 - (\mu_3 + \mu_4)$$
 will do this.

NOTE that
$$L_2 = (\mu_1 + \mu_2)/2 - (\mu_3 + \mu_4)/2$$
 and $L_3 = 4(\mu_1 + \mu_2) - 4(\mu_3 + \mu_4)$

are both equivalent contrasts to L for this comparison.

- choose
$$L = \mu_1 + \mu_2 - (\mu_3 + \mu_4)$$
 since it is the simplest

Eg 2

Suppose that you want to compare the effect of each of 3 new drugs (1, 2, 3) with a standard drug (4). Then we want the 3 contrasts

$$L_1 = \mu_1 - \mu_4$$
 $L_2 = \mu_2 - \mu_4$ $L_3 = \mu_3 - \mu_4$ That is 3 pairwise comparisons.

NOTE:

In eg 1 above there was interest only in a single comparison. In eg 2 there were 3 comparisons of interest.

There is a difference in the methods that should be used for carrying out several comparisons and those for a single comparison. Will first give the C.I.'s and hypothesis tests about a single mean or a single contrast and then look at Multiple Comparison methods.

Confidence Intervals and Hypothesis Tests for SINGLE Factor Level Means and SINGLE Contrasts

For a Single Treatment wear (model: $Y_{ij} = \mathcal{U}_i + \mathcal{E}_{ij}$) $\overline{Y_i}$. $\wedge NID(\mathcal{U}_i, \frac{G_{i}^2}{N_A})$ and $\overline{Y_i}$. $-\mathcal{U}_i$ has a T-distr. with $(n-a)d \in \mathbb{R}$. \overline{NSE} \therefore a 100(1-d)% C. \overline{I} . for \mathcal{U}_i is $\overline{(Y_i, \pm t_{n-a}, d/2)}$ \overline{NSE}/N_A Hypathis T ists \overline{H}_i : $\mathcal{U}_i = \mathcal{U}_0$ $\overline{U}_i = \mathcal{U}_0$ $\overline{U}_i = \mathcal{U}_0$ $\overline{U}_i = \mathcal{U}_i = \mathcal{U}_i$ $\overline{U}_i = \mathcal{U}_i = \mathcal{U}_i$

N.B. The above are robust to departures from normality ("C.L.T.) but NOT to unequal variances (in which case MSE/ni dues not extimate the unequal 6%).

u Llo)

Single Contrast (or LE) $L = \underbrace{\mathcal{E}}_{i=1} C_i \mathcal{U}_i - \underbrace{\text{could be any}}_{\text{linear combination}}$ Î = E ci Yi. is an unhised estimator of L with $Van\{\hat{L}\} = \frac{a}{1=1}C_i^2 \frac{6^2}{n_x} = 6^2 \frac{a}{1=1} \frac{C_i^2}{n_x^2}$ so Î-L

NSE É Ci/n, (n-a) d. x; a 100(1-2)% c.I. for a single L is (L ± In-a, 1/2 /MSE 3 Ci/nx) N.B. If comparing 2 means \mathcal{U}_i 4 \mathcal{U}_k this reduces to $\left(\overline{Y}_i, \overline{Y}_h, \pm f_{n-a}, \chi_{\sum} \sqrt{MSE(\frac{1}{n_i}, +\frac{1}{n_k})}\right)$ Hypathinis Tests (Lo a particular o) Test stit: T- L-Lo

[MSE & Ci/nx HA: L = Lo

Ay L= Mi-Ms test stat: T= Ho: Mi-Uh = Do HA: Mi-Mn + Do MI - MA 7 DO MI - MA C DO

(44)

Multiple Comparison Methods

- Usually want to carry out several comparisons involving the means
- Also often want to <u>look</u> at the data produced by the experiment (i.e. results) and choose interesting comparisons suggested by those results. This is called DATA SNOOPING.

Note:

When you "data snoop" for interesting comparisons you are <u>implicitly</u> looking at <u>all possible</u> comparisons of that type.

<u>Eg</u>

Suppose in class eg 4, you look at the $\overline{Y_i}$ and decide to compare μ_E to μ_D since $\overline{Y_E}$ is the largest and $\overline{Y_D}$ is the smallest. BUT this is **not** a single comparison, since in order to pick it, **all** the $\overline{Y_i}$ had to be looked at. You implicitly looked at all $C_2^5 = 10$ possible comparisons.

Thus want comparison methods which control the

OVERALL (or FAMILY) significance level (error rate)

Per Comparison Error Rate (significance level) = $P(\text{ reject } H_0 \mid H_0 \text{ true})$

Overall or Family Error Rate = P(reject at least 1 H_0 | all H_0 true)

Summary of Multiple Comparison Methods

- 1. <u>Bonferroni</u> for PREPLANNED comparisons:
- Applies to any g preplanned contrasts or means or linear combinations
- Can NOT be used for DATA SNOOPING
- If # comparisons g is small Bonferroni method gives shorter C.I.'s than other methods
- Can be used for any design
- 2. <u>Scheffe</u> (Automatically covers All Possible Comparisons)
- Applies to any g contrasts | but not linear combinations that are NoT contrasts
- Gives shorter C.I.'s than Bonferroni if g is large and larger C.I.'s if g is small (but remember that Bonferroni can NOT be used unless the comparisons were decided on in advance of looking at the data (i.e. preplanned)
- Can be used for any design
- Allows for data snooping since Scheffe method automatically considers all possible contrasts
- Should NOT, however, be used if one is interested ONLY in <u>pairwise</u> comparisons. In this case TUKEY is better.

- 3. <u>Tukey</u> (Automatically covers All Possible Pairwise Comparisons)
- Always best for all pairwise comparisons
- Can be used for CRD, RCBD, BIBD
- Allows data snooping since automatically considers all possible pairs
- If g small and comparisons are PREPLANNED, then Bonferroni

as it gives shorter C.I.'s

- 4. Dunnett for Treatments vs a Control
- Best for all treatment vs control contrasts μ_i $\mu_{control}$
- Can be used for CRD, RCBD, BIBD
- By definition a preplanned method

Bonferroni Multiple Comparisons

These are suitable for any group of g comparisons (C.I.'s or hyp. tests) that are <u>preplanned</u>. They use g T-tests (or T-distn C.I.'s) where the <u>per comparison</u> significance level for each comparison is

should use

 α/g with α being the desired <u>family</u> significance level.

This ensures that the overall or family significance level $\leq \mathcal{L}$ since

$$= 1 - P(\overline{A_1} \wedge \overline{A_2} \wedge \cdots \wedge \overline{A_g})$$

$$\leq 1 - \left[1 - P(A_1) - P(A_2) - \cdots - P(A_g)\right] - by the .$$

Inequality

$$= P(A_1) + P(A_2) + \cdots + P(A_g)$$

$$=\frac{2}{9}+\frac{2}{9}+\dots+\frac{2}{9}=\frac{9}{9}=2$$

: family significance level Ed

VMSE (I + hp)

family confidence level 71-2
T1
Thus use:
For a set of g Linear Combinations Li, "Lg
Lk = 3 Ci Mi
100(1-2)% Confidence Intervals, k=1,2,-,9
11 + +
(Ln I In-a, & MSE 3 Ci2/n)
For g Hypothesis Tests (sign. level = d)
Ho; Ln=Lno test stat: T*= Lno-Lno
$ \frac{\left(H_{A}: L_{R} + L_{R0} R.R. \mid t^{x} \mid 7 \int_{n_{+}}^{n_{+}} a_{1} \frac{\lambda}{29} \right) \sqrt{MSE_{2}^{2}C_{1}/n_{3}}}{H_{A}: L_{R}: L_{$
$\frac{1}{11000000000000000000000000000000000$
HA: LEZ LEO BB: + 1 = +
HA: LEZ LEO RR.: 1 <- tn,-a, d/g
For g pairwise comparisons; Mi-Mk
the above reduce to
(Yi Yb. ± In, -a, 2/29 JMSE (+++)
and Ho: Mi-Up = Do test stat: T = Y1 Yk Do

N.B Each of the A1, A2, ..., Ag could have different probabilities so in general

 $P(A, UA_2 U : UA_g) \leq P(A_1) + \dots + P(A_g) = \lambda_1 + \lambda_2 + \dots + \lambda_g$ which will be $\leq \lambda$ if $\frac{2}{\lambda_1} = \lambda$

Scheffe Method for All Possible Contrasts

L= ¿ ci li where ¿ ci = 0

Note that while Bonferron's applies to any linear combination, the Scheffe method only covers contrasts.

- automatically covers all possible contrasts with family error rate < & i, can be used for data snooping - since never actually do all possible contrasts (except if data snooped), in practice error rate < &

Simultaneous 100 (1-2) % C. I. & for ALL Possible Lk (Lx ± V(a-1) Fa-1, n+-a, 1-2 VMSF & C2/nx) contrasts For testing all possible A with family error rate < 2 Ho: Lb = 0) for all possible contrasts Ho: Lb = 0 | Lb = 2 cilling i=1 Reject Ho if 1 Lp 7 V (a-1) Fa-1, n, -a, 2 VMSE & Cx/n; Tukey Method for PAIRWISE Comparisons: 4-4 - can be used for data snooping since automatically covers all possible pairs - best method when interested in all pairwise comparisons (it gives the narrowest C.I.'s in this case) - based on the Studentized Range Distribution - if only want some paired comparisons that are PREPLANNED, then use either Tukey or

Bonferroni, whichever gives the shorter C.I.A.