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17.

√
2 − 1

2
.

I ≡
∫ √

π/2

0

x sec(x2) tan(x2) dx

=

∫ √
π/2

0

1

2

d

dx
sec(x2) dx

=
1

2
sec(x2)

∣∣∣√π/2

0
=

1

2

(
sec

π

4
− sec 0

)
=

1

2
(
√

2 − 1).

18. 0. Let � = x2 So D� = 2x and the antiderivative looks like

1

2

∫
1

1 + � 2

d�

dx
dx,

which reminds one of the derivative of the Arctangent function. In fact,∫ 1

−1

x

1 + x4
dx =

1

2
tan−1 x2

∣∣∣ 1

−1
=

1

2
(tan−1 1 − tan−1 1) = 0.

(Notice that 0 is the expected answer because the integrand is an odd function.)

19. Following the hint, we have
d

dx

∫ x2

0

et dt = ex2 d

dx
x2 = 2xex2

.

20. These identities can be seen from the respective symmetry in the graph of f .
Here is an analytic argument. Assume that f is even: f(−x) = f(x). Let
F(x) =

∫ x

0
f(t)dt, (−∞ < x < ∞). Then d

dx
F(x) = f(x) and∫ x

−x

f(t)dt =

∫ 0

−x

f(t)dt +

∫ x

0

f(t)dt

= −
∫ −x

0

f(t)dt +

∫ x

0

f(t)dt = −F(−x) + F(x).

Thus we will have
∫ x

−x
f(t)dt = 2

∫ x

0
f(t)dt if we can show −F(−x) = F(x). Let

G(x) = −F(−x). We are going to show G = F . Now

d

dx
G(x) =

d

dx
(−F(−x)) = −

(
d

dx
F(−x)

)
= −

(
F ′(−x) · (−1)

)
= F ′(−x) = f(−x) = f(x).

Thus, by the Fundamental Theorem of Calculus, G(x) =
∫ x

0
f(t) dt+C for some

constant C, or G(x) = F(x) + C. Now G(0) = −F(−0) = −F(0) = −0 = 0,
which is the same as F(0) (= 0). So C must be zero. Thus G = F . Done! (The
second part of the exercise which involves an even function f can be dealt with
in the same manner.)

7.3 Exercise Set 36

1.

10∑
i=1

i.

2.

9∑
i=1

(−1)i−1, or

9∑
i=1

(−1)i+1, or

8∑
i=0

(−1)i.

3.

5∑
i=1

sin iπ.
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4.

n∑
i=1

i

n

5. −0.83861

6. 0.19029.

7. 0. Note that sin nπ = 0 for any integer n.

8. 1 + 2 + 3 + · · · + 50 =
50 × 51

2
= 1275.

9. 12 + 22 + · · · + 1002 =
100 × 101 × 201

6
= 338350.

10.

n∑
i=1

i

n
=

1

n

n∑
i=1

i =
1

n
· n(n + 1)

2
=

n + 1

2
.

11.

n∑
i=1

6
(

i

n

)2

=
6

n2

n∑
i=1

i2 =
6

n2
· n(n + 1)(2n + 1)

6
=

(n + 1)(2n + 1)

n
.

12. This is a telescoping sum:

6∑
i=1

(ai − ai−1) = (a1 − a0) + (a2 − a1) + · · · + (a6 − a5) = a6 − a0.

The final expression stands for what is left after many cancellations.

13. We prove this identity by induction. For n = 1, we have

LHS =

1∑
i=1

(ai − ai−1) = a1 − a0 = RHS.

Now we assume
∑k

i=1
(ai −ai−1) = ak −a0, that is, the identity holds for n = k.

Then, for n = k + 1, we have

k+1∑
i=1

(ai − ai−1) =

k∑
i=1

(ai − ai−1) + (ak+1 − ak)

= (ak − a0) − (ak+1 − ak) = ak+1 − a0.

So the identity is also valid for n = k + 1. Done.

14. Indeed,

n∑
i=1

1

n

(
i

n

)2

=
(

1

n

)3
n∑

i=1

i2 =
(

1

n

)3 n(n + 1)(2n + 1)

6

=
n

n

(n + 1)

n

(2n + 1)

n

1

6
=
(
1 +

1

n

)(
2 +

1

n

)
1

6
.

It follows that

lim
n→∞

n∑
i=1

1

n

(
i

n

)2

= 1 · 2 · 1

6
=

1

3
.

15. For convenience, we write

An =

n−1∑
i=1

n3

n4 + in3 + pn
.

We have to show that limn→∞ An = ln 2. We know that
∫ 2

1

1
x

dx = ln 2.
Divide the interval [1, 2] into n subintervals of the same length 1/n by means of
subdivision points xi = 1+ i

n
(i = 0, 1, 2, . . . , n−1) and form the corresponding

Riemann sum Sn for the function f(x) = 1/x:

Sn =

n−1∑
i=0

f(xi) · ∆xi =

n−1∑
i=0

1

xi
· ∆xi =

n−1∑
i=0

n

n + i
· 1

n
=

n−1∑
i=0

1

n + i
.
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Since f is continuous on [1, 2], from the theory of Riemann integration we know
that limn→∞ Sn = ln 2. It suffices to show that limn→∞(Sn − An) = 0. Now

Sn − An =

n−1∑
i=0

(
1

n + i
− n3

n4 + in3 + pn

)

=

n−1∑
i=0

(n4 + in3 + pn) − n3(n + i)

(n4 + in3 + pn)(n + i)
=

n−1∑
i=0

pn

(n4 + in3 + pn)(n + i)
.

Thus

0 ≤ Sn − An ≤
n−1∑
i=0

pn

n4 · n = pn/n4;

(dropping something positive from the denominator of a positive expression
would diminish the denominator and hence would increase the size of this ex-
pression.) By the Hint, we have pn < 36n ln n. It is well-known that ln x ≤ x for
all x > 0. So pn < 36n2 for all n ≥ 2. Thus 0 < Sn −An ≤ pn/n4 < 36n2/n4 =
36/n2 for n ≥ 2. Now it is clear that Sn − An tends to 0 as n → ∞, by the
Sandwich Theorem of Chapter 2.

7.4

7.5 Chapter Exercises

1.
1

27
(x + 1)27 + C. Use Table 7.5, � = x + 1, r = 26.

2. 1
2

sin 2x + C.

3. 1
3
(2x + 1)3/2 + C.

4. − 1

12
(1 − 4 x2)3/2 + C. Use Table 7.5, � = 1 − 4x2, r = 1/2.

5. − cos x + sin x + C.

6. − 1
3
(5 − 2x)3/2 + C.

7. −1

2
cos(2x) + C. Use Table 7.6, � = 2x.

8. 0.4 x2.5 + 0.625 cos(1.6x) + C.

9. 3 tanx + C.

10.
1

200
(x2 + 1)100 + C. Use Table 7.5, � = x2 + 1, r = 99.

11. − 1
3

csc 3x + C.

12. −1

6
e−3 x2

+ C. Use Table 7.5, � = −3x2.

13. − 1

k
e−kx + C.

14.
sin k x

k
+ C. Use Table 7.6, � = kx.

15. − cos k x

k
+ C.

16. 2.

∫ 1

0

(2x + 1) dx = x2 + x

∣∣∣∣
1

0

= 2.

17. 0. Note that f(x) = x3 is an odd function.

18. 10. I =

∫ 2

0

(3x2 + 2x − 1) dx = x3 + x2 − x

∣∣∣∣
2

0

= 10.
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19.
1

5
.

∫ π/2

0

sin4 x cos x dx =
sin5 x

5

∣∣∣∣
π/2

0

=
1

5
.

20.
1

ln 3
.

∫ 1

0

x · 3x2
dx =

1

2

3x2

ln 3

∣∣∣∣
1

0

=
1

ln 3
. Use Table 7.5, � = x2, a = 3.

21.
1

ln 4
.

∫ 1

0

2−xdx = − 1

ln 2
2−x

∣∣∣1
0

= − 1

ln 2

(
1

2
− 1
)

=
1

2 ln 2
=

1

ln 4
.

22.
2

3
.

∫ π

0

cos2 x · sin x dx = − cos3 x

3

∣∣∣∣
π

0

=

(
− (−1)3

3

)
−
(
−1

3

)
=

2

3
.

23.
28

3
. Note that f(x) = x2 + 1 is an even function.

24.
π

6
.

∫ 0.5

0

1√
1 − x2

dx = Arcsin x

∣∣∣∣
0.5

0

=
π

6
.

25.
1

2
e4 − 1

2
. Use Table 7.5, � = x2.

26.

n∑
i=1

12
(

i

n

)2

=
12

n2

n∑
i=1

i2 =
12

n2
· n(n + 1)(2n + 1)

6
=

2(n + 1)(2n + 1)

n
.

27. Consider the partition

0 = x0 < x1 < x2 < · · · < xn = 1

with xi = i
n
, which divides [0, 1] into n subintervals [ i

n
, i+1

n
] of the same length

1/n, (i = 0, 1, 2, . . . , n−1). In each subinterval [ i
n
, i+1

n
] we take ci to be the left

end point i
n
. Then the corresponding Riemann sum for the function f(x) = ex

is
n−1∑
i=0

f(ci)(xi+1 − xi) =

n−1∑
i=0

ei/n
(

i + 1

n
− i

n

)
=

n−1∑
i=0

ei/n · 1

n
.

But we know from the definition of Riemann integration that

lim
n→∞

n∑
k=1

f(ck)(xk − xk−1) =

∫ 1

0

f(x)dx =

∫ 1

0

exdx = e − 1.

Now the assertion is clear.

28. Indeed, (
n

n2 + 02
+

n

n2 + 12
+

n

n2 + 22
+ ... +

n

n2 + (n − 1)2

)
=(

n

n2(1 +
(

0
n

)2
)

+
n

n2(1 +
(

1
n

)2
)

+
n

n2(1 +
(

2
n

)2
)

+ ... +
n

n2(1 +
(

n−1
n

)2
)

)
=

(
1

n (1 +
(

0
n

)2
)

+
1

n (1 +
(

1
n

)2
)

+
1

n (1 +
(

2
n

)2
)

+ ... +
1

n (1 +
(

n−1
n

)2
)

)
=

1

n

(
1

(1 +
(

0
n

)2
)

+
1

(1 +
(

1
n

)2
)

+
1

(1 +
(

2
n

)2
)

+ ... +
1

(1 +
(

n−1
n

)2
)

)
=

n−1∑
i=0

1

(1 +
(

i
n

)2
)

(
1

n

)
=

n−1∑
i=0

f(ci) (∆xi),

once we choose the ci as ci = xi = i/n and f as in the Hint. Next, we let
n → ∞ so that the norm of this subdivision approaches 0 and, by the results of
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this Chapter, the Riemann Sum approaches the definite integral

lim
n→∞

n−1∑
i=0

f(ci)∆xi =

∫ 1

0

1

1 + x2
dx,

= Arctan 1 − Arctan 0 =
π

4
.

29. Method 1 First we interpret the integral
∫ 1

0
1√

1−x2
dx (whose value is π

2
) as

the limit of a sequence of Riemann sums Sn defined as follows. For fixed n, we
divide [0, 1] into n subintervals of length 1/n by xi ≡ i/n (0 ≤ i ≤ n) and we
take ci to be xi. Then the corresponding Riemann sum for f(x) ≡ 1√

1−x2
is

Sn =

n−1∑
i=0

f(ci)(xi+1 − xi) =

n−1∑
i=0

1√
1 − (i/n)2

· 1

n
=

n−1∑
i=0

1√
n2 − i2

.

For convenience, let us put An,i = n8 − i2n6 + 2ipn − p2
n. It is enough to show

that Sn −
∑n−1

i=0
n3√
An,i

→ 0 as n → ∞. Now, for each n and each i,

1√
n2 − i2

− n3√
An,i

=

√
An,i − n3

√
n2 − i2

√
n2 − i2

√
An,i

=
An,i − n6(n2 − i2)

(n2 − i2)
√

An,i + An,i

√
n2 − i2

.

The denominator is too bulky here and we have to sacrifice some terms to tidy
it up. But we have to wait until the numerator is simplified:

An,i − n6(n2 − i2) = (n8 − i2n6 + 2ipn − p2
n) − (n8 − i2n6) = 2ipn − p2

n.

Now we drop every thing save An,i in the denominator. Then within

An,i ≡ n8 − in6 + 2ipn − p2
n = n6(n2 − i2) + 2ipn − p2

n

we drop the positive term 2ipn and the factor n2 − i2 which is ≥ 1. (We
still have to keep the burdensome −p2

n because it is negative.) Ultimately, the
denominator is replaced by a smaller expression, namely n6 − p2

n. Recall that
pn < 36n2 for n ≥ 2; (see Exercise 15 in the previous Exercise Set.) Using
this we see that

n6 − p2
n ≥ n6 − 36n2 = n2(n4 − 36).

Thus, for n ≥ 2, n2(n4 − 36) is a lower bound of the denominator. Next we get
an upper bound for the numerator:

|2ipn − p2
n| ≤ 2ipn + p2

n ≤ 2npn + p2
n ≤ 2n(36n2) + (36n2)2 = 72n3 + 1296n4.

Now we can put all things together:∣∣∣∣Sn −
n−1∑
i=0

n3√
An,i

∣∣∣∣ ≤
n−1∑
i=1

∣∣∣∣∣ 1√
n2 − i2

− n3√
An,i

∣∣∣∣∣ ≤ n · 72n3 + 1296n4

n2(n4 − 36)
.

The last expression approaches to 0 as n tends to infinity. Done!

Method 2 Let f(x) =
1√

1 − x2
, on [0, 1). Let P denote the partition with

x0 = 0, and xi = i
n
, i = 1, 2, . . . , n. It is clear that, as n → ∞, the norm of this

partition approaches 0. Next, by Sierpinski’s estimate we know that

pn < 36n ln n.

But by L’Hospital’s Rule, lim
n→∞

lnn

n3
= 0. This means that

lim
n→∞

pn

n4
≤ lim

n→∞
36 lnn

n3
= 0.
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So
lim

n→∞
pn

n4
= 0

by the Sandwich Theorem of Chapter 2. Okay, now choose our interior points
ti in the interval (xi, xi+1), as follows: Let

ti =
i

n
+

pn

n4
.

By what has been said, note that if n is sufficiently large, then ti lies indeed in
this interval. By definition of the Riemann integral it follows that this specific
Riemann sum given by

lim
n→∞

n−1∑
i=0

f(ti) ∆xi

tends to, as n → ∞, the Riemann integral of f over [0, 1). But

lim
n→∞

n−1∑
i=0

f(ti) ∆xi = lim
n→∞

n−1∑
i=0

1√
1 − ti

2
· 1

n

= lim
n→∞

n−1∑
i=0

1√
1 −

(
i
n

+ pn

n4

)2 · 1

n

= lim
n→∞

n−1∑
i=0

n3√
n8 − i2n6 − 2ipn − pn

2
.

The conclusion follows since the Riemann integral of this function f exists on
[0, 1) and ∫ 1

0

1√
1 − x2

= Arcsin 1 − Arcsin 0 = Arcsin 1 =
π

2
.

30. 2.

∫ π

0

sin x dx = − cos x

∣∣∣∣
π

0

= 2.

31. 2
√

2− 2. Notice that when x runs from 0 to π/2, the cosine curve drops from 1
to 0 and the sine curve elevates from 0 to 1. Between 0 and π/2, the sine curve
and the cosine curve meet at x = π

4
. Hence

| cos x − sin x| =

{
cos x − sin x if 0 ≤ x ≤ π/4,
sin x − cos x if π/4 ≤ x ≤ π/2.

Thus the required integral is equal to∫ π/4

0

(cos x − sin x) dx +

∫ π/2

π/4

(sin x − cos x) dx

= (sin x + cos x)|π/4
0 + (− cos x − sin x)|π/2

π/4 = 2
√

2 − 2.

32. 1 −
√

2

2
.

∫ π/8

π/12

cos 2x

sin2 2x
dx =

∫ π/4

π/6

csc 2x cot 2x dx

= − 1

2
csc 2x

∣∣∣π/8

π/12
= 1 −

√
2

2
.

33.
4

9

√
2 − 2

9
.

∫ 1

0

t2
√

1 + t3 dt =
1

3
· (1 + t3)3/2

3/2

∣∣∣∣
1

0

=
4

9

√
2 − 2

9
. Use Table 7.5,

� = 1 + t3, r = 1/2.

34.

∫ 1

0

x

1 + x4
dx =

1

2
Arctan x2

∣∣∣∣
1

0

=
1

2
(Arctan 1 − Arctan 0) =

π

8
.

35.
d

dx

∫ x2

1

sin t

t3/2
dt =

sin(x2)

x3
· 2x =

2 sin(x2)

x2
−→ 2 as x → 0+.
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36. As x → ∞, we have

d

dx

∫ √
x

√
3

r

(r + 1)(r − 1)
dr =

x3/2

(x1/2 + 1)(x1/2 − 1)
· 1

2
√

x
=

x

2(x − 1)
−→ 1

2
.

37.
d

dx

∫ x2

0

e−t2 dt = 2xe−x2
= 2

x

ex2 which is of indefinite form ∞
∞ when x → ∞.

By L’Hospital’s rule and the fact that ex → +∞ as x → +∞ we see that
2 x

ex2 → 0 as x → ∞.

38.
d

dx

∫ √
x

1

sin(y2)

2y
dy =

sin(
√

x
2
)

2
√

x
· 1

2
√

x
=

sin x

4x
−→ 1

4
as x → 0.

39.

lim
x→0+

d

dx

∫ sin x

1

ln t

ln(Arcsin t)
dt

= lim
x→0+

(
ln(sin x)

ln(Arcsin (sin x))
· cos x − 0

)
,

= lim
x→0+

(
ln(sin x)

ln x
· cos x

)

= lim
x→0+

(
ln(sin x)

ln x

)
· cos 0

= lim
x→0+

(
cot x

1/x

)
= lim

x→0+
x cot x = lim

x→0+

x

sin x
cos x = (1)(1) = 1.

40. Indeed, as t → 0,

d

dt

∫ 2π+ct

2π−ct

sin x

cx
dx =

sin(2π + ct)

c(2π + ct)
· c − sin(2π − ct)

c(2π − ct)
(−c) −→ sin 2π

π
= 0.

41.

lim
h→0+

d

dx

(
1

h

∫ x+h

x−h

√
t dt

)
= lim

h→0+

√
x + h (1) −

√
x − h (1)

h
,

= lim
h→0+

√
x + h −

√
x − h

h
= lim

h→0+

2h

h(
√

x + h +
√

x − h)
,

= lim
h→0+

2√
x + h +

√
x − h

=
1√
x

.

42. lim
x→0

1

2x

∫ x

−x

cos t dt = lim
x→0

1

2x
(sin x − sin(−x)) = lim

x→0

2 sin x

2x
= 1. [Remark:

Actually, for every continuous function f defined on the real line, we have

lim
x→0+

1

2x

∫ x

−x

f(t) dt = f(0).

Do you know why?]

43.
y5

5
=

x4

4
+

1

5
.

44. sin(y(x)) + cos x = C is the most general antiderivative. But y = π/2 when
x = 0. This means that sin(π/2) + cos 0 = C, or C = 2. So, the solution in
implicit form is given by sin(y(x)) + cos x = 2.

45. y = tan
[
1

2
(e2x − 1) +

π

4

]
.
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46. y = 2x4 + 4
3
x3 + x.

47. y(x) = C1 + C2 x + C3 x2 − x4 is the most general antiderivative. Now, the
initial conditions y(0) = 0, y′(0) = 0, y′′(0) = −1 imply that C1 = 0, C2 =
0, C3 = −1/2. The required solution is given by

y(x) = −1

2
x2 − x4.

48. y = ex − x − 1.

49. y =
x4

12
+

x3

3
.

50. Since marginal cost = dC
dx

= 60 + 40
x+10

,

(a) total increase in cost as x goes from 20 to 40 is∫ 40

20

[
60 +

40

x + 10

]
dx = [60x + 40ln|x + 40| ]4020

= 60× 40 + 40 ln(50) − [60× 20 + 40ln(30)] = 1200 + 40(ln 50− ln 30) =
1200 + 40ln(5/3) = $1220.43

(b) Let I(t) be value of investment at time t, t in years. dI
dt

= (500e
√

t)/
√

t,
thus

I(t) =

∫
500e

√
t

√
t

dt = 500e
√

t + C.

When t = 0, I = 1000, so 1000 = 500 + C, and C = 500. Therefore, at
t = 4, I = 500e2 + 500 = $4194.53.



Chapter 8

Solutions

8.1

8.2 Exercise Set 37

1. 1
200

(2x − 1)100 + C.

2. 3 · (x + 1)6.1

6.1
+ C.

3. I =

∫ 1

0

(3x + 1)−5dx =
1

3
· (3x + 1)−4

−4

∣∣∣∣
1

0

≈ 0.0830.

4. I =

∫
(x − 1)−2dx = −(x − 1)−1 + C =

1

1 − x
+ C.

5. − 1

202
(1 − x2)101 + C =

1

202
(x2 − 1)101 + C.

6.
1

ln 2
2x2−1 + C. Let u = x2, du = 2x dx, etc.

7.

∫ π/4

0

tanx dx = − ln | cos x| = ln | sec x|
∣∣∣∣
π/4

0

= ln
√

2 − ln 1 =
ln 2

2
.

8.
1

3
ez3

+ C.

9. −3

4
(2 − x)4/3 + C.

10. 1
2

sin 8 ≈ 0.49468.

11. I =

∫
1

1 + sin t
· d(1 + sin t)

dt
dt = ln |1 + sin t| + C.

12. −
√

1 − x2 + C.

13. 1
2

ln |y2 + 2y| + C. Let u = y2 + 2y, du = 2(y + 1) dy, etc.

14. I =

∫
sec2 x dx√
1 + tan x

=

∫ (
d

dx
tan x

)
dx

√
1 + tanx

= 2
√

1 + tan x + C.

15. I = −
∫ π/4

0

1

cos2 x
· d cos x

dx
dx =

1

cos x

∣∣∣π/4

0
=

√
2 − 1. Alternatively,

I =

∫ π/4

0

tanx sec x dx = sec x

∣∣∣∣
π/4

0

=
√

2 − 1.

11
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16. Hard! Very hard! The function sec x+tan x in the hint seems to be extremely
tricky and unthinkable; see Example 364 in §8.5.2 for manipulating this integral
according to the hint. Here is a slightly more natural way (although just as
unthinkable): Try to put everything in terms of sines or cosines. Let’s begin.
Don’t feel bad if you find this still too slick for you.∫

sec x dx =

∫
1

cos x
dx =

∫
cos x

cos2 x
dx =

∫
1

cos2 x
· d sin x

dx
dx

=

∫
1

1 − sin2 x
· d sin x

dx
dx =

∫
1

1 − u2
du (u = sin x)

=

∫
1

(1 − u)(1 + u)
du =

∫
1

2

[
1

1 − u
+

1

1 + u

]
du

=
1

2
[− ln |1 − u| + ln |1 + u|] + C =

1

2
ln
∣∣∣1 + u

1 − u

∣∣∣+ C

=
1

2
ln
∣∣∣1 + sin x

1 − sin x

∣∣∣+ C

=
1

2
ln

∣∣∣∣ (1 + sin x)2

(1 − sin x)(1 + sin x)

∣∣∣∣+ C

=
1

2
ln

∣∣∣∣ (1 + sin x)2

cos2 x

∣∣∣∣+ C

= ln
∣∣∣1 + sin x

cos x

∣∣∣+ C = ln | sec x + tan x|+ C.

17. One way to do this is to multiply out everything and then integrate term by
term. But this way is very messy! Observe that 4z3 + 1 is nothing but the
derivative of z4 + z. So we have an easy way out:

I =

∫
(z4 + z)4 · d

dz
(z4 + z) dz =

1

5
(z4 + z)5 + C.

18. −Arctan(cosx) + C. Let u = cos x, du = − sin x dx, etc.

19. I =
1

2
Arctan(t2)

∣∣∣1
0

=
π

8
.

20. 1
8

sin4(x2 + 1) + C. Let u = x2 + 1 first, then v = sin u as the next substitution.

21. 3
2

ln(x2 + 1) − Arctan x + C. (Since x2 + 1 is always positive, there is no need
to put an absolute value sign around it.)

22. I =

∫ e2

e

1

ln x
· d ln x

dx
dx = ln(ln x)

∣∣∣∣∣
e2

e

= ln 2 − ln 1 = ln 2.

23. 1
3
(Arctan x)3 + C.

24. I =
∫

cosh(et) · et dt = sinh(et) + C. (Recall that D sinh� = cosh� D� and
D cosh� = sinh � D� .)

25. 1
5
Arcsin 5s + C.

26. I =

∫ 4π2

π2

cos
√

x · 2d
√

x

dx
dx = 2 sin

√
x

∣∣∣∣∣
4π2

π2

= 2(sin 2π − sin π) = 0.

27.
1

2
ex2

+ C.

28. −
√

1 − y2+Arcsin y+C. Split this integral up into two pieces and let u = 1−y2,
etc.

29. sec(ln x) + C. Let u = ln x, etc.

30. I =

∫
sin−2/3 x · d

dx
sin x dx = 3 sin1/3 x + C.
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31. I =

∫ 1

0

eet

· det

dt
dt = eet

∣∣∣∣
1

0

= ee − e.

32.
1

2 ln(1.5)
1.5x2+1 + C = 1.23316 1.5x2+1 + C.

8.3 Exercise Set 38

1. Using the normal method, we have:

I =

∫
x

d

dx
sin x dx = x sin x −

∫
sin x dx = x sin x + cos x + C.

2. −x cos x + sin x + C.

3. −1/2.

4. Using the normal method, we have:∫
x2 sin x dx =

∫
x2 d

dx
(− cos x)dx

= −x2 cos x +

∫
2x · cos x dx

= −x2 cos x +

∫
2x

d

dx
sin x dx

= −x2 cos x + 2x sin x −
∫

2 sin x dx

= −x2 cos x + 2x sin x + 2 cos x + C.

Now you can see the advantage of the Table method over the above normal
method: you don’t have to copy down some expressions several times and the
minus signs are no longer a worry!

5. x tan x + ln | cos x|+ C.

6. x sec x − ln | sec x + tanx| + C. (Here you have to recall the answer to a very
tricky integral:

∫
sec x dx = ln | sec x+tanx|. See Exercise Set 37, Number 16.)

7. (x2 − 2x + 2)ex + C.

8. I = −1

3
x2e−3x +

2

9
xe−3x − 2

27
e−3x

∣∣∣∞
0

=
2

27
. Notice that here we have used

the fact p(x)e−3x −→ 0 as x → +∞, where p(x) is any polynomial, that is,
the exponential growth is faster than the polynomial growth. Alternately, use
L’Hospital’s Rule for each limit except for the last one.

9.
1

5
x5 ln x − 1

25
x5 + C.

10. −1

3

(
x3 + x2 +

2

3
x +

2

9

)
e−3x + C.

11. x sin−1 x +
√

1 − x2 + C.

12. x tan−1 x − 1
2

ln(1 + x2) + C.

13. Let u = ln x. Then x = eu and dx = eudu. Thus the integral can be converted
to
∫

u5e2ueu du =
∫

u5e3u du. Using the Table method to evaluate the last
integral, we have∫

u5e3u du = e3u
(

1

3
u5 − 5

9
u4 +

20

27
u3 − 20

27
u2 +

40

81
u − 40

243

)
+ C.

Substituting u = ln x back, we get the answer to the original integral
∫

x2(lnx)5 dx:

x3
(

1

3
(lnx)5 − 5

9
(lnx)4 +

20

27
(lnx)3 − 20

27
(ln x)2 +

40

81
ln x − 40

243

)
+ C.
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14.
x2

2
sec−1 x − 1

2

√
x2 − 1 + C, if x > 0.

15. Use the Table method for this problem.∫
(x − 1)2 sin x dx = −(x − 1)2 cos x + 2(x − 1) sin x + 2 cos x + C.

16. − 1

13
(2 sin 3x + 3 cos 3x)e−2x + C.

17.
1

17
(cos 4x + 4 sin 4x)ex + C.

18. − 1

10
cos 5x − 1

2
cos x + C, or −1

5
(2 sin 3x sin 2x + 3 cos 3x cos 2x) + C.

Use the identity sin A cos B =
1

2
(sin(A + B) − sin(A − B)) with A = 3x and

B = 2x and integrate. Alternately, this is also a three-row problem: This
gives the second equivalent answer.

19. − 1

12
cos 6x +

1

4
cos 2x + C, or −1

3
cos3 2x +

1

2
cos 2x + C, or

1

12
(4 sin 2x sin 4x + 2 cos 2x cos 4x)+C. This is a three-row problem as well.

See the preceding exercise.

20.
1

14
sin 7x +

1

2
sin x + C, or

1

7
(4 cos 3x sin 4x − 3 sin 3x cos 4x) + C. Use the iden-

tity

cos A cos B =
1

2
(cos(A + B) + cos(A − B)) with A = 4x and B = 3x and inte-

grate. Alternately, this is also a three-row problem: This gives the second
equivalent answer.

21. e2x
(

1

2
x5 − 5

4
x4 +

5

2
x3 − 15

4
x2 +

15

4
x − 15

8

)
+ C. For this exercise you really

should use the Table method, otherwise you will find the amount of work over-
whelming!

22.
x

2
(cos ln x + sin ln x) + C. See Example 351.

8.4

8.4.1 Exercise Set 39

1. x − 3 +
4

x + 1

2. 2 − 3x2 + x + 3

x3 + 2x + 1

3.
1

3

(
x2 − 2

3
+

7/3

3x2 − 1

)

4. x2 − 1 +
2

x2 + 1

5. x4 + x3 + 2x2 + 2x + 2 +
3

x − 1

6.
3

2

(
x − 1 +

13x + 15

6x2 + 6x + 3

)

8.4.2 Exercise Set 40

1.

∫
x

x − 1
dx =

∫ (
1 +

1

x − 1

)
dx = x + ln |x − 1| + C.
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2.

∫
x + 1

x
dx =

∫ (
1 +

1

x

)
dx = x + ln |x| + C.

3.

∫
x2 dx

x + 2
=

∫ (
x − 2 +

4

x + 2

)
dx =

x2

2
− 2x + 4 ln |x + 2| + C.

4.

∫
x2 dx

x2 + 1
=

∫ (
1 − 1

x2 + 1

)
dx = x − Arctan x + C.

5. Since the denominator and the numerator have the same degree, we have to
perform the long division first

I ≡
∫

x2

(x − 1)(x + 1)
dx =

∫
x2

x2 − 1
dx =

∫ (
1 +

1

x2 − 1

)
dx

=

∫ (
1 +

1

(x + 1)(x − 1)

)
dx =

∫ (
1 +

1

2
· 1

x − 1
− 1

2
· 1

x + 1

)
dx

= x +
1

2
ln |x − 1| − 1

2
ln |x + 1| + C.

6. Put
2x

(x − 1)(x − 3)
=

A

x − 1
+

B

x − 3
. Then 2x = A(x − 3) + B(x − 1). Setting

x = 1 we have A = −1 and setting x = 3 we have B = 3. Thus the required
integral is ∫ ( −1

x − 1
+

3

x − 3

)
dx = 3 ln |x − 3| − ln |x − 1| + C.

7. Put
3x2

(x − 1)(x − 2)(x − 3)
=

A

x − 1
+

B

x − 2
+

C

x − 3
. Then

3x2 = A(x − 2)(x − 3) + B(x − 1)(x − 3) + C(x − 1)(x − 2).

Setting x = 1, 2, 3 respectively, we have A = 3/2, B = −12 and C = 27/2.
Thus∫

3x2 dx

(x − 1)(x − 2)(x − 3)
=

3

2
ln |x − 1| − 12 ln |x − 2| + 27

2
ln |x − 3| + C.

8. We start with long division:

I ≡
∫ 1

0

x3 − 1

x + 1
dx =

∫ 1

0

(
x2 − x + 1 − 2

x + 1

)
dx

=
x3

3
− x2

2
+ x − 2 ln |x + 1|

∣∣∣∣
1

0

=
1

3
− 1

2
+ 1 − 2 ln 2 − 0 =

5

6
− ln 4.

9. Here we perform a small trick on the numerator of the integrand:∫
3x

(x − 1)2
dx =

∫
3(x − 1) + 3

(x − 1)2
dx

=

∫
3

(x − 1)2
dx +

∫
3

x − 1
dx

= 3(1 − x)−1 + 3 ln |x − 1| + C.

10. Put
2x − 1

(x − 2)2(x + 1)
=

A

x + 1
+

B

x − 2
+

C

(x − 2)2
.

Then 2x− 1 = A(x− 2)2 +B(x− 2)(x+1)+C(x+1). Setting x = −1, we have
−3 = A(−3)2 and hence A = −1/3. Setting x = 2, we have 3 = 3C; so C = 1.
Comparing the coefficients of x2 on both sides, we get 0 = A + B, which gives
B = −A = 1/3. Thus∫

2x dx

(x − 2)2(x + 1)
=

∫ (
−1

3
· 1

x + 1
+

1

3
· 1

x − 2
+

1

(x − 2)2

)
dx

=
1

2 − x
+

1

3
ln |x − 2| − 1

3
ln |x + 1| + C.
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11. By long division, we get
x4 + 1

x2 + 1
= x2 − 1 +

2

x2 + 1
. So

∫
x4 + 1

x2 + 1
dx =

x3

3
− x + 2Arctan x + C.

12. Putting u = x2, the integrand becomes
1

(u + 1)(u + 4)
=

1

3
· 1

u + 1
− 1

3

1

u + 4
. So

∫
dx

(x2 + 1)(x2 + 4)
=

1

3

∫
dx

x2 + 1
− 1

3

∫
dx

x2 + 4

=
1

3
Arctan x − 1

6
Arctan

x

2
+ C.

13. Put
1

x2(x − 1)(x + 2)
=

A

x
+

B

x2
+

C

x − 1
+

D

x + 2
.

The we have

1 = Ax(x− 1)(x + 2) + B(x − 1)(x + 2) + Cx2(x + 2) + Dx2(x − 1).

Setting x = 1, 0, −2 respectively, we have C = 1/3, B = −1/2 and D =
−1/12. Comparing coefficients of x3 on both sides, we have 0 = A + C + D, or
A + 1

3
− 1

12
= 0 and hence A = − 1

4
. Thus∫

dx

x2(x − 1)(x + 2)
= −1

4

∫
dx

x
− 1

2

∫
dx

x2
+

1

3

∫
dx

x−1
− 1

12

∫
dx

x+2

= −1

4
ln |x| + 1

2x
+

1

3
ln |x − 1| − 1

12
ln |x + 2| + C.

14. Put

x5 + 1

x(x − 2)(x − 1)(x + 1)(x2 + 1)
=

A

x
+

B

x − 2
+

C

x − 1
+

D

x + 1
+

Ex + F

x2 + 1
.

Using the method of “covering” described in this section, we get A = 1/2,
B = 11/10, C = −1/2 and D = 0. By using the “plug-in method” described
in the present section we have E = − 1

10
and F = 3

10
. Thus the partial fraction

decomposition for the integrand is

1

2
· 1

x
+

11

10
· 1

x − 2
− 1

2
· 1

x − 1
− 1

10
· x

x2 + 1
+

3

10
· 1

x2 + 1
.

Thus the required integral is

1

2
ln |x| + 11

10
ln |x − 2| − 1

2
ln |x − 1| − 1

20
ln(x2 + 1) +

3

10
Arctan x + C.

15. Putting

2

x(x − 1)2(x2 + 1)
=

A

x
+

B

x − 1
+

C

(x − 1)2
+

Dx + E

x2 + 1
,

we have

2 = A(x − 1)2(x2 + 1) + Bx(x − 1)(x2 + 1) + Cx(x2 + 1) + (Dx + E)x(x − 1)2.

Setting x = 0, we obtain A = 2. Setting x = 1, we get C = 1. Next we set x = 2.
This gives us an identity relating the unknowns from A to E. Substituting A = 2
and C = 1 in this identity and then simplifying, we get a relation

5B + 2D + E = −9

between B, D and E. Setting x = 3 will give us another such a relation:

5B + 3D + E = −9.



8.4. 17

From these two relations we can deduce that D = 0 and 5B + E = −9. Finally,
setting x = −1 will give us yet another relation among B, D and E:

B + D − E = −3.

Now it is not hard to solve for B and E: B = −2, E = 1. (Remark: if you
are familiar with complex numbers, you can find D and E efficiently by setting
x = i to arrive at 2 = (Di + E)i(i − 1)2, which gives Di + E = 1 and hence
D = 0 and E = 1, in view of the fact that D and E are real numbers.) We
conclude

2

x(x − 1)2(x2 + 1)
=

2

x
− 2

x − 1
+

1

(x − 1)2
+

1

x2 + 1
.

So the required integral is equal to∫
2 dx

x(x − 1)2(x2 + 1)
= 2 ln |x| − 2 ln |x − 1| − 1

x − 1
+ Arctan x + C.
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8.5

8.5.1 Exercise Set 41

1. Let u = cos 3x so that du = −3 sin 3x dx and sin2 3x = 1 − u2.∫
sin3 3x dx =

∫
sin2 3x · sin 3x dx

=

∫
(1 − u2) · (−1/3)du = −u

3
+

u3

9
+ C

= − cos 3x

3
+

cos3 3x

9
+ C.

2. Let u = sin(2x − 1) so that du = 2 cos(2x − 1) dx and cos2(2x − 1) = 1 − u2.∫
cos3(2x − 1) dx =

∫
cos2(2x − 1) · cos(2x − 1) dx

=

∫
(1 − u2) · 1

2
du =

u

2
− u3

6
+ C

=
sin(2x − 1)

2
− sin3(2x − 1)

6
+ C.

3. Let u = sin x so that du = cos x dx. Notice that x = 0 ⇒ u = 0 and
x = π

2
⇒ u = 1. Thus

∫ π/2

0

sin2 x cos3 x dx =

∫ 1

0

u2(1 − u2)du =

(
u3

3
− u5

5

)∣∣∣∣
1

0

=
2

15
.

4. Let u = cos(x − 2). Then du = − sin(x − 2) dx and∫
cos2(x − 2) sin3(x − 2) dx =

∫
u2(1 − u2)(−du) = −u3

3
+

u5

5
+ C

= −1

3
cos3(x − 2) +

1

5
cos5(x − 2) + C.

5. Let u = sin x. Then du = cos x dx. Also, x = π/2 ⇒ u = 1 and x = π ⇒ u =
0. So ∫ π

π/2

sin3 x cos x dx =

∫ 0

1

u3 du =
u4

4

∣∣∣∣
0

1

= −1

4
.

The negative value in the answer is acceptable because cos x is negative when
π/2 < x < π.

6. Set u = x2. Then du = 2x dx. So∫
x sin2(x2) cos2(x2) dx =

1

2

∫
sin2 u cos2 u du =

1

8

∫
sin2 2u du

=
1

8

∫ (
1 − cos 4u

2

)
du =

u

16
− sin 4u

64
+ C

=
x2

16
− sin(4x2)

64
+ C.

7. We use the “double angle” formulae several times:∫
sin4 x cos4 x dx =

1

16

∫
sin4 2x dx =

1

16

∫
sin2 2x sin2 2x dx

=
1

16

∫ (
1 − cos 4x

2

)2

dx
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=
1

64

∫
(1 − 2 cos 4x + cos2 4x) dx

=
1

64
x − 1

128
sin 4x +

1

64

∫
1 + cos 8x

2
dx

=
3

128
x − 1

128
sin 4x +

1

1024
sin 8x + C.

8. Let u = sin x. Then du = cos x dx and cos2 x = 1 − u2. So∫
sin4 x cos5 x dx =

∫
u4(1 − u2)2 du =

1

5
u5 − 2

7
u7 +

1

9
u9 + C

=
1

5
sin5 x − 2

7
sin7 x +

1

9
sin9 x + C.

9. Use the “double angle formula” twice:∫
cos4 2x dx =

∫ (
1 + cos 4x

2

)2

dx

=
1

4

∫
(1 + 2 cos 4x + cos2 4x) dx

=
x

4
+

sin 4x

8
+

1

4

∫
1 + cos 8x

2
dx

=
3x

8
+

sin 4x

8
+

sin 8x

64
+ C.

10. Let u = sin x. Then du = cos x dx and cos2 x = 1 − u2. So∫
sin5 x cos3 x dx =

∫
u5(1 − u2)du =

u6

6
− u8

8
+ C =

sin6 x

6
− sin8 x

8
+ C.

11. Set u = cos x. Then du = − sin x dx and sin2 x = 1 − u2. So∫
sin5 x cos4 x dx =

∫
sin4 x cos4 x · sin x dx =

∫
(1 − u2)2u4 (−du)

=

∫
(−u4 + 2u6 − u8) du

= −1

5
u5 +

2

7
u7 − 1

9
u9 + C

= −1

5
cos5 x +

2

7
cos7 x − 1

9
cos9 x + C.

12. We use the “double angle formula” several times.∫
sin6 x dx =

∫ (
1 − cos 2x

2

)3

dx

=
1

8

∫
(1 − 3 cos 2x + 3 cos2 2x − cos3 2x) dx

=
x

8
− 3

16
sin 2x +

3

8

∫
1 + cos 4x

2
dx −

1

8

∫
(1 − sin2 2x) · d

dx

(
sin 2x

2

)
dx

=
5

16
x − 1

4
sin 2x +

1

48
sin3 2x +

3

64
sin 4x + C.

13. Let u = sin x. Then du = cos x dx and cos6 x = (1 − sin2 x)3 = (1 − u2)3. So∫
cos7 x dx =

∫
(1 − u2)3 du =

∫
(1 − 3u2 + 3u4 − u6) du

= u − u3 +
3

5
u5 − 1

7
u7 + C

= sin x − sin3 x +
3

5
sin5 x − 1

7
sin7 x + C.
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8.5.2 Exercise Set 42

1. − ln | cos x| + C = ln | sec x| + C. Let u = cos x, du = − sin x dx.

2.
1

3
tan(3x + 1) + C. Let u = 3x + 1.

3. sec x + C, since this function’s derivative is sec x tan x.

4.
tan2 x

2
+ C. Let u = tan x, du = sec2 x dx.

5.
tan3 x

3
+ C. Let u = tan x, du = sec2 x dx.

6.
tan6 x

6
+ C. Let u = tan x, du = sec2 x dx.

7.
sec3 x

3
− sec x + C. Case m, n both ODD. Use (8.59) then let u = sec x, du =

sec x tan x dx.

8.
tan5 x

5
+

tan7 x

7
+ C. Case m, n both EVEN. Solve for one copy of sec2 x then

let u = tan x, du = sec2 x dx, in the remaining.

9.
sec5 x

5
− sec3 x

3
+ C. Case m, n both ODD. Factor out one copy of sec x tanx,

use (8.59), then let u = sec x, du = sec x tan x dx in the remaining.

10.
sec7 2x

14
− sec5 2x

5
+

sec3 2x

6
+ C. Let u = 2x and use Example 394.

11.
tan6 2x

12
+C. Let u = 2x, du = 2 dx, and use Exercise 6, above or, more directly,

let v = tan 2x, dv = 2 sec2 2x dx.

12.
tan2 x

2
+ ln | cos x|. Solve for tan2 x in (8.59), break up the integral into two

parts, use the result in Exercise 1 for the first integral, and let u = tan x in the
second integral.

13.
1

6
sec5 x tan x +

5

24
sec3 x tan x +

5

16
(sec x tan x + ln | sec x + tan x|). Use Ex-

ample 392 with k = 7, and then apply Example 395.

14. See Example 388.

15.
1

4
sec3 x tan x − 1

8
(sec x tan x + ln | sec x + tanx|). The case where m is ODD

and n is EVEN. Solve for tan2 x and use Example 392 with k = 5 along with
Example 387.

8.6

8.6.1 Exercise Set 43

1.

∫ 1

0

1

1 + x2
dx = Arctan x

∣∣∣1
0

=
π

4
.

2.

∫
2 dx

x2 − 2x + 2
=

∫
2 dx

(x − 1)2 + 1
= 2 Arctan (x − 1) + C.

3. I =

∫
dx

(x − 1)2 + 4
=

1

2
Arctan

x − 1

2
+ C.

4. There is no need to complete a square:∫
dx

x2 − 4x + 3
=

∫
dx

(x − 1)(x − 3)
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=

∫
1

2

(
1

x − 3
− 1

x − 1

)
dx

=
1

2
ln |x − 3| − 1

2
ln |x − 1| + C.

5. We need to complete the square in the denominator of the integrand:∫
4

4x2 + 4x + 5
dx =

∫
4 dx

(2x + 1)2 + 4

=

∫
dx(

x − 1
2

)2
+ 1

= Arctan
(

x +
1

2

)
+ C.

6. The minus sign in front of x2 should be taken out first.∫
dx

4x − x2 − 3
= −

∫
dx

(x − 1)(x − 3)

=
1

2
ln |x − 1| − 1

2
ln |x − 3| + C.

(For the last step, see the answer to Exercise 4 above.)

7. We have∫
1√

4x − x2
dx =

∫
dx√

−(x2 − 4x + 4 − 4)
=

∫
dx√

4 − (x − 2)2

=
1

2

∫
dx√

1 −
(

x−2
2

)2 = Arcsin
x − 2

2
+ C.

8. We have ∫ 0

−1

1

4x2 + 4x + 2
dx =

∫ 0

−1

1

(2x + 1)2 + 1
dx

=
1

2
Arctan (2x + 1)

∣∣∣ 0

−1
= π/4.

9.

∫
dx√

2x − x2 + 1
=

∫
dx√

2 − (x − 1)2
= Arcsin

x − 1√
2

+ C.

10.

∫
dx

x2 + x + 1
=

∫
dx

(x + 1/2)2 + 3/4
=

2√
3
Arctan

(
2x + 1√

3

)
+ C.

11. The roots of x2+x−1 are (−1±
√

5)/2; (these interesting numbers are related to
the so-called Golden Ratio and the Fibonacci sequence.) We have the following
partial fraction decomposition:

1

x2 + x − 1
=

1(
x − (−1+

√
5)

2

)(
x − (−1−√

5)
2

) =
1√
5

(
1

x − (−1+
√

5)
2

− 1

x − (−1−√
5)

2

)
.

So

∫
dx

x2 + x − 1
=

1√
5

{
ln

∣∣∣∣x − (−1 +
√

5)

2

∣∣∣∣− ln

∣∣∣∣x − (−1 −
√

5)

2

∣∣∣∣
}

+ C.

12. I =

∫
dx

(2x + 1)
√

(2x + 1)2 − 1
=

1

2
Arcsec (2x + 1) + C,

since |2x + 1| = 2x + 1 for x > −1/2 (see Table 7.7).
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8.6.2 Exercise Set 44

1. Set x = 2 sin θ. Then dx = 2 cos θ dθ and
√

4 − x2 = 2 cos θ. So∫ √
4 − x2 dx =

∫
2 cos θ · 2 cos θ dθ = 4

∫
cos2 θ dθ

= 2θ + sin 2θ + C = 2θ + 2 sin θ cos θ + C

= 2Arcsin (x/2) +
1

2
x
√

4 − x2 + C.

2. Let x = 3 tan θ. Then
√

x2 + 9 = 3 sec θ and dx = 3 sec2 θ dθ. Hence∫ √
x2 + 9 dx =

∫
3 sec θ · 3 sec2 θ dθ = 9

∫
sec3 θ dθ

=
9

2
{(tan θ sec θ + ln | sec θ + tan θ|} + C

=
x

2

√
x2 + 9 +

9

2
ln
[√

x2 + 9 + x
]

+ C.

(A constant from the ln term is absorbed by C.)

3. Let x = sec θ. Then
√

x2 − 1 = tan θ and dx = sec θ · tan θ dθ. Hence∫ √
x2 − 1 dx =

∫
sec θ tan2 θ dθ

=
1

2
tan θ sec θ − 1

2
ln | sec θ + tan θ| + C

=
1

2
x
√

x2 − 1 − 1

2
ln
∣∣∣x +

√
x2 − 1

∣∣∣+ C.

4. Let x − 2 = 2 sin θ. Then dx = 2 cos θ dθ and√
4x − x2 =

√
−(x2 − 4x + 4 − 4) =

√
4 − (x − 2)2 = 2 cos θ.

So we have∫ √
4x − x2 dx =

∫
2 cos θ · 2 cos θ · dθ

= 2θ + sin 2θ + C

= 2θ + 2 sin θ cos θ + C

= 2 sin−1 x − 2

2
+

x − 2

2

√
4x − x2 + C.

5. Let x = 2 sin u. Then dx = 2 cos u du and (4 − x2)1/2 = 2 cos u. Thus∫
dx

(4 − x2)3/2
=

∫
2 cos u du

23 cos3 u
=

1

4

∫
sec2 u du

=
1

4
tan u + C =

1

4
· sin u

cos u
+ C =

1

4
· x√

4 − x2
+ C.

6. Let x = 3 sin u. Then dx = 3 cos u du and (9 − x2)1/2 = 3 cos u. Thus∫
x2 dx

(9 − x2)3/2
=

∫
32 sin2 u · 3 cos u du

33 cos3 u
=

∫
tan2 u du

=

∫
(sec2 u − 1) du = tanu − u + C =

sin u

cos u
− u + C

=
x√

9 − x2
− Arcsin

x

3
+ C.
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7. Let x = 2 sec θ. Then
√

x2 − 4 = 2 tan θ and dx = 2 sec θ tan θ dθ. Also notice
that cos θ = 1/ sec θ = 2/x.∫

dx

x2
√

x2 − 4
=

∫
2 sec θ · tan θ dθ

4 sec2 θ · 2 tan θ

=
1

4

∫
cos θ dθ =

1

4
sin θ + C =

1

4

√
1 − cos2 θ + C

=
1

4

√
1 − (2/x)2 + C =

√
x2 − 4

4x
+ C.

8. Let 2x − 1 = tan θ. Then 2 dx = sec2 θ dθ and√
4x2 − 4x + 2 =

√
(2x − 1)2 + 1 =

√
tan2 θ + 1 = sec θ.

Therefore we have∫ √
4x2 − 4x + 2 dx =

1

2

∫
sec3 θ dθ

=
1

4
(tan θ sec θ + ln | sec θ + tan θ|) + C

=
1

4
(2x − 1)

√
4x2 − 4x + 2 +

1

4
ln

∣∣∣2x − 1 +
√

4x2 − 4x + 2

∣∣∣+ C.

9. Let x = 3 tan θ. Then 9 + x2 = 9 sec2 θ and dx = 3 sec2 θ dθ. So∫
dx

(9 + x2)2
=

∫
3 sec2 θ dθ

81 sec4 θ
=

1

27

∫
cos2 θ dθ

=
1

27

(
θ

2
+

sin 2θ

4

)
+ C

=
1

27

{
1

2
Arctan

x

3
+

1

4
sin
(
2Arctan

x

3

)}
+ C.

NOTE: It is possible to simplify the expression for sin(2Arctan x/3) ≡ sin 2θ:

sin 2θ = 2 sin θ cos θ = 2
sin θ

cos θ
· cos2 θ = 2 tan θ · 1

sec2 θ

=
2 tan θ

1 + tan2 θ
=

2 · x/3

1 + (x/3)2
=

6x

9 + x2
.

10. The easiest way to solve this exercise is to use the substitution u =
√

4 − x2.
(This is highly nontrivial! At first sight one would try the trigonometric substi-
tution x = 2 sin θ. This method works, but the computation involved is rather
tedious and lengthy.) Then u2 = 4 − x2 and hence 2u du = −2x dx, which
gives u du = −x dx. Now

dx

x
=

x dx

x2
=

−u du

4 − u2
=

u du

u2 − 4

and hence∫ √
4 − x2

x
dx =

∫
u · u du

u2 − 4
=

∫ (
1 +

4

u2 − 4

)
du

= u +

∫ (
1

u − 2
− 1

u + 2

)
du

= u + ln |u − 2| − ln |u + 2| + C

= u + (ln |2 − u| + ln |2 + u|) − 2 ln |2 + u| + C

= u + ln |4 − u2| − 2 ln |u + 2| + C

=
√

4 − x2 + 2 ln |x| − 2 ln |2 +
√

4 − x2 | + C.
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11. Let x = 5 tan θ. Then we have dx = 5 sec2 θ dθ, (x2 + 25)1/2 = 5 sec θ and
(x2 + 25)3/2 = 53 sec3 θ. Hence∫

dx

(x2 + 25)3/2
=

∫
5 sec2 θ dθ

53 sec3 θ

=
1

25

∫
cos θ dθ

=
1

25
sin θ + C =

1

25

x√
x2 + 25

+ C.

12. Let x = 2 sin θ. Then
√

4 − x2 = 2 cos θ and dx = 2 cos θ dθ. So∫ √
4 − x2

x2
dx =

∫
2 cos θ

4 sin2 θ
· 2 cos θ dθ

=

∫
cot2 θ dθ

=

∫
(csc2 θ − 1) dθ = − cot θ − θ + C

= −
√

4 − x2

x
− Arcsin

x

2
+ C.

13. Let x = a sin θ. Then dx = a cos θ dθ and hence∫
dx

x4
√

a2 − x2
=

∫
a cos θ dθ

a4 sin4 θ · a cos θ

= a−4

∫
dθ

sin4 θ
= a−4

∫
csc4 θ dθ

= a−4

∫
(csc2 θ + csc2 θ cot2 θ) dθ

= a−4

(
− cot θ − cot3 θ

3

)
+ C,

= − 1

a4
· (a2 − x2)1/2

x
− 1

3a4
· (a2 − x2)3/2

x3
+ C.

14. Let x = a sec θ. Then dx = a sec θ tan θ and hence∫
dx

x4
√

x2 − a2
=

∫
a sec θ tan θ dθ

a4 sec4 θ · a tan θ

=
1

a4

∫
cos3 θ dθ =

1

a4

∫
(1 − sin2 θ) cos θ dθ

=
1

a4

(
sin θ − sin3 θ

3

)
+ C

=
1

a4

(
(x2 − a2)1/2

x
− 1

3

(x2 − a2)3/2

x3

)
+ C.

Notice that

sin θ = (1 − cos2 θ)1/2 = (1 − sec−2 θ)−1/2 =

(
1 − a2

x2

)1/2

=
(x2 − a2)1/2

x
,

for x > 0.

15. We have

I ≡
∫ √

x2 + 2x − 3

x + 1
dx

=

∫ √
(x + 1)2 − 4

x + 1
dx =

∫ √
u2 − 4

u
du,
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where u = x + 1. Use the tricky substitution similar to the one in Exercise
8 above: v =

√
u2 − 4 ≡

√
x2 + 2x − 3. Then v2 = u2 − 4 and hence

2vdv = 2udu, or vdv = udu. Thus

du

u
=

udu

u2
=

vdv

v2 + 4
.

Now we can complete our evaluation as follows:

I =

∫
v2dv

v2 + 4
=

∫ (
1 − 4

v2 + 4

)
dv

= v − 2Arctan
v

2
+ C

=
√

x2 + 2x − 3 − 2Arctan

√
x2 + 2x − 3

2
+ C.

16. Let u = x2 + 2x + 5. Then du = (2x + 2)dx and hence∫
(2x + 1) dx√
x2 + 2x + 5

=

∫
(2x + 2 − 1) dx√

x2 + 2x + 5

=

∫
du√

u
− I = 2

√
u − I = 2

√
x2 + 2x + 5 − I,

where

I =

∫
dx√

x2 + 2x + 5
≡
∫

dx√
(x + 1)2 + 4

.

Let x + 1 = 2 tan θ. Then dx = 2 sec2 θ dθ and
√

x2 + 2x + 5 = 2 sec θ. So

I =

∫
2 sec2 θ dθ

2 sec θ
=

∫
sec θ dθ = ln | tan θ + sec θ| + C

= ln
∣∣∣x + 1 +

√
x2 + 2x + 5

∣∣∣+ C,

where a factor of 1
2

inside the logarithm symbol is absorbed by the integral
constant C. Thus our final answer is∫

(2x + 1) dx√
x2 + 2x + 5

= 2
√

x2 + 2x + 5 − ln

∣∣∣x + 1 +
√

x2 + 2x + 5

∣∣∣+ C.

8.7

8.7.1

8.7.2 Exercise Set 45

1. T4 = 2.629 and S4 = 2.408 . Here n = 4, a = 1, b = 10, f(x) = 1/x. So,

h = (b − a)/n = 9/4, xi = a + i(b − a)/n = 1 + 9i/n, and

T4 =
h

2
· (y0 + 2y1 + 2y2 + 2y3 + y4),

=
9

8
·

(
1 + 2 ·

3∑
i=1

1

1 + 9i
4

+
1

1 + 10

)
,

=
99

80
+

9

4
·

3∑
i=1

1

1 + 9i
4

,

T4 ≈ 2.629
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On the other hand, S4 is given by,

S4 =
h

3
· (y0 + 4y1 + 2y2 + 4y3 + y4),

=
1

12
·
(

1 + 4 · 1

1 + 9
4

+ 2 · 1

1 + 9·2
4

+ 4 · 1

1 + 9·3
4

+
1

1 + 9·4
4

)
,

=
9

12
·
(
1 +

16

13
+

8

22
+

16

31
+

1

10

)
,

S4 ≈ 2.408

The Actual value is given by ln 10 ≈ 2.302, so Simpson’s Rule is closer to the
Actual value.

2. T5 = 1.161522 . You can’t use Simpson’s Rule because n is ODD. The Actual

value is approximately given by 1.19814 here is given in terms of so-called
elliptic functions and so it cannot be written down nicely.

3. T4 = 1.49067 and S4 = 1.46371 . The Actual value is found to be around 1.46265.

4. T6 = 3.062 and S6 = 3.110 . Here n = 6, a = 0, b = 1, f(x) = 4 ·
√

1 − x2. So,

h = (b − a)/n = 1/6, xi = a + i(b − a)/n = 0 + i/6 = i/6, and

T6 =
h

2
· (y0 + 2y1 + 2y2 + 2y3 + 2y4 + 2y5 + y6),

=
1

12
·

(
4 + 2 ·

5∑
i=1

4 ·
√

1 − (i/6)2 + 0

)
,

=
1

3
+

1

6
·

5∑
i=1

(
4 ·
√

1 − i2

36

)
,

T6 ≈ 3.062

On the other hand, S6 is given by,

S6 =
h

3
· (y0 + 4y1 + 2y2 + 4y3 + 2y4 + 4y5 + y6),

≈ 3.110 .

Now, remember to use a trigonometric substitution like x = sin θ to convert the
integral into an easily solvable trigonometric integral like∫ π

2

0

cos2 θ dθ.

The Actual value is then found to be π ≈ 3.1416, so Simpson’s Rule is closer to
the Actual value.

5. T10 = 1.090607 and S10 = 1.089429 . The Actual value is about 1.089429, and
so Simpson’s Rule gives an extremely good estimate!

6. 1.18728 , by using Simpson’s Rule with n = 6. The area is given by a definite

integral, namely,

∫ π
2

0

√
sin x dx, since the values sin x ≥ 0 for every x in this

interval. The Actual value is around 1.19814.

7. First, sketch the graphs and find the points of intersection (equate the y−values)
of these two curves. You will see that they intersect when x = 0 and x = 1. See
the graph in the margin below.

Then we find the area under the curve y = x and subtract from it the area under
the curve y = x2, (because the line lies above the parabola). So, the area of the
closed lop is given by ∫ 1

0

(x − x2) dx.
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Let n = 6. Applying both Rules with a = 0, b = 1, f(x) = x − x2, h = 1/6, we
get the values,

T6 = 0.1621, S6 = 0.1667,

and the estimate using Simpson’s Rule is EXACT (i.e., equal to the Actual
value) because the curve y = x − x2 is a parabola (or a quadratic, see the
margin).

8. T6 = 0.6695 and S6 = 0.5957 . Here n = 6, a = 1.05, b = 1.35, and the values

of f(x) are given in the Table. So, h = (b − a)/n = 0.05, xi = a + i(b − a)/n =
1.05 + i(0.05), and

T6 =
h

2
· (y0 + 2y1 + 2y2 + 2y3 + 2y4 + 2y5 + y6),

= 0.025 · (2.32 + 2(1.26) + 2(1.48) + 2(1.6) + 2(3.6) + 2(2.78) + (3.02)) ,

≈ 0.6695

T6 ≈ 0.6695

On the other hand, S6 is given by,

S6 =
h

3
· (y0 + 4y1 + 2y2 + 4y3 + 2y4 + 4y5 + y6),

=
0.05

3
· (2.32 + 4(1.26) + 2(1.48) + 4(1.6) + 2(3.6) + 4(2.78) + 3.02)

S6 ≈ 0.5957 .

9. 30.7655 , using Simpson’s Rule with n = 10. This means that there are roughly
30 primes less than 100.

10. L(6) ≈ 0.1876 . Use a = 0, b = 1, n = 6, and h = 1/6 in the expression for S6.

11. 0.087817 , using the Trapezoidal Rule with n = 8. This means that only about
8% of the total population has an IQ in this range.
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8.8 Exercise Set 46

1. Yes, x = 0 is an infinite discontinuity.

2. No, the integrand is continuous on [−1, 1].

3. Yes, x = 0 is an infinite discontinuity.

4. Yes, x = 1 is an infinite discontinuity (and ∞ is an upper limit).

5. Yes, x = −1 is an infinite discontinuity.

6. No, the integrand is continuous on [−1, 1].

7. Yes, x = −π, π are each infinite discontinuities of the cosecant function.

8. Yes, ±∞ are the limits of integration.

9. Yes, x = 0 gives an indeterminate form of the type 0 · ∞ in the integrand.

10. Yes, ±∞ are the limits of integration.

11. 2. This is because lim
T→∞

∫ T

0

x−1.5 dx = lim
T→∞

(
−2√

T
+ 2

)
= 2.

12. +∞. This is because lim
T→∞

∫ T

2

x−1/2 dx = lim
T→∞

(
2T 1/2 − 2

√
2
)

= +∞.

13. +∞. Note that lim
T→0+

1

2

∫ 2

T

dx

x
= lim

T→0+

(
1

2
ln |x|

) ∣∣∣∣
2

T

= lim
T→0+

(
1

2
ln 2 − 1

2
ln T

)
=

−(−∞) = +∞.

14. 2. Use Integration by Parts (with the Table Method) and L’Hospital’s Rule
twice.

This gives lim
T→∞

∫ T

0

x2 e−x dx = lim
T→∞

(
2 − T 2 + 2T + 2

eT

)
= 2.

15. 0. Use the substitution u = 1 + x2, du = 2x dx to find an antiderivative and
note that∫ ∞

−∞

2x

(1 + x2)2
dx =

∫ 0

−∞

2x

(1 + x2)2
dx +

∫ ∞

0

2x

(1 + x2)2
dx.

= lim
T→−∞

∫ 0

T

2x

(1 + x2)2
dx + lim

T→∞

∫ T

0

2x

(1 + x2)2
dx,

= lim
T→−∞

(
− 1

1 + x2

) ∣∣∣∣
0

T

+ lim
T→∞

(
− 1

1 + x2

) ∣∣∣∣
T

0

= −1 + 0 + 0 − (−1) = 0.

16. −1. Note that the infinite discontinuity is at x = −1 only. Now, use the
substitution u = 1 − x2, − du

2
= x dx. Then∫ 0

−1

x√
1 − x2

dx = lim
T→−1

(
−
√

1 − T 2

)∣∣∣∣
0

T

= −1 − 0 = −1.

17. Diverges (or does not exist). There is one infinite discontinuity at x = 1. First,
use partial fractions here to find that

1

x2 − 1
=

1

2
· 1

x − 1
− 1

2
· 1

x + 1
.

Next, using the definitions, we see that∫ 2

0

1

x2 − 1
dx =

∫ 1

0

1

x2 − 1
dx +

∫ 2

1

1

x2 − 1
dx =

= lim
T→1−

∫ T

0

1

x2 − 1
dx+ lim

T→1+

∫ 2

T

1

x2 − 1
dx = lim

T→1−

(
1

2
ln |x − 1| − 1

2
ln |x + 1|

) ∣∣∣∣
T

0

+

+ lim
T→1+

(
1

2
ln |x − 1| − 1

2
ln |x + 1|

) ∣∣∣∣
2

T

=

= lim
T→1−

(
1

2
ln

∣∣∣∣x − 1

x + 1

∣∣∣∣
) ∣∣∣∣

T

0

+ lim
T→1+

(
1

2
ln

∣∣∣∣x − 1

x + 1

∣∣∣∣
) ∣∣∣∣

2

T

=,
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= lim
T→1−

(
1

2
ln

∣∣∣∣T − 1

T + 1

∣∣∣∣− 1

2
ln | − 1|

)
+ lim

T→1+

(
1

2
ln

∣∣∣∣13
∣∣∣∣− 1

2
ln

∣∣∣∣T − 1

T + 1

∣∣∣∣
)

= =

(−∞− 0) + (− 1
2

ln 3 − (−∞) = ∞−∞, and so the limit does not exist.
So, the improper integral diverges.

18. −∞. See the (previous) Exercise 17 above for more details. In this case the
discontinuity, x = 1, is at an end-point. Thus, using partial fractions as before,
we find that∫ 2

1

1

1 − x2
dx = lim

T→1+

∫ 2

T

1

1 − x2
dx = − lim

T→1+

∫ 2

T

1

x2 − 1
dx =

= − lim
T→1+

(
1

2
ln

∣∣∣∣x − 1

x + 1

∣∣∣∣
) ∣∣∣∣

2

T

= −
(
−1

2
ln 3 − (−∞)

)
= −∞.

19. 1
2
. Use Integration by Parts and the Sandwich Theorem to find that∫ ∞

0

e−x sin x dx = lim
T→∞

∫ T

0

e−x sin x dx = lim
T→∞

1

2

(
−e−x cos x − e−x sin x

) ∣∣∣∣
T

0

= lim
T→∞

(
1

2

(
− cos T

eT
− sin T

eT

)
−
(
−1

2

))
=

1

2
.

Recall that the Sandwich Theorem tells us that, in this case,

0 ≤ lim
T→∞

∣∣∣∣ cos T

eT

∣∣∣∣ ≤ lim
T→∞

∣∣∣∣ 1

eT

∣∣∣∣ = 0,

and so the required limit is also 0. A similar argument applies to the other limit.

20. +∞. The infinite discontinuity is a x = 1. Use the substitution u = lnx,
du = dx

x
. Then∫ 2

1

dx

x ln x
= lim

T→1+

∫ 2

T

dx

x lnx
= lim

T→1+
ln(ln x))

∣∣∣∣
2

T

=

= lim
T→1+

(ln(ln2) − ln(ln T )) = −(−∞) = +∞.

21.
10

7
. The integrand is the same as

∫ 1

−1

(
x2/5 + x−3/5

)
dx and so the infinite dis-

continuity (at x = 0) is in the second term only. So,

∫ 1

−1

(
x2/5 + x−3/5

)
dx =∫ 1

−1

x2/5 dx+

∫ 1

−1

x−3/5 dx =
10

7
+

∫ 0

−1

x−3/5 dx+

∫ 1

0

x−3/5 dx =
10

7
+ lim

T→0−

∫ T

−1

x−3/5 dx+

lim
T→0+

∫ 1

T

x−3/5 dx =
10

7
+ lim

T→0−

(
5T 2/5

2
− 5

2

)
+ lim

T→0+

(
5

2
− 5T 2/5

2

)
=

10

7
−

5

2
+

5

2
=

10

7
.

22. Diverges. The integrand is the same as

∫ 1

−1

(
x−2/3 + x−5/3

)
dx and so the dis-

continuity is present in both terms. Thus,

∫ 1

−1

(
x−2/3 + x−5/3

)
dx =

=

∫ 0

−1

(
x−2/3 + x−5/3

)
dx +

∫ 1

0

(
x−2/3 + x−5/3

)
dx

= lim
T→0−

∫ T

−1

(
x−2/3 + x−5/3

)
dx + lim

T→0+

∫ 1

T

(
x−2/3 + x−5/3

)
dx

= lim
T→0−

(
3x1/3 − 3

2
x−2/3

) ∣∣∣∣
T

−1

+ lim
T→0+

(
3x1/3 − 3

2
x−2/3

) ∣∣∣∣
1

T

= lim
T→0−

(
3T 1/3 − 3

2
T−2/3

)
−
(
−3 − 3

2

)
+
(
3 − 3

2

)
−

= lim
T→0+

(
3T 1/3 − 3

2
T−2/3

)
=

−∞ + 6 + ∞ = ∞−∞,
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and so the improper integral diverges.

23. 2. Simply rewrite this integral as

∫ ∞

−∞
e−|x| dx =

∫ 0

−∞
ex dx+

∫ ∞

0

e−x dx, since

for x < 0 we have |x| = −x while for x > 0 we have |x| = x. The integrals are
straightforward and so are omitted.

24. Converges for p > 1 only. Let u = ln x, du = dx
x

. Then

∫ ∞

2

dx

x(lnx)p
=∫ ∞

ln 2

du

up
= lim

T→∞

∫ T

ln 2

du

up
= lim

T→∞
u1−p

1 − p

∣∣∣∣
T

ln 2

= lim
T→∞

(
T 1−p

1 − p

)
− (ln 2)1−p

1 − p
=

0 − (ln 2)1−p

1 − p
=

1

(p − 1) (ln 2)p−1
, only for p > 1. The case p = 1 is treted

as in Exercise 20, above, while the case p < 1 leads to an integral which con-
verges to +∞.

25. No, this is impossible. There is no real number p such the stated integral con-
verges to a finite number. Basically, this is because the integrand has a “bad”
discontinuity at x = 0 whenever p < 1 and another discontinuity at x = ∞
whenever p ≥ 1. The argument is based on a case-by-case analysis and runs like
this:

If p + 1 > 0, then

∫ ∞

0

xp dx = lim
T→∞

∫ T

0

xp dx = lim
T→∞

(
T p+1

p + 1
− 1

p + 1

)
=

+∞. On the other hand, if p+1 < 0, then

∫ ∞

0

xp dx =

∫ 1

0

xp dx+

∫ ∞

1

xp dx =

lim
T→0+

(
1

p + 1
− T p+1

p + 1

)
+ lim

T→∞

(
T p+1

p + 1
− 1

p + 1

)
=

=

(
1

p + 1
−∞

)
+

(
0 − 1

p + 1

)
= −∞. Finally, if p = 1 the integrand reduces

to x, by itself and it converges to +∞. Thus, we have shown that for any value
of p the improper integral cannot converge to a finite value.

26.

√
2

π
· 2

4 + λ2
. Use the method outlined in Exercise 19, above.

27. No, the integral must converge to +∞. Follow the hints.

28. Follow the hints.

29. Follow the hints.

30. L =
√

π. Simpson’s Rule with n = 22 gives us the value 1.7725 as an estimate
for the value of this integral over the interval [−5, 5]. Its square is about 3.1416,
which is close to

√
π.

8.9 Chapter Exercises

Please add a constant of integration, C, after every indefinite integral!

1. cos2 x− sin2 x = cos 2x. Use the identity cos(A + B) = cos A cos B − sin A sin B
with A = B = x.

2. cos4 x − sin4 x = cos 2x. This is because
cos4 x− sin4 x = (cos2 x− sin2 x)(cos2 x+sin2 x) = (cos2 x− sin2 x)(1) = cos 2x.

3. sec4 x− tan4 x = sec2 x+tan2 x. Use the same idea as the preceding one except
that now, sec2 x − tan2 x = 1.
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4.
√

1 + cos x =
√

2 · cos
(

x

2

)
, if −π ≤ x ≤ π. Replace x by x/2 in the identity

1+cos 2x
2

= cos2 x, and then extract the square root. Note that whenever −π/2 ≤
θ ≤ π/2, we have cos θ ≥ 0. Consequently, if −π ≤ θ ≤ π, then cos θ

2
≥ 0. This

explains that the positive square root of cos2 θ
2

is cos θ
2
.

5.
√

1 − cos x =
√

2 · sin
(

x

2

)
, if 0 ≤ x ≤ 2π. Replace x by x/2 in the identity

1−cos 2x
2

= sin2 x.

6.
√

1 + cos 5x =
√

2 ·cos
(

5x

2

)
, if −π ≤ 5x ≤ π. Replace x by 5x/2 in the identity

1+cos x
2

= cos2 x.

7.

∫ 2

0

(2x − 1) dx = 2, since the function is linear (a polynomial of degree 1). In

this case, the Trapezoidal Rule always gives the Actual value.

8.

∫ 4

0

(3x2 − 2x + 6) dx = 72, using Simpson’s Rule with n = 6. Once again, since

the integrand is a quadratic function, Simpson’s Rule is exact and always gives
the Actual value.

9.

∫ π

−π

(cos2 x + sin2 x) dx = 2π. The Trapezoidal Rule with n = 6 and the Actual

value agree exactly, since the integrand is equal to 1.

10.

∫ π

−π

(cos2 x − sin2 x) dx = 0, using Simpson’s Rule with n = 6. The exact

answer, obtained by direct integration, is 0, since the integrand is equal to
cos 2x. Note that the two values agree!

11.

∫ 1

0

e−x2
dx ≈ 1.4628, using Simpson’s Rule with n = 6. The Actual value is

1.462651746

12.

∫ 2

−1

1

1 + x6
dx ≈ 1.82860, using Simpson’s Rule with n = 4. The Actual value

is ≈ 1.94476. Don’t try to work it out!

13.

∫ 2

−2

x2

1 + x4
dx ≈ 1.221441, using the Trapezoidal Rule with n = 6. The exact

answer obtained by direct integration is 1.23352.

14.

∫ 2

1

(ln x)3 dx ≈ 0.10107, using Simpson’s Rule with n = 6. The Actual value is

2 ln3 2 − 6 ln2 2 + 12 ln 2 − 6 ≈ 0.101097387.

15.

∫ √
3x + 2 dx =

2

9

(√
3x + 2

)3
.

Let u = 3x + 2.

16.

∫
1

x2 + 4x + 4
dx = − 1

x + 2
.

Note that x2 + 4x + 4 = (x + 2)2.
Then let u = x + 2, du = dx.

17.

∫
dx

(2x − 3)2
= − 1

2 (2x − 3)
.

Let u = 2x − 3, du = 2dx, and so dx = du/2.

18.

∫
dx√

a + bx
= 2

√
a + bx

b
.

Let u = a + bx, du = bdx, and dx = du/b, if b 	= 0.
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19.

∫
(
√

a −
√

x)2 dx = ax − 4
√

a

3

(√
x
)3

+
1

2
x2.

Expand the integrand and integrate term-by-term.

20.

∫
x dx√
a2 − x2

= −
√

a2 − x2.

Let u = a2 − x2. Then du = −2xdx and x dx = −du/2.

21.

∫
x2
√

x3 + 1 dx =
2

9

(√
x3 + 1

)3

.

Let u = x3 + 1, du = 3x2 dx, so that x2 dx = du/3.

22.

∫
(x + 1)

3
√

x2 + 2x + 2
dx =

3

4

(
3
√

(x2 + 2x + 2)
)2

.

Let u = x2 + 2x + 2, du = (2x + 2) dx = 2(x + 1) dx. So, (x + 1) dx = du/2.

23.

∫
(x4 + 4x2 + 1)2(x3 + 2x) dx =

1

12
(x4 + 4x2 + 1)3

Let u = x4 +4x2 +1, du = (4x3 +8x) dx = 4(x3 +2x) dx and so, (x3 +2x) dx =
du/4.

24.

∫
x−1/3

√
x2/3 − 1 dx =

(√
x2/3 − 1

)3

.

Let u = x2/3 − 1. Then du = (2/3)x−1/3 dx, or x−1/3 dx = 3 du/2.

25.

∫
2x dx

(3x2 − 2)2
= − 1

3 (3x2 − 2)

Let u = 3x2 − 2, du = 6x dx and so 2x dx = du/3.

26.

∫
dx

4x + 3
=

1

4
ln |4x + 3|

Let u = 4x + 3, du = 4dx so that dx = du/4.

27.

∫
x dx

2x2 − 1
=

1

4
ln
∣∣2x2 − 1

∣∣
Let u = 2x2 − 1, du = 4x dx so that x dx = du/4.

28.

∫
x2 dx

1 + x3
=

1

3
ln
∣∣1 + x3

∣∣
Let u = 1 + x3, du = 3x2 dx so that x2 dx = du/3.

29.

∫
(2x + 3) dx

x2 + 3x + 2
= ln

∣∣x2 + 3x + 2
∣∣

Let u = x2 + 3x + 2, du = (2x + 3) dx.

30.

∫
sin(2x + 4) dx = −1

2
cos (2x + 4)

Let u = 2x + 4, du = 2 dx, and dx = du/2.

31.

∫
2 cos(4x + 1) dx =

1

2
sin (4x + 1)

Let u = 4x + 1, du = 4 dx, and dx = du/4.

32.

∫ √
1 − cos 2x dx =

√
2 cos x.

Note that 1−cos 2x
2

= sin2 x. The result follows upon the extraction of a square

root. In actuality, we are assuming that
√

sin2 x = | sin x| = sin x, here (or that
sin x ≥ 0 over the region of integration).
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33.

∫
sin

3x − 2

5
dx = −5

3
cos
(

3x − 2

5

)
Let u = 3x−2

5
, du = 3dx

5
. Then dx = 5du

3
.

34.

∫
x cos ax2 dx =

1

2

sin ax2

a

Assume a 	= 0. Let u = ax2, du = 2ax dx, so that x dx = du/2a.

35.

∫
x sin(x2 + 1) dx = −1

2
cos
(
x2 + 1

)
Let u = x2 + 1, du = 2x dx. Then x dx = du/2.

36.

∫
sec2 θ

2
dθ = 2 tan

1

2
θ

Let u = θ/2, du = dθ/2. The result follows since
∫

sec2 u du = tan u.

37.

∫
dθ

cos2 3θ
=

1

3
tan 3θ

The integrand is equal to sec2 3θ. Now let u = 3θ, du = 3dθ.

38.

∫
dθ

sin2 2θ
= −1

2
cot 2θ

The integrand is equal to csc2 2θ. Now let u = 2θ, du = 2dθ, and note that∫
csc2 u du = − cot u.

39.

∫
x csc2(x2) dx = −1

2
cot x2

Let u = x2, du = 2x dx, so that x dx = du/2. Note that
∫

csc2 u du = − cot u.

40.

∫
tan

3x + 4

5
dx =

5

3
ln

∣∣∣∣ sec 3x + 4

5

∣∣∣∣
Let u = 3x+4

5
, du = 3dx/5 and so dx = 5du/3. The result follows since∫

tanu du = − ln | cos u| = ln | sec u|.

41.

∫
dx

tan 2x
=

1

2
ln | sin 2x|

The integrand is equal to cot 2x. Let u = 2x, du = 2dx. Then, dx = du/2, and
since

∫
cot u du = ln | sin u|, the result follows.

42.

∫ √
1 + cos 5x dx =

2
√

2

5
sin

5x

2

Use the identity in Exercise 6, above. Since
√

1 + cos 5x =
√

2 · cos
(

5x
2

)
we let

u = 5x
2

, du = 5dx/2. Then dx = 2du/5 and the conclusion follows.

43.

∫
csc(x +

π

2
) cot(x +

π

2
) dx = − sec x

Trigonometry tells us that sin(x + π
2
) = cos x, and cos(x + π

2
) = − sin x. Thus,

by definition, csc(x + π
2
) cot(x + π

2
) = − sec x tanx. On the other hand,∫

sec x tan x dx = sec x.

44.

∫
cos 3x cos 4x dx =

1

2
sin x +

1

14
sin 7x

Use the identity cos A cos B = 1
2

(cos(A − B) + cos(A + B)), with A = 4x, B =
3x, and integrate the terms individually. This is also a “ three-row problem”
using the Table method in Integration by Parts and so you can use this alternate
method as well.



34 8.9. CHAPTER EXERCISES

45.

∫
sec 5θ tan 5θ dθ =

1

5
sec 5θ

Let u = 5θ, du = 5dθ. Then dθ = du/5 and since
∫

sec u tan u du = sec u, we
have the result.

46.

∫
cos x

sin2 x
dx = − 1

sin x

The integrand is equal to cot x csc x. The result is now clear since
1

sin x
= csc x.

47.

∫
x2 cos(x3 + 1) dx =

1

3
sin
(
x3 + 1

)
Let u = x3 + 1, du = 3x2 dx. Then x2 dx = du/3 and the answer follows.

48.

∫
sec θ (sec θ + tan θ) dθ = sec θ + tan θ

Expand the integrand and integrate it term-by-term. Use the facts∫
sec2 u du = tan u, and

∫
sec u tanu du = sec u

49.

∫
(csc θ − cot θ) csc θ dθ = csc θ − cot θ =

1

sin θ
− cos θ

sin θ

Expand the integrand and integrate it term-by-term. Use the facts∫
csc2 u du = − cot u, and

∫
csc u cot u du = − csc u. Rewrite your answer using

the elementary functions sine and cosine.

50.

∫
cos−4 x sin(2x) dx =

1

cos2 x

Write sin 2x = 2 sin x cos x and simplify the integrand. Put the cos3 x-term in
the denominator and then use the substitution u = cos x,
du = − sin x dx. Then −2

∫
u−3 du = u−2 and the result follows.

51.

∫
tan2 √x√

x
dx = 2 tan

√
x − 2

√
x

Let u =
√

x, du = 1
2
√

x
dx, which gives 2

√
x du = dx, or dx = 2u du. The

integral becomes∫
2u tan2 u

u
du =

∫
2 tan2 u du =

∫
2(sec2 u − 1) du = 2 tan u− 2u, and the

result follows.

52.

∫
1 + sin 2x

cos2 2x
dx =

1

2 cos 2x
+

1

2

sin 2x

cos 2x

Note that the integrand is equal to sec2 2x+sec 2x tan 2x. Let u = 2x, du = 2dx,
or dx = du/2. Use the facts

∫
sec2 u du = tan u, and∫

sec u tan u du = sec u. Now reduce your answer to elementary sine and cosine
functions.

53.

∫
dx

cos 3x
=

1

3
ln |sec 3x + tan 3x|

Let u = 3x, du = 3dx, dx = du/3, and use the result from Example 386, with
x = u.

54.

∫
dx

sin(3x + 2)
=

1

3
ln |csc (3x + 2) − cot (3x + 2)|

Note that the integrand is equal to csc(3x + 2). Now let u = 3x + 2, du = 3dx,
dx = du/3. The integral looks like
(1/3)

∫
csc u du = (1/3) ln | csc u−cot u| and the result follows. This last integral

is obtained using the method described in Example 386, but applied to these
functions. See also Table 8.9.
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55.

∫
1 + sin x

cos x
dx = ln |sec x + tan x| − ln |cos x|

Break up the integrand into two parts and integrate term-by-term. Note that
− ln | cos x| = ln | sec x| so that the final answer may be written in the form
ln |sec x + tan x| + ln |sec x| = ln

∣∣sec2 x + tan x sec x
∣∣.

56.

∫
(1 + sec θ)2 dθ = θ + 2 ln |sec θ + tan θ| + tan θ

Expand the integrand and integrate term-by-term.

57.

∫
csc2 x dx

1 + 2 cot x
= −1

2
ln |1 + 2 cot x|

Let u = 1 + 2 cot x, du = −2 csc2 x dx. So, csc2 dx = − du
2

. The integral now

becomes (−1/2)

∫
du

u
= −(1/2) ln |u|.

58.

∫
ex sec ex dx = ln |sec (ex) + tan (ex)|

Let u = ex, du = ex dx, and use Example 386.

59.

∫
dx

x lnx
= ln |ln x|

Let u = ln x, du = dx
x

. The integral looks like
∫

du
u

= ln |u| and the result
follows.

60.

∫
dt√

2 − t2
= Arcsin

1

2

√
2t

The integrand contains a square root of a difference of squares of the form√
a2 − u2 where a =

√
2, and u = t. Let t =

√
2 sin θ, dt =

√
2 cos θ dθ. Since√

2 − t2 =
√

2 cos θ, the integral looks like
∫

dθ = θ = Arcsin t√
2
.

61.

∫
dx√

3 − 4x2
=

1

2
Arcsin

2

3

√
3x

The integrand contains a square root of a difference of squares of the form√
a2 − u2 where a =

√
3, and u = 2x. Let 2x =

√
3 sin θ, 2dx =

√
3 cos θ dθ.

Since
√

3 − 4x2 =
√

3 cos θ, the integral looks like
∫

(1/2)dθ = θ
2

= 1
2
Arcsin 2x√

3
,

which is equivalent to the answer.

62.

∫
(2x + 3) dx√

4 − x2
= −2

√
4 − x2 + 3Arcsin

1

2
x

Break up the integrand into two parts so that the integral looks like∫
2x dx√
4 − x2

+

∫
3√

4 − x2
dx.

Let u = 4−x2, du = −2x dx in the first integral and x = 2 sin θ, dx = 2 cos θ dθ
in the second integral. Then

√
4 − x2 = 2 cos θ and the second integral is an

Arcsine. The first is a simple substitution.

63.

∫
dx

x2 + 5
=

1

5

√
5Arctan

1

5
x
√

5

This integrand contains a sum of two squares. So let, x =
√

5 tan θ, dx =√
5 sec2 θ dθ. The integral becomes∫ √

5 sec2 θ dθ

5 sec2 θ
=

√
5

5

∫
dθ and the result follows since θ = Arctan x√

5
, and

1√
5

=
√

5
5

.

64.

∫
dx

4x2 + 3
=

1

6

√
3Arctan

2

3

√
3x
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The integrand contains a sum of two squares, a2 + u2 where a =
√

3 and u = 2x.
So let 2x =

√
3 tan θ, 2 dx =

√
3 sec2 θ dθ. The integral becomes∫

(1/2)
√

3 sec2 θ dθ

3 sec2 θ
=

√
3

6

∫
dθ and the result follows since θ = Arctan 2x√

3
.

65.

∫
dx

x
√

x2 − 4
=

1

2
Arcsec

x

2

The integrand contains a square root of a difference of two squares,
√

u2 − a2

where a = 2 and u = x. So let x > 2 and x = 2 sec θ, dx = 2 sec θ tan θ dθ.
Moreover,

√
x2 − 4 = 2 tan θ. The integral becomes∫

2 sec θ tan θ dθ

(2 sec θ)(2 tan θ)
=

1

2

∫
dθ and the result follows since θ = Arcsec x

2
.

66.

∫
dx

x
√

4x2 − 9
=

1

3
Arcsec

2x

3

The integrand contains a square root of a difference of two squares,
√

u2 − a2

where a = 3 and u = 2x. So let x > 0 and set 2x = 3 sec θ, 2dx = 3 sec θ tan θ dθ.
Moreover,

√
4x2 − 9 = 3 tan θ. The integral becomes∫

(3/2) sec θ · tan θ dθ

(3/2) sec θ · 3 tan θ
=

1

3

∫
dθ and the result follows since θ = Arcsec 2x

3
.

67.

∫
dx√

x2 + 4
= ln

∣∣∣∣
√

4 + x2

2
+

x

2

∣∣∣∣
= ln

∣∣√4 + x2 + x
∣∣, where the “missing” constants are absorbed by the constant

of integration, C.

The integrand contains a square root of a sum of two squares,
√

u2 + a2 where
a = 2 and u = x. Set x = 2 tan θ, dx = 2 sec2 θ dθ. Moreover,

√
x2 + 4 = 2 sec θ.

The integral becomes∫
2 sec2 θ dθ

(2 sec θ)
=

∫
sec θ dθ and the result follows from Example 386.

68.

∫
dx√

4x2 + 3
=

1

2
ln

∣∣∣∣
√

4x2 + 3√
3

+
2x√

3

∣∣∣∣
= ln

∣∣√4x2 + 3 + 2x
∣∣, where the “missing” constants are absorbed by the con-

stant of integration, C.

The integrand contains a square root of a sum of two squares,
√

u2 + a2 where
a =

√
3 and u = 2x. Set 2x =

√
3 tan θ, 2 dx =

√
3 sec2 θ dθ. Moreover,√

4x2 + 3 =
√

3 sec θ. The integral becomes∫
(
√

3/2) sec2 θ dθ√
3 sec θ

= (1/2)

∫
sec θ dθ and the result follows from Example 386,

once again.

69.

∫
dx√

x2 − 16
= ln

∣∣∣∣x4 +

√
x2 − 16

4

∣∣∣∣
= ln

∣∣x +
√

x2 − 16
∣∣, where the “missing” constants are absorbed by the con-

stant of integration, C.

The integrand contains a square root of a difference of two squares,
√

u2 − a2

where a = 4 and u = x. Set x = 4 sec θ, dx = 4 sec θ tan θ dθ. Moreover,√
x2 − 16 = 4 tan θ. The integral becomes∫
4 sec θ tan θ dθ

4 tan θ
=

∫
sec θ dθ and the result follows from Example 386.

70.

∫
ex

1 + e2x
dx = Arctan (ex)

Use a substitution here: Let u = ex, du = ex dx. The integral now looks like∫
1

1 + u2
du = Arctan u, where u = ex.

71.

∫
1

x
√

4x2 − 1
dx = Arcsec 2x
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The integrand contains a square root of a difference of two squares,
√

u2 − a2

where a = 1 and u = 2x. So let x > 0 and set 2x = sec θ, 2dx = sec θ tan θ dθ.
Moreover,

√
4x2 − 1 = tan θ. The integral becomes∫

(1/2) sec θ · tan θ dθ

(1/2) sec θ · tan θ
=

∫
dθ and the result follows since θ = Arcsec 2x.

72.

∫
dx√

4x2 − 9
=

1

2
ln

∣∣∣∣2x

3
+

√
4x2 − 9

3

∣∣∣∣ = ln
∣∣2x +

√
4x2 − 9

∣∣, where the “miss-

ing” constants are absorbed by the constant of integration, C.

The integrand contains a square root of a difference of two squares,
√

u2 − a2

where a = 3 and u = 2x. So let x > 0 and set 2x = 3 sec θ, 2 dx =
3 sec θ tan θ dθ. Moreover,

√
4x2 − 9 = 3 tan θ. The integral becomes∫

(3/2) sec θ · tan θ dθ

3 tan θ
= (1/2)

∫
sec θ dθ and the result follows since

∫
sec θ dθ =

ln | sec θ + tan θ|.

73.

∫
e−3x dx = −1

3
e−3x

Let u = −3x, du = −3 dx. Then dx = −du/3.

74.

∫
dx

e2x
= −1

2
e−2x

Write the integrand as e−2x and let u = −2x, du = −2 dx.

75.

∫
(ex − e−x)2 dx =

1

2
e2x − 2x − 1

2
e−2x

Expand the expression and integrate term-by-term using the two preceding ex-
ercises.

76.

∫
xe−x2

dx = −1

2
e−x2

Let u = −x2, du = −2x dx so that x dx = −du/2.

77.

∫
sin θ dθ√
1 − cos θ

= 2
√

1 − cos θ

Let u = 1 − cos θ, du = sin θ dθ. We now have an easily integrable form.

78.

∫
cos θ dθ√
2 − sin2 θ

= Arcsin
(

1

2

√
2 sin θ

)
Write θ = x. Let u = sin x, du = cos x dx. The integral takes the form∫

du√
2 − u2

. Now set u =
√

2 sin θ. (This is why we changed the name of the

original variable to “x”, so that we wouldn’t get it confused with THIS θ).
Then du =

√
2 cos θ dθ and

√
2 − u2 =

√
2 cos θ and the rest of the integration

is straightforward. (Note: If you want, you could set u = sin θ immediately and
proceed as above without first having to let θ = x etc.)

79.

∫
e2x dx

1 + e2x
=

1

2
ln
(
1 + e2x

)
Let u = 1 + e2x, du = 2e2x dx. Now, the integral gives a natural logarithm

80.

∫
ex dx

1 + e2x
= Arctan (ex)

Let u = ex, du = ex dx. Now, the integral is of the form∫
du

1 + u2
and this gives an Arctangent.

81.

∫
cos θ dθ

2 + sin2 θ
=

1

2

√
2Arctan

(
1

2

√
2 sin θ

)
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Write θ = x. Let u = sin x, du = cos x dx. The integral takes the form∫
du

2 + u2
. Now set u =

√
2 tan θ. (This is why we changed the name of the

original variable to “x”, so that we wouldn’t get it confused with THIS θ).
Then du =

√
2 sec2 θ dθ and 2 + u2 = 2 sec2 θ and the rest of the integration is

straightforward. (Note: If you want, you could set u = sin θ immediately and
proceed as above without first having to let θ = x etc.)

82.

∫
sin3 x cos x dx =

1

4
sin4 x

Let u = sin x, du = cos x dx.

83.

∫
cos4 5x sin 5x dx = − 1

25
cos5 5x

Let u = cos 5x, du = −5 sin 5x dx or sin 5x = −du/5. The rest is straightfor-
ward.

84.

∫
(cos θ + sin θ)2 dθ = θ − cos2 θ

or, this can also be rewritten as θ + sin2 θ

Expand and use the identities cos2 θ + sin2 θ = 1, along with
sin 2θ = 2 sin θ cos θ. Then use the substitution u = 2x, or if you prefer, let
u = sin θ, etc.

85.

∫
sin3 x dx = −1

3
sin2 x cos x − 2

3
cos x

This is the case m is even (m = 0) and n is odd (n = 3) in the text.

86.

∫
cos3 2x dx =

1

6
cos2 2x sin 2x +

1

3
sin 2x

Let u = 2x. The new integral is in the case where m is odd (m = 3) and n is
even (n = 0) in the text.

87.

∫
sin3 x cos2 x dx = −1

5
sin2 x cos3 x − 2

15
cos3 x

This is the case m is even (m = 2) and n is odd (n = 3) in the text. To get the
polynomial in cos x simply use the identities sin2 x = 1 − cos2 x whenever you
see the sin2 x−term and expand and simplify.

88.

∫
cos5 x dx =

1

5
cos4 x sin x +

4

15
cos2 x sin x +

8

15
sin x

This is the case m is odd (m = 5) and n is even (n = 0) in the text. To get the
polynomial in sin x simply use the identities cos2 x = 1 − sin2 x whenever you
see a cos2 x−term and then expand and simplify.

89.

∫
sin3 4θ cos3 4θ dθ = − 1

24
sin2 4θ cos4 4θ − 1

48
cos4 4θ

Let u = 4θ. Then the new integral is in the case where m is odd (m = 3) and
n is odd (n = 3) in the text.

90.

∫
cos2 x dx

sin x
= cos x + ln |csc x − cot x|

Write cos2x = 1 − sin2 x, break up the integrand into two parts, and use the

fact that

∫
csc x dx = ln | csc x − cot x|.

91.

∫
cos3 x dx

sin x
=

1

2
cos2 x + ln |sin x|
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Write cos2x = 1− sin2 x, break up the integrand into two parts. In one, use the
fact that∫

cot x dx = ln | sin x|. In the other, use the substitution u = sin x in the other.

92.

∫
tan2 x sec2 x dx =

1

3
tan3 x

Let u = tanx, du = sec2 x dx.

93.

∫
sec2 x tan3 x dx =

1

4
tan4 x

Let u = tanx, du = sec2 x dx.

94.

∫
sin x dx

cos3 x
=

1

2 cos2 x

Let u = cos x, du = − sin x dx.

95.

∫
sin2 x dx

cos4 x
=

1

3
tan3 x

The integrand is equal to tan2 x sec2 x. Now let u = tanx.

96.

∫
sec4 x dx =

1

3
tan x sec2 x +

2

3
tan x

This is the case m = 4, n = 0 in the text. Note that sec2x = 1 + tan2 x. So,

this answer is equivalent to tanx + tan3 x
3

with the addition of a constant.

97.

∫
tan2 x dx = tanx − x

The integrand is equal to 1− sec2 x. Now break up the integrand into two parts
and integrate term-by-term.

98.

∫
(1 + cot θ)2 dθ = − cot θ − ln

(
1 + cot2 θ

)
Expand the integrand, use the identity 1 + cot2 θ = csc2 θ and integrate using
the facts that

∫
csc2 x dx = − cot x, and

∫
cot x dx = ln | sin x|. Note that the

second term may be simplified further using the fact that
ln
(
1 + cot2 θ

)
= ln csc2 θ = − ln sin2 θ = −2 ln sin θ.

99.

∫
sec4 x tan3 x dx =

1

6
tan4 x sec2 x +

1

12
tan4 x

This is the case m = 4, n = 3 in the text.

100.

∫
csc6 x dx = −1

5
csc4 x cot x − 4

15
csc2 x cot x − 8

15
cot x

Use the same ideas as in the case m = 6, n = 0 in the secant/tangent case.

101.

∫
tan3 x dx =

1

2
tan2 x − 1

2
ln
(
1 + tan2 x

)
This is the case m = 0, n = 3 in the text.

102.

∫
cos2 t dt

sin6 t
= −1

5
csc2 t cot3 t − 2

15
cot3 t

The integrand is equal to cot2 x csc4 x, and this corresponds to the case m =
4, n = 2 in the secant/tangent case.

103.

∫
tan θ csc θ dθ = ln |sec θ + tan θ|

The integrand is really sec θ in disguise!
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104.

∫
cos2 4x dx =

1

8
cos 4x sin 4x +

1

2
x

Use the identity cos2 � = 1+cos 2�
2

, with � = 4x. Then use a simple substitu-
tion u = 8x, and simplify your answer using the identity sin 8x = sin(2 · 4x) =
2 sin 4x cos 4x.

105.

∫
(1 + cos θ)2 dθ =

3

2
θ + 2 sin θ +

1

2
cos θ sin θ

Expand the integrand, use the identity cos2 θ = 1+cos 2θ
2

and integrate term-by-
term.

106.

∫
(1 − sin x)3 dx =

5

2
x +

11

3
cos x − 3

2
cos x sin x +

1

3
sin2 x cos x

Expand the integrand, and integrate term-by-term using the identity sin2 θ =
1−cos 2θ

2
, and the case m = 0, n = 3 in the text.

Recall that (1 − � )3 = 1 − 3� + 3� 2 − � 3

107.

∫
sin4 x dx = −1

4
sin3 x cos x − 3

8
cos x sin x +

3

8
x

This is the case m = 0, n = 4 in the text.

108.

∫
sin2 2x cos2 2x dx = −1

8
sin 2x cos3 2x +

1

16
cos 2x sin 2x +

1

8
x

Let u = 2x first. Then the new integral corresponds to the case m = 2, n = 2
in the text.

109.

∫
sin4 θ cos2 θ dθ = −1

6
sin3 θ cos3 θ − 1

8
sin θ cos3 θ +

1

16
cos θ sin θ +

1

16
θ

This is the case m = 2, n = 4 in the text.

110.

∫
cos6 x dx =

1

6
cos5 x sin x +

5

24
sin x cos3 x +

5

16
cos x sin x +

5

16
x

This is the case m = 6, n = 0 in the text.

111.

∫
cos x sin 2x dx = −1

6
cos 3x − 1

2
cos x

You can use either Table integration in a three-row problem or the identity

cos A sin B =
1

2
sin(A + B) − 1

2
sin(A − B) to find this integral.

112.

∫
sin x cos 3x dx = −1

8
cos 4x +

1

4
cos 2x

You can use either Table integration in a three-row problem or the identity

cos A sin B =
1

2
sin(A + B) − 1

2
sin(A − B) to find this integral.

113.

∫
sin 2x sin 3x dx =

1

2
sin x − 1

10
sin 5x

You can use either Table integration in a three-row problem or the identity

sin A sin B =
1

2
cos(A − B) − 1

2
cos(A + B) to find this integral.

114.

∫
cos 2x cos 4x dx =

1

4
sin 2x +

1

12
sin 6x

You can use either Table integration in a three-row problem or the identity

cos A cos B =
1

2
cos(A − B) +

1

2
cos(A + B) to find this integral.

115.

∫
sin2 2x cos 3x dx =

1

6
sin 3x − 1

4
sin x − 1

28
sin 7x
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Use the identity sin2 � = 1−cos 2�
2

with � = 2x. Break up the integrand into
two parts, and integrate using the substitution u = 4x and the identity

cos A cos B =
1

2
cos(A − B) +

1

2
cos(A + B) to find the other integral.

116.

∫
sec x csc x dx = ln |tan x|

There are two VERY different ways of doing this one:

In the first proof we note the trigonometric identity (and this isn’t obvious!),

sec2 x

tan x
=

1

sin x cos x
= sec x csc x,

so the result follows after using the substitution u = tan x, du = sec2 x dx.

In the second proof we note that (and this isn’t obvious either!)

1

sin x cos x
=

2

sin 2x
= 2 csc 2x.

Now use the substitution u = 2x, du = 2dx and this new integral becomes

2 · 1

2

∫
csc u du = ln | csc u − cot u|. The answer is equivalent to

ln | csc 2x − cot 2x| + C, because of the identity 1 − cos 2x = 2 sin2 x.

117.

∫
dx

1 − cos x
= − 1

tan 1
2
x

= − cot
x

2
.

Use the identity 1 − cos 2� = 2 sin2 � , with � = x
2
. Then 1

1−cos x
= 1

2
csc2 x

2
.

Let u = x/2, du = dx/2 and use the integral∫
csc2 u du = − cot u and simplify.

118.

∫
dx√

2 + 2x − x2
= Arcsin

1

3

√
3 (x − 1)

First, complete the square to find 2 + 2x − x2 = 3 − (x − 1)2. Next, let a =√
3, u = x− 1. This integrand has a term of the form

√
a2 − u2. So we use the

trigonometric substitution
u = x − 1 =

√
3 sin θ, dx =

√
3 cos θ dθ.

Furthermore,
√

2 + 2x − x2 =
√

3 cos θ. So, the integral now takes the form∫ √
3 cos θ dθ√

3 cos θ
=

∫
dθ = θ

where θ = Arcsin x−1√
3

which is equivalent to the stated answer.

119.

∫
dx√

1 + 4x − 4x2
=

1

2
Arcsin

√
2
(
x − 1

2

)
First, complete the square to find 1 + 4x − 4x2 = 2 − (2x − 1)2. Next, let
a =

√
2, u = 2x − 1. This integrand has a term of the form

√
a2 − u2. So we

use the trigonometric substitution

u = 2x − 1 =
√

2 sin θ, 2dx =
√

2 cos θ dθ

or, dx =

√
2

2
cos θ dθ.

Furthermore,
√

1 + 4x − 4x2 =
√

2 cos θ. So, the integral now takes the form
1

2

∫ √
2 cos θ dθ√

2 cos θ
=

1

2

∫
dθ =

θ

2

where θ = Arcsin 2x−1√
2

which is equivalent to the stated answer.
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120.

∫
dx√

2 + 6x − 3x2
=

1

3

√
3Arcsin

1

5

√
15 (x − 1)

This one is a little tricky: First, complete the square to find 2 + 6x − 3x2 =
5− 3(x− 1)2. But this is not exactly a difference of squares, yet! So we rewrite
this as

5 − 3(x − 1)2 = 5 − (
√

3x −
√

3)2,

and this is a difference of squares. Now let a =
√

5, u =
√

3x−
√

3. We see that
the integrand has a term of the form

√
a2 − u2. So we use the trigonometric

substitution
u =

√
3x −

√
3 =

√
5 sin θ,√

3 dx =
√

5 cos θ dθ

or, dx =

√
5√
3

cos θ dθ.

Furthermore,
√

2 + 6x − 3x2 =
√

5 cos θ. So, the integral now takes the form∫ √
5√
3

cos θ dθ
√

5 cos θ
=

1√
3

∫
dθ =

θ√
3

where θ = Arcsin
√

3x−√
3√

5
which is equivalent to the stated answer.

121.

∫
dx√

x2 + 6x + 13
= ln

∣∣∣∣
√

x2 + 6x + 13

2
+

x + 3

2

∣∣∣∣
First, complete the square to find x2 + 6x + 13 = (x + 3)2 + 4. Next, let
a = 2, u = x + 3. This integrand has a term of the form

√
a2 + u2. So we use

the trigonometric substitution

u = x + 3 = 2 tan θ,
dx = 2 sec2 θ dθ.

Furthermore,
√

x2 + 6x + 13 = 2 sec θ. So, the integral now takes the form∫
2 sec2 θ dθ

2 sec θ
=

∫
sec θ dθ = ln | sec θ + tan θ|,

where sec θ = Arcsec

√
x2+6x+13

2

and tan θ = x+3
2

which is equivalent to the stated answer.

122.

∫
dx

2x2 − 4x + 6
=

1

4

√
2Arctan

1

8
(4x − 4)

√
2

First, complete the square to find 2x2 − 4x + 6 = 2(x − 1)2 + 4. The integral
now looks like:∫

1

2x2 − 4x + 6
dx =

∫
1

2(x − 1)2 + 4
dx =

1

2

∫
1

(x − 1)2 + 2
dx.

Next, let a =
√

2, u = x − 1. The previous integrand has a term of the form
a2 + u2. So we use the trigonometric substitution

u = x − 1 =
√

2 tan θ,
dx =

√
2 sec2 θ dθ.

Furthermore, 2x2−4x+6 = 2 sec2 θ. So, the original integral now takes the form

1

2

∫ √
2 sec2 θ dθ

2 sec2 θ
=

√
2

4
θ =

√
2

4
Arctan

x − 1√
2

,

which is equivalent to the stated answer.
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123.

∫
dx

(1 − x)
√

x2 − 2x − 3
= −1

2
Arcsec

x − 1

2

First we complete the square so that x2 −2x−3 = (x−1)2−4. A trigonometric
substitution is hard here: Let’s try another approach...

Let u = x − 1, du = dx. Then the integral becomes (note the minus sign)

−
∫

du

u
√

u2 − 4
.

Now we incorporate the number 4 into the square by factoring it out of the
expression, thus:

u
√

u2 − 4 = 2u

√(
u

2

)2

− 1.

Now we use the substitution v = u
2
, 2dv = du. The integral in u now becomes

−
∫

2 dv

4v
√

v2 − 1
= −1

2

∫
dv

v
√

v2 − 1
= −1

2
Arcsec v,

according to Table 7.7 with � = v. The answer follows after back-substitution.

124.

∫
(2x + 3) dx

x2 + 2x − 3
=

3

4
ln |x + 3| + 5

4
ln |x − 1|

Use partial fractions. The factors of the denominator are (x + 3)(x − 1). You
need to find two constants.

125.

∫
(x + 1) dx

x2 + 2x − 3
=

1

2
ln
∣∣x2 + 2x − 3

∣∣
Let u = x2 + 2x − 3, du = (2x + 2) dx so that
du = 2(x + 1) dx. Now the integral in u gives a natural logarithm.

Alternately, use partial fractions. The factors of the denominator are (x+3)(x−
1). You need to find the two constants.

126.

∫
(x − 1) dx

4x2 − 4x + 2
=

1

8
ln
∣∣4x2 − 4x + 2

∣∣− 1

4
Arctan (2x − 1)

The denominator is a Type II factor (it is irreducible) since b2 − 4ac = (−4)2 −
4(4)(2) < 0. So the expression is already in its partial fraction decomposition.
So, the partial fractions method gives nothing.

So, complete the square in the denominator. This gives an integral of the form∫
(x − 1) dx

4x2 − 4x + 2
=

∫
(x − 1) dx

(2x − 1)2 + 1
,

which can be evaluated using the trigonometric substitution,

u = 2x − 1, du = 2dx or dx = du/2. Solving for x we get
x = u+1

2
, so x − 1 = u−1

2
. The u−integral looks like

1

2

∫
u − 1

1 + u2
du.

Break this integral into two parts and use the substitution

v = 1 + u2, dv = 2u du, udu = dv/2

in the first, while the second one yields an Arctangent.
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127.

∫
x dx√

x2 − 2x + 2
=
√

x2 − 2x + 2 + ln

∣∣∣√x2 − 2x + 2 + x − 1

∣∣∣
Completing the square we see that x2 − 2x + 2 = (x − 1)2 + 1. Next, we set

x − 1 = tan θ, dx = sec2 θ dθ
x = 1 + tan θ,√

x2 − 2x + 2 =
√

(x − 1)2 + 1 = sec θ.

The integral becomes∫
x dx√

x2 − 2x + 2
=

∫
(1 + tan θ) sec2 θ

sec θ
dθ

and this simplifies to∫
(sec θ + sec θ tan θ) dθ = ln | sec θ + tan θ| + sec θ.

Finally, use the back-substitutions sec θ =
√

x2 − 2x + 2 and tan θ = x − 1.

128.

∫
(4x + 1) dx√
1 + 4x − 4x2

= −
√

1 + 4x − 4x2 +
3

2
Arcsin

√
2
(
x − 1

2

)
Completing the square we see that 1 + 4x− 4x2 = 2− (2x− 1)2. The integrand
has a term of the form

√
a2 − u2 where a =

√
2, u = 2x − 1. So, we set

2x − 1 =
√

2 sin θ, 2dx =
√

2 cos θ dθ

x = 1+
√

2 sin θ
2

,

4x + 1 = 3 + 2
√

2 sin θ,√
1 + 4x − 4x2 =

√
2 cos θ.

The integral becomes

∫
(4x + 1) dx√
1 + 4x − 4x2

=

∫ (
3 + 2

√
2 sin θ√

2 cos θ

) √
2

2
cos θ dθ

which simplifies to

1

2

∫
(3 + 2

√
2 sin θ) dθ =

3

2
θ −

√
2 cos θ.

Finally, use the back-substitutions θ = Arcsin 2x−1√
2

and cos θ =

√
1+4x−4x2

√
2

, to
get it in a form equivalent to the stated answer.

129.

∫
(3x − 2) dx√
x2 + 2x + 3

= 3
√

x2 + 2x + 3 − 5 ln

∣∣∣∣
√

x2 + 2x + 3√
2

+
x + 1√

2

∣∣∣∣
Completing the square we see that x2 + 2x + 3 = 2 + (x + 1)2. The integrand
has a term of the form

√
a2 + u2 where a =

√
2, u = x + 1. So, we set

x + 1 =
√

2 tan θ, dx =
√

2 sec2 θ dθ
x =

√
2 tan θ − 1,

3x − 2 = 3
√

2 tan θ − 5 = 3
√

2 tan θ − 5,√
x2 + 2x + 3 =

√
2 sec θ.

The integral becomes

∫
(3x − 2) dx√
x2 + 2x + 3

=

∫ (
3
√

2 tan θ − 5√
2 sec θ

)√
2 sec2 θ dθ

which simplifies to
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3
√

2

∫
sec θ tan θ dθ − 5

∫
sec θ dθ = 3

√
2 sec θ − 5 ln | sec θ + tan θ|.

Finally, use the back-substitutions sec θ =

√
x2+2x+3√

2
, and

tan θ = x+1√
2

, to get it in a form equivalent to the stated answer.

130.

∫
ex dx

e2x + 2ex + 3
=

1

2

√
2Arctan

1

4
(2ex + 2)

√
2

Let u = ex, du = ex dx. The integral is now a rational function in u on which
we can use partial fractions. The denominator is irreducible, since b2 − 4ac =
4 − 4(1)(3) < 0. You need to find two constants.

131.

∫
x2 dx

x2 + x − 6
= x − 9

5
ln |x + 3| + 4

5
ln |x − 2|

Use long division first, then use partial fractions. The factors of the denominator
are x2 + x − 6 = (x + 3)(x − 2). You need to find two constants.

132.

∫
(x + 2) dx

x2 + x
= 2 ln |x| − ln |1 + x|

Use partial fractions. The factors of the denominator are x2 + x = x(x + 1).
You need to find two constants.

133.

∫
(x3 + x2) dx

x2 − 3x + 2
=

1

2
x2 + 4x − 2 ln |x − 1| + 12 ln |x − 2|

Use long division first. Then use partial fractions. The factors of the denomi-
nator are x2 − 3x + 2 = (x − 1)(x − 2). You need to find two constants.

134.

∫
dx

x3 − x
= − ln |x| + 1

2
ln |x − 1| + 1

2
ln |1 + x|

Use partial fractions. The factors of the denominator are x3 − x = x(x2 − 1) =
x(x − 1)(x + 1). You need to find three constants.

135.

∫
(x − 3) dx

x3 + 3x2 + 2x
= −3

2
ln |x| − 5

2
ln |x + 2| + 4 ln |1 + x|

Use partial fractions. The factors of the denominator are x3 + 3x2 + 2x =
x(x2 + 3x + 2) = x(x + 1)(x + 2). You need to find three constants.

136.

∫
(x3 + 1) dx

x3 − x2
= x +

1

x
− ln |x| + 2 ln |x − 1|

Use partial fractions. The factors of the denominator are x3 − x2 = x2(x − 1).
You need to find three constants.

137.

∫
x dx

(x + 1)2
=

1

1 + x
+ ln |1 + x|

Use partial fractions.

138.

∫
(x + 2) dx

x2 − 4x + 4
= − 4

x − 2
+ ln |x − 2|

Use partial fractions. The factors of the denominator are x2−4x+4 = (x−2)2.
You need to find two constants.

139.

∫
(3x + 2) dx

x3 − 2x2 + x
= 2 ln |x| − 5

x − 1
− 2 ln |x − 1|

Use partial fractions. Note that x3 − 2x2 + x = x(x2 − 2x + 1) = x(x − 1)2.
There are four constants to be found here!

140.

∫
8 dx

x4 − 2x3
=

2

x2
+

2

x
− ln |x| + ln |x − 2|

Use partial fractions. Note that x4 − 2x3 = x3(x− 2). There are four constants
to be found here!
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141.

∫
dx

(x2 − 1)2
= − 1

4 (x − 1)
− 1

4
ln |x − 1| − 1

4 (1 + x)
+

1

4
ln |1 + x|

Use partial fractions. Note that (x2 − 1)2 = (x − 1)2(x + 1)2.

142.

∫
(1 − x3) dx

x(x2 + 1)
= −x + ln |x| − 1

2
ln
(
x2 + 1

)
+ Arctanx

Use long division first, then use partial fractions.

143.

∫
(x − 1) dx

(x + 1)(x2 + 1)
= − ln |1 + x| + 1

2
ln
(
x2 + 1

)
Use partial fractions.

144.

∫
4x dx

x4 − 1
= ln |x − 1| + ln |1 + x| − ln

(
x2 + 1

)
Note that x4−1 = (x2−1)(x2+1) = (x−1)(x+1)(x2+1). Use partial fractions.

145.

∫
3(x + 1) dx

x3 − 1
= 2 ln |x − 1| − ln

(
x2 + x + 1

)
Note that x3 − 1 = (x − 1)(x2 + x + 1). Use partial fractions.

146.

∫
(x4 + x) dx

x4 − 4
=

1

4
ln |x − 2| − 1

12
ln |x + 2| − 1

12
ln(x2 + 2) +

√
2

3
Arctan

x
√

2

2

Use long division first, then use partial fractions.

147.

∫
x2 dx

(x2 + 1)(x2 + 2)
= −Arctanx +

√
2Arctan

1

2

√
2x

The factors are (x2 + 2)(x2 + 1), both irreducible. Four constants need to be
found. This is where the Arctangents come from!

148.

∫
3 dx

x4 + 5x2 + 4
= −1

2
Arctan

1

2
x + Arctanx

The factors are (x2 + 4)(x2 + 1), both irreducible. Four constants need to be
found. This is where the Arctangents come from!

149.

∫
(x − 1) dx

(x2 + 1)(x2 − 2x + 3)
= −1

2
Arctanx +

1

4

√
2Arctan

1

4
(2x − 2)

√
2

Use partial fractions. Watch out, as both factors in the denominator are Type
II.

150.

∫
x3 dx

(x2 + 4)2
=

2

x2 + 4
+

1

2
ln
(
x2 + 4

)
Use partial fractions.

151.

∫
(x4 + 1) dx

x(x2 + 1)2
= ln |x| + 1

x2 + 1

Use partial fractions.

152.

∫
(x2 + 1) dx

(x2 − 2x + 3)2
= − 1

x2 − 2x + 3
+

1

2

√
2Arctan

1

4
(2x − 2)

√
2

Use partial fractions. Note that (x2 −2x+3)2 is irreducible (Type II). Now you
have to find the four constants!

153.

∫
x dx√
x + 1

= −2
√

x + 1 +
2

3

(√
x + 1

)3
Let u = x + 1, du = dx. Then x = u − 1, and the integral becomes easy.

154.

∫
x
√

x − a dx =
2

5

(√
x − a

)5
+

2

3

(√
x − a

)3
a

Let u = x − a, du = dx. Then x = u + a, and the integral becomes easy.
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155.

∫ √
x + 2

x + 3
dx = 2

√
x + 2 − 2Arctan

√
x + 2

Let u =
√

x + 2, u2 = x + 2. Then 2u du = dx and x = u2 − 2 which means

that x + 3 = u2 + 1. The integral takes the form
∫

2u2 du
1+u2 . This one can be

evaluated using a long division and two simple integrations.

156.

∫
dx

x
√

x − 1
= 2Arctan

√
x − 1

Let u =
√

x − 1, u2 = x− 1. Then 2u du = dx and so x = 1 + u2. The integral
takes the form

∫
2u du

u(1+u2)
which is an arctangent function...

157.

∫
dx

x
√

a2 − x2
=

1

a
ln

∣∣∣∣ax −
√

a2 − x2

x

∣∣∣∣.
Let x = a sin θ, dx = a cos θ dθ. Then

√
a2 − x2 = a cos θ. After some simplifi-

cation we find a−1
∫

csc θ dθ = a−1 ln |csc θ − cot θ|. Finally, csc θ =
a

x
, cot θ =

√
a2 − x2

x
.

158.

∫
dx

x2
√

a2 − x2
= − 1

a2x

√
a2 − x2

Let x = a sin θ, dx = a cos θ dθ. Then sqrta2 − x2 = a cos θ. After some
simplification we find a−2

∫
csc2 θ dθ = −a−2 cot θ.

159.

∫
x3
√

x2 + a2 dx =
1

5
x2
(√

x2 + a2

)3

− 2

15
a2
(√

x2 + a2

)3

Let x = a tan θ, dx = a sec2 θ dθ. Then
√

x2 + a2 = a sec θ. After some simplifi-
cation you’re left with an integral with an integrand equal to sec2 θ tan3 θ. Use
Example 390.

160.

∫
dx

x2
√

x2 + a2
= − 1

a2x

√
x2 + a2

Let x = a tan θ, dx = a sec2 θ dθ. Then x2 + a2 = a2 sec2 θ. After some
simplification you’re left with an integral with an integrand equal to csc θ cot θ.
Its value is a cosecant function. Finally, use the fact that, in this case, csc θ =√

x2 + a2

x

161.

∫
dx√

x2 + a2
= ln

∣∣∣x +
√

x2 + a2

∣∣∣
Let x = a tan θ, dx = a sec2 θ dθ. Then x2 + a2 = a2 sec2 θ. After some
simplification you’re left with an integral of the form in Example 386.

162.

∫
x2 dx√
x2 + a2

=
1

2
x
√

x2 + a2 − 1

2
a2 ln

∣∣∣x +
√

x2 + a2

∣∣∣
Let x = a tan θ, dx = a sec2 θ dθ. Then x2 + a2 = a2 sec2 θ. After some
simplification you’re left with an integral of the form in Example 388.

163.

∫
x2 dx

(x2 + a2)2
= −1

2

x

x2 + a2
+

1

2a
Arctan

x

a

Let x = a tan θ, dx = a sec2 θ dθ. Then x2 + a2 = a2 sec2 θ. After some
simplification you’re left with the integral of the square of a sine function...

164.

∫
x cos x dx = cos x + x sin x

Use Table integration

165.

∫
x sin x dx = sin x − x cos x

Use Table integration
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166.

∫
x sec2 x dx = x tan x + ln |cos x|

Use Integration by Parts: Let u = x, dv = sec2 x dx. No need to use Table
integration here.

167.

∫
x sec x tan x dx = x sec x − ln |sec x + tanx|

Use Integration by Parts: Let u = x, dv = sec x tan x dx. No need to use Table
integration here.

168.

∫
x2ex dx = x2ex − 2xex + 2ex

Use Table integration

169.

∫
x4 ln x dx =

1

5
x5 ln x − 1

25
x5

Use Integration by Parts: Let u = ln x, dv = x4 dx. No need to use Table
integration here.

170.

∫
x3ex2

dx =
1

2
x2ex2

− 1

2
ex2

Write the integrand as x3ex2
= x2 · xex2

. Then use Integration by Parts with

u = x2, dv = xex2
dx. Use the substitution v = x2 in the remaining integral.

171.

∫
sin−1 x dx = xArcsinx +

√
(1 − x2)

Use Integration by Parts: Let u = Arctanx, dv = dx, followed by the substitu-
tion u = 1 + x2, etc.

172.

∫
tan−1 x dx = xArctanx − 1

2
ln
(
x2 + 1

)
Use Integration by Parts: Let u = Arctanx, dv = dx, followed by the substitu-
tion u = 1 + x2, etc.

173.

∫
(x − 1)2 sin x dx = cos x − 2 sin x + 2x cos x − x2 cos x + 2x sin x

Use Table integration

174.

∫ √
x2 − a2 dx =

1

2
x
√

x2 − a2 − 1

2
a2 ln

∣∣∣x +
√

x2 − a2

∣∣∣
Let x = a sec θ, dx = a sec θ tan θ dθ. Then

√
x2 − a2 = a tan θ, etc.

175.

∫ √
x2 + a2 dx =

1

2
x
√

x2 + a2 +
1

2
a2 ln

∣∣∣x +
√

x2 + a2

∣∣∣
Let x = a tan θ, dx = a sec2 θ dθ. Then

√
x2 + a2 = a sec θ, etc.

176.

∫
x2 dx√
x2 − a2

=
1

2
x
√

x2 − a2 +
1

2
a2 ln

∣∣∣x +
√

x2 − a2

∣∣∣
Let x = a sec θ, dx = a sec θ tan θ dθ. Then

√
x2 − a2 = a tan θ, etc.

177.

∫
e2x sin 3x dx = − 3

13
e2x cos 3x +

2

13
e2x sin 3x

Use Table integration

178.

∫
e−x cos x dx = −1

2
e−x cos x +

1

2
e−x sin x

Use Table integration
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179.

∫
sin 3x cos 2x dx = − 1

10
cos 5x − 1

2
cos x

Use a trig.. identity ... the one for sin A cos B, with A = 3x, B = 2x.

180.

∫ π
8

0

cos3(2x) sin(2x) dx =
3

32

Let u = 2x first, du = 2dx, and follow this by the substitution v = cos u, dv =
− sin u du which allows for an easy calculation of an antiderivative.

181.

∫ 4

1

2
√

x

2
√

x
dx =

2

ln 2

Let u =
√

x. The result follows easily.

182.

∫ ∞

0

x3e−2x dx =
3

8

Use Table integration to find an antiderivative and then use L’Hospital’s Rule
(three times!).

183.

∫ +∞

−∞
e−|x| dx = 2

Divide this integral into two parts, one where x ≥ 0 (so that |x| = x), and one
where x < 0 (so that |x| = −x). Then∫ +∞

−∞
e−|x| dx =

∫ 0

−∞
ex dx +

∫ ∞

0

e−x dx and the integrals are defined by a

limit.

184.

∫ ∞

0

4x

1 + x4
dx = π

Let u = x2, du = 2x dx. The integral becomes an Arctangent.

185.

∫ 1

−1

x2 cos (nπx) dx =
4 cos nπ

n2π2
, when n ≥ 1, is an integer. Use Table integra-

tion.

186. 1
2

∫ 2

−2
x2 sin

(
nπx
2

)
dx = 0, when n ≥ 1, is an integer. Use Table integration.

187. 1
L

∫ L

−L
(1 − x) sin

(
nπx

L

)
dx = 2L cos nπ

nπ
,

when n ≥ 1, L 	= 0. Use Table integration.

188.

∫ 2

0

(x3 + 1) cos
(

nπx

2

)
dx = 6

8n2π2 cos nπ − 16 cos nπ + 16

n4π4
,

when n ≥ 1, is an integer. Use Table integration.

189.

∫ 1

−1

(2x + 1) cos (nπx) dx =
2

nπ
sin nπ = 0,

when n ≥ 1, is an integer. Use Table integration.

190.
1

L

∫ L

−L

sin x cos
(

nπx

L

)
dx = 0,

when n ≥ 1, is an integer and L 	= 0. Use Table integration.

191. Total demand over 10 years is∫ 10

0

500
(
20 + t e−0.1t

)
dt =

∫ 10

0

10000 dt + 500

∫ 10

0

t e−0.1t dt.

Now integrating by parts∫
t e−0.1t dt = −10t e−0.1t + 10

∫
e−0.1t dt = −10t e−0.1t + 10

(
−10e−0.1t

)
.

Thus total demand =
[
10, 000t + 500{−10t e−0.1t + 10(−10e−0.1t)}

]10
0

=
[
10, 000t − 5000te−0.1t − 50, 000e−0.1t

]10
0

=

100, 000− 50, 000e−1 − 50, 000e−1 − (0− 0− 50, 000) = 150, 000− 100, 000e−1 =
113212.1 ≈ 113212 units.
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192. (a) Use partial fractions.

1

y(y − 10)
=

A

y
+

B

10 − y
=

A(10 − y) + By

y(10 − y)

If y = 0, then 10A = 1, so A = 1
10

. If y = 10, then 10B = 1, and B = 1
10

.
Therefore, ∫

1

y(y − 10)
dy =

1

10

∫
dy

y
+

1

10

∫
dy

10 − y
dy

=
1

10
ln|y| − 1

10
ln|10 − y| + C =

1

10
ln

∣∣∣∣ y

10 − y

∣∣∣∣+ C

Thus

t =
25

10
ln

∣∣∣∣ y

10 − y

∣∣∣∣+ C

When t = 0, y = 1, so 0 = 2.5ln 1
9
+C = 2.5(ln 1−ln 9)+C = −2.5ln 9+C.

Thus C = 2.5ln 9 and

t = 2.5ln

∣∣∣∣ y

10 − y

∣∣∣∣+ 2.5ln 9 = 2.5ln

∣∣∣∣ 9y

10 − y

∣∣∣∣
(b) When y = 4, t = 2.5ln 4×9

6
= 4.479 hours.

(c) From (a), t
2.5

= ln 9y
10−y

, so e
t

2.5 = 9y
10−y

, and (10 − y)e0.4t = 9y , so

10e0.4t = 9y + ye0.4t = y(9 + e0.4t). Thus

y =
10e0.4t

9 + e0.4t
=

10

1 + e−0.4t

(d) At t = 10, y = 10
1+9e−4 = 8.58 gm.



Chapter 9

Solutions

9.1

9.2 Exercise Sets 47, 48

1. Vertical slice area = (0 − (x2 − 1)) dx = (1 − x2) dx.

2. Horizontal slice area
√

y + 1 dy.

3. Vertical slice area = ((x2 + 5x + 6) − (e2x)) dx = (x2 + 5x + 6 − e2x) dx. Note
that e2x is smaller than x2+5x+6 on this interval. See the figure in the margin,
on the left.

4. Sketch the region bounded by these curves. You should get a region like the one
below:

Now, using Newton’s Method with x0 = 1.5 as an initial estimate, n = 3, and
f(x) = x2 + 5x + 6 − e2x, we obtain the approximate value of the zero of f as
1.3358. The common value of these curves at this point is given by e2(1.3358) ≈
14.46. This represents the point of intersection of the curves x2 +5x+6 and e2x,
in the interval [0, 2]. Beyond x = 2 we see that these curves get further apart so
they cannot intersect once again. Since we are dealing with horizontal slices we
need to write down the inverse function of each of these functions. For example,
the inverse function of y = x2 + 5x + 6 is given by solving for x in terms of y
using the quadratic formula. This gives

x =
−5 ±

√
1 + 4y

2
.

Since x ≥ 0 here, we must choose the +-sign. On the other hand, the inverse
function of the function whose values are y = e2x is simply given by x = (ln y)/2.

51
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So, the area of a typical horizontal slice in the darker region above is given by(
ln y

2
− −5 +

√
1 + 4y

2

)
dy,

and this formula is valid provided 6 ≤ y ≤ 14.46.

If the horizontal slice is in the lighter area above, then its area is given by(
ln y

2
− 0
)

dy =
(

ln y

2

)
dy,

and this formula is valid whenever 0 ≤ y ≤ 6.

As a check, note that both slice formulae agree when y = 6.

5. The horizontal line y = 5 intersects with the graph of y = e2x at the point
P ≡ ( ln 5

2
, 5), approxmately (0.8047, 5). Draw a vertical line through P . The

area of a typical vertical slice on the left of this line is

((x2 + 5x + 6) − 5) dx ≡ (x2 + 5x + 1) dx.

On the right of this line we have

(x2 + 5x + 6 − e2x) dx

instead.

hugeExercise Set 48

1. Area =

∫ 1

−1

(1 − x2) dx =
4

3
.

2. Area =

∫ 2

−2

(4 − x2) dx =

(
4x − x3

3

)∣∣∣∣
2

−2

=
32

3
.

3. Area =

∫ 1

0

(x2 + 5x + 6 − e2x)dx =

(
x3

3
+

5

2
x2 + 6x − e2x

2

)∣∣∣∣
1

0

=
28

3
− e2

2
≈ 5.63881.

4. Area =

∫ 1.3358

0

(x2 + 5x + 6 − e2x) dx ≈ 6.539.

5. Area =

∫ 1

0

yeydy = (yey − ey)

∣∣∣∣
1

0

= 1.

6. π2 − 4. This curve lies above the x−axis because sin x ≥ 0 for 0 ≤ x ≤ π. It
follows that x2 sin x ≥ 0 for 0 ≤ x ≤ π, and so the area is given by the definite
integral

Area =

∫ π

0

x2 sin x dx = π2 − 4,

where the Table method of Integration by Parts is used to evaluate it. In
particular, we note that an antiderivative is given by∫ x

t2 sin t dt = −x2 cos x + 2x sin x + 2 cos x.

7. Area =

∫ π

0

cos2 x sin x dx = − cos3 x

3

∣∣∣∣
π

0

=
2

3
.
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8. Using the Table method of Integration by Parts (since this is a three-row prob-
lem), we find∫

sin 3x · cos 5x dx =
5

16
sin 5x · sin 3x +

3

16
cos 3x · cos 5x + C.

Alternatively, this integral can be computed as follows:∫
sin 3x · cos 5x dx =

∫
1

2
(sin 8x − sin 2x) dx = − 1

16
cos 8x +

1

4
cos 2x + C.

(Don’t be fooled by its different look! This is the same answer as the above.)
Notice that, for x in the interval [π/10, 3π/10], 3x is in [3π/10, 9π/10] and hence
sin 3x is positive. However, for the same range of x, 5x is in [π/2, 3π/2] and
hence cos 3x is negative or zero. Hence the area of the region is the absolute
value of∫ 3π/10

π/10

sin 3x · cos 5x dx =
(

5

16
sin 5x · sin 3x +

3

16
cos 3x · cos 5x

)∣∣∣3π/10

π/10

= − 5

16

(
sin

9

10
π + sin

3

10
π
)

= −5
√

5

32
≈ −0.35.

Here we use the facts that cos π
2

= 0, cos 3π
2

= 0, sin π
2

= 1 and sin 3π
2

= −1. It

turns out that sin 9
10

π + sin 3
10

π =
√

5
2

, which is very hard to prove!

9.
9

2
. Refer to the graph below:

The points of intersection of these two graphs are given by setting y = −x into
the expression x+y2 = 2 and solving for x. This gives the two points, x = 1 and
x = −2. Note that if we use vertical slices we will need two integrals. Solving
for x in terms of y gives x = −y and x = 2− y2 and the limits of integration are
then y = −1 and y = 2. The coordinates of the endpoints of a typical horizontal
slice are given by (−y, y) and (2− y2, y). So, the corresponding integral is given
by

Area =

∫ 2

−1

(2 − y2 + y) dy =
9

2
.

10. The required area is∫ 2

−2

(y2 − (y − 5)) dy =

(
y3

3
− y2

2
+ 5y

)∣∣∣∣
2

−2

=
76

3
.

11. 4 units. Note the symmetry: Since, f is an even function, (see Chapter 5), its
graph over the interval [−π, π] is symmetric with respect to the y−axis and so,
since f is “V”-shaped and positive, the area is given by

Area = 2 × (area to the right of x = 0),

and this gives

Area = 2

∫ π

0

(sin x) dx = 4 units.
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12. 4
√

2. The graph on the right represents the two curves over the interval [π
4
, 9π

4
]:

Using the symmetry in the graph we see that

Area = 2

∫ 5π
4

π
4

(sin x − cos x) dx = 4
√

2,

since cos
5π

4
= −

√
2

2
, sin

5π

4
= −

√
2

2
.

9.3 Exercise Set 49

1. Using a vertical slice:
∫ 1

0
πx2 dx;

using a horizontal slice
∫ 1

0
(1 − y) · 2πy dy.

2. Using a vertical slice:
∫ 1

0
(x − x2) · 2πx dx;

using a horizontal slice:
∫ 1

0
π(y − y2) dy.

3. Using a vertical slice:
∫ 1

0
3π x2 dx; (we do not use horizontal slices because this

method is too complicated for the present problem.)

4. Using a vertical slice:
∫ 2

0
2x · 2πx dx;

using a horizontal slice:
∫ 1

0
π(22 − (y/2)2) dy.

5. Using a vertical slice:
∫ 1

0
(2x − x) · 2πx dx =

∫ 1

0
2πx2 dx.

Using a horizontal slice:

3π

4

∫ 1

0

y2 dy +

∫ 2

1

π

(
1 − y2

4

)
dy.

6. π/3; π/6; 8π; 32
3

π; 2
3
π.
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9.4 Exercise Set 50

1. 2. Since y′ = 0, it follows that L =

∫ 2

0

√
1 dx = 2.

2. 4
√

2. Since y′ = 1, it follows that L =

∫ 4

0

√
1 + 1 dx = 4

√
2.

3. 2
√

5. Here y′ = 2, and so L =

∫ 1

−1

√
1 + 4 dx = 2

√
5.

4. 2
√

2. Now x′(y) = 1. So, L =

∫ 2

0

√
2 dy = 3

√
2.

5. 3
√

2. This is the same as y = x + 3, so y′ = 1, and it follows that L =∫ 1

−2

√
2 dx = 3

√
2.

6.
52

3
. Now y′(x) =

√
x and so (if we set u = 1 + x, du = dx) we see that

L =

∫ 8

0

√
1 + x dx =

52

3
.

7.
1

2

√
5 +

1

4
ln
(√

5 + 2
)
. In this case, L =

∫ 1

0

√
1 + 4x2 dx. Use the substitution

2x = tan θ, 2 dx = sec2θ dθ, and the usual identity to obtain an

antiderivative in the form
1

2

∫
sec3 θ dθ. Now, see Example 387 for this integral.

We have,
1

2

∫
sec3 θ dθ =

1

4
(tan θ sec θ + ln | sec θ + tan θ|). But tan θ = 2x,

and so sec θ =
√

1 + 4x2. Thus, L =

∫ 1

0

√
1 + 4x2 dx =

1

4

(
2x
√

1 + 4x2 + ln |
√

1 + 4x2 + 2x|
) ∣∣∣∣

1

0

=

1

4
·
(
2
√

5 + ln(2 +
√

5)
)
, and the rest follows.

8.
√

65 +
1

8
ln
(
8 +

√
65
)
. Use the method of Example 7 above. The arc length is

given by L =

∫ 2

0

√
1 + 16x2 dx. Now use the substitution 4x = tan θ, 4 dx =

sec2θ dθ, and an antiderivative will look like
1

4

∫
sec3 θ dθ. Finally, we see that

L =

∫ 2

0

√
1 + 16x2 dx =

1

8

(
4x
√

1 + 16x2 + ln |
√

1 + 16x2 + 4x|
) ∣∣∣∣

2

0

=
1

8
·(

8
√

65 + ln(8 +
√

65)
)
, and the result follows.

9.
1

2

√
17+

1

8
ln(4+

√
17). See Exercise 8, above. We know that L =

∫ 1

0

√
1 + 16x2 dx.

Use the substitution 4x = tan θ, 4 dx = sec2θ dθ, and the usual identity to ob-
tain an antiderivative in the form

1

4

∫
sec3 θ dθ. Reverting back to the original variables, we get,

L =

∫ 1

0

√
1 + 16x2 dx =

1

8

(
4x
√

1 + 16x2 + ln |
√

1 + 16x2 + 4x|
) ∣∣∣∣

1

0

=
1

8
·(

4
√

17 + ln(4 +
√

17)
)

=
1

2

√
17 +

1

8
ln(4 +

√
17).

10.
181

9
. Note that 1 + y′(x)2 = 1 +

(
x6 − 1

2
+

1

16x6

)
=
(
x3 +

1

4x3

)2

.

It follows that the expression for the arc length is given by L =

∫ 3

1

(
x3 +

1

4x3

)
dx,

giving the stated result.
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11. 4π. Here, x′(t) = −2 sin t, y′(t) = 2 cos t so that the length of the arc is given

by L =

∫ 2π

0

√
4 sin2 t + 4 cos2 t dt =

∫ 2π

0

√
4 · 1 dt = 2 · 2π = 4π.

12. 2π. Now, x′(t) = − sin t, y′(t) = − cos t so that the length of the arc is given

by L =

∫ 2π

0

√
sin2 t + cos2 t dt =

∫ 2π

0

√
1 dt = 1 · 2π = 2π.

13.
√

2. In this example, x′(t) = 1, y′(t) = −1 so that the length of the arc is given

by L =

∫ 1

0

√
1 + 1 dt =

∫ 1

0

√
2 dt =

√
2.

14. 3
2
. Use the Fundamental Theorem of Calculus to show that y′(x) =

√
x2 − 1.

Then,
√

1 + (y′(x))2 =
√

x2 = x. So, L =

∫ 2

1

x dx =
3

2
.

15.
√

2. Once again, use the Fundamental Theorem of Calculus to show

that y′(x) =
√

cos 2x. Then,
√

1 + (y′(x))2 =
√

1 + cos 2x =
√

2 cos2 x, by a

trig. identity (which one?). So, L =

∫ π/2

0

√
2 cos2 x dx =

√
2

∫ π/2

0

cos x dx =
√

2.

16. 10.602. See Example 483 except that we solve for x in terms of y > 0 (because
the given interval is a y−interval). The length L is then given by doubling the
basic integral over half the curve, that is,

L = 2

∫ 1

−1

√
4 − 3y2

4(1 − y2)
dy ≈

∫ 0.99

−0.99

√
4 − 3y2

4(1 − y2)
dy ≈ 5.3010.

17. 3.3428. The length L is given by an integral of the form L =

∫ 4

1

√
1 + x2

x
dx.

We use a trigonometric substitution x = tan θ, dx = sec2θ dθ. Then,
√

1 + x2 =
sec θ and an antiderivative is given by∫

sec3θ

tan θ
dθ =

∫
secθ

tan θ

(
1 + tan2 θ

)
dθ =

∫
sec θ

tan θ
dθ +

∫
sec θ tan θ dθ =∫

csc θ dθ + sec θ = ln | csc θ − cot θ| + sec θ.

Since x = tan θ it follows that csc θ =
sec θ

tan θ
=

√
1 + x2

x
, cot θ =

1

x
. So an

antiderivative is given by

∫ √
1 + x2

x
dx = ln

∣∣∣∣
√

1 + x2

x
− 1

x

∣∣∣∣ +√1 + x2. Fi-

nally, we see that L =

∫ 4

1

√
1 + x2

x
dx =

(
ln

∣∣∣∣
√

1 + x2

x
− 1

x

∣∣∣∣+√1 + x2

)∣∣∣∣
4

1

=

(
ln

∣∣∣∣
√

17

4
− 1

4

∣∣∣∣+ √
17

)
−
(

ln

∣∣∣∣√2 − 1

∣∣∣∣+ √
2

)
=

√
17−

√
2+ ln

∣∣∣∣
√

17 − 1

4

∣∣∣∣−
ln

∣∣∣∣√2 − 1

∣∣∣∣ ≈ 3.3428.

18. ln(1 +
√

2) ≈ 0.8813. Here, y′(x) = tanx and so
√

1 + y′(x)2 =
√

1 + tan2 x =√
sec2 x = sec x. So, the arc length is given by

∫ π/4

0

sec x dx = ln | sec x + tanx|
∣∣∣∣
π/4

0

= ln(
√

2 + 1) − ln(1 + 0) = ln(1 +
√

2).

19. 1
2

√
5 − 1

4
ln(

√
5 − 2). See Exercise 7, above for the evaluation of the integral.

Note that −1

4
ln(

√
5 − 2) =

1

4
ln(

√
5 + 2).

20. Follow the hints.
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9.5 Exercise Set 51

1. 3.75. Set m1 at x1 = 0 and m2 at x2 = 5. Then x = m1x1+m2x2
m1+m2

= 3.75.

2. 1.33. Set m1 at x1 = 0, m2 at x2 = 1 and m3 at x3 = 2. Then x = 1.33.

3. (x.y) =
(

5

12
,
1

3

)
. Note that x =

∑
mixi∑
mi

and y =

∑
miyi∑
mi

where (xi, yi)

are the coordinates of mi. In this case, x =
4 · 0 + 5 · 1

12
=

5

12
. Similarly,

y =
4 · 1 + 0

12
=

1

3
. Note that even though the system of masses is at the vertices

of an isosceles triangle, the center of mas is not along the bisector of the right-
angle (which is the line of symmetry). This doesn’t contradict the Symmetry
Principle since the masses are not all the same!

4. (x.y) =

(
1,

√
3

3

)
. As before, x =

∑
mixi∑
mi

and y =

∑
miyi∑
mi

where (xi, yi)

are the coordinates of mi. Here, x =
0 + 6 + 3

9
= 1. Similarly, y =

0 + 0 + 3
√

3

9
=

√
3

3
. In this exercise the masses are all the same and the triangle is equilateral,

so (by the Symmetry Principle) the center of mass must lie along the line of
symmetry (which it does), that is, it must lie on the line x = 1 which bisects
the base of the triangle.

5.
(
0,

4R

3π

)
. The total mass m =

πR2δ

2
since we are dealing with one-half the area

of a circle and δ is constant. This use of geometry saves us from actually calcu-

lating the mass integral which looks like

∫ R

−R

√
R2 − x2 δ dx. Next, the moment

about the y−axis is given by My =

∫ R

−R

xslice δ dA = δ

∫ R

−R

x
√

R2 − x2 dx.

Now, let x = R cos θ, etc. But even simpler is the remark that the integrand,
x
√

R2 − x2, is an odd function defined over a symmetric interval and so its inte-

gral must be zero. Either way, this gives Mx = δ

∫ R

−R

x
√

R2 − x2 dx = 0 and

so x = 0, i.e., the center of mass lies along the axis of symmetry (which is the
y−axis, since δ is constant).

Similarly we find the moment about the x−axis, Mx =

∫ R

−R

yslice δ dA =

δ

2

∫ R

−R

(
R2 − x2

)
dx =

δ

2

4R3

3
=

2R3δ

3
. It follows that the y−coordinate, y,

of the center of mass is given by y =
Mx

m
=

2R3δ

3
· 2

πR2δ
=

4R

3π
.

6.
(

b

2
,
h

2

)
. Use of geometry shows us that the total mass is its area times its

density, that is, m = bhδ. Next, x =

∫ b

0

xslice δ dA =
1

bhδ

∫ b

0

xhδ dx =
b

2
.

Similarly, y =

∫ b

0

yslice δ dA =
1

bhδ

∫ b

0

h

2
hδ dx =

h

2
.

7.
(
0,

2

3

)
. The region is an inverted triangle with a vertex at the origin and

opposite side equal to 2 units. Its total mass is its area times its density,
which, in this case, is δ. So, m = δ. Let f(x) = 1 and g(x) = 1 − |x|,
over [−1, 1]. Note that the region can be described by means of these two
graphs. Also, f(x) ≥ g(x) and so we can use the formulae already derived

for the center of mass. So, x =
1

δ

∫ 1

−1

xslice δ dA =
1

δ

∫ 1

−1

x (1 − |x|) δ dx =
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1

δ

∫ 0

−1

x (1 + x) δ dx+
1

δ

∫ 1

0

x (1 − x) δ dx = 0. Next, y =
1

δ

∫ 1

−1

yslice δ dA =

1

δ

∫ 1

−1

(
1 + |x|

2

)
(1 − |x|) δ dx =

1

2δ

∫ 1

−1

(
1 − x2

)
δ dx =

2

3
.

8.
(
− 1

12
,
1

3

)
. The total mass is m =

∫ 1

−1

δ(x) dx =

∫ 1

−1

(1 − x) dx = 2. Next,

x =
1

2

∫ 1

−1

xslice δ dA =
1

2

∫ 1

−1

x (1 − |x|) (1 − x) dx =

1

2

∫ 0

−1

x (1 + x) (1 − x) dx+
1

2

∫ 1

0

x (1 − x) (1 − x) dx =
(

1

2

)
·
(−1

6

)
= − 1

12
.

Similarly, y =
1

2

∫ 1

−1

yslice δ dA =
1

2

∫ 1

−1

(
1 + |x|

2

)
(1 − |x|) (1 − x) dx =

1

4

∫ 1

−1

(1 − x2) (1 − x) dx =
1

3
.

9.
(

3

5
,
3

8

)
. The total mass, m = δ

∫ 1

0

√
x dx =

2δ

3
. So,

x =
3

2δ

∫ 1

0

xslice δ dA =
3

2

∫ 1

0

x
√

x dx =
3

2

∫ 1

0

x3/2 dx =
3

5
.

Furthermore,

y =
3

2δ

∫ 1

0

yslice δ dA =
3

2

∫ 1

0

√
x

2

√
x dx =

3

4

∫ 1

0

x dx =
3

8
.

10.
(

3

2
,

3

10

)
. The total mass, m = δ

∫ 2

0

x2

4
dx =

2δ

3
. So,

x =
3

2δ

∫ 2

0

xslice δ dA =
3

2δ

∫ 2

0

x δ
x2

4
dx =

3

8

∫ 2

0

x3 dx =
3

2
.

Similarly,

y =
3

2δ

∫ 2

0

yslice δ dA =
3

2δ

∫ 2

0

δ
x2

8

x2

4
dx =

3

2 · 32

∫ 2

0

x4 dx =
3

10
.

11.
(

1

2
,
π

4

)
. The graph of this function is positive on [0, 1]. The total mass,

m = δ

∫ 1

0

2 sin(πx) dx = 2δ

(
− cos(πx)

π

)∣∣∣∣
1

0

=
4δ

π
. So,

x =
π

4δ

∫ 1

0

xslice δ dA =
π

4δ

∫ 1

0

x 2 sin(πx) δ dx

=
π

2

∫ 1

0

x sin(πx) dx =
1

2
.

Similarly,

y =
π

4δ

∫ 1

0

yslice δ dA =
π

4δ

∫ 1

0

2 sin(πx)

2
δ 2 sin(πx) dx =

π

2

∫ 1

0

sin2(πx) dx =

π

2

∫ 1

0

1 − cos(2πx)

2
dx =

π

4
. Note the symmetry about the line x = 1/2 so that

the center of mass must lie along this line.

12.

(
2(e2 − 1)

1 + e2
,

3e4 + 1

8(1 + e2)

)
. The total mass is m =

∫ 2

0

x δ ex dx = δ

∫ 2

0

x ex dx =

(e2 + 1)δ. Next,

x =
1

1 + e2

∫ 2

0

x2 ex dx =
2e2 − 2

1 + e2
. Finally, one more application of
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Integration by Parts (or the Table Method)

y =
1

2(1 + e2)

∫ 2

0

x e2x dx =
3e4 + 1

8(1 + e2)
.

13.

(
0,

11

3
√

3 + 2π

)
. Since δ = 2, the total mass is m =

∫ 1

−1

√
4 − x2 δ dx =

2

∫ 1

−1

√
4 − x2 dx = 2

√
3+

4π

3
, where we used the trig. substitution x = 2 sin θ,

etc.

The geometric area is not so easy to calculate in this case, so we return to
the integral definition. Now, because of symmetry about the line x = 0 and
since δ is constant, we must have

x = 0.

Furthermore,

y =
3

6
√

3 + 4π

∫ 1

−1

√
4 − x2

2

√
4 − x2 2 dx =

3

6
√

3 + 4π

∫ 1

−1

(4 − x2) dx =

3

6
√

3 + 4π
· 22

3
=

11

3
√

3 + 2π
.

14.
(

6

5
,−2

5

)
, see the solved example. The total mass is

m =

∫ 2

0

(6x − 3x2) 2x dx = 8. Next, x =
1

8

∫ 2

0

x (6x − 3x2) 2x dx =
6

5
.

Similarly,

y =
1

8

∫ 2

0

x2 − 2x

2
(6x − 3x2) 2x dx = −2

5
.

9.6 Chapter Exercises

1.
π

3
=

∫ 1

0

π y2 dy =

∫ 1

0

2π x(1− x) dx.

2.
π

3
=

∫ 1

0

π x2 dx =

∫ 1

0

2π y(1− y) dy.

3.
π

3
=

∫ 1

0

π y2 dy =

∫ 1/2

0

π (1 − 4x2) dx.

4.
4π

3
=

∫ 1

0

4π x2 dx =

∫ 2

0

π

(
1 − y2

4

)
dy.

5. 16π
3

(you’ll need two terms if you use horizontal slices here).

16π

3
=

∫ 2

0

2π x2 dx

=
3π

4

∫ 2

0

y2 dy + π

∫ 4

2

(
4 − y2

4

)
dy.

6.
8π

5
= 4π

∫ 1

0

y3/2 dy =

∫ 1

−1

(
1 − x4

)
dx.

7.
π2

2
= π

∫ π

0

sin2 x dx = 4π

∫ 1

0

y Arcsin y dy.
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8. π2 − 2π = 2π

∫ π/2

0

x cos x dx = π

∫ 1

0

Arccos 2y dy. This last integral is very

hard to evaluate! Try the substitution y = cos u, dy = − sin u du. Then use
the Table method and then back-substitute. The first intergal in x is evaluated
using the Table method.

9.
π

4
(e2 − 1) = π

∫ 1

0

x2e2x dx. You can’t use horizontal slices here because it is

almost impossible to solve for x in terms of y in the expression for y = xex. Use
the Table method to evaluate the integral.

10. 2π
(
1 − 5

e2

)
= 2π

∫ 2

0

x2e−x dx. Use the Table method to evaluate the integral.

11.
3π

10
= π

∫ 1

0

(
x − x4

)
dx = 2π

∫ 1

0

(
y3/2 − y3

)
dy.

12.
4223π

5670
= π

∫ 1/3

0

(
1 − (x3 − 3x + 1)2

)
dx + π

∫ 1

1/3

(
1 − x6

)
dx.



Chapter 10

Solutions

10.1 Exercise Set 52

1. y(x) = 3ex means y′(x) = 3ex and y′′(x) = 3ex. So, all these derivatives are
equal which means that

(1 − x)y′′(x) + xy′(x) − y(x) = 3ex((1 − x) + x − 1) = 3ex(0) = 0.

2. From y = 2ex − 0.652e−x we have

y′ = 2ex + 0.652e−x and y′′ = 2ex − 0.652e−x.

Clearly y′′ = y. So y′′ − y = 0.

3. From y = 2 sin x we have y′ = 2 cos x and y′′ = −2 sin x. Next,
y′′′(x) = −2 cos x, and finally y(4)(x) = 2 sin x = y(x).

Alternately, note that y′′ = −y. Taking the second derivative of both sides of
this last identity, we have y(4) = −y′′. But −y′′ = −(−y) = y. So y(4) = y, or
y(4) − y = 0.

4. y(x) = ce3x − e2x, y′(x) = 3ce3x − 2e2x, so

y′(x) − 3y(x) = (3ce3x − 2e2x) − 3(ce3x − e2x)

= 3ce3x − 2e2x − 3ce3x + 3e2x = e2x.

5. Differentiating y = c1x
2 + c2x + c3 three times, we see that y′ = 2c1x + c2,

y′′ = 2c1 and y′′′ = 0 which is what we wanted to show.

6. No. Even though the function y = ex − e−x satisfies the equation
y′′ − y = 0, its derivative y′ = ex + e−x is equal to e0 + e−0 = 2 at x = 0. So
the initial condition y′(0) = 1 fails for this function.

7. No, because this function does not satisfy the initial condition, y(0) = 1. In this
case, y(0) = 2, so it cannot be a solution of the stated initial value problem. On
the other hand, y(x) = ex +e−x, y′(x) = ex −e−x and so, y′(x) 	= y(x), so again
it isn’t a solution (because it doesn’t even satisfy the equation).

8. From y = e2x −e−2x we have y′ = 2e2x +2e−2x and hence y′(0) = 2e0 +2e0 = 4,
violating the second initial condition y′(0) = 2.

9. No. The value of the function sin x+cos x is 1 at x = 0. So the initial condition
y(0) = 0 is not satisfied.

10. No, because although y(x) = x2 does satisfy the equation, (since y′′′(x) = 0)
and it does satisfy y(0) = 0 and y′(0) = 0 it is NOT the case that y′′(0) = 3,
since, in fact, y′′(0) = 2.
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11. From y = (c1 + c2x)ex we have y′ = (c1 + c2x)ex + c2e
x. Hence the intial

condtions y(0) = 1 and y′(0) = 0 gives c1 = 1 and c2 + c1 = 0, from which it is
easy to get c1 = 0 and c2 = −1. So the solution satisfying the required initial
conditions is y = (1 − x)ex.

12. The initial condtion y(1) = −1 gives 1
1−C

= −1, from which we obtain C = 2.

Thus the answer is y(t) =
t

1 − 2t
.

13. The general solution is given by y(x) = x4 + c1x
2/2 + c2x + c3. But y(0) = 0

means that c3 = 0. Next, y′(0) = 0, means that c2 = 0 and finally y′′(0) = 0
means that c1 = 0. Combining all this we get that the solution of the initial
value problem is given by y(x) = x4.

14. y = −4et2 + 2.

15. y = −5e−1 − 1 + (1 + 2e−1)x + (x + 2)e−x.

10.2 Exercise Set 53

1. Let f(x) = (1 − x2)−1 and g(y) = 4 + y2. We separate the variables and use
Table 10.1, with a = 0, y(a) = 1, to find∫ y(x)

1

1

u2 + 4
du =

∫ x

0

1

1 − t2
dt,

as the form of the required solution. Now use the trigonometric substitution
u = 2 tan θ on the left and partial fractions on the right to find the special
antiderivatives,

1

2
Arctan

y(x)

2
− 1

2
Arctan

1

2
=

1

2
ln

∣∣∣∣1 − x

1 + x

∣∣∣∣
as the required solution. We don’t need to solve for y(x).

2. ey = x2ex − 2xex + 2ex + e−1 − 2, or y = ln((x2 − 2x + 2)ex + e−1 − 2).

3. We can rewrite the equation as y′
y

= 1 + 1
x
. Taking integrals, we have ln |y| =

x + ln |x| + C, which gives the general solution |y| = |x|ex+C . So it looks like:
y = |x|ex+C or y = −|x|ex+C, depending on whether y(x) > 0 or y(x) < 0,
respectively. Now, since y(1) = 1 > 0 we must use the form y = |x|ex+C of
the general solution (otherwise y(1) cannot be equal to 1). This gives 1 = e1+C

from which we get C = −1. So the required solution is y = xex−1.

4. Let f(x) = cos x and g(y) = y3. We separate the variables and use Table 10.1,
with a = 0, y(a) = −2, to find∫ y(x)

−2

1

u3
du =

∫ x

0

cos t dt,

as the form of the required solution. Both sides are easily integrated to give(
− 1

2u2

)∣∣∣y(x)

−2
= sin x,

− 1

2y(x)2
+

1

8
= sin x.

as the required solution. We don’t need to solve for y(x).

5. y = e
1
2 ex2

. Let x2 = u in the integral on the right.

6. y =
(

2

3
x + 2

)3

.
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7. Let f(x) = x sin x2 and g(y) = 1. We separate the variables and use Table 10.1,
with a =

√
π, y(a) = 0, to find (using the FTC)

y(x) − y(
√

π) =

∫ x

√
π

t sin t2 dt,

as the form of the required solution. The right-side needs a substitution only,
namely, u = t2, etc. Then,

y(x)− y(
√

π) =

∫ x

√
π

t sin t2 dt,

=
1

2

∫ x2

π

sin u du,

=
1

2

(
(− cos x2) − (− cos π)

)
,

y(x) =
1

2

(
(− cos x2) − 1

)
,

= −1

2

(
1 + cos x2

)
,

as the required solution.

8. y = 6x. Since x 	= 0, near the intial condition, we can divide both sides of the
diffferential equation xy′ = 6x by x, and find y′(x) = 6 and the result follows.

10.3 Exercise Set 54

1. Let t be in hours, N(t) = N(0)ekt. We are given N(0) = 6000 and N(2.5) =
18000. We need to find a formula for N(t) and then find the value of N(5). We
set t = 2.5 into the general Growth Law above and find N(2.5) = N(0)e2.5k, or
18000 = 6000e2.5k from which we get 3 = e2.5k or k = (ln 3)/2.5. Substituting
this value back into the original equation N(t) = N(0)ekt and simplifying, we

find N(t) = 6000 3
t

2.5 as the virus population after t hours. Thus, after t = 5

hours we have, N(5) = 6000 3
5

2.5 = 54, 000 viruses.

2. Here we may apply the half-life formula N(t) = N(0)/et/T to get 20 = 50/2t/1600

which gives 2t/1600 = 2.5. Taking natural logarithm on both sides and rearrang-
ing the identity, we have

t = 1600
ln 2.5

ln 2
≈ 2115.

So it takes about 2115 years for the original sample of 50 micrograms to be
reduced to 20 micrograms.

3. a) Divide both sides of the differential equation by T0 − T . Then the left-side
depends only on T (t) while the right side is a constant. So the equation is
separable since it takes the form

T ′(t) = f(t)g(T ),

where f(t) = c and g(T ) = T0 − T . Now use Table 10.1 in the form∫ T (t)

T (0)

du

T0 − u
=

∫ t

0

c dt.

Integration shows that − ln |T0 − u|
∣∣∣∣
u=T (t)

u=T (0)

= ct from which we can derive that

T (t) = T0 + (T (0) − T0)e
−ct.
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b) Here we have T0 = 20, T0 = 90 and T (4) = 80. So, letting t = 4 in the
above identity, we have 80 = 20 + (90 − 20)e−4c. So e−4c = 6/7. Now we
have to find t such that T (t) = 70. Applying the same identity again, we have
70 = 20 + (90 − 20)e−ct, or

5/7 = e−ct =
(
e−4c

)t/4
= (6/7)t/4.

Taking the natural logarithm on both sides and rearranging, we have

t = 4
ln 5 − ln 7

ln 6 − ln 7
≈ 8.731.

Thus it takes about nine minutes to reach a drinkable temperature.

4. We assume a Law of Growth, N(t) = N(0)ekt. After 5, 700 years there will be
exactly one-half of the original amount, N(0), which translates into N(5700) =
N(0)/2.Thus,N(0)/2 = N(0)e5700k , and the N(0) cancel out (they always do!).
So, 1/2 = e5700k which means that k = −(ln 2)/5700. This gives the value of k.

Next, if 90% decays then only 10% remains, right? But we want a value of t
such that N(t) = (0.1)N(0) (which translates as “90% of the original amount has
decayed”). But whatever this value of t may be, it is also given by (0.1)N(0) =

N(t) = N(0)
(
e(− ln 2)

) t
5700 = 1

2
t

5700
. So, (0.1) = 1

2
t

5700
which, when solved for

t, gives t = 5700
ln 10

ln 2
≈ 18, 935 years.

5. a) Denote by N(t) the number of bacteria at time t. Then we can write T (t) =
4000ekt where k is the rate of growth per bacteria. By assumption, T (0.5) =
12000 and so 12000 = 4000e0.5k , which gives e0.5k = 3, or 0.5k = ln 3, that is
k = 2 ln 3 = ln 9. Thus

N(t) = 4000e(ln 9)t = 4000 · 9t.

b) After 20 minutes, the population of the bacteria is

N(1/3) = 4000 × 91/3 ≈ 8320.

c) Suppose that N(t) = 50000. Then 50000 = 4000 × 9t and hence 9t = 12.5.
So

t =
ln 12.5

ln 9
≈ 1.15.

Thus the bacteria population reach 50000 in an hour and 9 minutes.

6. Since the population satisfies a Law of Growth we can write P (t) = P (0)ekt,
where t is in years. We are given that P (0) = 6×108 and that 300 years “later”
(from A.D. 1650) the population was 2.8× 109, that is, P (300) = 2.8× 109. We
want a value of t such that P (t) = 25×109. So, 2.8×109 = P (300) = P (0)e300k =
6 × 108 e300k and we can solve for k giving 0.467 × 10 = e300k, or k = ln 4.67

300
≈

0.00513. Thus, P (t) = (6×108)e0.00513t is the Law of Growth, at time t in years.
But we want P (t) = 25 × 109 so this means that 25 × 109 = (6 × 108)e0.00513t

and we can solve for t, using logarithms. This gives, 41.667 = e0.00513t or
t = ln 41.667

0.00513
≈ 727 years. Thus, the population of the earth will reach 25 billion

around the year 1650 + 727 = 2377.

7. The differential equation for this learning model is P ′ = c(1−P ) which is of the
form P ′ = f(t)g(P ) where f(t) = c and g(P ) = 1 − P . Using Table 10.1 we see
that the general solution is given by evaluating the integrals∫ P (t)

P (0)

du

1 − u
=

∫ t

0

c dt

− ln |1 − u|
∣∣∣∣
u=P (t)

u=P (0)

= ct

ln |1 − P (t)| = −ct (since P (0) = 0),

P (t) = 1 − e−ct.
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b) By assumption, we have P (3) = 0.4 and hence 0.4 = 1 − e−3c, which gives
e−3c = 0.6. Now suppose P (t) = 0.95, that is 1 − e−ct = 0.95, which can be
rewritten as (e−3c)t/3 = 0.05, or 0.6t/3 = 0.05. Taking natural logarithm on
both sides and rearranging, we have

t = 3
ln 0.05

ln 0.6
≈ 17.6.

Thus the student has to do at least 18 exercises in order to achieve a 0.95 (or
95 percent) chance of mastering the subject.

8. As suggested, we use the “integrating factor” ekt/m and let z(t) = v(t)ekt/m.
Then, by the product rule,

z′(t) = v′(t)ekt/m + v(t) · k

m
ekt/m =

(
v′(t) +

k

m
v(t)
)

ekt/m = gekt/m,

in view of the fact that the equation mv′ = mg−kv can be rewritten as v′+ k
m

v =
g. Integrating, we have

z(t) = z(0) +

∫ t

0

geks/m ds = v(0) +
mg

k

(
ekt/m − 1

)
,

where v(0) is just the initial speed vo. Thus

v(t) = z(t) · e−kt/m =
mg

k

(
1 − e−kt/m

)
+ voe

−kt/k.

9. In this case we assume a Law of Decay of the usual form N(t) = N(0)ekt. We
can use the Half-Life Formula and find N(t) = N(0)/2t/T where T is the half-life
of the radionuclide. In this case, T = 29.1, so the amount left at time t is given
by N(t) = N(0)/2t/29.1. The initial sample of 5 g means that N(0) = 5. If we
want to find out when 90% of the sample has decayed, then there is only 10%
of it left, that is we want to find t such that N(t) = (0.1)N(0) = (0.1)(5) = 0.5.
This means that 0.5 = 5/2t/29.1 , or using logarithms, t = ln 100

ln 2
× 29.1 ≈ 193.33

years.
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Chapter 11

Solutions

11.1

11.2

11.3

11.4 Exercise Set 55

1. ∂f
∂x

= 3x2 + 2y, ∂f
∂y

= 2x − 2y

2. f(x, y) = y2

x
= y2x−1, so ∂f

∂x
= −y2x−2 = − y2

x2 , ∂f
∂y

= 2y
x

3. ∂f
∂x

= ∂(2x2)
∂x

exy + 2x2 ∂(exy)
∂x

= 4x exy + 2x2y exy, ∂f
∂y

= 2x3exy

4. ∂f
∂x

= e3y ∂(x+ln y)
∂x

= e3y(1) = e3y

∂f
∂y

= ∂(x+ln y)
∂y

e3y + (x + ln y) ∂(e3y)
∂y

= 1
y
e3y + (x + ln y)(3)e3y

5. ∂f
∂x

= 2(x − 2y + 3) ∂(x−2y+3)
∂x

= 2(x − 2y + 3
∂f
∂y

= 2(x − 2y + 3) ∂(x−2y+3)
∂y

= 2(x − 2y + 3)(−2) = −4(x − 2y + 3)

6.
∂f

∂x
=

(y + x) ∂x
∂x

− x ∂(y+x)
∂x

(y + x)2
=

y + x − x(1)

(y + x)2
=

y

(y + x)2

Thus ∂f
∂x

= 2
(2−3)2

= 2 at (−3, 2).

f(x, y) = x(y + x)−1, so
∂f
∂y

= −x(y + x)−2 ∂(y+x)
∂y

= − x
(y+x)2

= − −3
(2−3)2

= 3 at (−3, 2).

7. f(x, y) = (y2 + 2x)
1
2

∂f
∂x

= 1
2
(y2 + 2x)−

1
2

∂(y2+2x)
∂x

= 1
2
(y2 + 2x)−

1
2 (2) = 1√

y2+2x
= 1√

(−1)2+8
= 1

3

∂f
∂y

= 1
2
(y2 + 2x)

−1
2

∂(y2+2x)
∂y

= 1
2
(y2 + 2x)

−1
2 (2y) = y√

y2+2x
= − 1

3

8. ∂f
∂x

= ∂(xy)
∂x

e2x−y + xy ∂e2x−y

∂x
= ye2x−y + 2xye2x−y = 2e2−2 + 2(1)(2)e2−2 = 6.

∂f
∂y

= ∂(xy)
∂y

e2x−y + xy ∂e2x−y

∂y
= xe2x−y + xy(−1)e2x−y = e0 − 2e0 = −1

67
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9. ∂f
∂x

= 3x2y − 2y2, ∂f
∂y

= x3 − 4xy

∂2f
∂x2 = ∂

∂x

(
∂f
∂x

)
= ∂

∂x
(3x2y − 2y2) = 6xy

∂2f
∂y2 = ∂

∂y

(
∂f
∂y

)
= ∂

∂y
(x3 − 4xy) = −4x

∂2f
∂x∂y

= ∂
∂x

(
∂f
∂y

)
= ∂

∂x
(x3 − 4xy) = 3x2 − 4y

∂2f
∂y∂x

= ∂
∂y

(
∂f
∂x

)
= ∂

∂y
(3x2y − 2y2) = 3x2 − 4y

10. ∂f
∂x

= 2x
x2−y2 , ∂f

∂y
= −2y

x2−y2

∂2f

∂x2
=

∂(2x)
∂x

(x2 − y2) − 2x ∂(x2−y2)
∂x

(x2 − y2)2
=

2(x2 − y2) − 2x(2x)

(x2 − y2)2
=

−2(x2 + y2)

(x2 − y2)2

∂2f

∂y2
=

∂(−2y)
∂y

(x2 − y2) − (−2y) ∂(x2−y2)
∂y

(x2 − y2)2
=

−2(x2 − y2) + 2y(−2y)

(x2 − y2)2
=

−2(x2 + y2)

(x2 − y2)2

∂2f
∂x∂y

= ∂
∂x

(
−2y

x2−y2

)
= −2y(−1)(x2 − y2)−2(2x) = 4xy

(x2−y2)2

∂2f
∂y∂x

= ∂
∂y

(
2x

x2−y2

)
= 2x(−1)(x2 − y2)−2(−2y) = 4xy

(x2−y2)2

11. ∂f
∂x

= ey−x − xey−x, ∂f
∂y

= xey−x

∂2f
∂x2 = ∂

∂x

(
ey−x − xey−x

)
= −ey−x − [ey−x − xey−x] = xey−x − 2ey−x

∂2f
∂y2 = ∂

∂y
(xey−x) = xey−x

∂2f
∂x∂y

= ∂
∂x

(
∂f
∂y

)
= ∂

∂x
(xey−x) = ey−x − xey−x

∂2f
∂y∂x

= ∂
∂y

(
∂f
∂x

)
= ∂

∂y
(ey−x − xey−x) = ey−x − xey−x

12. ∂f
∂x

= 8x − 3y2, ∂f
∂y

= −6xy + 3y2

∂2f
∂x2 = ∂

∂x
(8x − 3y2) = 8, ∂2f

∂y2 = ∂
∂y

(−6xy + 3y2) = −6x + 6y

∂2f
∂x∂y

= ∂
∂x

(−6xy + 3y2) = −6y, ∂2f
∂y∂x

= ∂
∂y

(8x − 3y2) = −6y

11.5

11.6 Exercise Set 56

1. f is continuous whenever the denominator is not zero, that is f is continuous at
(x, y) where x + y 	= 0. f is discontinuous whenever x + y = 0.

2. Yes, it is continuous because we have seen that lim
� →0

sin �

�
= 1 = f(0, 0) here.

3.
∂z

∂x
= 2,

∂f

∂y
= 5

4.
∂z

∂x
= 2xy3,

∂z

∂y
= 3x2y2 + 5,

∂2z

∂y2
= 6x2y

5.
∂z

∂x
(3, 4) =

2

5
,

∂z

∂y
(3, 4) =

1

5

6.
∂f

∂x
= yz(sin x)yz−1 cos x,

∂f

∂y
= z(sin x)yz ln(sin x),

∂f

∂z
= y(sin x)yz ln(sin x)

7.
∂A

∂b
= h and

∂A

∂h
= b. The first gives the rate of change of the area as a function

of the base and the second gives the rate of change of the area as a function of
the height.

8. sin 2t + 2e2t + et(sin t + cos t). Use the Chain Rule.
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9.
∂z

∂x
=

ex

ex + ey
,

dz

dx
=

3x2ey + ex

ex + ey
.

10. (0, 0) is the only critical point. The Second Derivative Test shows that it is a
minimum with a minimum value equal to −1 there. There is no global maximum
since limx→∞ f(x, 0) = +∞.

11. (2, 1) is the only critical point. The Second Derivative Test shows that it is a
maximum with a maximum value equal to +2 there. There is no minimum since
limx→∞ g(x, 0) = −∞.

12. Use Lagrange’s method on the function f(x, y, z, λ) = xyz − λ(x + y + z − 6)
and find its critical points. The only critical point with positive coordinates
that satisfies x + y + z = 6 is (2, 2, 2) (and λ = 4). The maximum value is thus
xyz = 2 · 2 · 2 = 8.

13.
∂C

∂x
=

1

2
10y(xy)

−1
2 + 149 = 5

√
y

x
+ 149

∂C

∂y
= 5x(xy)

−1
2 + 189 = 5

√
x

y
+ 189

Thus, when x = 120 and y = 160, we have ∂C
∂x

= 5
√

160
120

+ 149 = 154.77, and
∂C
∂y

= 5
√

120
160

+ 189 = 193.33.

14. (a) ∂R
∂x1

= 200 − 8x1 − 8x2 = 200 − 8(4) − 8(12) = 72

(b) ∂R
∂x2

= 200 − 8x1 − 8x2 = 72.

15. (a) ∂U
∂x

= −10x + y

(b) ∂U
∂y

= x − 6y

(c) When x = 2 and y = 3,

∂U

∂x
= −20 + 3 = −17,

∂U

∂y
= 2 − 18 = −16

The purchase of one more unit would not result in an increase in satis-
faction for either product since U is decreasing with both x and y. But,
satisfaction would decrease less for product B (U decreases less with re-
spect to y than x.

16. (a) ∂f
∂x

= 3x2 − 3 = 0 for x = ±1, and ∂f
∂y

= −2y + 4 = 0 for y = 2. Thus the
critical points of f are: (1, 2), (-1, 2)

∂2f

∂x2
= 6x,

∂2f

∂y2
= −2,

∂2f

∂x∂y
= 0

Thus D =
∂2f

∂x2
· ∂2f

∂y2
−
[

∂2f

∂x∂y

]2

= −12x

For (1, 2): D = −12 < 0, so (1, 2) is a saddle point. For (-1, 2):

D = 12 > 0 and ∂2f
∂x2 = 6(−1) = −6 < 0, so (-1, 2) is a local maximum.

(b) For critical points

∂f

∂x
= 2x + 4y = 0 (1), and

∂f

∂y
= 4x + 8y3 = 0 (2)

From (1), x = −2y. Substitute in (2), so 4(−2y)+8y3 = 0. Thus 8y3−8y =
0, so y(y2 − 1) = 0 and y = 0,−1, +1. The corresponding x values are:
x = 0, 2,−2. Critical points are: (0, 0), (2, - 1), (-2, 1).

∂2f

∂x2
= 2,

∂2f

∂y2
= 24y2,

∂2f

∂x∂y
= 4

D = 2(24y2) − 42 = 48y2 − 16.

At (0,0): D = −16 < 0 , so (0, 0) a is saddle point. At (2, -1):

D = 48 − 16 > 0, and ∂2f
∂x2 > 0 , so (2, -1) is a local minimum. At (-2,

1): D = 48 − 16 > 0, and ∂2f
∂x2 > 0 , so (-2, 1) also a local minimum.
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17. Profit, P = R − C, where R = x1p1 + x2p2 = 200(p2 − p1)p1 + (500 + 100p1 −
180p2)p2 = 200p1p2−200p2

1+500p2+100p1p2−180p2
2 = 300p1p2−200p2

1−180p2
2+

500p2, and C = 0.5x1+0.75x2 = 0.5×200(p2−p1)+0.75(500+100p1−180p2) =
375 − 25p1 − 35p2. Thus,

P (p1, p2) = 300p1p2 − 200p2
1 − 180p2

2 + 535p2 − 375

For a critical point:

∂P

∂p1
= 300p2 − 400p1 + 25 = 0 (1)

∂P

∂p2
= 300p1 − 360p2 + 535 = 0 (2)

From (1): p1 = (300p2 + 25)/400 (3). Substitute in (2): 300
(

300p2+25
400

)
−

360p2 + 535 = 0. This reduces to 135p2 = 553.75, so p2 = $4.10. Substitute in
(3): p1 = (300 × 4.10 + 25)/400 = $3.14.

∂2P

∂p2
1

= −400,
∂2P

∂p2
2

= −360,
∂2P

∂p1∂p2
= 300

Thus D = (−400)(−360) − (300)2 > 0, and ∂2P
∂p2

1
< 0, so (3.14, 4.10) is a local

maximum, so the maximum profit is 300(3.14)(4.10)−200(3.14)2 −180(4.10)2 +
535(4.10) + 25(3.14) − 375 = $761.48.

18. Want to maximize f(x, y) = 100x
3
4 y

1
4 subject to the constraint 150x + 250y =

50, 000.

F (x, y, λ) = 100x
3
4 y

1
4 − λ(150x + 250y − 50, 000)

For a maximum:

∂F

∂x
= 75x

−1
4 y

1
4 − 150λ = 0 (1),

∂F

∂y
= 25x

3
4 y

−3
4 − 250λ = 0 (2)

From(1), λ =
1

2
x

−1
4 y

1
4 From(2) λ =

1

10
x

3
4 y

−3
4

Thus, 1
2
x

−1
4 y

1
4 = 1

10
x

3
4 y

−3
4 . Multiplying both sides by 10x

1
4 y

3
4 , gives 5y = x.

Substituting x = 5y in the constraint equation gives 150(5y) + 250y = 50, 000,
so y = 50, and thus x = 5y = 250. Therefore, the maximum production level is:

f(250, 50) = 100(250)
3
4 (50)

1
4 ≈ 16, 719

19.
F (x, y, λ) = 2ln x + ln y − λ(2x + 4y − 48)

For a maximum:
∂F

∂x
=

2

x
− 2λ = 0, so λ =

1

x
(1)

∂F

∂y
=

1

y
− 4λ = 0, so λ =

1

4y
(2)

Thus 1
x

= 1
4y

, so 4y = x. Substituting in constraint equation gives 8y+4y−48 =
0, so y = 4, and x = 16 maximize the utility function subject to the constraint.

11.7 Chapter Exercises

1. For critical points, ∂f
∂x

= 3x2−3 = 0 , thus x = ±1 , and ∂f
∂y

= 2y+6 = 0 , so

y = −3. Thus critical points are: (1, −3), (−1, −3). Now ∂2f
∂x2 = 6x, ∂2f

∂y2 =

2, ∂2f
∂x∂y

= 0. Thus

D =
∂2f

∂x2

∂2f

∂y2
− ∂2

∂x∂y
= 12x.

At (1, −3), D = 12 > 0 and ∂2f
∂y2 = 2 > 0. Thus a local minimum at (1, −3).

At (−1, −3), D = −12 < 0, so a saddle point.
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2. ∂f
∂x

= x2 − 4 = 0 gives x = ±2. ∂f
∂y

= −6y2 + 6 = 0 gives y = ±1 . So
critical points are at (−2, −1), (−2, 1), (2, −1), (2, 1).

∂2f

∂x2
= 2x,

∂2f

∂y2
= −12y,

∂2f

∂x∂y
= 0.

D =
∂2f

∂x2

∂2f

∂y2
− ∂2

∂x∂y
= 2x(−12y) − 0 = −24xy

(−2, −1) : D = −24(−2)(−1) < 0, so saddle point

(−2, 1) : D = −24(−2)(1) > 0 and ∂2f
∂x2 = −4 < 0, so local maximum

(2, −1) : D = −24(2)(−1) > 0 and ∂2f
∂x2 = 4 > 0, so local minimum

(2, 1) : D = −24(2)(1) < 0, so saddle point.

3. For critical points,
∂f
∂x

= 4x3 − 8y = 0 (1), ∂f
∂y

= −8x + 4y = 0 (2)

From (2), y = 2x (3), substitute in (1), so

4x3 − 16x = 0, 4x(x2 − 4) = 0, x = 0,−2, 2.

From (3) the corresponding values of y are: y = 0,−4, 4.

Thus (0, 0), (−2, −4), (2, 4) give critical points.
∂f

∂x2 = 12x2, ∂2f
∂y2 = 4, ∂2f

∂x∂y
= −8.

Thus D = (12x2)(4) − (−8)2 = 48x2 − 64.

(0, 0) : D < 0, therefore saddle point.

(−2, −4) : D = 48(4) − 64 > 0, and ∂2f
∂y2 = 4 > 0, so local minimum.

(2, 4) : D = 48(4) − 64 > 0, and ∂2f
∂y2 = 4 > 0, so local minimum.

4. For critical points,
∂f
∂x

= 6x − 6y = 0 (1), ∂f
∂y

= −6x + 3y2 − 9 = 0 (2)

From (2), y2 − 2y − 3 = 0, so (y − 3)(y + 1) = 0, so y = −1, 3.

From (1), x = y, thus critical points at: (−1, −1)and(3, 3).
∂2f
∂x2 = 6, ∂2f

∂y2 = 6y, ∂2f
∂x∂y

= −6

D = 6(6y) − 36 = 36y − 36

(−1, −1) : D = −72 < 0, so a saddle point.

(3, 3) : D = 36(3) − 36 > 0, and ∂2f
∂x2 = 6 > 0, so a local minimum.

5. For critical points:
∂f
∂x

= 6y2 − 6x2 = 0 (1) ∂f
∂y

= 12xy − 12y3 = 0 (2)

From (1), x2 = y2 , so x = ±y. Substitute in (2).

If x = y If x = −y

12y2 − 12y3 = 0 −12y2 − 12y3 = 0
12y2(1 − y) = 0 −12y2(1 + y) = 0

so y = 0 or y = 1 so y = 0 or y = −1
so x = 0 so x = 1 so x = 0 so x = 1

Thus critical points at: (0, 0), (1, −1), (1, 1)
∂2f
∂x2 = −12x, ∂2f

∂y2 = 12x − 36y2, ∂2f
∂x∂y

= 12y

D = −12x(12x − 36y2) − (12y)2 = 144[−x2 + 3xy2 − y2]

(0, 0) : D = 0, therefore test inconclusive

(1, −1) : D = 144[−1 + 3 − 1] = 144 > 0, and ∂2f
∂x2 = −12 < 0, so local

maximum

(1, 1) : D = 144 > 0, and ∂2f
∂x2 = −12 < 0, so local maximum

6. For critical points: ∂f
∂x

= 4x−4x3 = 0, so 4x(1−x2) = 0, and x = 0, ±1.

Also ∂f
∂y

= −2y = 0, so y = 0. Thus critical points at (−1, 0), (0, 0), (1, 0)

∂2f
∂x2 = 4 − 12x2, ∂2f

∂y2 = −2, ∂2f
∂x∂y

= 0
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D = (4 − 12x2)(−2) − 0 = 8(3x2 − 1)

(0, 0) : D = −8 < 0, so saddle point

(−1, 0) : D = 16 > 0, and ∂2f
∂y2 < 0, so local maximum

(1, 0) : D = 16 > 0, and ∂2f
∂y2 < 0, so local maximum

7. ∂f
∂x

= y ex − 3 = 0, so yex = 3 (1), ∂f
∂y

= ex − 1 = 0, so ex = 1, so
x = 0. Substituting in (1) y = 3. Thus critical point at (0, 3)

∂2f
∂x2 = yex, ∂2f

∂y2 = 0, ∂2

∂x∂y
= ex

Thus D = 0 − (ex)2 = −e2x At (0, 3) : D = −1 < 0, so a saddle point.

8. For critical points:
∂f
∂x

= 2x + 4y = 0, (1), ∂f
∂y

= 4x + 8y3 = 0, (2)

From (1), x = −2y. Substitute in (2). Thus

−8y + 8y3 = 0, so y(−1 + y2) = 0, so y = 0,±1

If y = 0, x = −2y = 0. If y = −1, x = −2y = 2. If y = 1, x = −2 So
critical points at: (0, 0), (2, −1), (−2, 1)

∂2f
∂x2 = 2, ∂2f

∂y2 = 24y2, ∂2f
∂x∂y

= 4. So D = 48y2 − 16

(0, 0) : D < 0, so saddle point

(−2, 1) : D = 48 − 16 > 0, and ∂f

∂x2 = 2 > 0, so a local minimum

(2, −1) : D = 48 − 16 > 0, and ∂2f
∂x2 > 0, so a local minimum.

9. Objective function is f(x, y) = x2 + 3y2 + 10

Constraint is g(x, y) = x + y − 4 = 0 Thus

F (x, yλ) = x2 + 3y2 + 10 − λ(x + y − 4)

∂F
∂x

= 2x − λ = 0, so λ = 2x
∂F
∂y

= 6y − λ = 0, so λ = 6y

Thus 2x = 6y so x = 3y. Substitute in constraint. So 3y + y − 4 = 0, so
y = 1 Therefore x = 3(1) = 3 Thus the minimum occurs for x = 3, y = 1
and the minimum is f(3, 1) = 32 + 3(1) + 10 = 22

10. Objective function: f(x, y) = x2 + xy − 3y2

Constraint: g(x, y) = x + 2y − 2 = 0 Thus

F (x, y, λ) = x2 + xy − 3y2 − λ(x + 2y − 2)
∂F
∂x

= 2x + y − λ = 0,
∂F
∂y

= x − 6y − 2λ = 0, so λ = x
2
− 3y

Thus 2x+y = x
2
−3y, so 3

2
x = −4y, so x = − 8y

3
Substitute in constraint,

so − 8y
3

+ 2y = 2, so −8y + 6y = 6, so y = −3 and thus x = 8

Therefore the constrained maximum value occurs at (8,−3), and is x2 + xy −
3y2 = 82 + 8(−3) − 3(−3)2 = 13

11. Let x be length of east and west sides, y be length of north and south sides.

Objective function = area of garden = xy

Constraint function is 10(2y) + 15(2x) = 480 Thus

F (x, y, λ) = xy − λ(20y + 30x − 480)
∂F
∂x

= y − 30λ = 0, so λ = y/30
∂F
∂y

= x − 20λ = 0, so λ = x/20

Thus y
30

= x
20

, giving y = 3
2
x Substitute in constraint.

So 20
(

3x
2

)
+ 30x = 480, 30x + 30x = 480, so x = 8 and y = 3

2
(8) = 12

The dimensions of the largest possible garden are: 8 ft for east/west sides and
12 ft for north/south sides.
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12. Objective function: 5x2
1 + 500x1 + x2

2 + 240x2

constraint: x + y = 1000

F (x1, x2, λ) = 5x2
1 + 500x1 + x2

2 + 240x2 − λ(x1 + x2 − 1000)
∂F
∂x

= 10x1 + 500 − λ, so λ = 10x1 + 500
∂F
∂y

= 2x2 + 240 − λ, so λ = 2x2 + 240

Thus 10x1 + 500 = 2x2 + 240, so x2 = 5x1 + 130 Substitute in constraint.
Thus x1 +5x1 +130 = 1000, so x1 = 870

6
= 145, and x2 = 5(145)+130 =

855 Thus 145 units should be produced at plant 1 and 855 units at plant 2.



74 11.7. CHAPTER EXERCISES



Appendix A

Review of Exponents and
Radicals

In this section we review the basic laws governing exponents and radicals. This ma-
terial is truly necessary for a manipulating fundamental expressions in Calculus. We
recall that if a > 0 is any real number and r is a positive integer, the symbol ar is
shorthand for the product of a with itself r-times. That is, ar = a · a · a · · · a, where
there appears r a’s on the right. Thus, a3 = a · a · a while a5 = a · a · a · a · a, etc. By
definition we will always take it that a0 = 1, regardless of the value of a, so long as it
is not equal to zero, and a1 = a for any a.

Generally if r, s ≥ 0 are any two non-negative real numbers and a, b > 0, then the
Laws of Exponents say that

ar · as = ar+s (A.1)

(ar)s = ar·s, (ar)−s = a−r·s (A.2)

(ab)r = ar · br (A.3)(
a

b

)r

=
ar

br
(A.4)

ar

as
= ar−s. (A.5)

The Laws of Radicals are similar. They differ only from the Laws of Exponents in
their representation using radical symbols rather than powers. For example, if p, q > 0

are integers, and we interpret the symbol a
p
q as the q-th root of the number a to the

power of p, i.e.,

a
p
q =

q
√

ap =
(

q
√

a
)p

, (A.6)

we obtain the Laws of Radicals

p
√

ap = a,
(

p
√

a
)p

= a

p
√

ab = p
√

a · p
√

b

p

√
a

b
=

p
√

a
p
√

b
p
√

r
√

a = pr
√

a.

75
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Note that we obtain the rule
p
√

ab = p
√

a · p
√

b by setting r = 1
p

in (A.3) above and using

the symbol interpreter a
1
p = p

√
a. For example, by (A.6), we see that 9

3
2 =

(√
9
)3

=

33 = 27, while (27)
2
3 =

(
3
√

27
)2

= 32 = 9.

We emphasize that these two laws are completely general in the sense that the symbols
a, b appearing in them need not be single numbers only (like 3 or 1.52) but can be any
abstract combination of such numbers or even other symbols and numbers together!
For example, it is the case that(

2x + y
√

x
)−1

=
1

2x + y
√

x

and this follows from the fact that

a−1 =
1

a

for any non-zero number a. Incidentally, this latest identity follows from (A.1) with
r = 1, s = −1 and the defintion a0 = 1. In order to show the power of these formulae
we use the Box Method of Section 1.2 to solidify their meaning. Thus, instead of
writing the Laws of Exponents and Radicals as above, we rewrite them in the form

�
r · � s = �

r+s (A.7)

(� r)s = �
r·s, (� r)−s = �

−r·s (A.8)

(� 1 � 2)
r = (� 1)

r · (� 2)
r (A.9)(

� 1

� 2

)r

=
(� 1)

r

(� 2)
r (A.10)

� r

� s
= �

r−s, (A.11)

and remember that we can put any abstract combination of numbers or even other
symbols and numbers together inside the Boxes in accordance with the techniques
described in Section 1.2 for using the Box Method. So, for example, we can easily see
that (

2x + y
√

x
)−1

=
1

2x + y
√

x

alluded to above since we know that

�
−1 =

1

�
,

and we can put the group of symbols 2x + y
√

x inside the Box so that we see(
2x + y

√
x
)−1

=
1

2x + y
√

x

and then remove the sides of the box to get the original identity.

Another example follows: Using (A.9) above, that is,

(� 1 � 2)
r = (� 1)

r · (� 2)
r

we can put the symbol 3y inside box 1, i.e., � 1, and x + 1 inside box 2, i.e., � 2, to
find that if r = 2 then, once we remove the sides of the boxes,

(3y(x + 1))2 = (3y)2(x + 1)2 = 9y2(x + 1)2.

The Box Method’s strength lies in assimilating large masses of symbols into one symbol
(the box) for ease of calculation!
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Remark Using the same ideas and (A.8) we can show that
(
32
)−3

= 3−2·3 = 3−6 and

NOT equal to 32−3 as some might think! You should leave the parentheses alone and
not drop them when they are present!

Of course we can put anything we want inside this box so that (if we put
√

2x −
16xy2 + 4.1 inside) it is still true that (use (A.8))(

�
2
)−3

=
(
�

−3
)2

= �
−3·2 = �

−6

or ((√
2x − 16xy2 + 4.1

)2)−3

=
(√

2x − 16xy2 + 4.1
)−6

.

Finally, don’t forget that

�
0 = 1, �

1 = � , and, �
−1 =

1

�
.

Example 532 Simplify the product 23322−1, without using your calculator.

Solution We use the Laws of Exponents:

23322−1 = 232−132

= 23−132 by (A.7)

= 2232

= (2 · 3)2 by (A.9)

= 62

= 36.

Example 533 Simplify the expression (2xy)−223(yx)3.

Solution Use the Laws (A.7) to (A.11) in various combinations:

(2xy)−223(yx)3 = (2xy)−2(2yx)3 by (A.9)

= (2xy)−2+3 by (A.7)

= (2xy)1

= 2xy.

Example 534 Simplify 284−2(2x)−4x5.

Solution We use the Laws (A.7) to (A.11) once again.

284−2(2x)−4x5 = 28(22)−2(2x)−4x5

= 282−4(2x)−4x5 by (A.8)

= 28−4(2x)−4x5 by (A.7)

= 242−4x−4x5 by (A.9)

= 24−4x−4+5 by (A.7)

= 20x1

= x.

Example 535 Simplify
223 (

22
)−3

4
.
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Solution Work out the highest powers first so that since 23 = 8 it follows that 223
= 28.

Thus,

223 (
22
)−3

4
=

282−3·2

4
by (A.8)

=
282−6

22
=

28−6

22
=

22

22

= 1.

Example 536 Write
(
(49)−

1
2

)3

as a rational number (ordinary fraction).

Solution
(
(49)−

1
2

)3

=
(
(49)

1
2

)−3

by (A.8). Next, (49)
1
2 =

√
49 = 7, so,

(
(49)

1
2

)−3

=

7−3 =
1

73
=

1

343
.

Example 537 Simplify as much as possible: (16)−
1
6 4

7
3 (256)−

1
4 .

Solution The idea here is to rewrite the bases 4, 16, 256, in lowest common terms, if
possible. Thus,

(16)−
1
6 4

7
3 (256)−

1
4 = (42)−

1
6 4

7
3 (44)−

1
4

= 4− 1
3 4

7
3 4−1 by (A.8)

= 4− 1
3+ 7

3−1 by (A.7)

= 4
6
3−1

= 4.

Example 538 Simplify to an expression with positive exponents:
x− 1

6 x
2
3

x
5
12

.

Solution Since the bases are all the same, namely, x, we only need to use a combination
of (A.7) and (A.11). So,

x− 1
6 x

2
3

x
5
12

=
x− 1

6+ 2
3

x
5
12

by (A.7)

=
x

1
2

x
5
12

= x
1
2− 5

12 by (A.11)

= x
7
12 .

Example 539 Show that if r 	= 1 then 1 + r + r2 =
1 − r3

1 − r
.

Solution It suffices to show that (1+r+r2)(1−r) = 1−r3 for any value of r. Division
by 1 − r (only valid when r 	= 1) then gives the required result. Now,

(1 + r + r2) · (1 − r) = (1 + r + r2) · (1) + (1 + r + r2) · (−r)

= (1 + r + r2) + (1) · (−r) + r · (−r) + r2 · (−r)

= 1 + r + r2 − r − r2 − r3 by (A.7)

= 1 − r3

and that’s all.
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Example 540 For what values of a is x4 + 1 = (x2 + ax + 1) · (x2 − ax + 1)?

Solution We simply multiply the right side together, compare the coefficients of like
powers and then find a. Thus,

x4 + 1 = (x2 + ax + 1) · (x2 − ax + 1)

= x2 · (x2 − ax + 1) + ax · (x2 − ax + 1) + 1 · (x2 − ax + 1)

= (x4 − ax3 + x2) + (ax3 − a2x2 + ax) + (x2 − ax + 1)

= x4 − ax3 + x2 + ax3 − a2x2 + ax + x2 − ax + 1

= x4 + (2 − a2) · x2 + 1.

Comparing the coefficients on the left and right side of the last equation we see that
2 − a2 = 0 is necessary. This means that a2 = 2 or a = ±

√
2.

Note Either value of a in Example 540 gives the same factors of the polyno-
mials x4 + 1. More material on such factorization techniques can be found in
Chapter 5.

Exercise Set 57

Simplify as much as you can to an expression with positive exponents.

1. 162 × 8 ÷ 43

2. (252)
1
2

3. 24422−2

4. 3242

12

5. 5315−234

6. (2x + y) · (2x − y)

7. 1 + (x − 1)(x + 1)

8.
(
(25)−

1
2

)2

+ 5−2

9. (4x2y)22−4x−2y

10. (1 + r + r2 + r3) · (1 − r)

11. (a9b15)
1
3

12. (16a12)
3
4

13. x
1
4 x− 2

3

x
1
6

14.
(

1

16

)− 3
2

15.
(
1 + 5

1
3

)
·
(
1 − 5

1
3 + (25)

1
3

)
16.

(
9x−8

)− 3
2

17. 9− 1
6 3

7
3 (81)−

1
4

18.
(12)

3
2 (16)

1
8

(27)
1
6 (18)

1
2

19.
3n+19n

(27)
2n
3
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20.

√
xy x

1
3 2y

1
4

(x10y9)
1
12

21. Show that there is no real number a such that (x2 + 1) = (x − a) · (x + a).

22. Show that (1 + x2 + x4) · (1 − x2) = 1 − x6.

23. Find an expression for the quotient
1 − x8

1 − x
as a sum of powers of x only.

24. Show that (x − 1)(x + 1)(1 + x2) + 1 = x4.

25. Show that 3
(
x2yz

)3 ÷x4y3 − 3x2z3 = 0 for any choice of the variables x, y, z so
long as xy 	= 0.

26. Using the identities (A.7) and a0 = 1 only, show that a−r =
1

ar
for any real

number r.

27. Show that if r, s are any two integers and a > 0, then (a)−rs = (ar)−s = (as)−r.

28. Give an example to show that

2xy

	= (2x)y .

In other words, find two numbers x, y that have this property.

29. Show that for any number r 	= −1 we have the identity 1− r + r2 =
1 + r3

1 + r
and

use this to deduce that for any value of x 	= −2,

1 − x

2
+

x2

4
=

x3 + 8

4(x + 2)
.

30. If a > 0 and 2x = a
1
2 + a− 1

2 show that
√

x2 − 1

x −
√

x2 − 1
=

a − 1

2
.

Suggested Homework Set 37 Do all even-numbered problems from 2 - 28.

Web Links

Many more exercises may be found on the web site:

http://math.usask.ca/readin/



Appendix B

The Straight Line

In this section we review one of the most fundamental topics of analytic geometry,
the representation of a straight line with respect to a given set of coordinate axes.
We recall that a point in the Euclidean plane is denoted by its two coordinates (x, y)
where x, y are real numbers either positive, negative or zero, see Figure 244.

Points in the Euclidean plane

Figure 244

Thus, the point (3,−1) is found by moving three positive units to the right along
the x-axis and one unit “down” (because of the negative sign) along a line parallel
to the y-axis. From the theory of plane Euclidean geometry we know that two given
points determine a unique (straight) line. Its equation is obtained by describing
every point on the straight line in the form (x, y) = (x, f(x)) where y = f(x) is
the equation of the straight line defined by some function f . To find this equation
we appeal to basic Euclidean geometry and, in particular, to the result that states
that any two similar triangles in the Euclidean plane have proportional sides, see
Figure 245. This result will be used to find the equation of a straight line as we’ll
see.

We start off by considering two given points P and Q having coordinates (x1, y1) and
(x2, y2) respectively. Normally, we’ll write this briefly as P (x1, y1) etc. Remember
that the points P, Q are given ahead of time. Now, we join these two points by
means of a straight line L and, on this line L we choose some point that we label as
R(x, y). For convenience we will assume that R is between P and Q.

Next, see Figure 245, we construct the two similar right-angled triangles 
PQT
and 
PRS. Since they are similar the length of their sides are proportional and so,

PS

SR
=

PT

TQ
.

In terms of the coordinates of the points in question we note that PS = x − x1,
SR = y − y1, PT = x2 − x1, TQ = y2 − y1. Rewriting the above proportionality

The triangles PRS and PQT have

proportional sides as they are sim-

ilar.

Figure 245

relation in terms of these coordinates we get

x − x1

y − y1
=

x2 − x1

y2 − y1
,

or equivalently, solving for y and rewriting the equation, we see that

y = mx + b

where

m =
y2 − y1

x2 − x1

81
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is called the slope of the straight line and the number b = y1 − mx1 is called
the y-intercept (i.e., that value of y obtained by setting x = 0). The x-intercept
is that value of x obtained by setting y = 0. In this case, the x-intercept is the
complicated-looking expression

x =
x1y2 − x2y1

y2 − y1
.

Let P (x1, y1), Q(x2, y2) be any two points on a line L. The equation of L is
given by

y = mx + b (B.1)

and will be called the slope-intercept form of a line where

m =
y2 − y1

x2 − x1
(B.2)

is called the slope of the straight line and the number

b = y1 − mx1 (B.3)

is the y-intercept.

Example 541 Find the slope of the line whose equation is 3x + 2y − 7 = 0.

Solution First, let’s see if we can rewrite the given equation in “slope-intercept
form”. To do this, we solve for y and then isolate it (by itself) and then compare
the new equation with the given one. So, subtracting 3x − 7 from both sides of

The graph of the line 3x+2y−7 = 0

with a negative slope equal to −3/2.

Figure 246

the equation gives 2y = 7 − 3x. Dividing this by 2 (and so isolating y) gives us

y =
7

2
− 3

2
x. Comparing this last equation with the form y = mx + b shows that

m = −3

2
and the y-intercept is

7

2
. Its graph is represented in Figure 246.

Example 542 Find the equation of the line passing through the points (2,−3) and
(−1,−1).

Solution We use equations (B.1), (B.2) and (B.3). Thus, we label the points as
follows: (x1, y1) = (2,−3) and (x2, y2) = (−1,−1). But the slope m is given by
(B.2), i.e.,

m =
y2 − y1

x2 − x1
=

−1 + 3

−1 − 2
= −2

3
.

On the other hand the y-intercept is given by

b = y1 − mx1 = −3 +
2

3
(2) = −5

3
.

The equation of the line is therefore y = −2

3
x− 5

3
or, equivalently, 2x + 3y + 5 = 0,

(see Figure 247).

The line 2x + 3y + 5 = 0 and its

y-intercept.

Figure 247

Remark: It doesn’t matter which point you label with the coordinates (x1, y1),
you’ll still get the same slope value and y-intercept! In other words, if we interchange
the roles of (x1, y1) and (x2, y2) we get the same value for the slope, etc. and the
same equation for the line.
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Example 543 Find the equation of the line through (1, 4) having slope equal to 2.

Solution We are given that m = 2 in (B.1), so the equation of our line looks like
y = 2x + b where b is to be found. But we are given that this line goes thourhg the
point (1, 4). This means that we can set x = 1 and y = 4 in the equation y = 2x+ b
and use this to find the value of b. In other words, 4 = 2 ·1+ b and so b = 2. Finally,
we see that y = 2x + 2 is the desired equation.

Example 544 Find the equation of the line whose x-intercept is equal to −1 and
whose y-intercept is equal to −2.

Solution Once again we can use (B.1). Since y = mx + b and the y-intercept is
equal to −2 this means that b = −2 by definition. Our line now takes the form
y = mx − 2. We still need to find m though. But by definition the fact that the
x-intercept is equal to −1 means that when y = 0 then x = −1, i.e., 0 = m ·(−1)−2
and this leads to m = −2. Thus, y = −2x− 2 is the equation of the line having the
required intercepts.

Example 545 Find the point of intersection of the two lines 2x + 3y + 4 = 0 and
y = 2x − 6.

Solution The point of intersection is necessarily a point, let’s call it (x, y) once again,
that belongs to both the lines. This means that 2x + 3y + 4 = 0 AND y = 2x − 6.
This gives us a system of two equations in the two unknowns (x, y). There are two
ways to proceed; (1): We can isolate the y-terms, then equate the two x-terms and
finally solve for the x-term, or (2): Use the method of elimination. We use the first
of these methods here. Equating the two y-terms means that we have to solve for y

The two lines 2x+3y+4 = 0 and y =

2x−6 and their point of intersection

P( 7
4 ,− 5

2 )

Figure 248

in each equation. But we know that y = 2x−6 and we also know that 3y = −2x−4

or y = −2

3
x − 4

3
. So, equating these two y’s we get

2x − 6 = −2

3
x − 4

3

or, equivalently,
6x − 18 = −2x − 4.

Isolating the x, gives us 8x = 14 or x = 7
4
. This says that the x-coordinate of the

required point of intersection is given by x = 7
4
. To get the y-coordinate we simply

use EITHER one of the two equations, plug in x = 7
4

and then solve for y. In our
case, we set x = 7

4
in, say, y = 2x − 6. This gives us y = 2 · ( 7

4
) − 6 = − 5

2
. The

required point has coordinates ( 7
4
,− 5

2
), see Figure 248.

Prior to discussing the angle between two lines we need to recall some basic notions
from Trigonometry, see Appendix ??. First we note that the slope m of a line whose
equation is y = mx + b is related to the angle that the line itself makes with the
x-axis. A look at Figure 249 shows that, in fact,

m =
y2 − y1

x2 − x1
=

opposite

adjacent
= tan θ,

by definition of the tangent of this angle. So,

The angle θ between the line y =

mx + b and the x-axis is related to

the slope m of this line via the rela-

tion m = tan θ.

Figure 249

m = Slope = tan θ

where the angle θ is usually expressed in radians in accordance with the conventions
of Calculus.
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Now, if two lines are parallel their corresponding angles are equal (this is from a
really old result of Euclid - sometimes called the corresponding angle theorem,
CAT, for short). This means that the angle that each one makes with the x-axis is
the same for each line (see Figure 250), that is θ2 = θ1. But this means that the
slopes are equal too, right? Okay, it follows that if two lines are parallel, then their
slopes are equal and conversely, if two lines have equal slopes then they must be
parallel. If θ2 = θ1 = π

2
, the lines are still parallel but they are now perpendicular

with respect to the x-axis. In this case we say they have no slope or their slope is
infinite. Conversely, if two lines have no slopes they are parallel as well (just draw
a picture).

We now produce a relation that guarantees the perpendicularity of two given lines.
For instance, a glance at Figure 251 shows that if θ1, θ2 are the angles of inclination
of the two given lines and we assume that these two lines are perpendicular, then,
by a classical result of Euclidean geometry, we know that

Parallel lines have the same slope

and, conversely, if two lines have the

same slope they are parallel

Figure 250

θ2 = θ1 +
π

2

tan θ2 = tan
(

θ1 +
π

2

)
= − cot θ1

= − 1

tan θ1
.

Since m2 = tan θ2, m1 = tan θ1, it follows that m2 = − 1
m1

. We have just showed
that two lines having slopes m1, m2 are perpendicular only when

m2 = − 1

m1

that is, two lines are perpendicular only when the product of their slopes is the
number −1. The converse is also true, that is, if two lines have the product of their
slopes equal to −1 then they are perpendicular. This relates the geometrical notion
of perpendicularity to the stated relation on the slopes of the lines. It follows from
this that if a line has its slope equal to zero, then it must be parallel to the x-axis
while if a line has no slope (or its slope is infinite) then it must be parallel to the
y-axis.

Figure 251
Example 546 Find the slopes of the sides of the triangle whose vertices are (6, 2), (3, 5)
and (5, 7) and show that this is a right-triangle.

Solution Since three distinct points determine a unique triangle on the plane it
suffices to find the slopes of the lines making up its sides and then showing that the
product of the slopes of two of them is −1. This will prove that the triangle is a
right-angled triangle.

Now the line, say L1, joining the points (6, 2), (3, 5) has slope m1 = 5−2
3−6

= −1

while the line, L2, joining the points (3, 5) and (5, 7) has slope m2 = 7−5
5−3

= 1.

Finally, the line, L3, joining (6, 2) to (5, 7) has slope m3 = 7−2
5−6

= −5. Since
m1 · m2 = (−1) · (1) = −1 it follows that those two lines are perpendicular, see
Figure 252. Note that we didn’t actually have to calculate the equations of the lines

Figure 252
themselves, just the slopes!

Example 547 Find the equation of the straight line through the point (6,−2) that
is (a) parallel to the line 4x−3y−7 = 0 and (b) perpendicular to the line 4x−3y−7 =
0.
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Solution (a) Since the line passes through (x1, y1) = (6,−2) its equation has the
form y − y1 = m1(x− x1) or y = m1(x− 6)− 2 where m1 is its slope. On the other
hand, since it is required to be parallel to the 4x − 3y − 7 = 0 the two must have
the same slope. But the slope of the given line is m = 4

3
. Thus, m1 = 4

3
as well

and so the line parallel to 4x − 3y − 7 = 0 has the equation y = 4
3
(x − 6) − 2 or,

equivalently (multiplying everything out by 3), 3y − 4x + 30 = 0.

(b) In this case the required line must have its slope equal to the negative reciprocal
of the first, that is m1 = − 3

4
since the slope of the given line is m = 4

3
. Since

y = m1(x − 6) − 2, see above, it follows that its equation is y = − 3
4
(x − 6) − 2 or,

equivalently, 4y + 3x − 10 = 0.

Exercise Set 58

1. Find the slope of the line whose equation is 2x − 3y = 8

2. Find the slope of the line whose equation is 2x − 3y = −8

3. Find the slope of the line whose equation is y − 3x = 2

4. Find the equation of the line passing through the point (2,−4) and (6, 7)

5. Find the equation of the line passing through the point (−4,−5) and (−2,−3)

6. Find the equation of the line passing through (−1,−3) having slope −2

7. Find the equation of the line passing through (6,−2) having slope 4
3

8. Write the equation of the line whose x−intercept is 2 and whose y−intercept is
3

9. Write the equation of the line whose x−intercept is 1
2

and whose y−intercept is
1
3

10. Find the point of intersection of the two lines y = x + 1 and 2y + x − 1 = 0

11. Find the points of intersection of the two lines 2y = 2x + 2 and 3y − 3x− 3 = 0.
Explain your answer.

12. Find the point of intersection (if any) of the two lines y − x + 1 = 0 and y = x

13. Recall that the distance between two points whose coordinates are A(x1, y1),
B(x2, y2) is given by

AB =
√

(x2 − x1)2 + (y2 − y1)2.

Of course, this quantity AB is also equal to the length of the line segment
joining A to B. Use this information to answer the following questions about
the triangle formed by the points A(2, 0), B(6, 4) and C(4,−6): (a) Find the
equation of the line through AB; (b) Find the length of the altitude from C to
AB (i.e., the length of the perpendicular line through C meeting AB); (c) Find
the area of this triangle ABC

14. Find the equation of the straight line through (1, 1) and perpendicular to the
line y = −x + 2

15. Find the equation of the straight line through (1, 1) and parallel to the line
y = −x + 2
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Appendix C

Solutions

C.1 APPENDIX A - Exercise Set

1. 2

2.
1

25

3. 26 = 64

4. 12

5. 45

6. 4x2 − y2

7. x2

8.
2

25

9. x2y3

10. 1 − r4

11. a3b5

12. 8a9

13.
1

x
7
12

14. 64

15. 6

16.
x12

27
17. 3

18. 8

19. 3n+1

20. 2

21. Expand the right side, collect terms and compare the coefficients. You’ll find
that 1 = −a2 which is an impossibility since the right side is always negative or
zero and the left side is positive.

22. See Example 539 where you set r = x2.

23. 1 + x2 + x4 + x6; see the previous exercise.

24. Expand the left-side and simplify.

25. Use the Power Laws and simplify
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88 C.2. APPENDIX B - EXERCISE SET

26. Since ar+s = aras we can set s = −r. Then a0 = ara−r and since a0 = 1 we
get 1 = ara−r and the result follows.

27. See the Introduction to this section for a similar argument.

28. Let x = 2, y = 3. Then 28 	= 26.

29. Replace r by −r in Example 539 and then set r =
x

2
and simplify.

30. Write x as x =
a

1
2 + a− 1

2

2
. Square both sides of this equality, use the Powers

Laws, and then subtract 1 from the result. Simplify.

C.2 APPENDIX B - Exercise Set

1.
2

3

2.
2

3
3. 3

4. y = 3x − 10

5. y = x − 1

6. y = −2x − 5

7. y =
4

3
x − 10

8. y = −3

2
x + 3

9. y = −2

3
x +

1

3

10.
(
− 1

3
, 2

3

)
11. There is no intersection whatsoever since the lines are parallel or have the same

slope (= 1)

12. There is no intersection point either since the lines are parallel or have the same
slope (= 1)

13. a) y = x − 2

b) The altitude has length
√

32 = 4
√

2. First, we find the equation of the line
through (4,−6) having slope −1 as it must be perpendicular to the line
through (2, 0) and (6, 4) (i.e., y = x−2). This line is given by y = −x−2.
The find the point of intersection of this line with y = x − 2. We get the
point (0,−2). The base of the triangle has length given by the distance
formula in the exercise applied to the points A and B. Its value is

√
32.

The altitude has height given by the same distance formula, namely, the
distance between the points C(4,−6) and (0,−2); its value is

√
32 as well.

The rest follows.

c) Area = (1/2)
√

(32)
√

(32) = 16

14. y = x

15. y = −x + 4
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299
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Arccotangent, 133
Archimedes, 75
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Arcsine, 133
Arctangent, 133
area, 299, 417, 454
area between two curves, 125
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bacteria, 522
base, 166, 180
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catenary, 179
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center of mass, 283, 492
central reflection, 240
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change of base, 190
change of base formula, 180
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chemical, 520
classical solution, 505
closed interval, 4
Cobalt, 520
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comet, 505
commutative, 125
completing the square, 402, 407
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concavity, 223, 224
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constraint, 538, 540, 541
continuity, 36, 264
Continuity of Various Trigonometric Func-

tions, 46
continuous, 30, 31, 34, 36, 38, 42, 123,

264, 526
continuous, Bolzano’s Theorem, 55
continuous, function properties, 39
continuous, IVT, 54
continuous, piecewise, 316, 417, 427
convergence of a sequence, 141
convergence of an infinite sequence, 172
convergence to a non-zero limit, 251
converse, 322
convexity, 223
Cooling, Newton’s Law of, 522
critical point, 219, 537
critical points, 230
cubic polynomial, 426
culture, 522
curvature, 418
curvature, parabola, 424
curve sketching, 201
curvilinear trapezoids, 424
curvilinear triangle, 46, 467
cylinder, volume, 470

decay constant, 193
Decay Law, 518
decay rate, 519
Decay, Law, 293
Decay, Radioactive, 519
deck, 454
decomposition, partial fraction, 370, 374
Decreasing, 230
decreasing, 220
defined, 10
definite integral, 299
definite integral, estimating, 418
definite integral, properties, 301
demand, demand function, 545
dependent variable, 2, 506
derivative, 75, 76, 299
derivative, partial, 529, 530
derivative, trigonometric function, 111,

112, 115
Derivatives of Inverse Trigonometric Func-

tions, 137
Descartes, René, 41

determinate, 61, 150
difference of the limits, 40
difference, forward, 314
differentiable at the point a, 86
differentiable everywhere, 86
differentiable on I, 85
differential equation, 292, 505
differential equation, separable, 104
differential equation, solution, 292
differential equations, 10, 121
differential operator, 100, 310
differentials, 104
Differentiation, 283
discontinuity, 263, 527
discontinuous, 30, 34, 36, 42, 43, 528
Dom (f), 2
domain, 2, 3, 125, 130, 133
domain of a sequence, 247
double root, 324
Double-angle identities, 17
Dusky Sparrow, 140

earth, 522
earth, mass, 497
economics, 416
Einstein, 1
Einstein, A., 26
Einstein, Albert, 273
electron, 284
ellipse, rotated ellipse, 542
Engineering, 308
entropy, 195
epsilon-delta method, 30
equally-spaced points, 418
equation, differential, 292
equation, ordinary differential, 505
equation, separable differential, 505
Error, 419, 425
error estimate, 416
Error term, Trapezoidal Rule, 420
estimate, error, 416
Euclid, 428
Euclid, of Alexandria, 312, 328
Euler’s Exponential Function, 165
Euler’s exponential function, 178
Euler’s number, 291
Euler’s number e, 174
Euler, Leonhard, 165
even function, 240, 306
EVEN SYMMETRY, 240
Exact value, 419
Existence Theorem, 508
explicit function, 104
explicit relation, 104
exponent, 166
exponential function, ex, 177
Exponents, Law of, 661
extended real number, 58, 68, 269
extrema, extremum, 537, 540
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extreme point, 222

factorials, 24
Fibonacci sequence, 247
finite serties, 416
fluxions, 104
Formula, Half-Life, 521
forward difference operator, 314
Fourier Series, 308
fractions, partial, 370
free variable, 511
free-fall, 523
FTC, 320
FTC, see Fundamental Theorem of Cal-

culus, 320
fulcrum, 493
function, 1, 2
function, even, 306
function, explicit, 104
function, Gaussian, 320
function, implicit, 105
function, inverse, 462
function, odd, 306
function, rational, 366
functions, hyperbolic, 335
functions, inverse, 283
Fundamental Theorem of Calculus, 283,

318, 345, 505

Galileo, 75
Gamma Function, 24
Gauss, 428
Gauss, C.F., 309
Gaussian function, 320
Gaussian integral, 429
general exponential function, 179
GENERAL EXTREMUM TEST, 241
general solution, 104, 507, 511
Generalized Power Rule, 93, 288, 289
geometric mean, 24
geometric series, 550
global extrema, 223
global maximum, 222
global maximum value, 222
global minimum, 222
global minimum value, 222
Grégoire de Saint Vincent, 187
graph, 30, 201
gravity, 523
greatest integer function, 249
Growth and Decay Law, 517
Growth and Decay Laws, 511
Growth Law, 518
Growth, Law, 293
guessing limits, 61

half-life, 193, 518, 521
Half-Life Formula, 521
Heaviside Function, 31

Heaviside, Oliver, 31
Higher order partial derivative, 531
higher-order derivatives, 100
hole, black, 295
horizontal asymptotes, 226, 230
horizontal line test, 126, 133
Horizontal line test, Test horizontal line,

126
hyperbolic cosine, 179
hyperbolic functions, 335

identical sequences, 247
identity, 16
implicit differentiation, 104, 114
implicit form, 512
implicit function, 105
Implicit Function Theorem, 105, 108,

512
implicit relation, 104, 512
improper integral, 430, 432
improper integrals, 24
incantations, 150
Increasing, 230
increasing, 220, 301
increasing sequence, 173
Increasing Sequence Theorem, 173
indefinite integral, 285, 505
indefinite integral, anatomy, 289
independent variable, 2, 506
indeterminate form, 61, 146
Indeterminate Forms, 150
indeterminate forms, 61, 150
Induction, Mathematical, 308
Inequalities, 20
infinite limits, 268
infinite series, 177, 309, 416
infinity, ∞ properties, 58
initial condition, 508
initial value problem, 293, 508, 512
inner radius, 471
instantaneous velocity, 7, 75
integrable, Riemann, 316
integral, 283
integral, Gaussian, 429
integral, improper, 430, 432
integral, indefinite, 285, 289
integral, Riemann, 315
integrand, 332
Integration, 283
Integration by Parts, 331, 345, 451
integration, numerical, 416
Intelligence Quotient, 428
intercepts, 230
Intermediate Value Theorem, 54, 123
intersect, 55
intersection, 55
interval, partition, 314
interval, symmetric, 306
inverse function, 462
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Inverse Function Theorem, 182
Inverse Functions, 108
inverse functions, 283
inverse of a function, 125
inverse of a trigonometric function, 133
inverse of an operator, 125
inverse trigonometric functions, 120
irrational number, 165
isotope, 518
iteration, 141
IVT, 54

Javascript, 248
Johannes Müller of Königsberg, 49
Jordan content, 318

Kelvin, 29
Kepler, 75
Kepler’s equation, 148
Kilowatt, 422
Kovalevskaya, Sofya, 15

L’Hospital, 165
L’Hospital’s Rule, 150, 151, 423
L’Hospital’s Rule for Limits at Infinity,

158
Lagrange multipliers, multipliers, 537,

540
Lagrange parameter, 540
laser, 423
Law of Decay, 518
Law of Growth, 518
Law of Growth and Decay, 511, 517
Law, Newton’s Cooling, 522
Laws of Exponents, Exponent Laws,

661, 662
Laws of Growth and Decay, 293
Laws of Radicals, Radical Laws, 661
learning model, 522
Lebesgue measure, 318
left continuity, right continuity, 228
left derivative, 80
left-derivative, 83
left-hand limit, 279
left-neighborhood, 151
left-neighbourhood, 224
Legendre, 428
Leibniz, 1
Leibniz’s Rule, 306, 318
Leibniz, Rule, 318
limit at infinity, 58
limit from the left, 31, 32, 41, 80, 253,

257–259, 279
limit from the right, 31, 41, 80, 253–

255, 279
limit of a sequence, 248, 249
limit, Riemann sum, 315
limiting speed, 523
Limits of Indeterminate Forms, 69

Limits, properties, 40
line, 667
Linear Algebra, Algebra, 130
Linear Factor, 202
lines parallel, parallel lines, 670
local maximum, 222, 223
local maximum value, 222
local minimum, 222
local minimum value, 222
logarithm, 519
logarithmic integral, 428
Logistic equation, 11
loop, 427
Lorentz, H., 26

Main Theorem on Limits, 279, 281
Marginal Cost, 544
marginal cost function, 525
Mathematical Induction, 308
Mathzone, 248
maximum, 119
maximum value, 22, 56
Mean Value Theorem, 118, 120, 122,

299, 316
Midpoint Rule, 416
minimum, 119
minimum value, 56
minus infinity, −∞, 58
model of learning, 522
moment about an axis, 494
moments, 493
monotone increasing, 172
motion, rectilinear, 451
multiple of the limit, 40
multiple of two continuous functions,

40

natural domain, 10
natural logarithm, 172, 179
neighborhood, 150
net change in position, 451
Newton, 75, 140
Newton’s Law of Cooling, 196, 522
Newton’s Method, 140
Newton’s method, 320, 370
Newton, Sir Isaac, 1
Nieuwentijt, Bernard, 104
norm, 314
norm of a partition, 314
normal distribution, 195
normal line, 108
nuclear, 521
Number Theory, 248
Number theory, 311
number, complex, 309
number, prime, 312, 328
numerical approximations, 75
numerical integration, 416
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odd function, 240, 306
ODD SYMMETRY, 240
Odd-even identities, 16
one-sided limit, 41, 278, 279
one-sided limits, 253
one-to-one, 126, 129
open interval, 4
operator, differential, 310
operator, forward difference, 314
operator, summation, 310
ordinary derivative, 75
ordinary differential equation, 75, 505
Oresme, Nicola, 41
oscillating sequence, 261
outer radius, 471

parabola, 424
parabola, curvature, 424
parachute, 523
Partial Differential Equations, 15
partial fraction decomposition, 374
partial fractions, 370
particular solution, 507
partition, 417
partition of an interval, 314
partition, norm, 314
partition, points, 426
partition, regular, 322
Parts, Integration by, 331
pattern recognition, 517
perpendicular, 670
piecewise continuous, 316, 417, 427
planet, 505
plasma field, 124
Plug-in Method, 373
plus infinity, +∞, 58
Plutonium, 521
Poincaré, Henri, 5
point of inflection, 224, 226
points of inflection, 230
Polynomial, 201
polynomial, 40, 43, 212
polynomial inequalities, 209
polynomial inequality, 210
polynomial, trigonometric, 308
population biology, 511
position, net change in, 451
power, 166
Power Rule, Generalized, 288
prime number, 312, 328, 428
principal branch, 135
Principle of Mathematical Induction,

308
probability, 284, 522
Probability Theory, 320
problem, Cauchy, 508
problem, initial value, 293, 508
problem, three-row, 360
product of the limits, 40

product or quotient of two continuous
functions, 40

Product Rule, 87, 345
program, C++, 328
projection, 475
proof by contradiction, 121
punctured neighborhood, 151
Pythagorean identities, 17

quadratic irreducible, 402
Quadratic Irreducible Factor, 202
Quadrature formula, 416
qualitative analysis, 122
quantum mechanics, 284
quasi-periodic function, 149
quotient of the limits, 40
Quotient Rule, 87

R-integral, 316
radian, 45, 110
radians, 5, 46
radio-isotope, 519
radioactive, 518
Radioactive Decay, 519
radioactive decay, 193
radioactivity, 518
Radiocarbon dating, 522
radiocarbon dating, 511
Radioisotopes, 194
radionuclide, 518
Radium, 522
radius, average, 471
radius, inner, 471
radius, outer, 471
Ran (f), 2
range, 2, 3, 125, 130, 133
range of a sequence, 247
rate of decay, 193
rate, decay, 519
rational function, 43, 366
rational functions, 201
rational number, 177
rationalization, 83
Real Analysis, 318
reciprocal of a number, 20
Reciprocal Rule, 93
rectilinear motion, 451
Regiomontanus, 49
regular partition, 322
relativity, 26
relativity, special, 268
removing the absolute value, 13
resistance, air, 523
revolution, solid, 470
revolution, solid of, 283
Riemann Hypothesis, 309
Riemann integrable, 316
Riemann Integral, 299
Riemann integral, 118, 315
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Riemann sum, 417
Riemann sum, limit, 315
Riemann Zeta Function, 309
Riemann, B., 314
Riemann, Bernhard, 310
right derivative, 80
right-derivative, 83
right-hand limit, 279
right-neighborhood, 151
right-neighbourhood, 224
Rolle’s Theorem, 119, 122
Rolle, Michel, 119
Roman numerals, 38
root, 55, 123, 145, 204, 212, 213
root of a polynomial, 55
root, double, 324
rotation, 470
Rule, Leibniz, 318
Rule, Leibniz’s, 306
Rule, Product, 345
Rule, Substitution, 331, 333, 511

Saarinen, Eero, 179
Sabertooth Tiger, 522
Sandwich Theorem, 39, 58
scaling, 423
Schrödinger’s equation, 11
SDT, 204, 212, 213
Seaside Dusky Sparrow, 140
second derivative, 100
Second Derivative Test, 537, 538, 540
sector of a circle, 46
semi-open interval, 4
separable differential equation, 505
separable equation, 511
separation, of variables, 293
sequence, 141, 172, 247, 417
sequence, finite, 247, 308
sequence, infinite, 247
series, finite, 309, 416
series, infinite, 309, 416
Sierpinski’s Estimate, 313, 328
Sign Decomposition Table of a Polyno-

mial, , 204
signum function, 18
simple root, 142
Simpson’s Rule, 320, 416, 424
Simpson’s Rule, Error term, 425
size of SDT, 205
SLANT ASYMPTOTES, 241
slice, 454
slice, horizontal, 455
slice, vertical, 455
slope, 76, 77
slope-intercept form, 668
Sociology, 283
Solar energy, 454
Solar Flare, 30
solid of revolution, 283, 470

solution, differential equation, 292
solution, general, 507
solution, particular, 507
Sophie Germain, 15
Sparrow, Dusky Seaside, 140
speed of light, 1, 26, 29, 124, 268
speed, limiting, 523
Square Root of the Square Rule, 12
square root of the square rule, 11
square, completing the, 407
star, 505
step-function, 30
stock options, 75
straight line, 667
Strontium, 523
subscripts, 247
subsequences, 253
substitution, 331
Substitution Rule, 331, 333, 451, 511
substitution, method of, 333
substitution, trigonometric, 406
sum of the limits, 40
sum or difference of two continuous func-

tions, 39
Sum/Difference Rule, 87
summation, 308
summation operator, 310
surface, 526
symbol, 3
symmetric interval, 306
symmetry, 240

tangent line, 119
tangent line to P, 76
tangent line, slope, 77
tangent to a curve, 76
Taylor polynomial approximation, 202
Taylor series, 202
telescoping sum, 312
term of the sequence, 247
The Power Rule, 85
Theorem, Mean Value, 299
theorems, 118
Theory of Inequalities, 20
third derivative, 100
thought experiment, 273
three-row problem, 360
Tiger, Sabertooth, 522
torus, 470
total distance travel, 451
toxic, 521
Track & Field, 29
transcendental functions, 179
transformation of the independent vari-

able, independent variable trans-
formation, 100

trapezoid, 417
trapezoid, curvilinear, 424
Trapezoidal Rule, 416, 418
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Trapezoidal Rule, Error term, 420
travel, total distance, 451
Triangle Inequalities, 21
triangle, curvilinear, 467
triangles similar, similar triangles, 667
trigonometric functions, 46
Trigonometric Identities, 16
trigonometric identities, 110
trigonometric identity, 53
trigonometric integral, 385
trigonometric polynomial, finite, 308
trigonometric substitution, 406
Trigonometry, 669
trigonometry, 45
two-sided limit, 36
two-sided limits, 278
Type I, 202
Type II, 202
Type II factor, 402

undecidable statements, 103
URL, 252
Utility, Marginal Utility, 545

variable, change of, 333
variable, dependent, 506
variable, dummy, 285
variable, free, 285, 511
variable, independent, 506
variables, separation of, 293
vertical asymptote, 213, 227, 229, 269
vertical asymptotes, 230
Vertical Line Test, 105
vertical tangent line, 229
virus, 521
volume, 454
volume of a solid of revolution, 125
volume, cylinder, 470

wall, width of, 471
wave phenomena, 110
web sites, 248, 252
Weierstrass, Karl, 30
width, wall, 471
World Wide Web, 9, 248, 252

zeros, 204, 309
Zeta Function, Riemann, 309


